
Institute of
Computational
Perception

Introduction to Transformers

Navid Rekab-Saz
navid.rekabsaz@jku.at

Institute of Computational Perception
CP Lectures 22 Sep. 2020

mailto:navid.rekabsaz@jku.at

Agenda

• Background & Problem Definition
• Attention Mechanism
• Transformers

Agenda

• Background & Problem Definition
• Attention Mechanism
• Transformers

4

Notation

§ 𝑎 → scalar

§ 𝒃→ vector
- 𝑖!" element of 𝒃 is the scalar 𝑏#

§ 𝑪 → matrix
- 𝑖!" vector of 𝑪 is 𝒄#
- 𝑗!" element of the 𝑖!" vector of 𝑪 is the scalar 𝑐#,%

§ Tensor: generalization of scalar, vector, matrix to any
arbitrary dimension

5

Linear Algebra – Dot product

§ 𝒂 + 𝒃& =
- dimensions: 1×d ' d×1 =

1 2 3
2
0
1
=

§ 𝒂 + 𝑩 =
- dimensions: 1×d ' d×e =

1 2 3
2 3
0 1
1 −1

=

§ 𝑨 + 𝑩 =
- dimensions: l×m ' m×n =

1 2 3
1 0 1
0 0 5
4 1 0

2 3
0 1
1 −1

=

§ Linear transformation: dot product of a vector to a matrix

𝑐
1

𝒄
1×e

𝑪
l×n

5

5 2

5 2
3 2
5 −5
8 13

6

Probability

§ Probability distribution
- For a discrete random variable 𝒛 with 𝐾 states

• 0 ≤ 𝑝 𝑧# ≤ 1
• ∑#/01 𝑝 𝑧# = 1

- E.g. with 𝐾 = 4 states: 0.2 0.3 0.45 0.05

7

Distributional Representation

§ An entity is represented with a vector of 𝑑 dimensions

§ Distributed Representations
- Each dimension (units) is a feature of the entity
- Units in a layer are not mutually exclusive
- Two units can be ‘‘active’’ at the same time

𝑥! 𝑥" 𝑥# … 𝑥$𝒙
𝑑

Word embeddings projected to a two-dimensional space

9

All we talk today is about …

Compositional Representations

§ Trying to address representations composition or
representations aggregation problem

§ Compositional representations appears in two scenarios:
- Scenario 1: composing an output embedding from input embeddings
- Scenario 2: contextualizing input embeddings

10

Compositional Representations

§ Scenario 1: composing an output embedding from input
embeddings

§ Scenario 2: contextualizing input embeddings

𝑓

𝒗0 𝒗2 𝒗3 𝒗4

𝒐

Source: https://megagon.ai/blog/emu-enhancing-multilingual-sentence-embeddings-with-semantic-similarity/

https://megagon.ai/blog/emu-enhancing-multilingual-sentence-embeddings-with-semantic-similarity/

11

Compositional Representations

§ Scenario 1: composing an output embedding from input
embeddings

§ Scenario 2: contextualizing input embeddings

𝑓

𝒗0 𝒗2 𝒗3

;𝒗0 ;𝒗2 ;𝒗3

12

Recurrent Neural Networks – RECAP

§ Output 𝒉(!) is a function of input 𝒆(!) and the
output of the previous time step 𝒉(!70)

𝒉(!) = RNN(𝒉 !70 , 𝒆(!))

§ 𝒉(!) is called hidden state

§ With hidden state 𝒉(!70), the model accesses
to a sort of memory from all previous entities

RNN

𝒉(!)

𝒉(!70)

𝒆(!)

13

RNN – Unrolling

RNN RNN RNN RNN…

The quick brown fox jumps over the lazy dog

𝒆(0) 𝒆(2) 𝒆(3) 𝒆(&)

𝒉(8) 8

𝒉(0) 𝒉(2) 𝒉(3)

𝒉(&70)
𝒉(&)

𝑥(0) 𝑥(2) 𝑥(3) 𝑥(&)

14

RNN – Compositional embedding

cat sunbathes on river bank

RNN RNN RNN

𝒆(0) 𝒆(2) 𝒆(3)

𝒉(0) 𝒉(2) 𝒉(3)

RNN

𝒆(4)

𝒉(4)

RNN

𝒆(9)

𝒉(9)

sentence embedding

𝒉(8)

Contextualized
embedding of 𝒆(")

Agenda

• Background & Problem Definition
• Attention Mechanism
• Transformers

16

Attention Networks

§ Attention is a general Deep Learning method to
- obtain a composed representation (output) …
- from an arbitrary size of representations (values) …
- depending on a given representation (query)

§ General form of an attention network:

𝑶 = ATT(𝑸, 𝑽)

𝑽

ATT

𝑶
𝑸

17

Attention Networks

𝑸 ×𝑑!

𝑽 ×𝑑"

𝑸 ×𝑑"

𝑽

ATT

𝑶
𝑸

𝑶 = ATT(𝑸, 𝑽)

We sometime say, each query vector 𝒒 “attends to” the values

• 𝑑!, 𝑑" are embedding dimensions of
query and value vectors, respectively

ATT

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2

18

Attention Networks – definition

Formal definition:

§ Given a set of vector values 𝑽, and a set of vector
queries 𝑸, attention is a technique to compute a
weighted sum of the values, dependent on each query

§ The weighted sum is a selective summary of the
information contained in the values, where the query
determines which values to focus on

§ The weight in the weighted sum – for each query on
each value – is called attention, and denoted by 𝛼

19

Attentions!

𝛼$,& is the attention of query 𝒒$ on value 𝒗&
𝜶$ is the vector of attentions of query 𝒒$ on value vectors 𝑽
𝜶$ is a probability distribution
𝑓 is attention function

𝑓

𝑓

𝛼#,# 𝛼#,% 𝛼#,& 𝛼#,'

𝛼%,#𝛼%,%
𝛼%,&𝛼%,'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2

20

Attention Networks – formulation

§ Given the query vector 𝒒%, an attention network assigns
attention 𝛼%,' to each value vector 𝒗' using attention function 𝑓:

𝛼#,% = 𝑓(𝒒#, 𝒗%)

such that 𝜶% (vector of attentions for the 𝑖th query vector) forms a
probability distribution

§ The output regarding each query is the weighted sum of the
value vectors (attentions as weights):

𝒐# =K
%/0

𝑽

𝛼#,%𝒗%

21

Attention variants

Basic dot-product attention
§ First, non-normalized attention scores:

L𝛼#,% = 𝒒#𝒗#A

- In this variant 𝑑! = 𝑑"
- There is no parameter to learn!

§ Then, softmax over values:
𝛼#,% = softmax(;𝜶#)%

§ Output (weighted sum): 𝒐# = ∑%/0
𝑽 𝛼#,%𝒗%

𝑓

𝑓

𝛼#,# 𝛼#,% 𝛼#,& 𝛼#,'

𝛼%,#𝛼%,%
𝛼%,&𝛼%,'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2

22

softmax – RECAP

§ softmax turns the vector to a probability
distribution

softmax(𝒛)# =
𝑒B#

∑%/01 𝑒B$

§ Example with 𝐾 = 4 classes

𝒛 =

1
2
5
6

softmax(𝒛) =

0.004
0.013
0.264
0.717

𝑒(

𝑥

log(𝑥)

23

Attention variants

Multiplicative attention
§ First, non-normalized attention scores:

L𝛼#,% = 𝒒#𝑾𝒗#A

- 𝑾 is a matrix of model parameters
- provides a linear function for measuring

relations between query and value vectors

§ Then, softmax over values:
𝛼#,% = softmax(;𝜶#)%

§ Output (weighted sum): 𝒐# = ∑%/0
𝑽 𝛼#,%𝒗%

𝑓

𝑓

𝛼#,# 𝛼#,% 𝛼#,& 𝛼#,'

𝛼%,#𝛼%,%
𝛼%,&𝛼%,'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2

24

Attention variants

Additive attention
§ First, non-normalized attention scores:

L𝛼#,% = 𝒖Atanh(𝒒#𝑾0 +𝒗%𝑾2)

- 𝑾#, 𝑾$, and 𝒖 are model parameters
- provides a non-linear function for measuring

relations between the query and value vectors

§ Then, softmax over values:

𝛼#,% = softmax(;𝜶#)%

§ Output (weighted sum): 𝒐# = ∑%/0
𝑽 𝛼#,%𝒗%

𝑓

𝑓

𝛼#,# 𝛼#,% 𝛼#,& 𝛼#,'

𝛼%,#𝛼%,%
𝛼%,&𝛼%,'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2

25

Attention in practice

§ Attention is used to create a compositional embedding of
value vectors, according to a query
- E.g. in document classification

• Where values are document’s word vectors, and query is a
parameter vector

ATT

𝒗0 𝒗2 𝒗3 𝒗4

𝒒

𝒐

26

Self-attention

§ In self-attention, values are the same as queries: 𝑸 = 𝑽
§ Mainly used to encode a sequence 𝑽 to another sequence *𝑽
§ Each encoded vector is a contextual embedding of the

corresponding input vector
- /𝒗% is the contextual embedding of 𝒗%

ATT

𝒗0 𝒗2 𝒗3

;𝒗0 ;𝒗2
𝒗3

𝒗2
𝒗0

;𝒗3

𝑽

ATT

b𝑽
𝑽

27

Attention – summary

§ Attention is a way to focus on particular parts of the input,
and create a compositional embedding

§ It is done by defining an attention distribution over inputs,
and calculating their weighted sum

§ A more generic definition of attention network has two
inputs: key vectors 𝑲, and value vectors 𝑽
- Key vectors are used to calculate attentions
- and, as before, output is the weighted sum of value vectors
- In practice, in most cases 𝑲 = 𝑽. So we consider our (slightly

simplified) definition in most parts of this course

Agenda

• Background & Problem Definition
• Attention Mechanism
• Transformers

29

Transformers

§ An attention model with DL best practices!
§ Originally introduced for machine translation, and now widely

adopted for non-recurrent sequence encoding and decoding

Attention is all you need. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Polosukhin, I. (2017). In NeurIPS.

Transformer encoder Transformer decoder

30

Transformer encoder

Transformer encoder consists of two sub-layers:
§ 1st : Multi-head scaled dot-product self-attention
§ 2nd : Position-wise feed forward
§ Each sub-layer is followed by layer normalization and residual

networks … and drop-outs are applied after each computation

Figure source: http://jalammar.github.io/illustrated-transformer/

1st sub-layer

2nd sub-layer

http://jalammar.github.io/illustrated-transformer/

31

Transformer encoder

Let’s start from multi-head scaled dot-product self-attention:
1. Scaled dot-product attention
2. Multi-head attention
3. self-attention (recap)

Figure source: http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/

32

Recap: basic dot-product attention

§ First, non-normalized attention scores:

L𝛼#,% = 𝒒#𝒗%A

- 𝑑 = 𝑑! = 𝑑" dimension of vectors
- has no parameter!

§ Then, softmax over values:
𝛼#,% = softmax(;𝜶#)%

§ Output (weighted sum): 𝒐# = ∑%/0
𝑽 𝛼#,%𝒗% 𝑓

𝑓

𝛼#,# 𝛼#,% 𝛼#,& 𝛼#,'

𝛼%,#𝛼%,%
𝛼%,&𝛼%,'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2

33

Scaled dot-product attention

§ Problem with basic doc-product attention:
- As 𝑑 gets large, the variance of D𝛼$,& increases …
- … this makes softmax very peaked for some values E𝜶$ …
- … and hence its gradient gets smaller

§ Solution: normalize/scale 3𝛼%,' by size of 𝑑

Scaled dot-product attention
§ Non-normalized attention scores:

L𝛼#,% =
𝒒#𝒗%A

𝑑
§ Softmax over values: 𝛼%,' = softmax(/𝜶%)'

§ Output (weighted sum): 𝒐% = ∑'(#
𝑽 𝛼%,'𝒗'

𝑓

𝑓

𝛼#,# 𝛼#,% 𝛼#,& 𝛼#,'

𝛼%,#𝛼%,%
𝛼%,&𝛼%,'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2

34

Problem with (single-head) attention

§ Common in language, a word may be
related to several other words in sequence,
each through a specific concept

- Like the relations of a verb to its subject and to its
object

§ However in a (single-head) attention
network, all concepts are aggregated in one
attention set

§ Due to softmax, value vectors must compete
for the attention of query vector → softmax
bottleneck

𝑓
𝛼# 𝛼% 𝛼& 𝛼'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒

𝒐

§ In all attention networks so far, the final attention of query 𝒒 on value
vectors 𝑽 are normalized with softmax

- Recall that softmax makes the maximum value much higher than the other
𝒛 = 1 2 5 6 → softmax 𝒛 = 0.004 0.013 0.264 0.717

35

Multi-head attention

§ Multi-head attention approaches this by calculating multiple sets of
attentions between queries and values

Multi-head attention:
1. Down-project query and value vectors to ℎ subspaces (heads)

2. In each subspace, calculate a simple attention network using the
queries and values projected in the subspace, resulting in output
vectors of the subspace

3. Concatenate the output vectors of all subspaces regarding each
query, resulting in the final output of each query

§ In multi-head attention, each head (and each subspace) can
specialize on capturing a specific kind of relations

36

M
ulti-head A

ttention

𝒗' 𝒗(𝒗)

𝒒
Scaled Dot-Product

Attention

𝒗'* 𝒗(* 𝒗)*

𝒒𝟏
𝒐𝟏

Scaled Dot-Product
Attention

𝒗'" 𝒗(" 𝒗)"

𝒒𝟐

𝒐𝟐

𝑾-
*

𝒗'*

𝑾-
"

𝒗'"

𝑾-
*

𝒗(*

𝑾-
"

𝒗("

𝑾-
*

𝒗)*

𝑾-
"

𝒗)"

𝑾.
*
𝒒𝟏

𝒒𝟐

𝑾.
"

⨁

Multi-head attention
𝒐

ℎ = 2
𝑾/

37

Multi-head attention – formulation

§ Down-project every query 𝒒% to ℎ vectors, each with size ⁄* +:

𝒒#0 = 𝒒#𝑾I
0 … 𝒒#" = 𝒒#𝑾I

"

§ Down-project every value 𝒗' to ℎ vectors, each with size ⁄* +:

𝒗%0 = 𝒗%𝑾J
0 … 𝒗%" = 𝒗%𝑾J

"

§ Calculate outputs of subspaces corresponding to 𝒒%:

𝒐#0 = ATT 𝒒#0, 𝑽0 … 𝒐#" = ATT(𝒒#", 𝑽")

§ Concatenate outputs of subspaces for 𝒒% as its final output:

𝒐# = 𝑾K [𝒐#0; … ; 𝒐#"]

Parameters are shown in red

size: ⁄) *

size: ⁄) *

size: ⁄) *

size: 𝑑

Matrix size: 𝑑× ⁄) *

Matrix size: 𝑑× ⁄) *

Size: 𝑑×𝑑
This matrix linearly combines

the dimensions of the
concatenated vectors

38

Multi-head attention – in original paper

§ Default number of heads in Transformers: ℎ = 8
§ Recall: Attentions (and Transformers) in fact have three inputs (not two), namely

queries, keys, and values.
- Keys are used to calculate attentions
- Values are used to produce outputs

39

Self-attention – recap

§ Values are the same as queries
§ Each encoded vector is the contextual

embedding of the corresponding input vector
- ,𝒗# is the contextual embedding of 𝒗#

(Multi-head)
Attention

𝒗0 𝒗2 𝒗3

;𝒗0 ;𝒗2
𝒗3

𝒗2
𝒗0

;𝒗3

(Multi-head)
Self-Attention

𝒗0 𝒗2 𝒗3

;𝒗0 ;𝒗2 ;𝒗3

=

40

Residuals

§ Residual (short-cut) connection:
output = 𝑓 𝑥 + 𝑥

§ Learn in detail:
- He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian (2016). "Deep Residual Learning

for Image Recognition" . In proc. of CVPR
- Srivastava, Rupesh Kumar; Greff, Klaus; Schmidhuber, Jürgen (2015). "Highway

Networks". https://arxiv.org/pdf/1505.00387.pdf

Residual
connection

https://arxiv.org/pdf/1505.00387.pdf

41

Layer normalization

§ Layer normalization changes each vector to have mean 0 and
variance 1 …

- … and learns two more parameter vectors per layer that set new means and
variances for each dimension of the vectors

§ Learn in detail:
- Batch Normalization: Deep Learning book section 8.7.1

http://www.deeplearningbook.org/contents/optimization.html
- Talk by Goodfellow https://www.youtube.com/watch?v=Xogn6veSyxA&feature=youtu.be
- Paper: https://arxiv.org/pdf/1607.06450.pdf

Layer norm

http://www.deeplearningbook.org/contents/optimization.html
https://www.youtube.com/watch?v=Xogn6veSyxA&feature=youtu.be&t=325
https://arxiv.org/pdf/1607.06450.pdf

42

Feed Forward on embedding

§ In Transformers, a two-layer feed forward neural network (with
ReLU) is applied to each embedding
- With the feed forward network, the Transformers gain the capacity to

learn non-linear transformations over each (contextualized) embedding

Same feed forward
is applied to each

embedding

43

Transformer encoder – summary

§ Multi-head self-attention model followed by a feed-forward
layer

Benefits (as in attentions)
§ No locality bias

- A long-distance context has “equal opportunity”
§ Single computation per layer (non-autoregressive)

- Friendly with high parallel computations of GPU

§ Look here for self-teaching and the PyTorch implementation:
- http://nlp.seas.harvard.edu/2018/04/03/attention.html
- also available on Google Colab

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Institute of
Computational
Perception

Finito!

45

Position embeddings

§ Transformers are agnostic regarding the position of tokens (no
locality bias)
- A context token in long-distance has the same effect as one in short-

distance
§ However, the positions of tokens can still bring useful information

Position embeddings – a common solution in Transformers:
§ Consider an embedding for each position, and add its values to the

token embedding at that position
- Position embedding is usually created using a sine/cosine function, or

learned end-to-end with the model
- Using position embeddings, the same word at different locations will

have different overall representations

46

Position embeddings – examples

Source: http://jalammar.github.io/illustrated-transformer/

Position embedding
for location 0

Values from -1
(dark) to +1 (light)

Dimensions (512)

Position
embeddings

Position embedding
for location 20

An example of
embeddings with
four dimensions:

http://jalammar.github.io/illustrated-transformer/

