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€/Wp
Module costs

(€/m2) 1000 750 500 250 100 75 50 25

Module η(%)

2 50.00 37.50 25.00 12.50 5.00 3.75 2.50 1.25

4 25.00 18.75 12.50 6.25 2.50 1.88 1.25 0.63

6 16.67 12.50 8.33 4.17 1.67 1.25 0.83 0.42

8 12.50 9.38 6.25 3.13 1.25 0.94 0.63 0.31

10 10.00 7.50 5.00 2.50 1.00 0.75 0.50 0.25

12 8.33 6.25 4.17 2.08 0.83 0.63 0.42 0.21
14 7.14 5.36 3.57 1.79 0.71 0.54 0.36 0.18

OBPV – Efficiency & costs
Long term target for power applications < 0.5 € /Wp

• Reduce module costs (< €/m2)
• Increase efficiency (>Wp/m2)



3 5-3-2008

Contents
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• Standard and adapted measuring procedures for OBPV

• State of the art

• Efficiency potential for OBPV

• Conclusion and recommendations
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η depends on

• Temperature
• Illumination power
• Spectral distribution light source

For a meaningful comparison of results:
Efficiencies independent of measuring institute and technique

Definition of Standard Reporting Conditions
Radiant intensity: 1000 W/m2

Spectral irradiance distribution: AM1.5 global (ASTM G173)
Cell temperature: 25 oC

Photovoltaic power conversion efficiency

η (%) = (Pout/Pin) x 100 =  (FF x Voc x Jsc) / Pin
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AM0 (1353 W/m2)AM1

AM1.5

Global = Direct + Diffuse

Air mass = 1/ cos θ

48.2o
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Solar Spectrum and available photocurrent
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However, in spite of the existence of SRC…..

For OBPV, norms are seldom followed at the research level:
• reported efficiencies under various testing conditions
• comparison of efficiency values not possible.

Materials Today, 2007, 11,58
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Reasons:

• lack of awareness of the standard procedures

• inadequate measuring equipment

• specific features of OBPV require adapted protocols

• small active areas

• edge effects and device layout leads to overestimation η

• no temperature control

Better understanding required how to measure and report 
accurate efficiencies
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Procedure efficiency measurement at SRC

Required:
• Solar simulator, preferably Class A (usually Xe-lamp with AM1.5 filter)
• Calibrated reference cell to adjust the intensity of the simulator

Errors are introduced:
• Mismatch simulator spectrum and AM1.5 GN reference spectrum 
(ASTM G173)
• Deviations of Spectral Response (SR) test cell and reference cell

Reference cells are based on Silicon or GaAs

For novel type of solar cells:
• no stable reference cell with same SR and geometrical design

Correction for spectral mismatch is necessary !!
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SR
Reference cell

SR
test cell 
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• For Silicon, M close to unity

• M can significantly deviate from 1 for new types of solar cells

• SR and size of test and reference cells should match as close as              
possible: Si-diodes with KG filters preferred

• This procedure can be used using relative SR

• Each broad radiant source with known relative spectral
irradiance can be used

If mismatch is ignored, error is M-1

Procedure efficiency measurement at SRC
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Spectral Response following ASTM E1021-84 norm

Lock-in
amplifier

PC

chopper

mirror

Xenon lamp

shutter
diffuser
filter set

solar cell
mounting block

Tungsten-halogen
lamp

• Pulsed monochromatic light
• White bias light
• Lock-in amplifier
• Reference cell is used
• τresponse << 1/chopper rate

SR(A/W)=[q/hc] x λ x EQE
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SR under varying bias light intensities and 
response time for solid state organic cells

At 40 Hz, τresponse <  1 ms
fast response up to 150 Hz

P3HT:PCBM

Shape SR and M independent
of bias-light intensity

V. Shrotriya et al. AFM, 2006, 16, 2016
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Special features of photoelectrochemical DSC 
slow temporal response

1. Mass transport: diffusion of ions IV 
2. Slow charge transport through TiO2 (trapping and detrapping of electrons

in surface states) SR

Dependent on device structure DSC

Implications for IV measurement:
• IV curve dependent on voltage sweep direction
(Isc Voc or Voc Isc) 
• Scanning time: > 20 s required to minimize the error
• No flashing of modules 
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Sharp studies

Td = sampling delay time varied
Tm = measuring integration time = 50 ms
ΔV = 10 mV

Requirement: Td > 4 x time constant

• Td =  1 ms (like Si solar cells)
• Sweep time = 5 sec
• Hysteresis observed
• Recommended: Td =  40 ms
• Averaging data two scans

normal

N.Koide et al., Jpn. J. Appl. Phys., 2005, 44, 4176

reverse
Td
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Implication for Spectral Response (SR) measurements

• Measured SR depends on bias light intensity

• Measured SR depends on pulse frequency: 
- low frequencies < 10 Hz tolerated 
- DC high intensity monochromatic light

Special features of photoelectrochemical DSC 
slow temporal response
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FhG ISE studies

Hohl-Ebinger et al. Proc. EUPVSEC 2004, Paris

EQE at constant bias illumination
and different chopper frequencies.

only low frequencies
are tolerated

EQE at different bias illuminations with 
a chopper frequency of 0.7 Hz.

Bias light leads to increased
trap filling and faster response
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Important check when performing IV and 
SR measurements!

Compare calculated Jsc from overlap integral SR and 
AM1.5 spectrum with the measured Jsc under solar
simulator: 
Jsc, calc ≈ Jsc, meas
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Example 1: Test cell MDMO-PPV / PCBM device
Reference cell: monocrystalline Silicon + KG5 filter
Solar Simulator: Spectrolab XT-10 (Xe-lamp)
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Example 2: Test cell PFTBT / PCBM
Reference cell: monocrystalline Silicon + KG5 filter
Solar Simulator: WACOM WXS-300S-50 (Xe-lamp); M = 0.993

Slooff et al. APL 90 143506 (2007)
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What is often going wrong in characterization 
of Organic based solar cells?

Too high current densities claimed at “AM1.5” conditions

- No mismatch correction 
- Measuring small cells: 

- inaccurate determination of surface area
- edge effects and device layout, “cross talking”
- effects of device masking
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Examples from literature
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- Claim of 30 mA/cm2

and η = 5.58 %
- No Spectral Response

Molecular Solar Cells

Jsc = 30 mA/cm2
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Jsc,calc = 7-9 mA/cm2 << Jmeasured = 12-15.5 mA/cm2

η = 3-3.5 % η ~ 5-6 %

Polymer solar cells: P3HT:PCBM
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Edge effects and device layout in all organic cells

with mask

without mask

+ 100 μA

Device configuration:
ITO/PEDOT/BHJ/Al

I (nominal area)II

ITO
PEDOT
PV

Al

support

e- h+ e- h+

e- h+h+e-

III I (nominal area)

A. Cravino et al., AFM, 2007, 17, 3906
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Measuring small devices – effects of masking/DSC

S.Ito et al., PIP, 2006, 14, 589

No mask

active area
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Record and confirmed efficiencies for the different OBPV technologies ?
Look in Solar Efficiency tables in Progress in Photovoltaics

• Cell areas should be > 1 cm2

• Cell areas < 1 cm2 notable exceptions
• Certification Labs: NREL (US), AIST(Japan), FhG-ISE (Germany),.. 
• No confirmed efficiencies for MSC yet

From solar efficiency tables (Version 31): PIP, 2008, 16, 61-67
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Type η (%) AM1.5 
(maximum)

Who?

Dye Sensitized Oxide (liquid) 10.4 (1 cm2)
11.1 (0.2 cm2 )
7.9 (26.5 cm2): module
Confirmed by AIST
5 (< 1 cm2)
not confirmed
5-6 (< 0.1 cm2)
not confirmed

Polymer: fullerene 5.15 (1 cm2) 
5.4 (0.1 cm2) 
Confirmed by NREL
~ 6 ( < 1 cm2): tandem
not confirmed

Konarka
Plextronics

UCSB

Polymer: Polymer 1.5-2.0 (0.1-1 cm2 )
not confirmed

Potsdam, ECN 
Cambridge

2-3 (< 1 cm2)
not confirmed

Dye Sensitized Oxide (solid)

Sharp

EPFL

PrincetonMolecular solar cells
(single junctions + tandems)

Cambridge
Berkeley

Hybrids (Polymer + inorganic SC)

Overview maximum efficiencies for OBPV
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Efficiency development DSC and polymer: fullerene cells
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PV development: 
selected cell (max) & module (typical) efficiencies
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General strategies to increase effciency
• Materials development 

- better spectrum utilization 
- Improve charge carrier mobilities
- control of energy levels 
- morphology control

• Interfacial engineering to reduce recombination
• Novel cell concepts

- Light management strategies (scattering, plasmons)
- Multi-junction approaches

• Characterization and modeling
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Polymer:fullerene Solar Cells 
Practical efficiency limits and design rules for single junctions

Eg

Voc(RT) = 1/e(ED
HOMO-EA

LUMO) - 0.3 V
ΔE = 0.3 V
EQE = 0.65
FF = 0.65 

Scharber et al., Adv. Mat. 2006, 18, 789
Koster et al., APL, 2006, 88, 093511
Minneart et al., PIP, 2007, 15, 741 
Gregg; Forrest, MRS bulletin, 2005 (MSC)
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Polymer:fullerene Solar Cells 
Practical efficiency limits and design rules for multi-junctions

Tandem cells with efficiencies up to 15 % are technically 
feasible given the availability of an optimized donor couple.

Dennler et al., AM, 2008, in press
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From hero lab cell to large area module efficiencies

Several modules designs possible, depending on application field
Loss in total area efficiency is expected due to:

Ratio [active area/total area] < 1→ Jsc <
Upscaling leads to increase Rseries→ FF <
Search for cost effective, robust and environmentally friendly solutions
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Success of OBPV in penetrating existing and new PV 
markets will not only depend on lowest €/Wp

- low light performance for indoor consumer PV 
- costs in €/Wp as well as €/m2 of product (aesthetics)
- power availability (kWh/Wp/annum): importance of diffuse light
- technical and environmental profile
- added value for the consumer and architects 
- ease of production and scale at which production plant 

becomes economically feasible

Future outlook
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Conclusion and recommendations
• Since efficiencies for OPV are increasing, accurate measurement of 

efficiency are getting more important: 
not only for single cells but also for multijunctions

• Accurate measurement is not straightforward and requires:
- Calibrated reference cell with known AM1.5 current and SR(A/W)
- Regularly measured spectral distribution of a solar simulator
- SR, IV following standard (or adapted) procedures

• Final aim: 
the organic solar cell community should adopt (modified) standards 

Organization of round trials to get uniformity in efficiency results 
Send high efficiency cells to independent/certification labs
Instructions to editors of journals to appoint qualified referees to 
check if right procedures are applied when record efficiencies are 
claimed
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GP Smestad, FC Krebs et al.
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Thank you for attention !Thank you for attention !
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