
Institute of
Computational 
Perception

Introduction to Transformers

Navid Rekab-Saz
navid.rekabsaz@jku.at

Institute of Computational Perception
CP Lectures 22 Sep. 2020

mailto:navid.rekabsaz@jku.at


Agenda

• Background & Problem Definition
• Attention Mechanism
• Transformers



Agenda

• Background & Problem Definition
• Attention Mechanism
• Transformers



4

Notation

§ 𝑎 → scalar

§ 𝒃→ vector 
- 𝑖!" element of 𝒃 is the scalar 𝑏#

§ 𝑪 → matrix
- 𝑖!" vector of 𝑪 is 𝒄#
- 𝑗!" element of the 𝑖!" vector of 𝑪 is the scalar 𝑐#,%

§ Tensor: generalization of scalar, vector, matrix to any 
arbitrary dimension
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Linear Algebra – Dot product

§ 𝒂 + 𝒃& =
- dimensions: 1×d ' d×1 =

1 2 3
2
0
1
=

§ 𝒂 + 𝑩 =
- dimensions: 1×d ' d×e =

1 2 3
2 3
0 1
1 −1

=

§ 𝑨 + 𝑩 =
- dimensions: l×m ' m×n =

1 2 3
1 0 1
0 0 5
4 1 0

2 3
0 1
1 −1

=

§ Linear transformation: dot product of a vector to a matrix

𝑐
1

𝒄
1×e

𝑪
l×n

5

5 2

5 2
3 2
5 −5
8 13
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Probability

§ Probability distribution
- For a discrete random variable 𝒛 with 𝐾 states

• 0 ≤ 𝑝 𝑧# ≤ 1
• ∑#/01 𝑝 𝑧# = 1

- E.g. with 𝐾 = 4 states: 0.2 0.3 0.45 0.05
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Distributional Representation

§ An entity is represented with a vector of 𝑑 dimensions

§ Distributed Representations
- Each dimension (units) is a feature of the entity
- Units in a layer are not mutually exclusive 
- Two units can be ‘‘active’’ at the same time

𝑥! 𝑥" 𝑥# … 𝑥$𝒙
𝑑



Word embeddings projected to a two-dimensional space
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All we talk today is about …

Compositional Representations

§ Trying to address representations composition or 
representations aggregation problem

§ Compositional representations appears in two scenarios:
- Scenario 1: composing an output embedding from input embeddings
- Scenario 2: contextualizing input embeddings
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Compositional Representations

§ Scenario 1: composing an output embedding from input 
embeddings

§ Scenario 2: contextualizing input embeddings

𝑓

𝒗0 𝒗2 𝒗3 𝒗4

𝒐

Source: https://megagon.ai/blog/emu-enhancing-multilingual-sentence-embeddings-with-semantic-similarity/

https://megagon.ai/blog/emu-enhancing-multilingual-sentence-embeddings-with-semantic-similarity/
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Compositional Representations

§ Scenario 1: composing an output embedding from input 
embeddings

§ Scenario 2: contextualizing input embeddings

𝑓

𝒗0 𝒗2 𝒗3

;𝒗0 ;𝒗2 ;𝒗3
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Recurrent Neural Networks – RECAP

§ Output 𝒉(!) is a function of input 𝒆(!) and the 
output of the previous time step 𝒉(!70)

𝒉(!) = RNN(𝒉 !70 , 𝒆(!))

§ 𝒉(!) is called hidden state

§ With hidden state 𝒉(!70), the model accesses 
to a sort of memory from all previous entities

RNN

𝒉(!)

𝒉(!70)

𝒆(!)
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RNN – Unrolling

RNN RNN RNN RNN…

The       quick         brown   fox jumps over the lazy         dog

𝒆(0) 𝒆(2) 𝒆(3) 𝒆(&)

𝒉(8) 8

𝒉(0) 𝒉(2) 𝒉(3)

𝒉(&70)
𝒉(&)

𝑥(0) 𝑥(2) 𝑥(3) 𝑥(&)
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RNN – Compositional embedding

cat     sunbathes     on           river        bank

RNN RNN RNN

𝒆(0) 𝒆(2) 𝒆(3)

𝒉(0) 𝒉(2) 𝒉(3)

RNN

𝒆(4)

𝒉(4)

RNN

𝒆(9)

𝒉(9)

sentence embedding

𝒉(8)

Contextualized 
embedding of 𝒆(")
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Attention Networks

§ Attention is a general Deep Learning method to 
- obtain a composed representation (output) …
- from an arbitrary size of representations (values) …
- depending on a given representation (query)

§ General form of an attention network:

𝑶 = ATT(𝑸, 𝑽)

𝑽

ATT

𝑶
𝑸
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Attention Networks

𝑸 ×𝑑!

𝑽 ×𝑑"

𝑸 ×𝑑"

𝑽

ATT

𝑶
𝑸

𝑶 = ATT(𝑸, 𝑽)

We sometime say, each query vector 𝒒 “attends to” the values

• 𝑑!, 𝑑" are embedding dimensions of 
query and value vectors, respectively

ATT

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2
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Attention Networks – definition

Formal definition: 

§ Given a set of vector values 𝑽, and a set of vector 
queries 𝑸, attention is a technique to compute a 
weighted sum of the values, dependent on each query

§ The weighted sum is a selective summary of the 
information contained in the values, where the query 
determines which values to focus on

§ The weight in the weighted sum – for each query on 
each value – is called attention, and denoted by 𝛼
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Attentions!

𝛼$,& is the attention of query 𝒒$ on value 𝒗&
𝜶$ is the vector of attentions of query 𝒒$ on value vectors 𝑽
𝜶$ is a probability distribution
𝑓 is attention function

𝑓

𝑓

𝛼#,# 𝛼#,% 𝛼#,& 𝛼#,'

𝛼%,#𝛼%,%
𝛼%,&𝛼%,'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2
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Attention Networks – formulation

§ Given the query vector 𝒒%, an attention network assigns 
attention 𝛼%,' to each value vector 𝒗' using attention function 𝑓:

𝛼#,% = 𝑓(𝒒#, 𝒗%)

such that 𝜶% (vector of attentions for the 𝑖th query vector) forms a 
probability distribution

§ The output regarding each query is the weighted sum of the 
value vectors (attentions as weights):

𝒐# =K
%/0

𝑽

𝛼#,%𝒗%
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Attention variants

Basic dot-product attention
§ First, non-normalized attention scores:

L𝛼#,% = 𝒒#𝒗#A

- In this variant 𝑑! = 𝑑"
- There is no parameter to learn!

§ Then, softmax over values:
𝛼#,% = softmax(;𝜶#)%

§ Output (weighted sum): 𝒐# = ∑%/0
𝑽 𝛼#,%𝒗%

𝑓

𝑓

𝛼#,# 𝛼#,% 𝛼#,& 𝛼#,'

𝛼%,#𝛼%,%
𝛼%,&𝛼%,'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2
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softmax – RECAP

§ softmax turns the vector to a probability 
distribution

softmax(𝒛)# =
𝑒B#

∑%/01 𝑒B$

§ Example with 𝐾 = 4 classes

𝒛 =

1
2
5
6

softmax(𝒛) =

0.004
0.013
0.264
0.717

𝑒(

𝑥

log(𝑥)
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Attention variants

Multiplicative attention
§ First, non-normalized attention scores:

L𝛼#,% = 𝒒#𝑾𝒗#A

- 𝑾 is a matrix of model parameters
- provides a linear function for measuring 

relations between query and value vectors

§ Then, softmax over values:
𝛼#,% = softmax(;𝜶#)%

§ Output (weighted sum): 𝒐# = ∑%/0
𝑽 𝛼#,%𝒗%

𝑓

𝑓

𝛼#,# 𝛼#,% 𝛼#,& 𝛼#,'

𝛼%,#𝛼%,%
𝛼%,&𝛼%,'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2
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Attention variants

Additive attention
§ First, non-normalized attention scores:

L𝛼#,% = 𝒖Atanh(𝒒#𝑾0 +𝒗%𝑾2)

- 𝑾#, 𝑾$, and 𝒖 are model parameters
- provides a non-linear function for measuring 

relations between the query and value vectors

§ Then, softmax over values:

𝛼#,% = softmax(;𝜶#)%

§ Output (weighted sum): 𝒐# = ∑%/0
𝑽 𝛼#,%𝒗%

𝑓

𝑓

𝛼#,# 𝛼#,% 𝛼#,& 𝛼#,'

𝛼%,#𝛼%,%
𝛼%,&𝛼%,'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2
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Attention in practice

§ Attention is used to create a compositional embedding of 
value vectors, according to a query
- E.g. in document classification

• Where values are document’s word vectors, and query is a 
parameter vector

ATT

𝒗0 𝒗2 𝒗3 𝒗4

𝒒

𝒐
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Self-attention

§ In self-attention, values are the same as queries: 𝑸 = 𝑽
§ Mainly used to encode a sequence 𝑽 to another sequence *𝑽
§ Each encoded vector is a contextual embedding of the 

corresponding input vector
- /𝒗% is the contextual embedding of 𝒗%

ATT

𝒗0 𝒗2 𝒗3

;𝒗0 ;𝒗2
𝒗3

𝒗2
𝒗0

;𝒗3

𝑽

ATT

b𝑽
𝑽
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Attention – summary 

§ Attention is a way to focus on particular parts of the input, 
and create a compositional embedding

§ It is done by defining an attention distribution over inputs, 
and calculating their weighted sum

§ A more generic definition of attention network has two 
inputs: key vectors 𝑲, and value vectors 𝑽
- Key vectors are used to calculate attentions
- and, as before, output is the weighted sum of value vectors
- In practice, in most cases 𝑲 = 𝑽. So we consider our (slightly 

simplified) definition in most parts of this course
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Transformers

§ An attention model with DL best practices!
§ Originally introduced for machine translation, and now widely 

adopted for non-recurrent sequence encoding and decoding

Attention is all you need. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., 
Polosukhin, I. (2017). In NeurIPS.

Transformer encoder Transformer decoder
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Transformer encoder

Transformer encoder consists of two sub-layers:
§ 1st : Multi-head scaled dot-product self-attention 
§ 2nd : Position-wise feed forward
§ Each sub-layer is followed by layer normalization and residual 

networks … and drop-outs are applied after each computation

Figure source: http://jalammar.github.io/illustrated-transformer/

1st sub-layer

2nd sub-layer

http://jalammar.github.io/illustrated-transformer/
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Transformer encoder

Let’s start from multi-head scaled dot-product self-attention:
1. Scaled dot-product attention
2. Multi-head attention
3. self-attention (recap)

Figure source: http://jalammar.github.io/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/
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Recap: basic dot-product attention

§ First, non-normalized attention scores:

L𝛼#,% = 𝒒#𝒗%A

- 𝑑 = 𝑑! = 𝑑" dimension of vectors
- has no parameter!

§ Then, softmax over values:
𝛼#,% = softmax(;𝜶#)%

§ Output (weighted sum): 𝒐# = ∑%/0
𝑽 𝛼#,%𝒗% 𝑓

𝑓

𝛼#,# 𝛼#,% 𝛼#,& 𝛼#,'

𝛼%,#𝛼%,%
𝛼%,&𝛼%,'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2
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Scaled dot-product attention

§ Problem with basic doc-product attention: 
- As 𝑑 gets large, the variance of D𝛼$,& increases …
- … this makes softmax very peaked for some values E𝜶$ …
- … and hence its gradient gets smaller

§ Solution: normalize/scale 3𝛼%,' by size of 𝑑

Scaled dot-product attention
§ Non-normalized attention scores:

L𝛼#,% =
𝒒#𝒗%A

𝑑
§ Softmax over values:  𝛼%,' = softmax(/𝜶%)'

§ Output (weighted sum): 𝒐% = ∑'(#
𝑽 𝛼%,'𝒗'

𝑓

𝑓

𝛼#,# 𝛼#,% 𝛼#,& 𝛼#,'

𝛼%,#𝛼%,%
𝛼%,&𝛼%,'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒2

𝒒0

𝒐0 𝒐2
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Problem with (single-head) attention

§ Common in language, a word may be 
related to several other words in sequence, 
each through a specific concept

- Like the relations of a verb to its subject and to its 
object

§ However in a (single-head) attention 
network, all concepts are aggregated in one 
attention set

§ Due to softmax, value vectors must compete 
for the attention of query vector → softmax
bottleneck

𝑓
𝛼# 𝛼% 𝛼& 𝛼'

𝒗0 𝒗2 𝒗3 𝒗4

𝒒

𝒐

§ In all attention networks so far, the final attention of query 𝒒 on value 
vectors 𝑽 are normalized with softmax

- Recall that softmax makes the maximum value much higher than the other
𝒛 = 1 2 5 6 → softmax 𝒛 = 0.004 0.013 0.264 0.717
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Multi-head attention

§ Multi-head attention approaches this by calculating multiple sets of 
attentions between queries and values

Multi-head attention:
1. Down-project query and value vectors to ℎ subspaces (heads)

2. In each subspace, calculate a simple attention network using the 
queries and values projected in the subspace, resulting in output 
vectors of the subspace

3. Concatenate the output vectors of all subspaces regarding each 
query, resulting in the final output of each query

§ In multi-head attention, each head (and each subspace) can 
specialize on capturing a specific kind of relations
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M
ulti-head A

ttention

𝒗' 𝒗( 𝒗)

𝒒
Scaled Dot-Product 

Attention

𝒗'* 𝒗(* 𝒗)*

𝒒𝟏
𝒐𝟏

Scaled Dot-Product 
Attention

𝒗'" 𝒗(" 𝒗)"

𝒒𝟐

𝒐𝟐

𝑾-
*

𝒗'*

𝑾-
"

𝒗'"

𝑾-
*

𝒗(*

𝑾-
"

𝒗("

𝑾-
*

𝒗)*

𝑾-
"

𝒗)"

𝑾.
*
𝒒𝟏

𝒒𝟐

𝑾.
"

⨁

Multi-head attention
𝒐

ℎ = 2
𝑾/
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Multi-head attention – formulation

§ Down-project every query 𝒒% to ℎ vectors, each with size ⁄* +:

𝒒#0 = 𝒒#𝑾I
0 … 𝒒#" = 𝒒#𝑾I

"

§ Down-project every value 𝒗' to ℎ vectors, each  with size ⁄* +:

𝒗%0 = 𝒗%𝑾J
0 … 𝒗%" = 𝒗%𝑾J

"

§ Calculate outputs of subspaces corresponding to 𝒒%:

𝒐#0 = ATT 𝒒#0, 𝑽0 … 𝒐#" = ATT(𝒒#", 𝑽")

§ Concatenate outputs of subspaces for 𝒒% as its final output:

𝒐# = 𝑾K [𝒐#0; … ; 𝒐#"]

Parameters are shown in red

size: ⁄) *

size: ⁄) *

size: ⁄) *

size: 𝑑

Matrix size: 𝑑× ⁄) *

Matrix size: 𝑑× ⁄) *

Size: 𝑑×𝑑
This matrix linearly combines 

the dimensions of the 
concatenated vectors
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Multi-head attention – in original paper

§ Default number of heads in Transformers: ℎ = 8
§ Recall: Attentions (and Transformers) in fact have three inputs (not two), namely 

queries, keys, and values.
- Keys are used to calculate attentions
- Values are used to produce outputs
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Self-attention – recap 

§ Values are the same as queries
§ Each encoded vector is the contextual 

embedding of the corresponding input vector
- ,𝒗# is the contextual embedding of 𝒗#

(Multi-head) 
Attention

𝒗0 𝒗2 𝒗3

;𝒗0 ;𝒗2
𝒗3

𝒗2
𝒗0

;𝒗3

(Multi-head) 
Self-Attention

𝒗0 𝒗2 𝒗3

;𝒗0 ;𝒗2 ;𝒗3

=
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Residuals

§ Residual (short-cut) connection:
output = 𝑓 𝑥 + 𝑥

§ Learn in detail:
- He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian (2016). "Deep Residual Learning 

for Image Recognition" . In proc. of CVPR
- Srivastava, Rupesh Kumar; Greff, Klaus; Schmidhuber, Jürgen (2015). "Highway 

Networks". https://arxiv.org/pdf/1505.00387.pdf

Residual 
connection

https://arxiv.org/pdf/1505.00387.pdf
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Layer normalization

§ Layer normalization changes each vector to have mean 0 and 
variance 1 …

- … and learns two more parameter vectors per layer that set new means and 
variances for each dimension of the vectors

§ Learn in detail:
- Batch Normalization: Deep Learning book section 8.7.1 

http://www.deeplearningbook.org/contents/optimization.html
- Talk by Goodfellow https://www.youtube.com/watch?v=Xogn6veSyxA&feature=youtu.be
- Paper: https://arxiv.org/pdf/1607.06450.pdf

Layer norm

http://www.deeplearningbook.org/contents/optimization.html
https://www.youtube.com/watch?v=Xogn6veSyxA&feature=youtu.be&t=325
https://arxiv.org/pdf/1607.06450.pdf
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Feed Forward on embedding

§ In Transformers, a two-layer feed forward neural network (with 
ReLU) is applied to each embedding
- With the feed forward network, the Transformers gain the capacity to 

learn non-linear transformations over each (contextualized) embedding

Same feed forward 
is applied to each 

embedding
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Transformer encoder – summary 

§ Multi-head self-attention model followed by a feed-forward 
layer

Benefits (as in attentions)
§ No locality bias 

- A long-distance context has “equal opportunity”
§ Single computation per layer (non-autoregressive) 

- Friendly with high parallel computations of GPU

§ Look here for self-teaching and the PyTorch implementation: 
- http://nlp.seas.harvard.edu/2018/04/03/attention.html
- also available on Google Colab

http://nlp.seas.harvard.edu/2018/04/03/attention.html


Institute of
Computational 
Perception

Finito!
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Position embeddings

§ Transformers are agnostic regarding the position of tokens (no 
locality bias)
- A context token in long-distance has the same effect as one in short-

distance
§ However, the positions of tokens can still bring useful information

Position embeddings – a common solution in Transformers:
§ Consider an embedding for each position, and add its values to the 

token embedding at that position
- Position embedding is usually created using a sine/cosine function, or 

learned end-to-end with the model
- Using position embeddings, the same word at different locations will 

have different overall representations 
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Position embeddings – examples

Source: http://jalammar.github.io/illustrated-transformer/

Position embedding 
for location 0

Values from -1 
(dark) to +1 (light)

Dimensions (512)

Position 
embeddings

Position embedding 
for location 20

An example of 
embeddings with  
four dimensions:

http://jalammar.github.io/illustrated-transformer/

