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ABSTRACT: In this report, we present results on the electro-
catalytic activity of conducting polymers [polyaniline (PANI) and
polypyrrole (PPy)] toward the electrochemical oxygen reduction
reaction (ORR) to hydrogen peroxide (H2O2). The electro-
polymerization of the polymers and electrolysis conditions were
optimized for H2O2 production. On flat glassy carbon (GC)
electrodes, the faradaic efficiency (FE) for H2O2 production was
significantly improved by the polymers. Rotating disc electrode
(RDE) studies revealed that this is mainly a result of blocking
further H2O2 to the water reduction pathway by the polymers. PPy
on carbon paper (CP) significantly increased the molar production
of H2O2 by over 250% at an average FE of above 95% compared to
bare CP with a FE of 25%. Thus, the polymers are acting as
catalysts on the electrode for the ORR, although their catalytic mechanisms differ from other electrocatalysts.
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1. INTRODUCTION

In order to reduce the dependence on fossil fuels, great effort is
made on exploration and utilization of inexhaustible and
renewable energy sources such as solar energy.1,2 To overcome
the bottleneck of coordination in between energy supply and
demand, we need long-term energy storage systems. As such,
commercial batteries nowadays still do not possess the
required energy and power density as global storage media.
On the other hand, energy-carrying chemicals (synthetic fuels)
formed through the electrocatalytic conversion of water (H2O)
and carbon dioxide (CO2) are an interesting route because for
storage and transportation of the products, the existing
industrial energy infrastructure can be used. Alternatively,
oxygen (O2) reduction products such as hydrogen peroxide
(H2O2) have been investigated as high energy density
carriers.3−5 Besides a potential use as a fuel, H2O2 is a versatile
chemical with high demand for several applications such as
organic synthesis,6−8 paper production,8,9 sanitizing, and
bleaching.8

According to its unique feature of being an oxidizing agent
as well as a reducing agent, it was introduced to the
instrumentation of smart and delocalized fuel cells in a one-
compartment cell configuration.10−12 Independent of the
energy release pathway, the reaction products are either O2

or H2O, of which both are, for example, educts for hydrogen
peroxide production, offering a complete chemical recycling.

Today, H2O2 is mostly produced through the hydrogenation
of soluble anthraquinone derivatives followed by oxidation
the so-called anthraquinone-oxidation process.6,8 As this
process demands high energy input for product separation,
environmentally friendly alternatives are sought. One of the
promising approaches is the electrochemical reduction of
oxygen,13,14 which interestingly has been investigated since
early 1900s. Although the earliest report for electrochemical
H2O2 synthesis was in 1901 by Meidinger15 using platinum
electrodes, in 1939, Berl16 was the first one reporting the
activity of carbon-based electrodes toward H2O2 production.
The focus of this present work is on electrocatalysis using
carbon-based and organic electrocatalysts, where various
materials such as glassy carbon (GC), carbon nanotubes
(CNTs),13 and nitrogen-doped mesoporous carbon materials17

have already been reported to show high efficiencies toward
H2O2 production. Moreover, organic pigments18 such as
quinacridone, epindolidione,19 and perylenediimide20 have
been reported for their capability of being (photo-)-
electrocatalysts for the production of H2O2. Besides inves-
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tigation of new organic catalysts in general to achieve the
industrial demand of stable electrocatalysts, additional research
on electrode surface engineering21 or immobilization of known
electrocatalytic compounds such as anthraquinone on CNT’s22

is also reported.
One promising class for organic electrocatalysts are the well-

studied “organic metallic polymers, that are, conducting
polymers”,23−26 organic compounds which become conductive
upon doping, such as polyanilines (PANI), polypyrroles (PPy),
or polythiophenes. Throughout the last decades, numerous
reports have been published for energy storage applica-
tions,27−30 batteries,31−33 supercapacitors,34 sensors,35 solar
cells, or transistors.36

In the 1980s, Mengoli et al.37,38 as well as Cui and Lee39

reported the electrochemical reduction of oxygen on PANI
electrodes. Later, Khomenko et al.40 described the electro-
catalytic properties for PANI and PPy toward oxygen
reduction, but disproved such a behavior for poly(3,4-
ethylenedioxythiophene) (PEDOT). Regarding PEDOT,
controversial reports exist in the literature; moreover,
PEDOT has been proposed as selective H2O2 to water
electrocatalyst,41 but in a consecutive work, the same group
reported a selective O2 to H2O2 reduction catalyzed by
PEDOT.42 As the reduction step of H2O2 to H2O depends
strongly on the existing overall H2O2 concentration, this may
be origin of these controversial reports. Ramireź-Peŕez et al.
chemically synthesized and pyrolyzed carbon fiber/PPy
composites for the oxygen reduction reaction (ORR).43

Many recent studies44−46 explore the electrocatalytic effect of
pyrolyzed compounds also derived from conducting polymers,
but direct comparison to the unmodified polymers is difficult.
It has to be noted that because of the synthetic parameters

chosen for the polymerization, those conductive polymers
might be doped with metal ions which are known to catalyze
oxygen reduction, where the intended doping with metals is
sometimes even the goal by the preparation and investigation
of polyaniline-metal particle47,48 composites for the ORR.49 In
recent years, the group of Azzaroni investigated numerous
promising approaches of gaining synergistic effects of the
combination of PANI with metal−organic frameworks for an
enhanced ORR.50−52 PANI and PEDOT were also used as the
polymer matrix for incorporated metal particles for the ORR as
well as the electrochemical hydrogen evolution reaction
(HER),53,54 and recently, even pure PANI was described as
an electrocatalyst itself for the HER.55

The motivation for the present work has been the
investigation of electropolymerized PANI and PPy films on
GC and carbon paper (CP) electrodes, which are free of metal
dopants. These two different carbon electrodes were chosen as
models of flat and high-surface electrodes, respectively. The
electrocatalytic activity of PANI and PPy toward oxygen
reduction to H2O2 was investigated by combining the
techniques of cyclic voltammetry (CV), chronoamperometry,
and rotating disc electrode (RDE) characterization.

2. EXPERIMENTAL SECTION
2.1. Electrode Preparation. 2 mm thick GC (Alfa Aesar, Type1)

electrodes were polished prior to use for 1 min each with Buehler
Micropolish II deagglomerated alumina in decreasing particle size
from 1.0 to 0.3 to 0.05 μm. In between, the electrodes were sonicated
for 15 min each in 18 MΩ water (MQ water) and isopropanol (VWR
Chemicals).

Electrochemical treatment of GC was performed by sweeping the
potential in a 0.5 M H2SO4 solution between +1500 and −1000 mV
vs Ag/AgCl (3 M KCl) at a scan rate of 50 mV s−1 for 30 cycles.

To prepare Cr-/Au-coated glass electrodes for spectroscopy, glass
slides were cut into the size of 0.7 × 6.0 cm and subsequently cleaned
via sonication in the following solvents for 15 min each: acetone
(VWR Chemicals), 2% Hellmanex solution (Hellma-Analytics), MQ
water, and isopropanol. Afterward, the samples were treated for 5 min
at 50 W in the oxygen plasma oven Plasma ETCH P25. In a thermal
metal evaporation chamber, 5 nm chromium followed by 80 nm of
gold was deposited at ∼10−6 mbar.

Toray CP (Alfa Aesar, TGP-H 60) was used as received and cut
into an appropriate size of 1.0 × 3.0 cm.

2.2. Electrochemical Polymerization. Following the reported
procedures of Nunziante and Pistoia,56 as well as Sariciftci et al.57 after
optimization (see Supporting Information, Figures S1−S4), the
potentiodynamic oxidative electropolymerization of aniline was
performed in 0.5 M H2SO4 (J.T.Baker) in a one-compartment cell.
The cell was purged with nitrogen (N2) for 45 min before aniline
(Sigma-Aldrich, freshly distilled) was added to obtain a concentration
of 0.1 M. After additional 15 min of N2 purging, the electrodes [Pt as
the counter electrode (CE) and the saturated calomel electrode
(SCE) as the reference electrode (RE)] were equipped and the
polymerization was performed by sweeping between +800 and
−200 mV at a scan rate of 25 mV s−1 for 25 cycles (see Figure 1a).

Developed from the procedure for chemical synthesis in phosphate-
buffered saline (PBS) solution [containing 0.137 M NaCl (ACM),
2.7 mM KCl (Alfa Aesar), 0.01 M Na2HPO4 (Sigma-Aldrich), and
1.8 mM KH2PO4 (Sigma-Aldrich)] by Andriukonis et al.,58

potentiodynamic oxidative electropolymerization of pyrrole (see
Figure 1b) was performed, to which pyrrole was added resulting in
a concentration of 0.45 M. The emulsion was stirred vigorously. Pt
was used as the CE, and Ag/AgCl(3 M KCl) as the RE. The

Figure 1. (a) Potentiodynamic polymerization of 0.1 M aniline in 0.5 M H2SO4 electrolyte solution for 25 cycles at a scan rate of 25 mV s−1,
(b) potentiodynamic polymerization of 0.45 M pyrrole in 0.15 M PBS solution for 20 cycles at a scan rate of 50 mV s−1. The first cycle is shown in
blue color, and the last cycle is shown in red color.
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electropolymerization was performed without stirring by sweeping the
potential between −400 and 1000 mV at a scan rate of 50 mV s−1 for
20 cycles.
2.3. Electrochemical Experiments. Electrochemical character-

ization of obtained polymers (CV and chronoamperometry) was done
using a Jaissle Potentiostat-Galvanostat 1030 PC-T and a Jaissle
Potentiostat-Galvanostat PGU10V-100 mA. The experiments were
performed in a two-compartment cell (separated with a glass frit)
using 20.0 mL of electrolyte solution. Regarding the current density
(j) in all cases, the geometric electrode area was taken into
consideration.
The electrolyte solutions of 0.5 M H2SO4 (J. T. Baker), 0.1 M

NaHSO4 (Alfa Aesar), and 0.1 M NaOH (Merck) were prepared by
dissolving the corresponding amount in MQ water. The 0.1 M
phosphate buffer (PB) solution was prepared from K2HPO4 (Sigma-
Aldrich) and KH2PO4 (Sigma-Aldrich), resulting in a pH of 7.
Prior to the electrochemical measurements, the cell was purged

with N2 for 1 h in order to achieve nitrogen-saturated conditions.
Then, 30 min purging with O2 gas was done to provide oxygen-
saturated conditions. Unless stated elsewise, a platinum plate was used
as the CE, a commercial Ag/AgCl (3 M KCl) (BASi) as the RE, and a
scan rate of 20 mV s−1 was applied in all CV experiments.
Chronoamperometric electrolysis experiments were performed for

6 h at a constant potential, which was recalculated to the potential of
the standard hydrogen electrode (SHE). During the experiment,
100 μL aliquots of the electrolyte solution were taken several times
and used for H2O2 quantification. In order to prove the
reproducibility of the experiments, repetitions under identical
conditions were used for statistical calculation of mean values, and
accordingly, error bars for at least three individual sets of experiments
are shown. For the reduction processes for O2, the two products H2O2
and H2O are possible, as illustrated in Scheme 1.

The Faradaic Efficiency for H2O2 was calculated by

=
·

*
n

% FE
moles of electrons

100
n

product
1

reaction (1)

using n = 2 as H2O2 is the product of the two-electron reduction of
O2.
Hydrodynamic electrochemical characterization with RDE meas-

urements was performed on an IPS Jaissle PGU BI-1000
Bipotentiostat-Galvanostat attached to an IPS PI-ControllerTouch
unit and an IPS Rotator 2016 rotating unit. A GC disc (Ø = 8 mm) in
polychlorotrifluoroethylene (PCTFE)was used as WE and polished in
the same manner similar to the GC plate mentioned above. An Ag/
AgCl (3 M KCl) (Messtechnik Meinsberg) electrode in a Luggin
capillary was used as the RE and a platinized electrode as the CE.
Rotating ring-disc electrode (RRDE) measurements were performed
using a GC disc (Ø = 5 mm) in polyether ether ketone (PEEK) with
a Pt ring (Ø = 7 mm). In all linear sweep voltammetry (LSV)
measurements under convection, a sweep rate of 10 mV s−1 was
applied.
Unless stated elsewhere, all potentials mentioned in this work are

recalculated and refer to the SHE.
2.4. Characterization Methods. Spectroscopic characterization

of the obtained polymer-coated electrodes was done using attenuated

total reflection Fourier transform infrared spectroscopy (ATR-FTIR)
and Raman spectroscopy. ATR-FTIR was performed on a Bruker
VERTEX 80-ATR spectrometer in the spectral range of
3600−500 cm−1. Raman spectroscopy was performed on a Bruker
MultiRAM Raman Microscope using an excitation wavelength of
1064 nm in the spectral shift range between 3600 and 5 cm−1 (see
Figures S6 and S7).

The morphology of the prepared electrodes was analyzed by
scanning electron microscopy (SEM). A JEOL JSM-6360LV scanning
electron microscope was operated under high vacuum settings, and an
acceleration voltage of 7.0 kV and a SEM ZEISS 1540 XB cross-beam
scanning electron microscope operated at 3.0 kV was used.

The quantification of produced H2O2 was done according to the
previously reported colorimetric method.59,60 (see Supporting
Information, Figure S5 for further details).

3. RESULTS AND DISCUSSION
The first step was to prepare and investigate polyaniline and
polypyrrole coated on GC electrodes (GC/PPy). Raman and
ATR-FTIR spectra of the obtained PANI and PPy films are
presented in Supporting Information, Figures S6 and S7, while
the CV curves of optimized electropolymerizations of PANI
and PPy are shown in Figure 1.
The polymerization CV curves in Figure 1 show a gradual

increase in current over performed cycles with the reversible
oxidation of PANI from the fully reduced leucoemeraldine
form to the half-oxidized emeraldine form at potentials
0−250 mV and further to the fully oxidized pernigraniline
form in the potential range of 600−800 mV and subsequent re-
reduction to the nonconducting, leucoemeraldine form.61

In Figure 2, the SEM images of electropolymerized PANI
and PPy on GC as well as CP are shown.

The SEM images in Figure 2a show that PANI in a sponge-
like structure covered a major fraction of the GC surface. The
inset reveals that the structure was composed of individual
cross-linked fibers. In contrast, the SEM images of a PPy
electrode in Figure 2b,d show a full coverage of globule-like
polypyrrole structures on all visible carbon structures. For
further comparison, SEM images of bare CP are shown in
Supporting Information, Figure S8.
Figure 3a shows that a GC/PANI as well as a bare GC (see

Figure S9) show almost flat CV curves under the N2
atmosphere and a distinct reductive peak at −200 mV under

Scheme 1. Schematic Illustration of the 2- and 4-Electron
Reduction Pathways for the Oxygen Reduction

Figure 2. (a) SEM images of PANI polymerized on a GC electrode.
(b) SEM images of PPy polymerized on a GC electrode. (c) SEM
images of PANI polymerized on a CP electrode. (d) SEM images of
PPy polymerized on a CP electrode.
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O2 reflecting the ORR. Besides the CV result in Figure 3a, by
performing chronoamperometry at various pH solutions and at
different applied potentials, chronoamperometry at −400 mV
vs the SHE showed the highest H2O2 production yield (see
Supporting Information, Figure S10). Because of these
findings, further chronoamperometry was performed at this
potential for 6 h and the results are shown in Figure 3b. As the
moles of H2O2 remained quite unchanged because of the
current observed in the transient curves in the case of GC/
PANI (Figure S11), the faradaic efficiencies toward H2O2
production were improved from roughly 40% in the bare GC
case to 80% in a GC/PANI case. This is because of the lower
conductivity of the PANI layer under these conditions, which
caused a higher serial resistance. A similar result was observed
while operating in an acidic solution (pH 2) (Figure S12).
Moreover, different PANI redox features and slightly lower
H2O2 quantities were found. One possible explanation for this
enhancement of the FE might be that PANI acts somehow as a
layer directing to the H2O2 reaction pathways. Electrocatalytic
investigations on electrode materials favoring the direct 4-
electron reduction of O2 to H2O similar to platinum did not
show any improvement through a PANI layer. To further
investigate this possibility of PANI as a peroxide directing
layer, the same set of experiments was performed using a high-
surface area carbon electrode, CP (Figure 3c,d).
In order to examine another conductive polymer besides

PANI, PPy was also investigated using both GC and CP
electrodes. The CV curves in Figure 3c show that using CP,
significantly larger current densities of the redox-active
polypyrrole were obtained because of the larger electroactive
surface area of CP as compared to GC. In addition, upon O2-
saturated conditions, CP/PPy showed a pronounced reductive
current of nearly 7 mA cm−2 at −700 mV as compared to
about 3 mA cm−2 observed under N2-saturated conditions (see

Figure S9). During chronoamperometry experiments, the
amount of produced H2O2 and the corresponding FE toward
the electrocatalytic oxygen reduction to H2O2 are shown in
Figure 3d. Comparing bare CP to GC, it showed higher H2O2
production but a substantially lower FE. The CP/PPy
electrode significantly enhanced the H2O2 production up to
300 μmoles after 6 h at a FE close to 100%. This result is in
good agreement to a previous work by Wu, Venancio, and
MacDiarmid,33 and Ramireź-Peŕez et al.43 which underline the
electrocatalytic properties of PPy, especially of the “nanoma-
terial PPy” they investigated. Although Wu et al.33 and
Khomenko et al.40 reported an electrocatalytic behavior
accompanied with a current increase, we could just observe
increased FE for H2O2 with our electrochemically polymerized
PANI.
In comparison to bare GC, GC/PPy (Figure 3b) showed an

enhancement of the H2O2 produced at a comparable high FE
of nearly 80%. The electrocatalytic properties of PPy toward
H2O2 production under acidic conditions at pH 2 were also
investigated (Figure S14). A slightly increased H2O2
production was observed, but the determined FE was either
similar or even lower than a blank CP.
These observations reveal the evidence that PPy on CP

considerably enhances the H2O2 production quantities with
improved FE. In order to gain further insights into the
mechanistic details of the reactions on bare GC as well as on
polymer-coated GC, hydrodynamic-voltammetric experiments
were performed. The obtained faradaic efficiencies of GC for
H2O2 production, which were determined by RRDE, are
shown in Figure 4.
As illustrated in Scheme 1, in general, oxygen can be reduced

via a four-electron reduction process directly to water
(pathway 3) or via a two-electron reduction process to H2O2
(pathway 1). Hydrogen peroxide can also be further reduced

Figure 3. (a) CV of GC/PANI and GC/PPy in 0.1 M PB (at pH 7) w/o O2. (b) Results of chronoamperometry of blank GC as well as GC/PANI
and GC/PPy in 0.1 M PB at −400 mV vs SHE including the faradaic efficiency (FE) for H2O2 (c) CV of CP/PANI and CP/PPy in 0.1 M PB (at
pH 7) w/o O2. (d) Results of chronoamperometry of blank CP as well as CP/PANI and CP/PPy in 0.1 M PB at −400 mV vs SHE including the
FE for H2O2. In the graphs b and d, continuous lines describe moles H2O2 and dashed lines are used for presenting FE values.
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to water by a subsequent two-electron reduction process
(pathway 2). As H2O2 is an electroactive species which can be
determined on a platinum ring, the FE of H2O2 produced at
the GC disc can be calculated from the disc current (ID) and
the ring current (IR) at a certain applied potential, respectively
(See Supporting Information, Figures S15 and S16 for further
details). At moderate cathodic potentials at pH 2, a high
selectivity toward H2O2 production was observed, which
gradually decreased to nearly zero at potentials that were more
negative than −0.8 V. At neutral pH, the efficiency was
constant over the whole investigated potential range, while
under alkaline conditions, a maximum FE of 75% was observed
at −0.5 V. All of the results obtained by this RRDE method are
in good agreement with the literature reports62,63 as well as to
the FE values determined by the abovementioned chronoam-
perometry at −0.4 V after 1 h electrolysis.

To compare these results from blank GC with polymer-
coated electrodes, RDE investigations of GC/PANI were
performed as shown in Figure 5.
The LSV curves of GC/PANI at pH 7 in Figure 5a look

similar to one of the blank GC and upon the addition of H2O2,
a slightly increased j was observed. Deriving the number of
transferred electrons (n) by Koutecki−Levich-Analysis (K−L)
GC/PANI as well as GC show a pronounced tendency for the
two-electron H2O2 production pathway at potentials between
−0.3 and −0.6 V. At more negative potentials under the O2

atmosphere, no significant onset for further reduction to H2O
was observed. Upon H2O2 addition, GC showed a steep
increase in n, reflecting more H2O2 reduction reaction. This
behavior was also observed for GC/PANI but with a
moderately increased n at potentials lower than −0.6 V.
Analysis of blank GC and GC/PANI at pH 2 (Figure S17)
revealed that at potentials lower than −0.5 V, a similar
behavior at neutral pH was observed, followed by a further
reduction of oxygen to water at more negative potentials of
around −1.0 V. In accordance with the results at pH 7, the
addition of H2O2 led to an increased cathodic current,
although in general j was significantly lower in the acidic
medium compared to the neutral one. As a consequence of the
very low j values, K−L analysis could only be performed at the
potentials which were more negative than −0.7 V. Concluding
from Figure 5d, GC/PANI at pH 2 acted as a peroxide-directing
layer which shifted the onset potential for H2O2 reductions to
more negative potentials. Comparing to chronoamperometry
experiments (Figure S12), these results showed a similar
produced H2O2 amount but a higher FE, which was obviously
a result of the hindrance of undesired H2O2 reduction and a
lower current as a result of a higher serial resistance. Although
recent reports55 somehow proposed that PANI in the acidic

Figure 4. Faradaic efficiencies for H2O2 production determined on
GC via RRDE in 0.1 M NaHSO4 (pH 2), 0.1 M PB (pH 7), and
0.1 M NaOH (pH 13).

Figure 5. (a) LSV of GC/PANI at pH 7 under O2 and (b) LSV of GC/PANI at pH 7 under O2 with H2O2 added (c) number of electrons
transferred of GC as well as GC/PANI at pH 7 [calculated from results in (a) and (b)] (d) number of electrons transferred of GC as well as GC/
PANI at pH 2 (calculated from results in Figure S16b,c).
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medium acted as an electrocatalyst for hydrogen evolution, our
results cannot confirm these findings for pH 2.
In addition to the RDE investigations of GC/PANI, GC/

PPy was tested in both neutral and acidic media toward the
ORR. In analogy to GC/PANI at pH 2, a large reduction peak
using the polypyrrole was observed, which decreased by half as
H2O2 was added (Figure S18). No current increase upon H2O2
addition occurred and even the opposite occurred, this can be
regarded as a strong hint that PPy hinders a further reduction
of H2O2 to water. Because of the large PPy reduction
background current, no clear answer about the ORR from
the K−L analysis was possible.

4. CONCLUSIONS
We explored PANI and PPy as potential electrocatalysts on
carbon-based electrodes. On GC, PANI and PPy showed
increased FEs at pH 7 from approximately 50−80% and 50−
77%, respectively, while the absolute amount of H2O2 was not
altered significantly. Hydrodynamic voltammetry revealed that
the polymer coating hinders further reduction of produced
H2O2. In acidic media, PANI acted as a peroxide directing layer
preventing the direct 4-electron reduction of oxygen (O2) to
water (H2O) (3). PPy on a high surface-area electrode such as
CP at neutral pH significantly increased the amount of H2O2

produced from 85 μmolH2O2
on blank CP more than three

times up to 310 μmolH2O2
after 6 h electrolysis. Simultaneously,

the average FE compared to bare CP was improved from 25 to
96%.
From our studies, it can be concluded that electrochemically

synthesized PANI is, in contrast to previous studies, an
electrocatalyst but not showing a catalytic current increase.
Nevertheless, the polymer coating on carbon electrodes
considerably enhanced the long-term current efficiency by
preventing undesired side or further reactions of H2O2 to H2O.
However, PPy prevented further reduction reactions and also
showed electrocatalytic current increase upon O2 addition. A
possible explanation might be that PPy is oxidized by O2;
therefore, producing H2O2 and PPy by itself is getting re-
reduced electrochemically.33,40
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SEM, scanning electron microscopy
SHE, standard hydrogen electrode
WE, working electrode
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