DEVELOPMENT OF A SIMULTANEOUS BIOREACTOR SYSTEM (SBRS) FOR HIGH THROUGHPUT SCREENING AND CHARACTERIZATION OF METHANOGENS AT HIGH PRESSURE

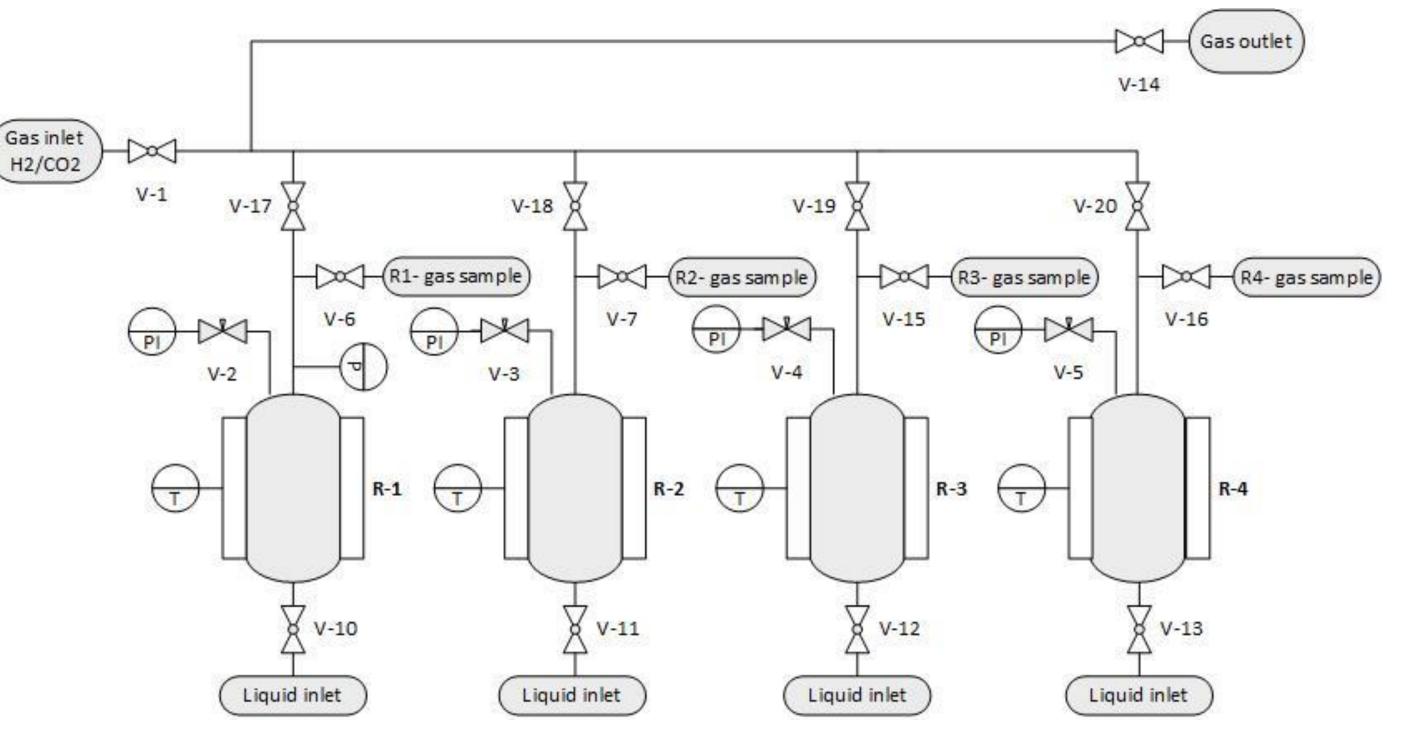
Sara Zwirtmayr^a, Patricia Pappenreiter^a, Lisa-Maria Mauerhofer^b, Sébastien Bernacchi^c, Arne H. Seifert^c, Alexander Krajete^c, Simon K.-M. R. Rittmann^b and Christian Paulik^a

^aInstitute for Chemical Technology of Organic Materials, Johannes Kepler University, Linz, Austria ^bArchaea Biology and Ecogenomics Division, University Vienna, Austria ^cKrajete GmbH, Linz, Austria

Institute for Chemical Technology of Organic Materials

INTRODUCTION

Biomethanisation is a biotechnological process for the production of methane (CH_4) , applying methanogenic microorganisms which are referred to as methanogens.


EXPERIMENTAL

The SBRS can be used for screening methanogens in a closed batch cultivation mode at pressures up to 50 barg. The system possess a gas inlet and outlet allowing an independent filling of the separate vessels. Furthermore, heating jackets and digital pressure sensors were mounted to measure and control the pressure and temperature online.

Methanogens are characterized by a generally strictly anaerobic metabolism and can utilize various substrates for growth and CH₄ production. The substrates used can be either acetate, methylated compounds or C₁-compounds such as, e. g. carbon dioxide (CO₂) or formate. Hydrogenotrophic methanogens deploy molecular hydrogen (H₂) as the electron donor for the reduction of CO₂ to CH₄ and for the autocatalytic growth. These organisms produce CH₄ and water (H₂O) as metabolic end products. This process is referred to as hydrogenotrophic, autotrophic methanation of CO₂ with the following stoichiometry (neglecting biomass formation)¹⁻³:

$CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$

However, not many methanogenic strains were yet examined at different pressure levels in the field of CO_2 based biological-methane-production (CO_2 -BMP). To perform reproducible CO_2 -BMP screening experiments at high

Figure 1: Flow sheet of the SBRS.

As a proof of concept, *Methanobacterium thermaggregans* was cultivated in the SBRS which allowed to verify the ability to

throughput (HT) a simultaneous bioreactor system (SBRS) was developed.

RESULTS & CONCLUSION

The monitoring of individual experiments was carried out primarily by means of pressure measurements. Following the reaction stoichiometry methanogenic CH_4 production leads to a pressure drop in the reactor. This pressure drop was seen in all experiments performed with *Methanobacterium thermaggregans*, sustaining the ability of the strain to actively convert CO_2 at an elevated pressure.

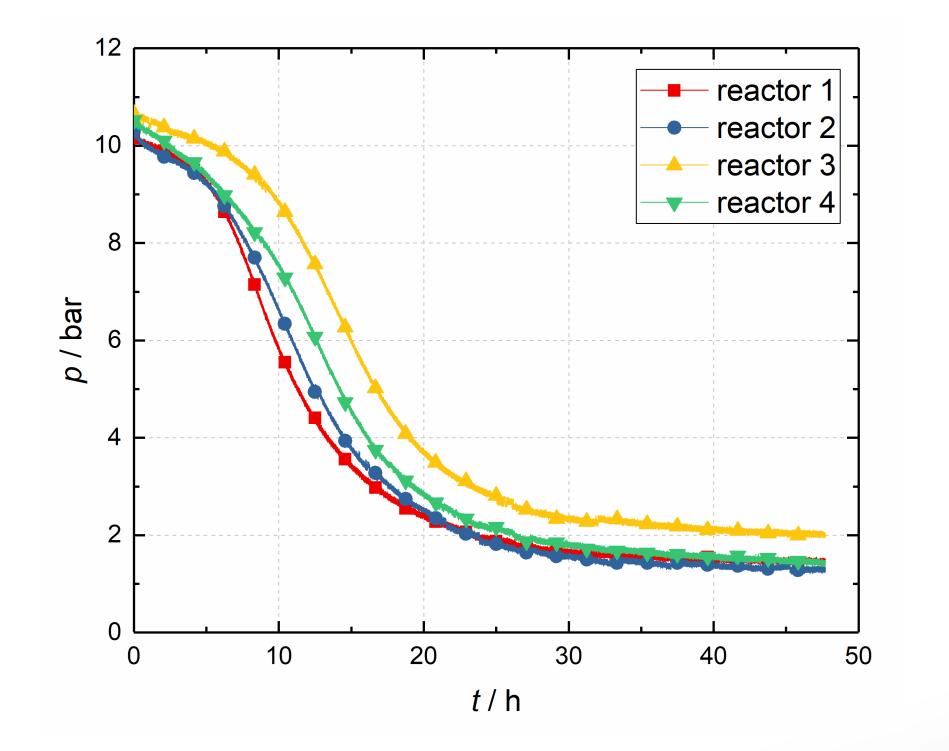


Figure 2 shows the pressure curve of a test run with an inoculation pressure of 10.65±0.18 barg. The results shows immediate gas conversion without appearance of a lag phase. The exponential trend for gas conversion suggests a amplification of the conversion ability over time which indicate the possibility of growth associated conversion. This is followed by the stationary phase in which the microorganisms adjust the gas conversion and change their physiology to survival strategies⁴⁻⁶.

The production of CH_4 was checked by GC measurements for each experiment. The results showed that a final CH_4 concentration of at least 99.7 % (dry gas) was reached in each of the reactors. The remaining percentages are non converted CO_2 , as only H_2 , CO_2 and CH_4 were normalized during the GC

Figure 2: Pressure profile of the experiment at 10 bar $H_2:CO_2 = 4:1$.

measurements. Thus, other substances such as H_2O are not considered.

The experiments show a good comparability for the results obtained from the four reactors and it is concluded, that the SBRS is a suitable HT bioreactor system for fast characterization and screening of methanogens and gas converting microorganisms.

REFERENCES

1. Rittmann S., Seifert A., Herwig C., *Essential prerequisites for successful bioprocess development of biological* CH_4 *production from* CO_2 *and* H_2 , Crit Rec Biotechnol, **2015**, 35(2), 141-51.

2. Seifert A., Rittmann S., Bernacchi S., Herwig C., *Method for assessing the impact of emission gasses an physiology and productivity in biological methanogenesis*, Bioresource Technology, **2013**, 136, 747-751.

Rittmann S., Seifert A., Krajete A., *Biomethanisierung – ein Prozess zur Ermöglichung der Energiewende?*, **2014**, BIOspektrum, 20 (7), 816-817.
Fritsche O., Mikrobiologie, **2016**, Springer Berlin Heidelberg, Berlin, Heidelberg, s.I.
Munk K., Dersch P., Mikrobiologie, **2008**, Thieme, Stuttgart.
Cypionka H., Grundlagen der Mikrobiologie, **2010**, 4. Auflage, Springer, Heidelberg.