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Overview

m Introduction

m  An analysis framework: Adversarial Robustness in Data Augmentation
m Performance Analysis
m Stress Analysis

m Influence Analysis

m Analysis results for 3 popular augmentation methods
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Data Augmentation: 2) Combining existing data
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Data Augmentation: 3) Generative models
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Adversarial examples:

“panda” “gibbon”
57.7% confidence 99.3% confidence
LIT
“Explaining and Harnessing Adversarial Examples”, Al LAB .' 23
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Adversarial examples:

LIT -
"Robust physical-world attacks on deep learning visual classification.", Al LAB »

Eykholt, Kevin, et al. CVPR, 2018.
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Adversarial examples:

"Universal adversarial perturbations.",
Moosavi-Dezfooli, Seyed-Mohsen, et al. CVPR, 2017.
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Introduction

Data augmentation is one of the standard techniques in deep learning, and been shown to greatly improve the
generalisation abilities of models. The 3 popular examples are:
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generalisation abilities of models. The 3 popular examples are:

1. Traditional (classical) data augmentation: The idea is to incorporate domain expert knowledge into the model (e.qg, if
data is images of dogs, horizontal flipping helps).
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Introduction

Data augmentation is one of the standard techniques in deep learning, and been shown to greatly improve the
generalisation abilities of models. The 3 popular examples are:

1. Traditional (classical) data augmentation: The idea is to incorporate domain expert knowledge into the model (e.qg, if
data is images of dogs, horizontal flipping helps).

2. Mixup: Linearly combining data and their labels.

0.8 x + 0.2 x
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Introduction

Data augmentation is one of the standard techniques in deep learning, and been shown to greatly improve the
generalisation abilities of models. The 3 popular examples are:

1. Traditional (classical) data augmentation: The idea is to incorporate domain expert knowledge into the model (e.qg, if
data is images of dogs, horizontal flipping helps).

3.  Generative models (GANs): Conditioning a generative model on labels.
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Introduction

m Intoday’s talk, we detail an analysis framework for systematically evaluating data augmentation methods with
respect to risk under attack and classification risk.
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m Intoday’s talk, we detail an analysis framework for systematically evaluating data augmentation methods with
respect to risk under attack and classification risk.

m  Given this framework, we analyze three popular data augmentation methods (Classic, mixup, GAN-augmentation)

m  We provide a formal formulation for data augmentation based on random functions.
m This allows us to express combinations of data augmentations as composition of functions

m  We provide a new measure known as prediction-change stress, and show that this property is related to the
adversarial vulnerability of models.
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Introduction

m Intoday’s talk, we detail an analysis framework for systematically evaluating data augmentation methods with
respect to risk under attack and classification risk.

m  Given this framework, we analyze three popular data augmentation methods (Classic, mixup, GAN-augmentation)

m  We provide a formal formulation for data augmentation based on random functions.
m This allows us to express combinations of data augmentations as composition of function

m  We provide a new measure known as prediction-change stress, and show that this property is related to the
adversarial vulnerability of models.

m  We use Influence functions to examine how much influence models have from real and augmented data
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Data Augmentation - Formal definition

Arandom function A: (X x V)* - {X xY : X x Y - R?}" is an Augmentation, if it maps a sample
S = ((x1,0(x1)), -+, (xs,1(x5))) € (X x V)® , with measure Pxon X, and labeling function

[: X — ), tosome vector A(S) % (X, x Y1,..., X, x Y,) ofindependent random vectors

Xy xY,..., X, xY,.: X xY —> R? with measure Px;xy; on X X ) and marginal

measure Px, dominating Py.
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Data Augmentation - Formal definition

By this definition, an augmented sample S = ((X1,91),---,(Xs,8s)) CAN be obtained from a sample
S € (X x ))® by observing the random variable A(.5).

The assumption Px, dominating Py ensures data augmentations take the original sample into
account, i.e. if Px (D) > 0 then also Px,(D) > 0 for any measurable D.
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Data Augmentation - Formal definition (Cont'd)

Lemma:

If A(S) and B(S) are augmentations then A(S) oB(S) is also an augmentation.
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Data Augmentation - Formal definition (Cont'd)

Lemma:

If A(S) and B(S) are augmentations then A(S) oB(S) is also an augmentation.

Therefore:

e C(Classical data augmentation (flipping, rotating, etc) is an augmentation
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Data Augmentation - Formal definition (Cont'd)

Lemma:

If A(S) and B(S) are augmentations then A(S) oB(S) is also an augmentation.

Therefore:

e C(Classical data augmentation (flipping, rotating, etc) is an augmentation
e Conditional generative models (GANs) are an augmentation.
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Data Augmentation - Formal definition (Cont'd)

Lemma:

If A(S) and B(S) are augmentations then A(S) oB(S) is also an augmentation.

Therefore:

e C(Classical data augmentation (flipping, rotating, etc) is an augmentation
e Conditional generative models (GANs) are an augmentation.
e Sampling from vicinity distributions (Mixup) is an augmentation.
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Adversarial Robustness in Data Augmentation

The proposed analysis framework for the augmentation functions as defined before is structured
into three parts:
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Adversarial Robustness in Data Augmentation

The proposed analysis framework for the augmentation functions as defined before is structured
into three parts:

1. Performance analysis: where we look at the effect of data augmentation on classification performance and
adversarial robustness.
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Adversarial Robustness in Data Augmentation

The proposed analysis framework for the augmentation functions as defined before is structured
into three parts:

1. Performance analysis: where we look at the effect of data augmentation on classification performance and
adversarial robustness.

2.  Stress analysis: where we analyse how the predictions of a model under adversarial attacks, is affected by the
augmentation.
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Adversarial Robustness in Data Augmentation

The proposed analysis framework for the augmentation functions as defined before is structured
into three parts:

1. Performance analysis: where we look at the effect of data augmentation on classification performance and
adversarial robustness.

2.  Stress analysis: where we analyse how the predictions of a model under adversarial attacks, is affected by the
augmentation.

3. Influence analysis: where we look at how much a model relies on augmented training samples when predicting on
the real test examples and their adversarial counterparts.
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Performance Analysis

We analyse the models w.r.t usefulness and adversarial robustness:

m  We apply each data augmentation method with a probability changing from 0 to 1.
We train a model with a specific augmentation probability fixed, and then evaluate it.
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Performance Analysis

We analyse the models w.r.t usefulness and adversarial robustness:

m  We apply each data augmentation method with a probability changing from 0 to 1.
We train a model with a specific augmentation probability fixed, and then evaluate it.

m  We train a Resnet50 on the training data, and we report:
m  Normal test error (usefulness)
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Performance Analysis

We analyse the models w.r.t usefulness and adversarial robustness:

m  We apply each data augmentation method with a probability changing from 0 to 1.
We train a model with a specific augmentation probability fixed, and then evaluate it.

m  We train a Resnet50 on the training data, and we report:
m  Normal test error (usefulness)
m Risk under attack (error under adversarial attack) for 4 cases of PGD attack
(robustness)
m with epsilon=0.25 and 0.5
m 10 and 100 iterations
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Stress Analysis

Boundary 1:
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Stress Analysis

Boundary 1:

O
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Stress Analysis

On a sample S := ((x},1(x})),...,(x,,1(x.))) , where all points are from the surface of ¢B.

We introduce prediction-change stress as follows

stresspe( f, Z Zlf (x}) £ f (yij)

Where ¢B. is the surface of a ball B.(X) around X with radius € > (.
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Stress Analysis

On a sample S := ((x},1(x})),...,(x,,1(x.))) , where all points are from the surface of ¢B.
We introduce prediction-change stress as follows
stresspe ( f 2 Z Lgx)£1(yi;)

Where @B, is the surface of a ball B.(X) around X with radius € > 0.

In other words, for a given input X and its predicted label f(x), stress relates to the

probability that a random neighbor from the e-sphere of X will be assigned a different label by
the model. B.(X)
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Stress Analysis %o
On a sample S := ((x},1(x})),...,(x,,1(x.))) , where all points are from the surface of ¢B.
We introduce prediction-change stress as follows

stressp(f, Z Z Lp ) (vis)

Where @B, is the surface of a ball B.(X) around X with radius € > 0.

In other words, for a given input X and its predicted label f(x), stress relates to the

probability that a random neighbor from the e-sphere of X will be assigned a different label by
the model. B.(X)
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Influence Analysis

m  We use influence functions (Koh & Liang, 2017) to analyse the importance of normal, and augmented training data in
relation to adversarial vulnerability of the resulting classifiers.
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Influence Analysis

We use influence functions (Koh & Liang, 2017) to analyse the importance of normal, and augmented training data in
relation to adversarial vulnerability of the resulting classifiers.

Short Recap: For a given test example, influence functions compute an importance value for each training point
that shows how much it contributed to the prediction of that test example, by estimating the change in the
loss on that test example that would result if the training point were removed from the training set.
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Influence Analysis

m  We use influence functions (Koh & Liang, 2017) to analyse the importance of normal, and augmented training data in
relation to adversarial vulnerability of the resulting classifiers.

m  Short Recap: For a given test example, influence functions compute an importance value for each training point
that shows how much it contributed to the prediction of that test example, by estimating the change in the
loss on that test example that would result if the training point were removed from the training set.
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Influence Analysis

m  We use influence functions (Koh & Liang, 2017) to analyse the importance of normal, and augmented training data in
relation to adversarial vulnerability of the resulting classifiers.

m  Short Recap: For a given test example, influence functions compute an importance value for each training point
that shows how much it contributed to the prediction of that test example, by estimating the change in the
loss on that test example that would result if the training point were removed from the training set.

]

lo

Influence =>0.3-0.2 = +0.1 5

10

3

Al LAB ‘:,

76



Influence Analysis

m  We use influence functions (Koh & Liang, 2017) to analyse the importance of normal, and augmented training data in
relation to adversarial vulnerability of the resulting classifiers.

m  Short Recap: For a given test example, influence functions compute an importance value for each training point
that shows how much it contributed to the prediction of that test example, by estimating the change in the
loss on that test example that would result if the training point were removed from the training set.

I(%, %) := —VoL(f(Xe) (X)) " Hj ' Vo L(f3(x), 1(x)).
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Influence Analysis

m  We use influence functions (Koh & Liang, 2017) to analyse the importance of normal, and augmented training data in
relation to adversarial vulnerability of the resulting classifiers.

m  Short Recap: For a given test example, influence functions compute an importance value for each training point
that shows how much it contributed to the prediction of that test example, by estimating the change in the
loss on that test example that would result if the training point were removed from the training set.

}.(X- Xtest) 1= — VoL ( f5(Xest) I (Xtest)) - H” IVHL(ffj(X)- I(x)),

m  We compare the influence of real training to augmented training for normal and adversarial test examples.
m  We show the distribution of influence values

LIT
Al LAB ‘ % &



X

Influence Analysis v oo

m  We use influence functions (Koh & Liang, 2017) to analyse the importance of normal, and augmented training data in
relation to adversarial vulnerability of the resulting classifiers.

m  Short Recap: For a given test example, influence functions compute an importance value for each training point
that shows how much it contributed to the prediction of that test example, by estimating the change in the
loss on that test example that would result if the training point were removed from the training set.

}.(X- Xtest) 1= — VoL ( f5(Xest) I (Xtest)) - H” IVHL(ffj(X)- I(x)),

m  We compare the influence of real training to augmented training for normal and adversarial test examples.
m  We show the distribution of influence values
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Experimental Setup

We train a Resnet50 with SGD on CIFAR10, achieving normal acc of 94.92%.
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Experimental Setup

m  We train a Resnet50 with SGD on CIFAR10, achieving normal acc of 94.92%.

m  Augmentation were applied by probabilities of {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
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Experimental Setup

m  We train a Resnet50 with SGD on CIFAR10, achieving normal acc of 94.92%.
m  Augmentation were applied by probabilities of {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}

m Each experiment repeated 3 times, mean and std are reported
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Experimental Setup

m  We train a Resnet50 with SGD on CIFAR10, achieving normal acc of 94.92%.
m  Augmentation were applied by probabilities of {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
m Each experiment repeated 3 times, mean and std are reported

m  Two GAN models (NS, WGP) were trained, and evaluated with FID (20.11, 18.30)
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Experimental Setup

m  We train a Resnet50 with SGD on CIFAR10, achieving normal acc of 94.92%.
m  Augmentation were applied by probabilities of {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
m Each experiment repeated 3 times, mean and std are reported

m  Two GAN models (NS, WGP) were trained, and evaluated with FID (20.11, 18.30)
m Generators were conditioned on labels of the train set
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Results

Classification and Adversarial Risk:

test Risk Under Attack
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Results

Stress analysis
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In this talk, we provided a framework for evaluating the classification risk and risk under attack of data
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m In this talk, we provided a framework for evaluating the classification risk and risk under attack of data
augmentation algorithms

m  We provided a theoretical definition for data augmentation that enables us to apply function composition on data
augmentation

m  We showed that the expert-introduced augmentations were the most robust and useful augmentation

m  We analysed the decision boundary of models using the proposed prediction-change stress and showed that
non-robust augmentations result in higher stress around test examples.
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Summary

m In this talk, we provided a framework for evaluating the classification risk and risk under attack of data
augmentation algorithms

m  We provided a theoretical definition for data augmentation that enables us to apply function composition on data
augmentation

m  We showed that the expert-introduced augmentations were the most robust and useful augmentation

m  We analysed the decision boundary of models using the proposed prediction-change stress and showed that
non-robust augmentations result in higher stress around test examples.

m  We analysed the influence of augmentation on models, and showed that models get more influenced by augmented
data.
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Thank you!

@ https://www.jku.at/en/institute-of-computational-perception/news-media-events/cp-lectures/
(@ https://eghbalz.github.io/
hamid.eghbal-zadeh@jku.at
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Welcome to Q&A!
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