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Overview

■ Introduction

■ An analysis framework: Adversarial Robustness in Data Augmentation
■ Performance Analysis
■ Stress Analysis
■ Influence Analysis

■ Analysis results for 3 popular augmentation methods
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Moosavi-Dezfooli, Seyed-Mohsen, et al. CVPR, 2017.

Adversarial examples:
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Introduction

Data augmentation is one of the standard techniques in deep learning, and been shown to greatly improve the 
generalisation abilities of models. The 3 popular examples are:

1. Traditional (classical) data augmentation: The idea is to incorporate domain expert knowledge into the model (e.g, if 
data is images of dogs, horizontal flipping helps).

2. Mixup: Linearly combining data and their labels.

3. Generative models (GANs): Conditioning a generative model on labels.
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Introduction

■ In today’s talk, we detail an analysis framework for systematically evaluating data augmentation methods with 
respect to risk under attack and classification risk. 
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Introduction

■ In today’s talk, we detail an analysis framework for systematically evaluating data augmentation methods with 
respect to risk under attack and classification risk. 

■ Given this framework, we analyze three popular data augmentation methods (Classic, mixup, GAN-augmentation)

■ We provide a formal formulation for data augmentation based on random functions.
■ This allows us to express combinations of data augmentations as composition of function

■ We provide a new measure known as prediction-change stress, and show that this property is related to the 
adversarial vulnerability of models.

■ We use Influence functions to examine how much influence models have from real and augmented data
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Data Augmentation - Formal definition
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A random function                                  is an Augmentation, if it maps a sample

                                                              , with measure       on      , and labeling function

            , to some vector                                                         of independent random vectors 

                                                                with  measure                 on                   and marginal 

measure         dominating      .



Data Augmentation - Formal definition
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By this definition, an augmented sample                                         can be obtained from a sample    

               by observing the random variable          .

The assumption         dominating         ensures data augmentations take the original sample into 
account, i.e. if                         then also                       for any measurable D. 
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Adversarial Robustness in Data Augmentation

The proposed analysis framework for the augmentation functions as defined before is structured 
into three parts:

1. Performance analysis: where we look at the effect of data augmentation on classification performance and 
adversarial robustness.

2. Stress analysis: where we analyse how the predictions of a model under adversarial attacks, is affected by the 
augmentation.

3. Influence analysis: where we look at how much a model relies on augmented training samples when predicting on 
the real test examples and their adversarial counterparts.
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Performance Analysis

We analyse the models w.r.t usefulness and adversarial robustness:

■ We apply each data augmentation method with a probability changing from 0 to 1.
We train a model with a specific augmentation probability fixed, and then evaluate it.
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Performance Analysis

We analyse the models w.r.t usefulness and adversarial robustness:

■ We apply each data augmentation method with a probability changing from 0 to 1.
We train a model with a specific augmentation probability fixed, and then evaluate it.

■ We train a Resnet50 on the training data, and we report:
■  Normal test error (usefulness)
■ Risk under attack (error under adversarial attack) for 4 cases of PGD attack 

(robustness)
■ with epsilon=0.25 and 0.5
■ 10 and 100 iterations
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Stress Analysis

On a sample                                                     , where all points are from the surface of 
We introduce prediction-change stress as follows

Where             is the surface of a ball           around      with radius            .
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■ We use influence functions (Koh & Liang, 2017) to analyse the importance of normal, and augmented training data in 
relation to adversarial vulnerability of the resulting classifiers.
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Experimental Setup

■ We train a Resnet50 with SGD on CIFAR10, achieving normal acc of 94.92%.

■ Augmentation were applied by probabilities of {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

■ Each experiment repeated 3 times, mean and std are reported

■ Two GAN models (NS, WGP) were trained, and evaluated with FID (20.11, 18.30)
■ Generators were conditioned on labels of the train set
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Classification and Adversarial Risk:
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Summary

■ In this talk, we provided a framework for evaluating the classification risk and risk under attack of data 
augmentation algorithms

■ We provided a theoretical definition for data augmentation that enables us to apply function composition on data 
augmentation

■ We showed that the expert-introduced augmentations were the most robust and useful augmentation

■ We analysed the decision boundary of models using the proposed prediction-change stress and showed that 
non-robust augmentations result in higher stress around test examples.

■ We analysed the influence of augmentation on models, and showed that models get more influenced by augmented 
data.
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Thank you!

https://www.jku.at/en/institute-of-computational-perception/news-media-events/cp-lectures/

hamid.eghbal-zadeh@jku.at

https://eghbalz.github.io/
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