Marco Orthofer^a, Walter Hofmann^b, Christian Paulik^a, Simon K.-M. R. Rittmann^b, Markus Ungerank^c, Paul Voithofer^d, Josef Höckner^e

- ^a Institute for Chemical Technology of Organic Materials, Johannes Kepler University Linz, Austria
 ^b Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University Vienna, Austria
- ^c Creonia e.U., Perg, Austria
- d Voithofer + Partner Unternehmensberatung GmbH, Steyr, Austria

Introduction

FlaeXMethan describes an innovative process for the biological conversion of biogas with renewable hydrogen from surplus electricity electrolysis using methanogenic archaea.

FlaeXMethan

To produce Aiming for Combination of biomethane as Energy storage Biologically produced Biogas plant • 100% renewable C1 methane from building block for the renewable, excess CO₂ Biological methanation chemical industry and renewable H₂ Membrane-based biogas Sector coupling Improving the efficiency upgrading with integrated electricity/gas process control system of existing biogas plants

FlaeXMethan is able to significantly contribute to the energy transition. It provides a possibility to convert excess electric energy into a storable chemical form - methane - which can be processed, stored and used with already existing infrastructure.

Background

- Gas-liquid mass transfer coefficient is the essential parameter for methanation bioreactors
- Theoretical estimation of the $k_1 \alpha(H_2)$ via measurement of $k_1 \alpha(O_2)$ and correlation via diffusion constants
- $k_1 \alpha(O_2)$ relies on response time of sensors
- Current theories assume rapid conversion of hydrogen by the cells
- High performance gas-liquid mass transfer is crucial for overall process efficiency
- Gas transfer characteristics between bioreactors and microbiology are not well understood
- \sim Determination of $k_{\parallel}\alpha$ for any biological system and any reactor configuration

Marco Orthofer

PhD Thesis in the field of biotechnological process development at the Institute for Chemical Technology of Organic Materials at the Johannes Kepler University Linz.

Get in Touch

Experimental

Biological methanation hydrogen and carbon dioxide in fed-batch cultivation mode. By assuming full conversion of H₂/CO₂ to CH₄ once in the liquid phase, the methane evolution rate (MER) is solely dependent on its gas-liquid mass transfer. This enables calculation of $k_{\parallel}\alpha$ values based produced methane and establishes a biological sensor for hydrogen mass transfer determination.

Figure 1: Schematic representation of gas liquid mass transfer from bubble towards cell [1, 2].

Results

The hydrogen uptake rate (HUR) describes the mass transfer of hydrogen across the system bubble to cell.

$$CUR \cdot CO_2 + HUR \cdot 4H_2 \rightarrow MER \cdot CH_4 + WER \cdot 2H_2O + r_{(X)} \cdot X$$
 (1)

$$HUR = \frac{\mathrm{d}c}{\mathrm{d}t} = k_{\mathrm{L}}\alpha * (C^* - C) \tag{2}$$

Reformulating Eq. (1) and (2) can be results in a $y = k \cdot x + d$ equation with k representing $k_l \alpha$ (Fig. 2 right). Linear fitting area

Figure 2:

Calculated hydrogen uptake rate (HUR) from online off-gas analysis at different pressure and stirring settings and fixed gassing rate.

right: Plot of integrated and substituted form of Eq. (2) for $k_{\rm L}\alpha$ determination.

Conclusion

- Biological limitations restrict determination of mass transfer properties
- Higher stirring speeds result in lower $k_{\parallel}\alpha$ values indicating formation of vortices and less gas dispersion
- Higher system pressure does not show a significant increase in mass transfer, indicating biological limitations
- $\stackrel{*}{\sim}$ Highest $k_{\rm l} \alpha$ determined at 0.05 s⁻¹ (10 bar, 500 rpm)
- Results illustrate importance of in-depth understanding of mass transfer characteristics for the optimization of the biomethanation process

References:

[1] Hass, Pörtner (2009): Praxis der Bioprozesstechnik. 1. Aufl. Heidelberg: Spektrum Akademischer Verl. [2] Henzler, Chem.-Ing.-Tech. 54 (1982) Nr. 5, p. 461 - 476

— 10 bar, 500 rpm

10 bar, 700 rpm

16 bar, 500 rpm

16 bar, 700 rpm