LINZ LECTURES

Lecture 1. The Development of Organic Conductors: Metals, Superconductors and Semiconductors

Lecture 2A. Introduction and Synthesis of Important Conjugated Polymers

Lecture 2B. Solid State Polymerization

Lecture 3. Fullerene Chemistry

Lecture 3B. Molecular Engineering

Introduction and Synthesis of Important Conjugated Polymers

Linz, June 10, 2008

General Introduction

Solution Polymerization

Oligolyacenes

Types of Polymers

-A-A.A-A.A-A-A-	Homopolymer
-A-B-B-A-B-A-A-B-	Random copolymer
-A-B-A-B-A-B-A-B-	Alternating copolymer
-A-A-A-B-B-B-B-	Block copolymer
-A-A-A-A-A-A-A	Graft copolymer
l B-B-B-B-B-B	

Types of Chains

(a) Linear chain, (b) branched chain, (c) network

Types of Architectures

(a)

(d)

(b)

(e)

(g)

(a) Star, (b) comb, (c) ladder, (d) pseudo ladder, (e) rotaxane, (f) catenane, (g) dendrimer (h) rigid rod

Property Polymer	Tensile Properties at Break			a		
	Strength ^b (MPa)	Modulus ^b (MPa)	Elongation (%)	Compressive Strength ^b (MPa)	Strength ^b (MPa)	Impact Strength ^c (N/cm)
Polyethylene, low density	8.3-31	172-283	100-650	-	-	No break
Polyethylene, high density	22-31	1070-1090	10-1200	20-25	—	0.23-2.3
Polypropylene	31-41	1170-1720	100-600	38-55	41-55	0.23-0.57
Poly(vinyl chloride)	41-52	2410-4140	40-80	55-90	69-110	0.23 - 1.3
Polystyrene	36-52	2280-3280	1.2-2.5	83-90	69-101	0.20-0.26
Poly(methyl methacrylate)	48-76	2240-3240	2-10	72-124	72-131	0.17-0.34
Polytetra- fluoroethylene	14-34	400-552	200-400	12	_	1.7
Nylon 66	76-83		60-300	103	42-117	0.46 - 1.2
Poly(ethylene terephthalate)	48-72	2760-4140	50-300	76-103	96-124	0.14-0.37
Polycarbonate	66	2380	110	86	93	9.1

TABLE 4.1. Mechanical Properties of Common Homopolymers^a

^aValues taken from Agranoff,^{12a} converted to SI units, and rounded off.

^bTo convert megapascals to pounds per square inch, multiply by 145.

^clzod notched impact test (see Chap. 5). To convert newtons per centimeter to foot pounds per inch, multiply by 1.75.

Draw ratio	Modulus (GPa)	Yield stress (MPa)	Yield strain (%)	Tensile strength (MPa)	Elongation (%)
Isotropic	2.7	45.2	3.3	48.2	38
1ª .	3.5	60	2.5		53
2	8.1	114	1.8	116	20
3	9.1	129	1.9	140	14
4	8.6	112	1.4	157	13
5	10.6	152	1.4	181	9.3
6	11.8		_	223	2.9
8	14.2	_	_	256	2.1
10	15.5	_	-	271	2.1

Table 1 Tensile properties of 'As-stretched' PPV measured parallel to the draw direction

^a Materials of draw ratio 1 are not isotropic because the precursor elimination/stretching process involves a substantial volume change ($\approx 50\%$) and these materials are converted at constant length¹¹

"For drawn samples, values for the Young's modulus as high as 37 GPa and tensile strength up to 500 MPa have been measured in the machine direction. These properties approach those of many high performance fibers."

Machado, J.M.; Masse, M.A.; Karasz, F.E. *Polymer*, **1989**, *30*, 1992

Step Growth or Condensation Polymerization

Nylon 6

Mylar, Kevlar, Kapton, PPT, PT, PPy

Step-reaction polymerization: (a) unreacted monomer; (b) 50% reacted, $\overline{DP} = 1.3$; (c) $\overline{DP} = 1.7$; (d) 100% reacted, $\overline{DP} = 3$. (Broken lines represent reacting species.)

$$p = \frac{N_0 - N}{N_0}$$
 $N = N_0(1 - p)$ $\overline{DP} = \frac{1}{1 - p}$

Carothers Equation

Chain Growth or Addition Polymerization

Free Radical

 $R \cdot + HC \equiv CH \longrightarrow$ Intractable products

Chain-Growth Polymerization

FIGURE 1.5. Chain-reaction polymerization: (a) unreacted monomer; (b) 50% reacted, $\overline{DP} = 1.7$; (c) 75% reacted, $\overline{DP} = 3$; (d) 100% reacted, $\overline{DP} = 12$. (Broken lines represent reacting species.)

Ziegler-Natta Polymerization

$$H_2C = CH \xrightarrow{G} Z-N$$
 $[CH_2CH(G)]_n$

Z-N: Ti(OR)₄ AIR₃

HC=CH $\xrightarrow{Z-N}$ [CH=CH]_n

Anionic, Cationic, Living

Ring Opening Metathesis Polymerization (ROMP)

Scherman O. A; Rutenberg I. M; Grubbs R. H J. Am. Chem. Soc. 2003, 125, 8515

Organometallic Methods:

Kumada, Yamamoto, Colon

Br-Ar-Br \xrightarrow{Cat} $(Ar)_n$ Cat: PdL4, NiL2

Suzuki

Br-Ar-Br +
$$(RO)_2BAr'-B(OR)_2 \xrightarrow{Cat} (Ar-Ar')_n$$

Heck

GRIM/Kumada

 $\mathbf{X} = \mathbf{S}$

Sheina, E.E.; Iovu, M.C.; McCullough, R.D. Polym. Prepr. 2005, 46(1), 682

Oxidative (Cationic) Polymerization

Oxidative Polymerization

Thiophene as a "handle"

Polyaniline

Reductive (Anionic) Polymerization

Utley, J.H.; Gao, Y.; Gruber, J.; Zhang, Y.; Munoz-Escalona, A. Chem Mater. 1995, 5, 1837

Reductive Polymerization

Utley, J.H.; Gao, Y.; Gruber, J.; Zhang, Y.; Munoz-Escalona, A. Chem Mater. 1995, 5, 1837

PPV Synthesis

Processable Polyelectrolyte

P. M. Lahti, D. A. Modarelli, F. R. Denton, III, R. W. Lenz, F. E. Karasz J. Am. Chem. Soc. **1988**, 110, 7258
L. Hontis, V. Vrindts, D. Vanderzande, L. Lutsen Macromolecules, Vol. 36, No. 9, 2003

The Last Challenge: Linear Polyacenes The Lower Oligoacenes

Polyacenes??

J. Org. Chem. 2001, 66, 5517-5521

Polyacene and Cyclacene Geometries and Electronic Structures: Bond Equalization, Vanishing Band Gaps, and Triplet Ground States Contrast with Polyacetylene

K. N. Houk,* Patrick S. Lee, and Maja Nendel

Acenes

Surprisingly, we have discovered that at the RB3LYP/6-31G(d) level of theory, the wave function for as small an oligoacene as hexacene (and all longer oligoacenes) becomes unstable.

Re-optimization, using the unrestricted broken symmetry B3LYP method (UB3LYP), leads to a singlet state with large amounts of diradical character. triplet

close shell

open shell

HOMO-LUMO Gap in Acenes

Plateau at ca. 1.8 eV

Bendikov, M.; Duong, H.M.; Starkey, K.; Houk, K.N.; Carter, E.A.; Wudl, F.; *J. Am. Chem. Soc.*, **2004**, 126(24) 7416

Connection Between Band Theory and Molecular Orbital Theory

According to the Su-Schrieffer-Heeger (SSH) model, the effective length of a soliton in a σ -system is about 14 carbon atoms.

This is in agreement with our calculations, predicting diradical character in oligoacenes, and thus, hexacene-heptacene have already enough σ -length (two 13-15 carbon atom chains, respectively) to produce two oligoacetylene solitons.

The instabilities found for heptacene-octacene appear to indicate that they are the "connector" between band theory and molecular orbital theory.

Heeger, A. J.; Kivelson, S.; Schrieffer, J. R.; Su, W.-P. Rev. Mod. Phys. 1988, 60, 781.

Spin Density

Bendikov, M.; Duong, H.M.; Starkey, K.; Houk, K.N.; Carter, E.A.; Wudl, F.; *J. Am. Chem. Soc.*, **2004**, 126(24) 7416

Summary

In contrast to the common view that acenes are closed shell systems or have triplet ground states, we predict that larger oligoacenes possess an open-shell singlet ground state, where the triplet lies above singlet.

We have shown computationally that oligoacenes and probably a variety of polyacene derivatives and analogues should exhibit a nonzero band gap.

It should be possible to prepare a linear polyacene, provided it is formed as a solid, with minimum lifetime in solution. In analogy with oligoenes vs polyacetylene.

EXPERIMENTAL RESULTS

Matrix Isolated Heptacene

R. Mondal, B. K. Shah, D. C. Neckers J. Am. Chem. Soc. 2006, 128, 9612

Isolable But Very Short-Lived Substituted Heptacene

Marcia M. Payne, Sean R. Parkin, and John E. Anthony 2005, 127, 8028

Marcia M. Payne, Sean R. Parkin, and John E. Anthony 2005, 127, 8028

Marcia M. Payne, Sean R. Parkin, and John E. Anthony 2005, 127, 8028

TIPS ACETYLENE TETRAARYLHEPTACENE ISOLABLE AND RELATIVELY STABLE

CRYSTAL STRUCTURE OF BIS(TIPSTHYNYL) TETRAPHENYL HEPTACENE

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

D. Chun, F. Wudl, unpublished

Electronic Spectroscopy

PHOTOINDUCED OXYGEN DEGRADATION

LIMITED CYCLIC VOLTAMMETRY

Photoinduced Charge Generation

Fig. 3 Electronic absorption spectra obtained after irradiation ($\lambda < 225$ nm) of heptacene in Ar. Red trace: before irradiation.