Low Cost "Plastic" Solar Cells

Solar cells --- Power from the Sun --- must be and will be ---

a significant contribution to our energy needs.

Two problems that must be solved with solar: 1. Cost 2. Area

Semiconducting and Metallic Polymers

"inks" ---- with electronic functionality!

"Plastic" Solar Cells

Ultrafast charge separation with quantum efficiency approaching Unity !

50 femtoseconds!!

Ultrafast electron transfer is important ---

Charge transfer is 1000 times faster than any competing process,

and

Back charge transfer is inhibited

Therefore,

Quantum efficiency for charge separation approaches unity!

Every photon absorbed yields one pair of separated charges!

(Route to photovoltaics and photodetectors)

Ultrafast photo-induced charge separation ----

But how do we create a material with charge-separating junctions everywhere??

All must be accomplished at nanometer length scale!

P3HT

Bulk Heterojunction Material Bicontinuous interpenetrating network

Self-assembled nanoscale material with charge-separating junctions everywhere!

"Bulk" D-A Heterojunction Material

A self-assembled nanomaterial

Must break the symmetry --- use two different metals with different work functions. Electrons will automatically go toward lower work function contact and holes toward higher work function contact Origin of V_{oc} --- when irradiated with high light intensity, Fermi levels must be equal (holes in the π -band and electrons in PCBM LUMO):

Solar Cell Performance

Device structure: ITO/PEDOT/P3HT:PCBM/A1.

Eff = 5.0% $V_{oc} = 0.625 V$ FF = 68%

Series resistance decreased from 113 Ω to 7.9 Ω

"Bulk" Heterojunction Material --- Optimize Nanomorphology

P3HT

PCBM

TEM images of the P3HT/PCBM interpenetrating network

After annealing for 10 minutes at 150°C

Spatial Fourier Transform

High temperature annealing --- 150° C

1. Stable for long times at High-T

2. 10 minutes sufficient to lock in the nano-scale morphology

Quasi-periodic with "periodicity" of 16-20 nm

80 nm

|"Period" 160 -200 Å|

Distance from any point in the material to a charge separating interface \approx 40-50 Å

Less than the mean exciton diffusion length ---High efficiency for charge separation.

New Device Architecture: Optical Spacer

New Device Architecture: Optical Spacer

Device architecture: Optical spacer

Optical Spacer can improve the Power Conversion Efficiency

25 % - 50% increase in efficiency

Bias (V)

Optical spacer important for low mobility materials where simply making the active layer thicker is not an option

What can we expect to achieve??

Single layer with efficiency > 5% demonstrated with P3HT

Band gap too large ---Missing more than half the solar spectrum

Opportunity: Potential for factor of 2 improvement using polymer with smaller band gap.

Semiconducting polymers with smaller band gap?

Zhengguo Zhu (ZZ50)

Absorption and photoresponse out to 900 nm in the IR.

Should be capable of 7% in single cell and >10% in a Tandem Cell with P3HT

With ZZ50 ----

Progress --- but still missing all incident power in the IR beyond 900 nm. Need smaller gap materials Morphology Control withAlkane-dithiols as Processing Additives (Nature Materials, Published online May 27. 2007)

Add 2.5% alkanedithiol into solvent (chlorobenzene)

1,3-propanedithiol (blue), 1,4-butanedithiol (green), 1,6-hexanedithiol (orange) and 1,8-octanedithiol (red)

Spectra sharpen and red-shift

Processing Additives for Morphology control

Factor of 2 Improvement by using octane-dithiol as processing additive

Nature Materials Published online May 27. 2007

Best performance for a single cell architecture

Processing Additives for Morphology Control of Bulk Heterojunction Materials

Mechanism:

(i) Selective (differential) solubility of the fullerene component(ii) Higher boiling point than the host solvent.

Absorption Spectra

PCPDTBT:C71-PCBM films processed with 1,8-octanedithiol ---Before removal of C71-PCBM with alkanedithiol (black), After removal of C71-PCBM with alkanedithiol (red)

The PCBM is completely removed by the alkane-dithiol!

Multi-layer Tandem Cell (equivalent to two solar cells in series)

0_x

Tandem Cell

(Multilayer architecture equivalent to two solar cells in series)

Open circuit voltage doubled --- Efficiency 6.5%

We can do even better ----

each of the two subcells ---

Already demonstrated (using the Processing Additive).

Goal for coming months: 8-10 %

In the Tandem Cell, the TiOx layers serve six separate functions:

- 1. Optical spacer that redistributes the light intensity to optimize the efficiency of the back cell.
- 2. With TiOx layer between the charge separating layer and the aluminum cathode --- much improved air stability
- 3. The TiOx functions as a low resistance electron transport layer
- 4. TiOx layer breaks the symmetry and thereby creates the open circuit voltage.
- 5. TiOx functions as a hole blocking layer (top of the valence band at - 8.1 eV)
- 6. TiOx layer enables the fabrication of tandem cells. The transparent TiOx layer is used to separate and connect the front cell and the back cell.

Polymer Solar cells: Present status --- 5 - 6 % with P3HT (and with several other materials with similar spectra) What can we expect (hope) to achieve??

New Architecture --- optical spacer --- 25-50% improvement

New Polymers with energy gap well matched to the solar spectrum Opportunity for x2 improvement

Better charge collection efficiency (optimize morphology) Opportunity for 25% improvement

Increased open circuit voltage (deeper HOMO for semiconducting polymer) Opportunity: Potential for > 50% improvement

Tandem Cell ---Opportunity: Potential for > 50% improvement Reality of each of these has been demonstrated.

Goal: Achieve all these advances in the same system (1.25 x 2 x 1.25 x 1.5 x 1.5 = 7)

Clear vision of technology pathway to BHJ solar cells with efficiencies exceeding 20%

New materials are the key to progress

Examples:

LeClerc and colleagues (JACS published on the web 12/21/07)

With X = acceptor such as

3.6% with PCBM

Yong Cao and colleagues (in press)

Note: Both have high V_{oc} --- 0.9 V Deeper HOMO

Air-stable polymer electronic devices

Thin layer of amorphous TiO_x (x<2) improves performance

and

Enhances Lifetime

Polymer Based Solar Cells Polymer LEDs Polymer FETs

Adv Mater. 2007

Bulk Heterojunction Solar Cells

Single TiO_x passivation layer significantly enhances the lifetime Factor of 100 !

Goal: Simple inexpensive barrier materials will be sufficient for achieving long lifetime.

Background scientific information

TiOx prevents oxidation of polyfluorene (PF) b

XPS of the O1s/C1s ratio in the PF after 48 hrs at 150°C in air

Similar enhancement in lifetime for LEDs and FETs

FETs LEDs 3.5 Mobility (x 10⁻³ cm²V⁻¹s⁻¹ 3.0 Luminous Efficiency (cd/A) 2.5 - With TiO, layer with TiO_x - Without TiO layer 10⁻ 2.0 1.5 (а) РЗНТ 1.0 10⁻² • 600 200 400 800 1000 Conventional Time (min) 10⁻¹ 10 15 20 5 0 Time (Hours) Mobility (cm²V⁻¹s⁻¹) 10⁻² 10⁻³ With TiO, layer - Without TiO layer 104 **10⁻⁵** (b) РСВМ 10⁻⁶ 200 400 600 800 1000 Time (min)

Rooftop testing of BHJ solar cells at KONARKA

Lifetime: Rooftop and Accelerated Degradation Flexible devices packaged with commercial, low cost barrier films (Konarka)

Flexible Organic P3HT:PCBM Bulk-Heterojunction Modules with more than 1 Year Outdoor Lifetime Jens A. Hauch, Pavel Schilinsky, Stelios A. Choulis, Richard Childers, Markus Biele and Christoph J. Brabec

Long-Lived Flexible Organic Solar Cells

Jens A. Hauch, Pavel Schilinsky, Stelios C. Choulis, Sambatra Rajoelson and Christoph J. Brabec

Outdoor rooftop lifetime (Konarka)

Efficiency actually increased ----

Drop in power output after 1 year due to small shift in the maximum power point (from 0.87V to 0.8V).

Accelerated Degradation ---

Flexible devices packaged with commercial, low cost barrier films (Konarka)

Goal: Efficiency > 10 - 15% with polymer "bulk heterojunction" nano-materials

Low Cost Roll-to-Roll manufacturing by printing and coating technologies

Acknowledgement

Professor Kwanghee Lee ---UCSB and GIST (Korea) Dr. Jin Young Kim Prof G. Bazan, D. Moses, J.Peet Christoph Brabec and colleagues at Konarka

