
Submitted by
Andreu Vall Portabella

Submitted at
Institute of
Computational
Perception

Supervisor and
First Examiner
Markus Schedl

Second Examiner
Dietmar Jannach

December 2018

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Machine Learning Approaches to
Hybrid Music Recommender Systems

Doctoral Thesis
to obtain the academic degree of

Doktor der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

S TAT U TO R Y D E C L A R AT I O N

I hereby declare that the thesis submitted is my own unaided work,
that I have not used other than the sources indicated, and that all
direct and indirect sources are acknowledged as references.

This printed thesis is identical with the electronic version submitted.

Linz, December 2018

Andreu Vall Portabella

A B S T R A C T

Music catalogs in music streaming services, on-line music shops and
private collections become increasingly larger and consequently diffi-
cult to navigate. Music recommender systems are technologies devised
to support users accessing such large catalogs by automatically identi-
fying and suggesting music that may interest them. This thesis focuses
on the machine learning aspects of music recommendation with con-
tributions at the intersection of recommender systems and music
information retrieval: I investigate and propose recommender systems
that observe and exploit the particularities of the music domain.

The thesis specializes in hybrid music recommender systems, so
called because they combine two fundamentally different types of
data: (1) user–music interaction histories (e.g., the music that users
recently listened to, or “liked”), with (2) descriptions of the musical
content (e.g., the genre, or acoustical properties of a song). The pro-
posed hybrid music recommender systems integrate the strengths
of these two types of data into enhanced standalone systems. This
is in contrast to most previous approaches in the literature, where
hybridization was achieved through the heuristic combination of mu-
sic recommendations issued by independent systems. The proposed
hybrid music recommender systems are thoroughly evaluated against
competitive recommender system baselines, for different music rec-
ommendation tasks, and on different datasets. According to the con-
ducted experiments, the proposed systems predict music recommen-
dations comparably or more accurately than the considered baselines,
with the improvements being largely explained by their superior abil-
ity to handle infrequent music items. In this way, the proposed hybrid
music recommender systems provide means to alleviate the so-called
“cold-start” problem for new releases and infrequent music and enable
the discovery of music beyond the charts of popular music.

Special attention is paid to the particularities of the music domain.
I focus on two important music recommendation tasks: music artist
recommendation, focusing on general, stable user music preferences,
and music playlist continuation, focusing on local relationships in
short listening sessions. I exploit data sources abundant in the context
of on-line music consumption: user listening histories, hand-curated
music playlists, music audio signal, and social tags. I investigate
challenges specific to modeling music playlists: the choice and the
arrangement of songs within playlists, and the effectiveness of different
types of music descriptions to identify songs that fit well together.

iii

Z U S A M M E N FA S S U N G

Musikkataloge von Streamingplattformen und Online-Musikshops, so-
wie private Musiksammlungen werden zunehmend größer und lassen
sich daher immer schwieriger effizient durchsuchen. Musikempfeh-
lungssysteme unterstützen Benutzer darin, solch riesige Kataloge zu
durchstöbern, indem sie automatisch Musik, die den Benutzern gefal-
len könnte identifizieren und vorschlagen. Diese Disseration befasst
sich mit Aspekten des maschinellen Lernens im Kontext von Empfeh-
lungssystemen. Ihr Beitrag liegt an der Schnittstelle der Forschungsfel-
der Recommender Systems und Music Information Retrieval, da die
erforschten Empfehlungssysteme Charakteristika der Musikdomäne
berücksichtigen.

Diese Arbeit erforscht hybride Empfehlungssysteme, welche zwei
unterschiedliche Datentypen kombiniert: (1) Benutzer–Musik Inter-
aktionen (z.B. zuletzt gehörte oder als Favorit gespeicherte Musik)
und (2) deskriptive Musikbeschreibungen (z.B. Genre oder akustische
Eigenschaften). Die erarbeiteten hybriden Musikempfehlungssyste-
me vereinen die Vorzüge beider Arten von Daten in einem Einzel-
system. Dies kontrastiert die früheren Ansätze, die Hybridisierung
durch heuristische Kombination der Musikempfehlungen von mehre-
ren Einzelsystemen erreicht haben. Die in dieser Arbeit erforschten
hybriden Musikempfehlungssysteme werden umfassend gegen Ba-
selines evaluiert, wobei unterschiedliche Empfehlungsszenarien und
Datensets analysiert werden. Im Vergleich zu den Baselines, weisen
die Empfehlungen der erforschten Systeme eine gleich gute oder bes-
sere Akkuratheit auf. Die Verbesserungen werden vor allem durch
eine spezielle Berücksichtigung seltener Musik erreicht. Dadurch sind
unsere Ansätze insbesondere dazu geeignet, das “cold-start” Problem
für neue Musikveröffentlichungen und selten gehörte Musik zu redu-
zieren, sowie in Folge die Musikexploration über die Pop-Musikcharts
hinaus zu gewährleisten.

Diese Arbeit widmet sich den Besonderheiten der Musikdomä-
ne. Zwei wichtige Musikempfehlungsaufgaben werden in den Fo-
kus gerückt: Empfehlung von Musikkünstlern (was generelle, stabile
Benutzermodelle über Musikpräferenzen voraussetzt) und Empfeh-
lungen zur Erweiterung von Musikwiedergabelisten (was die Model-
lierung der Abfolge von Stücken in kurzen Hörsitzungen erfordert).
In den erforschten Ansätzen werden vielfältige Daten des Online-
Musikkonsums herangezogen und miteinander verknüpft: Hörsitzun-
gen, kuratierte Wiedergabelisten, Audiosignale und kollaborativ ge-
nerierte Beschreibungen. Des Weiteren berücksichtige ich spezifische
Herausforderungen der automatischen Erweiterung von Wiedergabe-

v

listen: die Auswahl und Platzierung von Liedern in Wiedergabelisten
sowie die Eignung unterschiedlicher Musikdeskriptoren zur Identifi-
kation von Musikstücken die gut zusammen passen.

A C K N O W L E D G M E N T S

I thank my family for all their support, and especially Rocío. During
these years, patiently, you have accompanied me, read and proofread
everything that I have written, given me your opinion, and designed
each of the posters that I have presented. Gràcies.

I thank my friends and colleagues, at the institute and outside, with
whom I have learned, discussed, played, discovered, and shared so
much during this process.

I thank Markus Schedl (my supervisor) for having given me the
opportunity to start my doctorate, and Gerhard Widmer (the head
of the Institute of Computational Perception) for having helped me
finish it. And I thank both for all the valuable feedback.

This research has received funding from the Austrian Science Fund
(FWF) under the project P25655 (Social Media Mining for Multimodal Mu-
sic Retrieval) and from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme
under grant agreement No 670035 (Con Espressione).

vii

C O N T E N T S

1 introduction 1

1.1 Outline 2

1.2 Contributions 2

1.2.1 Music artist recommendation 3

1.2.2 Music playlist continuation 4

1.3 Main publications 5

1.4 Additional publications 6

2 music recommendation 9

2.1 Recommender systems 9

2.1.1 Components 10

2.1.2 Recommendation approaches 11

2.2 The music domain 13

2.2.1 Representation levels 14

2.2.2 Sequential consumption 14

2.2.3 Recommendation scenarios 14

2.2.4 Data sources 15

2.3 Evaluation 16

2.3.1 On-line experiments 16

2.3.2 Off-line experiments 17

i music artist recommendation
3 matrix co-factorization 21

3.1 Introduction and related work 22

3.1.1 Explicit, implicit and one-class feedback 22

3.1.2 Matrix factorization 23

3.1.3 Hybrid recommender systems 23

3.1.4 Evaluation of recommender systems 24

3.2 Methodology 25

3.2.1 Matrix factorization models 25

3.2.2 Parameter estimation 28

3.2.3 Producing recommendations 30

3.3 Experimental study 30

3.3.1 Dataset 30

3.3.2 Evaluation methodology 31

3.3.3 Model comparison 33

3.3.4 Cold start 35

3.4 Conclusions 36

ii music playlist continuation
4 playlist characteristics 39

4.1 Introduction 40

4.2 Related work 41

ix

x contents

4.3 Experimental design 43

4.3.1 Evaluation methodology 43

4.3.2 Assessing the quality of the recommendations 44

4.4 Playlist models 45

4.4.1 Song popularity 45

4.4.2 Song-based collaborative filtering 45

4.4.3 Playlist-based collaborative filtering 46

4.4.4 Recurrent neural networks 46

4.5 Datasets 47

4.6 Results 49

4.6.1 Song context 49

4.6.2 Popularity bias 50

4.6.3 Song order 55

4.7 Conclusion 59

4.A Model configurations 60

4.A.1 Song popularity 60

4.A.2 Song-based collaborative filtering 60

4.A.3 Playlist-based collaborative filtering 60

4.A.4 Recurrent neural networks 60

5 hybrid playlist systems 63

5.1 Introduction 64

5.1.1 Contributions of the chapter 66

5.1.2 Scope of the chapter 67

5.1.3 Organization of the chapter 67

5.2 Related work 68

5.3 Problem formulation 70

5.3.1 Playlist continuation as matrix completion 71

5.3.2 Playlist continuation as matrix expansion 72

5.3.3 Recommending playlist continuations 73

5.4 Proposed systems 73

5.4.1 Profiles 73

5.4.2 Membership 74

5.5 Baseline systems 77

5.5.1 Matrix factorization (“MF”) 77

5.5.2 Hybrid matrix factorization (“Hybrid MF”) 79

5.5.3 Playlist neighbors (“Neighbors”) 79

5.5.4 Popularity 80

5.5.5 Random 80

5.6 Evaluation 80

5.6.1 Off-line experiment 81

5.6.2 Weak and strong generalization 82

5.7 Datasets 82

5.7.1 Playlist collections 83

5.7.2 Song features 85

5.8 Results 86

5.8.1 Interpreting the results 86

contents xi

5.8.2 Overall performance of the playlist systems 88

5.8.3 Combined features 91

5.8.4 Infrequent and out-of-set songs 94

5.8.5 Remarks on the sparsity of playlist collections 96

5.9 Conclusion 96

5.A Additional system details 98

5.A.1 Profiles 98

5.A.2 Membership 99

5.A.3 MF and Hybrid MF 100

5.A.4 Neighbors 101

5.B Additional song features 101

5.B.1 Semantic features from audio signal 101

5.B.2 I-vectors from timbral features 102

5.C Additional results 102

6 conclusion 111

6.1 Open challenges 112

6.1.1 Off-line evaluation of subjective opinions 112

6.1.2 Impact of data selection and preparation 114

6.2 Outlook 115

bibliography 117

1 I N T R O D U C T I O N

Music recommender systems support the interaction of users with
large music catalogs by automatically identifying and suggesting mu-
sic than can be of interest to the users. To this end, they strongly
rely on machine learning and data mining methods to analyze data
describing the users, the music items, the interaction of the users with
the music items, and even the users’ context during the interaction
with the music items [121, Chapter 7]. The main techniques utilized
in recommender systems are in principle applicable to any item do-
main, but music recommender systems should additionally take the
following domain particularities into consideration:

• Music can be recommended using different granularity levels
(e.g., songs, albums, artists, genres, or ready-made playlists).

• Music is often consumed in listening sessions, such as albums or
playlists. The local context within such sessions must be taken
into consideration.

• Music recommender systems should adapt their level of interfer-
ence to the user needs, from just supporting the exploration of
the music catalog, to providing a full lean-back experience.

Two main fields of research have contributed to music recommender
systems: music information retrieval and recommender systems. Research
in the field of music information retrieval has focused on content-
based recommender systems. In such systems, music items are rep-
resented by feature vectors (typically extracted from the audio sig-
nal [47, 93, 116], social tags [99], or web content [74]), and recom-
mendations are predicted on the basis of pairwise song similarities
computed using the song feature vectors. On the other hand, research
in recommender systems and data mining has concentrated on the
so-called “collaborative filtering,” that is, the extraction of underlying
music taste patterns from usage data (such as listening logs [168],
radio stations [2, 25], or hand-curated music playlists [17]). Content-
based recommender systems deliver fair but limited performance
because the relations derived from content-wise similarities tend to
be simple. Collaborative recommender systems capture more abstract
music taste patterns, but their performance depends on the availability
of sufficiently dense usage data.

The works presented in this thesis are located at the intersection of
these two fields of research. I investigate hybrid music recommender
systems that integrate the strengths of content-based and collaborative

1

2 introduction

recommender systems. While the systems proposed throughout the
thesis are valid for other item domains, I carefully take into consid-
eration the particularities of recommending music: I address music
recommendation tasks at different item granularity levels; I exploit
collaborative and content-based data characteristic of the music do-
main; I investigate fundamental properties of music listening sessions
and of the songs therein.

1.1 outline

The thesis is divided into six chapters. This introductory chapter pro-
vides a summary of the thesis and its contributions, and it describes
the organization of the contents in the subsequent chapters. Chapter 2

provides the technical background necessary to contextualize and
follow the main thesis chapters. This technical background does not
intend to be exhaustive, and the interested reader will find pointers to
additional references through the thesis. Chapters 3, 4 and 5 contain
the contributions of the thesis. They are thematically divided into
two parts, each addressing a music recommendation task. The first
part, corresponding to Chapter 3, focuses on the task of music artist
recommendation and investigates how to model users’ general music
preferences over an extended period of time. The second part, corre-
sponding to Chapters 4 and 5, focuses on the task of music playlist
continuation and investigates how to recommend next songs fitting
the local characteristics of listening sessions. Chapter 6 draws con-
clusions, discusses limitations of the presented works, and outlines
future research directions.

The thesis is organized as a mixture between a monograph and a col-
lection of articles. The dissertation can be read as a unified document
with a coherent flow. However, Chapters 3, 4 and 5, the main contribu-
tions of the thesis, stand as independent units and are strongly based
on works that have already been published or that will be published
soon. Consequently, the reader will find a certain degree of repetition
among these chapters, especially regarding their motivation and the
description of some systems and datasets. Each of these chapters is
prefaced with additional relevant details, including the corresponding
published articles or system implementations.

1.2 contributions

The main contributions of the thesis can be summarized as follows:

• I propose a hybrid extension to matrix factorization that com-
bines listening and tagging histories. For music artist recom-

1.2 contributions 3

mendation, the proposed system yields competitive or higher
recommendation accuracy, especially for infrequent artists.

• I study fundamental properties of music playlists, namely the
song context, the song order and the song popularity, and their
impact on the prediction of playlist continuations. The insights
derived are crucial to design playlist continuation systems.

• I conduct an in-depth analysis of the expressiveness of song-
level features (derived from audio, social tags, and user–item
interactions data) to predict playlist continuations.

• I propose two hybrid recommender systems integrating collabo-
rative information with any type of song features. For playlist
continuations, the proposed systems yield competitive or higher
recommendation accuracy, especially for infrequent songs.

• I share implementations of the proposed systems to facilitate the
reproducibility of the results.

• I propose, in summary, hybrid recommender systems adapting
to the particularities of the music domain, which consistently
strengthen the representation of infrequent music items and thus
facilitate the discovery of music beyond the popular music charts.

Below I provide a more extended description of the main contribu-
tions and findings of each of the core chapters of the thesis.

1.2.1 Music artist recommendation

I propose a hybrid matrix factorization model for collaborative filter-
ing on implicit feedback datasets extending a well-established purely
collaborative model. The proposed hybrid system jointly factorizes
listening logs and social tags from music streaming services, which
are abundant sources of usage data in the music domain. According
to the conducted evaluation, the proposed hybrid system yields more
accurate artist recommendations than its purely collaborative coun-
terpart, and it also outperforms another hybrid matrix factorization
baseline previously proposed in the literature. A dedicated analysis
shows that the superior performance of the proposed hybrid system
is explained by its improved representation of music artists for which
few observations are available at training time. I extend the evaluation
methodology previously followed in the literature by incorporating
bootstrap confidence intervals to facilitate the comparison between
the performance of the systems.

4 introduction

1.2.2 Music playlist continuation

Like previous works on music playlist modeling, this research is based
on the exploitation of hand-curated music playlists as rich examples
from which to learn music compilation patterns.

Playlist characteristics

I analyze fundamental playlist characteristics, namely the song context
length, the song order and the song popularity, and their impact on
effectively predicting next-song recommendations. By comparing the
performance of four existing playlist continuation models of increasing
complexity on two datasets of hand-curated music playlists, I derive
insights into the importance of these playlist characteristics for the task
of next-song recommendation. According to the conducted evaluation,
considering a longer song context has a positive impact on next-song
recommendations. Furthermore, the long-tailed nature of the playlist
datasets (common in music collections) makes simple playlist con-
tinuation models and highly-expressive playlist continuation models
appear to perform comparably. However, a detailed analysis reveals
the advantage of using highly-expressive models, especially to deal
with songs in the “long tail” (i.e., infrequent songs). The evaluation
also suggests either that the song order is not crucial for next-song
recommendations, or that even highly-expressive models are unable to
exploit it. I further propose a variation of the standard retrieval-based
evaluation methodology previously followed in the literature that
provides a more complete view of the performance of the systems.

Hybrid playlist continuation systems

I propose two hybrid music recommender systems for the task of
music playlist continuation. Building on the previous findings, I de-
sign hybrid systems considering the full playlist song context and
hybridizing collaborative and content-based recommender systems,
thus improving the representation of infrequent songs.

I first identify suitable song-level feature representations to model
whether songs fit in music playlists. Features derived from the audio
signal, social tags, and independent listening logs are investigated.
According to the conducted evaluation, the features derived from
independent listening logs are more expressive than those derived
from social tags, which in turn outperform those derived from the
audio signal. The combination of features from different modalities
outperforms the individual features, suggesting that the different
modalities indeed carry complementary information.

The first of the proposed hybrid systems can properly represent
infrequent songs, but it is limited to extending playlists for which a
profile has been computed at training time. The second of the proposed

1.3 main publications 5

hybrid systems regards playlist–song pairs exclusively in terms of
feature vectors. Thus, it learns general playlist–song membership
relationships, which not only make it robust to dealing with infrequent
songs but also enable the extension of playlists not seen at training
time. I provide an extensive evaluation comparing the proposed hybrid
systems to purely collaborative and hybrid baselines. The proposed
hybrid systems predict more accurate playlist continuations as a result
of their better integration of content and collaborative information,
especially for infrequent songs.

1.3 main publications

The thesis is based on the following publications:

• Andreu Vall, Marcin Skowron, Peter Knees, and Markus Schedl.
“Improving music recommendations with a weighted factoriza-
tion of the tagging activity.” In: Proc. ISMIR. Málaga, Spain, 2015,
pp. 65–71,

• Andreu Vall. “Listener-inspired automated music playlist gener-
ation.” In: Proc. RecSys. Vienna, Austria, 2015, pp. 387–390,

• Andreu Vall, Hamid Eghbal-zadeh, Matthias Dorfer, and Markus
Schedl. “Timbral and semantic features for music playlists.” In:
Machine Learning for Music Discovery Workshop at ICML. New
York, NY, USA, 2016,

• Andreu Vall, Markus Schedl, Gerhard Widmer, Massimo Quad-
rana, and Paolo Cremonesi. “The importance of song context in
music playlists.” In: RecSys Poster Proceedings. Como, Italy, 2017,

• Andreu Vall, Hamid Eghbal-zadeh, Matthias Dorfer, Markus
Schedl, and Gerhard Widmer. “Music playlist continuation by
learning from hand-curated examples and song features: Allevi-
ating the cold-start problem for rare and out-of-set songs.” In:
Proc. DLRS Workshop at RecSys. Como, Italy, 2017, pp. 46–54,

• Andreu Vall, Matthias Dorfer, Markus Schedl, and Gerhard
Widmer. “A hybrid approach to music playlist continuation
based on playlist-song membership.” In: Proc. SAC. Pau, France,
2018, pp. 1374–1382,

• Andreu Vall, Massimo Quadrana, Markus Schedl, and Gerhard
Widmer. “The importance of song context and song order in
automated music playlist generation.” In: Proc. ICMPC-ESCOM.
Graz, Austria, 2018,

• Andreu Vall and Gerhard Widmer. “Machine learning approaches
to hybrid music recommender systems.” In: Proc. ECML PKDD.
Dublin, Ireland, 2018,

6 introduction

• Andreu Vall, Matthias Dorfer, Hamid Eghbal-zadeh, Markus
Schedl, Keki Burjorjee, and Gerhard Widmer. “Feature-combination
hybrid recommender systems for automated music playlist con-
tinuation.” In: User Modeling and User-Adapted Interaction (2019,
in press),

• Andreu Vall, Massimo Quadrana, Markus Schedl, and Gerhard
Widmer. “Order, context and popularity bias in next-song recom-
mendations.” In: International Journal of Multimedia Information
Retrieval (2019, in revision).

1.4 additional publications

While not included in the thesis, I also contributed to the following
publications in the fields of user modeling for recommender systems,
machine learning methods for information retrieval, and operations
research:

• Katayoun Farrahi, Markus Schedl, Andreu Vall, David Hauger,
and Marko Tkalčič. “Impact of listening behavior on music rec-
ommendation.” In: Proc. ISMIR. Taipei, Taiwan, 2014, 483–488,

• Markus Schedl, Andreu Vall, and Katayoun Farrahi. “User geospa-
tial context for music recommendation in microblogs.” In: Proc.
SIGIR. Gold Coast, QLD, Australia, 2014, pp. 987–990,

• Alejandro Lago, Victor Martínez-de-Albéniz, Philip Moscoso,
and Andreu Vall. “The role of quick response in accelerating
sales of fashion goods.” In: Analytical modeling research in fashion
business. Springer Series in Fashion Business. Springer, 2016,
pp. 51–78,

• Bruce Ferwerda, Mark P. Graus, Andreu Vall, Marko Tkalčič,
and Markus Schedl. “The influence of users’ personality traits
on satisfaction and attractiveness of diversified recommendation
lists.” In: EMPIRE Workshop at RecSys. Boston, MA, USA, 2016,
pp. 43–47,

• Bruce Ferwerda, Andreu Vall, Marko Tkalčič, and Markus Schedl.
“Exploring music diversity needs across countries.” In: Proc.
UMAP. Halifax, Nova Scotia, Canada, 2016, pp. 287–288,

• Bruce Ferwerda, Mark P. Graus, Andreu Vall, Marko Tkalčič,
and Markus Schedl. “How item discovery enabled by diversity
leads to increased recommendation list attractiveness.” In: Proc.
SAC. Marrakech, Morocco, 2017, pp. 1693–1696,

1.4 additional publications 7

• Matthias Dorfer, Jan Schlüter, Andreu Vall, Filip Korzeniowski,
and Gerhard Widmer. “End-to-end cross-modality retrieval with
CCA projections and pairwise ranking loss.” In: International
Journal of Multimedia Information Retrieval 7.2 (2018), pp. 117–128.

2 M U S I C R E C O M M E N DAT I O N

Current on-line music platforms provide access to tens of millions
of songs. Consequently, recommender systems have become a key
technology to assist users to navigate such large music catalogs. This
chapter describes the fundamental aspects of music recommender
systems. It starts with an introduction to recommender systems, their
components, and the main recommendation techniques considered in
the thesis. This introduction is valid for any item domain. The chapter
then continues with the particularities of dealing with music items,
such as their representation, usual consumption patterns, or the data
sources typically utilized to derive music taste patterns. The chapter
concludes with an overview of the main approaches to evaluating
music recommender systems.

2.1 recommender systems

Recommender systems are technologies devised to support the interac-
tion of users with large collections of items,1 specifically by suggesting
relevant items to the users accessing the collection. The rapid devel-
opment of recommender systems over the past years is to a good
extent motivated by the increasingly larger availability of items in
on-line content distributors [5]. Already in 2003, Linden, Smith, and
York [89] described how recommender systems enabled personalized
suggestions to Amazon customers. In 2007, the Netflix Prize [10] led
to important advances in matrix factorization models to estimate the
users’ preferences for movies [76, 169], and similar models would be
successfully applied to other item domains as well (e.g., recommend-
ing music [36], news [112], or digital television shows [60]).

Recommender systems encompass contributions from multiple, di-
verse disciplines. An important goal of recommender systems is to
support the users’ access to information of their interest. In this sense,
recommender systems are regarded as specializations of more general
tasks in the interconnected fields of information filtering and infor-
mation retrieval [8, 52, 123]. Recommender systems strongly rely on
the analysis of data describing the users, the items, the interaction of
users with items, and even the users’ context when interacting with
the items. Thus, data mining and machine learning methods play an
important role in recommender systems [121, Chapter 7].

1 The term “items” refers to any type of material goods (e.g., a CD or a vinyl record),
digital goods (e.g., music streaming) or services (e.g., concerts in the users’ proximity).

9

10 music recommendation

Beyond purely data-driven techniques, the field of human-computer
interaction is gaining importance in recommenders systems. This re-
sponds to the observation that systems optimized to achieve high
accuracy in simulated recommendation tasks (usually called “off-line
experiments”) do not necessarily provide the most useful recommen-
dations to the end users [102]. Ultimately, the effectiveness of recom-
mender systems also depends on additional factors such as the users’
trust in the system [139], the system interface [29], and user-centered
aspects such as personality and emotions [121, Chapter 21].

Recommender systems are applied to different item domains, in-
cluding on-line shopping, music streaming, news reading, or job
search. Therefore, domain-specific techniques, such as music signal
processing [106] for music recommendation [74, 85, 109], or image
processing [78, 140] for on-line shopping [55] or video recommenda-
tion [56], are also utilized, especially for the extraction of rich item
representations.

2.1.1 Components

The design of each recommender system depends on the recommenda-
tion scenario, the expected interaction of the user with the system, the
item domain, etc. Still, most recommender systems share some basic
characteristics, illustrated in Figure 2.1. On the one hand, a provider
distributes items, which may be of its own or belonging to a third party
(e.g., a digital newspaper distributes its own contents, while a news
aggregator distributes contents from other media). On the other hand,
users interested in these items access the platform. As in information
retrieval systems, it is assumed that the users have preferences [8].
The users’ preferences possibly relate to regular interests which can
be, at the same time, varied and conditional on particular needs and
situations. For example, a user of a music streaming service is an
enthusiast of electronic music. She listens to industrial techno to focus
on work, to deep house while having dinner, and to nu jazz any time.2

Recommender systems derive summarizations or “profiles” of the
users’ preferences and of the items, which facilitate the use of com-
putational approaches to assess the users’ potential interest towards
items. A common approach to recommend items to a user consists in
directly comparing the user’s preference profile to all item profiles.
Then, the most relevant items are recommended. Other approaches in-
volve comparing the user’s preference profile to other user preference
profiles, or comparing the profiles of items that the user consumed in
the past to other item profiles. These comparisons enable recommen-
dation approaches based on user–user similarities (“users like you
liked Y”) and item–item similarities (“if you like X you may like Y”).

2 http://techno.org/electronic-music-guide

http://techno.org/electronic-music-guide

2.1 recommender systems 11

Users

Representation

Preference profiles

Items

Representation

Item profiles

Preferences
(general or specific)

Comparison

Recommended items

Provider

(contents or services)

Figure 2.1: Basic components of a recommender system (adapted from Belkin
and Croft [8], and Celma [21]).

2.1.2 Recommendation approaches

Recommender systems share essential components (Figure 2.1) but
differ in the user and item information exploited, the representation
techniques used to derive user preference and item profiles, and the
procedure followed to assess which items should be recommended to a
user. The user and item information considered in the first place are of
particular importance because they define the meaning of the extracted
profiles and of the subsequent profile comparisons. Recommender
systems are classified into the following main approaches depending
on the information they exploit: collaborative recommender systems
(usually named “collaborative filtering”), content-based recommender
systems, and hybrid recommender systems.

Content-based recommender systems

Content-based approaches utilize explicit descriptions of the item con-
tent (e.g., the audio signal in songs [47, 93] or the text in books [105])
to derive item profiles. User preferences are implicitly defined by the
user’s history of consumed items, from which a user preference profile
is derived. The comparison of the user preference profile to the item
profiles is indirect: items with a similar content to items that the user
previously consumed are expected to be of interest to the user.

Similarly, demographic recommender systems assume that users’
personal attributes (e.g., age, gender or language) can help determine
their interests [113], and knowledge-based recommender systems
match explicit user requirements to detailed item information (e.g.,
suggesting financial services constrained by the user willingness to
take risks) [121, Chapter 5]. Even though demographic and knowledge-

12 music recommendation

based approaches are sometimes regarded separately [15, 121], they
are strongly related to content-based recommender systems in that
they rely on explicit user or item descriptions.

Collaborative recommender systems

Collaborative approaches assume that user preferences and items are
implicitly characterized by the collective history of user–item interac-
tions (e.g., music listening logs [168], bookmarked websites [112], or
rated movies [104]) and exploit them to derive user preference profiles
and item profiles. In contrast to content-based approaches, collabora-
tive filtering disregards explicit descriptions of the user preferences
and of the items. Depending on how the user preference profiles and
the item profiles are built and compared, collaborative approaches are
further categorized as neighbors-based or model-based.

Neighbors-based collaborative recommender systems profile the
users by the items they consumed, and the items by the users who
consumed them. They assume that two users have similar preferences
if their histories of consumed items overlap, and two items are similar
if they have been consumed by approximately the same group of
users [121, Chapter 2]. The comparison of a user preference profile
to item profiles is indirect: approaches based on user neighborhoods
recommend items consumed by like-minded users [132], while ap-
proaches based on item neighborhoods recommend items similar to
items that the user previously consumed [126].

Model-based collaborative recommender systems derive user pref-
erence profiles and item profiles by applying statistical models to
the collective history of user–item interactions. This usually enables
the direct comparison of user preference profiles to item profiles to
decide which items to recommend. An extensively researched fam-
ily of methods within this category are matrix factorization models.
Models based on least-squares solutions provide competitive per-
formance and scale well with the size of the data [60, 76, 112]. Yet
further factorization models have been proposed, such as maximum-
margin matrix factorization [137, 165], factorization machines [118],
or probabilistic [2, 104, 120] and fully Bayesian [124] matrix factoriza-
tion. Collaborative filtering is however not restricted to the matrix
factorization family. Other collaborative recommender systems have
been proposed based on, e.g., restricted Boltzmann machines [125], la-
tent variable models [59, 168], logistic embeddings [25], or variational
autoencoders [86].

Hybrid recommender systems

Collaborative recommender systems reveal abstract relations beyond
content-wise item similarities, but their performance depends on
the availability of rich user–item interactions. New users and new

2.2 the music domain 13

items for which interactions are scarce suffer from the so-called “cold-
start” problem: they are poorly represented and recommendations
become unfeasible or not reliable [121, Chapter 8]. Content-based
recommender systems identify simpler relations, but they are more ro-
bust to the lack of rich user–item interactions. Building the preference
profile for a new user is still challenging, but new items do not suffer
from the cold-start problem because they are profiled on the basis of
an explicit item description. User preferences would also be explicitly
profiled in demographic and knowledge-based recommender systems.

Content-based and collaborative recommender systems can be com-
bined to take advantage of the strengths of each individual approach.
Users and items with enough coverage in the history of user–item
interactions mostly rely on the exploitation of collaborative patterns.
However, poorly represented users and items benefit from additional
explicit descriptions. There exist different hybridization approaches.
An obvious one consists in combining independent recommender
systems, for example by weighting their predicted scores [53], or by re-
ranking the recommendations of one of the systems with information
from the other [63]. Other approaches provide a tighter integration by
incorporating content-based features into a collaborative recommender
system [55, 109], or even tighter by fusing collaborative and content-
based information into a standalone recommender system [56, 163].

Further information on the general aspects of recommender systems
can be found in the introductory chapter of the Recommender systems
handbook [121, Chapter 1], and in the surveys by Adomavicius and
Tuzhilin [1], and Bobadilla et al. [15].

2.2 the music domain

The principles of recommender systems described so far are gener-
ally valid regardless of the item domain. However, each item domain
has inherent characteristics that determine the item availability, the
expected consumption patterns, the relevant recommendation scenar-
ios, and the sources of information available. These particularities
must be considered in the design, development and evaluation of
recommender systems.

We understand music recommender systems as tools that assist
users to find music for casual situations and enjoyment [121, Chap-
ter 13]. These should not be confused with music retrieval systems
pursuing related but different goals, such as assisting music creators to
retrieve recordings from large libraries [4, 73], or suggesting variations
on a musical composition [28, 162].

14 music recommendation

2.2.1 Representation levels

Songs are the most fine-grained recommendable music items. How-
ever, more general musical entities such as albums or artists are often
considered as well. Songs can even be arranged into more abstract
and subjective entities such as ready-made playlists, genres, moods
or activities. Different representation levels should be considered de-
pending on the specific recommendation task. For example: playlist
continuation systems must suggest songs to extend a given play-
list [17]; however, users browsing a music collection may have a better
experience if music is arranged into entities more general than songs,
such as genres [24]; further, a recommender system with an emphasis
on music discovery may be more effective by pointing users to artists
that they do not know yet, rather than focusing on specific songs [98].

2.2.2 Sequential consumption

Compared to watching a movie, or reading a book, the time needed
to listen to a song is short. Still, a listening session typically consists
of several songs, such as an album, a ready-made playlist, or a playlist
extended progressively like a radio stream. Music recommender sys-
tems must be aware of the sequential nature of listening sessions (e.g.,
by maintaining session profiles) and need to be responsive to the most
recent songs played. Another particular consumption behavior is the
recurrent listening of the same songs, which may be partly explained
by the little effort necessary to listen to a song.

2.2.3 Recommendation scenarios

Music platforms equipped with recommender systems usually con-
sider different scenarios depending on the users’ engagement with
the current listening session and on their willingness to interact with
a recommender system (Figure 2.2). Users knowing which music they
want to listen to can just search it using text-based retrieval tools (if the
platform allows). This scenario does not require the intervention of a
recommender system. Other users may be unsure of which music they
want to listen to but still be interested in actively exploring the music
collection. In such cases, the platform can provide not too intrusive
support by arranging the music items into abstract representation lev-
els, or by pointing the users to music items similar to those currently
inspected (e.g., similar artists or related playlists) [72, 115]. For users
more inclined to receive suggestions from a recommender system, a
common approach (not only in the music domain) consists in letting a
recommender system rank the items in the collection according to the
user preferences. The most relevant items are shown to the users, who
still examine them before making a decision [30, 108]. Another scenario

2.2 the music domain 15

Regular

Passive

Medium FullMinimalNone

Active

Browse top K Steer stream

Free stream

ExploreSearch

U
se

r
en

ga
ge

m
en

t

Recommender system interference

Figure 2.2: Recommendation scenarios.

(mostly in the music domain) consists in recommending playlists, or
music streams. Users can steer such music streams by providing a
starting music item [47, 116] or a partial playlist that should be contin-
ued [17, 53, 63], and also by interacting with the recommender system
during the listening session [95, 111, 166]. Lastly, users can opt for a
lean-back experience letting the recommender system freely extend the
music stream.

2.2.4 Data sources

This section focuses on the types of data exploited by collaborative
and content-based music recommender systems, which are the focus
of this thesis.

Collaborative patterns in music

There exist different types of user–item interactions in the music do-
main from which to extract collaborative patterns. The most abundant
source of user–item interactions are listening logs from on-line mu-
sic streaming services, that describe which users listened to which
music items [85, 86, 101, 168]. This is a form of “implicit” feedback,
that is, feedback tracked from the users but not actively provided by
the users [60]. Another rich but less abundant source of interactions
are hand-curated music playlists [17, 53, 99, 100] and Internet radio
streams [2, 25]. While a single playlist typically reflects individual
preferences, a collection of playlists constitutes a source of collabora-
tive information containing valuable information about which songs
fit well together. Listening logs and curated music playlists are forms
of “one-class” feedback, that is, feedback providing only positive
opinions about items [112]. Implicit and one-class feedback contrast
with “explicit” feedback, which is actively provided by the users
and expresses both positive and negative opinions about items (e.g.,
ratings, or thumbs up/down). Explicit feedback is not abundant in
the music domain, with the notable exception of the “Yahoo! Music
Dataset” [36, 37].

16 music recommendation

Content of music items

The audio signal of songs is the most fundamental, low-level repre-
sentation of the content of music items, and it can be mined using
music signal processing techniques. A common approach to exploit
the audio signal of a song starts by computing its spectrogram [106].
The spectrogram can be further processed to obtain Mel-frequency
Cepstrum Coefficients (MFCCs) [92]. MFCCs have been widely used
in the fields of music information retrieval and music recommendation
in combination with Gaussian mixture models [6, 47, 98], vector quan-
tization [58, 85, 97], or to extract “i-vectors” [39, 40]. More recently,
spectrograms have been directly utilized for feature extraction and
prediction using convolutional neural networks [27, 109].

Manual annotations also provide rich descriptions of the content
of music items. The most simple example of such descriptions are
editorial metadata, which can inform about a recording’s release date,
tempo, genre, or instrumentation [16, 63, 114]. A more complex type of
manual annotations are unstructured text descriptions, such as music-
related web content [74, 128, 145], or the social tags that users of on-line
platforms assign to music items [46, 48, 51, 53]. Such text descriptions
provide richer, more abstract representations than metadata, but they
tend to be noisy and subjective. Song representations extracted from
unstructured text descriptions have often been based on the vector
space model with tf-idf weighting [96, Chapter 6], and more recently
on word embedding techniques [103].

Further information on the specific characteristics of the music
domain can be found in the Recommender systems handbook [121, Chap-
ter 13], and in the survey by Schedl et al. [129], which are both specifi-
cally devoted to music recommender systems.

2.3 evaluation

2.3.1 On-line experiments

Recommender systems support the interaction of users with large
item catalogs. Therefore, it is meaningful to have them evaluated by
actual end users. On-line experiments, sometimes categorized as user
studies or on-line studies [121, Chapter 8], seek such user feedback.
User studies typically refer to small- or medium-scale experiments
where participants are asked about different aspects of a recommender
system, like usability, or satisfaction. On-line experiments typically
refer to large-scale studies where users of an on-line platform interact
with a recommender system, and the effectiveness of the system is
measured with the usual metrics of interest of the platform.

User studies are essential before deploying a recommender system,
but they can also be costly for initial developing stages. Especially chal-

2.3 evaluation 17

lenging is hiring participants. For example, Liebman, Saar-Tsechansky,
and Stone [87], Wang et al. [164], and Xing, Wang, and Wang [166]
conducted user studies to evaluate music recommender systems based
on reinforcement learning techniques, where receiving regular user
feedback is essential. Kamehkhosh and Jannach [69] also conducted a
user study to evaluate music playlist continuation systems. However,
the participants of all these studies were invited undergradute and
graduate students who may not constitute an unbiased sample of
the actual end users. A recommended alternative to hire participants
are crowd-sourcing platforms [121, Chapter 9], but also in this case
it is important to select participants with good reputation and to
introduce control questions to filter out careless contributions. For
example, Ferwerda et al. [44, 45] conducted user studies on the “Ama-
zon Mechanical Turk”3 to investigate the effects of user personality
and diversification on the attractiveness of the recommendations.

Large-scale on-line experiments provide the closest approximation
to the final system performance. They of course require having ac-
cess to an actual on-line platform, such as in the works by Li et al.
[82], and Shani, Heckerman, and Brafman [131] (for news and book
recommendations, respectively).

2.3.2 Off-line experiments

Historical user–item interactions enable the evaluation of recom-
mender systems as predictive models. Off-line experiments compare
the predictions of recommender systems to withheld user–item inter-
actions, thus simulating the interaction with users and approximating
the interest of the users towards the system recommendations. In the
music domain, where the user feedback is mostly implicit, off-line
experiments usually focus on the ability of the recommender systems
to recover withheld music items known to be of interest to the users.
That is, the recommendation task is approximated by a retrieval task.

The retrieval-based evaluation consists in repeating the following
procedure for every user. A number of music items known to be of
interest to the user are withheld. The music recommender system
predicts the interest of the user towards all the items in the music
collection. The items are ranked according to their predicted interest. A
good recommender system is expected to place the withheld items in
top positions of the ranked list (close to position 1). The performance
of the recommender system is then typically summarized using rank-
based metrics, such as precision [24, 53, 85], recall [17, 53, 63], mean
average precision [24, 97, 110], mean percentile rank [60, 68], mean
reciprocal rank [63, 64, 97], or normalized discounted cumulative
gain [85, 86] (for each metric just a few works are cited as examples).

3 https://www.mturk.com

https://www.mturk.com

18 music recommendation

Rank-based metrics only capture the accuracy of recommender sys-
tems predicting the interest of users towards items. Additional metrics
have been incorporated to off-line experiments trying to quantify other
relevant factors beyond the accuracy of the predictions, such as the di-
versity, serendipity, novelty, and coverage of the recommendations [159,
167, 170]. While off-line experiments are in general more limited than
on-line experiments to assess the ultimate user satisfaction, they have
important advantages: they are inexpensive, and provide a controlled
and reproducible framework to evaluate and systematically compare
recommender systems.

Further information on the evaluation of recommender systems can
be found in the Recommender systems handbook [121, Chapters 8 and 9],
or in the works by Valcarce et al. [146] for an in-depth study of
accuracy metrics, and Kaminskas and Bridge [70] for a survey on
beyond-accuracy metrics.

Part I

M U S I C A R T I S T R E C O M M E N DAT I O N

3 M AT R I X C O - FA C TO R I Z AT I O N

summary

Collaborative filtering systems for music recommendations are often
based on implicit feedback derived from listening activity. Hybrid
approaches further incorporate additional sources of information in
order to improve the quality of the recommendations. In the context of
a music streaming service, we present a hybrid model based on matrix
factorization techniques that fuses the implicit feedback derived from
the users’ listening activity with the tags that users have given to mu-
sic items. In contrast to existing work, we introduce a novel approach
to exploit tags by performing a weighted factorization of the tagging
activity. We evaluate the model for the task of artist recommendation,
using the expected percentile rank as metric, extended with confidence
intervals to enable the comparison between models. The proposed
model consistently outperforms a pure collaborative filtering base-
line, as well as a hybrid baseline that also combines listening logs
and tagging activity. A closer analysis indicates that the improved
performance of the proposed model can be explained by its ability to
mitigate the cold-start problem for new artists.

remarks

This chapter focuses on the task of music artist recommendation as an
approximation to modeling the users’ general music preferences over
an extended period of time. The works presented here correspond to
early stages of my research and focus on understanding and extending
matrix factorization models for implicit feedback data, which were,
and still are, a strong recommender system baseline. Certainly, the in-
tegration of listening and tagging activity could be accomplished with
other machine learning approaches, like factorization machines [118],
or hybrid systems based on neural networks as presented in Chapter 5.

The chapter is based on the following publications:

• Andreu Vall, Marcin Skowron, Peter Knees, and Markus Schedl.
“Improving music recommendations with a weighted factoriza-
tion of the tagging activity.” In: Proc. ISMIR. Málaga, Spain, 2015,
pp. 65–71,

• Andreu Vall. “Listener-inspired automated music playlist gener-
ation.” In: Proc. RecSys. Vienna, Austria, 2015, pp. 387–390,

21

22 matrix co-factorization

The parts of both publications relevant to this chapter are combined
and reproduced with minor revisions. I conceived and conducted the
research presented in this chapter. Nevertheless, I maintain the use of
the first-person plural (“we”) and acknowledge the collaboration of the
co-authors. Marcin Skowron contributed the careful preparation of the
tagging activity, by processing and matching user and artist social tags.
Peter Knees shared inspiring early research on the incorporation of
metadata to matrix factorization models. Markus Schedl contributed
to the data acquisition and provided valuable feedback.

Implementations of the proposed matrix co-factorization and base-
line models are made available:

• Andreu Vall. Matrix factorization models with social tags for music
recommendation. Original date: 2015-11-19. url: https://github.
com/andreuvall/WeightedTags-MF (visited on 12/12/2018).

3.1 introduction and related work

We provide the motivation of our work together with a review of the
relevant related work, divided into three parts. First, we introduce
the types of user feedback under consideration. Then, we present the
family of models we use to build recommender systems. Finally, we
review the evaluation methodology.

3.1.1 Explicit, implicit and one-class feedback

The interactions between users and items provide a useful source
of data to produce recommendations [121]. It is commonly accepted
to distinguish between “explicit feedback” and “implicit feedback,”
depending on whether the user actively provides feedback about an
item or this is tracked from the user’s interaction with the system [1].
Examples of explicit feedback are rating a movie, giving a "like" to
a blog post, or tagging an artist, because the user actively provides
an opinion. In contrast, the listening histories of users in a music
streaming service are an example of implicit feedback.

The standard approach to make use of implicit feedback is to count
or aggregate all the interactions for each user–item pair [41, 60, 68],
yielding a user–item–count table. In structure, this is identical to an
explicit feedback user–item–rating table. We henceforth refer to such
data structure as “user–item interactions matrix,” regardless of the
type of feedback (implicit or explicit).

In some cases a user–item interaction can express both positive and
negative opinions, in other cases it only reflects positive (or active)
examples. Ratings in a 1 to 5 scale conventionally range from strongly
disliking an item to strongly liking it. However, tracking whether a
user visited or not a website only provides binary feedback describing

https://github.com/andreuvall/WeightedTags-MF
https://github.com/andreuvall/WeightedTags-MF

3.1 introduction and related work 23

action or inaction. Binary feedback is often referred to as “one-class
feedback” [83, 112, 135], and examples of it can be found both in
explicit and in implicit feedback. For example, a user–item interactions
matrix (be it from explicit or implicit feedback) contains intrinsically
a source of one-class feedback, revealing which user–item pairs were
observed and which not.

Inaction must not be confused with a negative opinion, because a
user may not have interacted with an item for a variety of reasons,
not necessarily because of lack of interest. Social tags also exhibit
this property, and treating this correctly will be a key point of the
presented model.

3.1.2 Matrix factorization for collaborative filtering

Collaborative filtering is a widely used recommendation method
which aims at recommending the most relevant items to a user based
on relations learned from previous interactions between users and
items [121, Chapter 3]. The factorization of the user–item interactions
matrix into latent factors matrices is a well-established technique to
implement collaborative recommender systems, both for explicit feed-
back and implicit feedback datasets [60, 76, 112]. Compared to other
methods, it has the advantage of uncovering latent data structures by
solving an optimization problem, instead of using problem-specific
and manually designed features.

Specific collaborative systems for implicit feedback data based on
matrix factorization techniques are presented by Hu, Koren, and Volin-
sky [60], and Pan et al. [112]. The key technique is to use appropriate
weights in the low-rank approximation of the user–item interactions
matrix. More specifically, even if the weighting schemes are different,
both works propose to assign higher confidence to the observed user–
item pairs and lower (but still positive) confidence to the unobserved
user–item pairs. This is important to handle the uncertainty derived
from the one-class property described before. We will insist on this
point later, because our improved treatment of the tagging activity
will rest on the same principle.

3.1.3 Hybrid recommender systems

In collaborative filtering implementations based on matrix factoriza-
tion techniques, hybrid models can be based on the simultaneous
factorization of the user–item interactions matrix, together with other
data for users and items [41, 94]. The motivation for that is that latent
factors summarizing user and item properties should be reinforced,
or better described, if other data sources related to the same users and
items are involved in the optimization problem.

24 matrix co-factorization

The tags that users assign to music items — or other forms of textual
data, like user profiles, or genre annotations for the items — are an
obvious example of potentially useful additional information. In this
line, the research presented by Fang and Si [41] is a valid starting
point, dealing with implicit feedback data and hybridized with user
and item profiles, built on the basis of tf-idf weights calculated for
each user, each item, and each considered word in a dictionary.

Tagging information is an explicit source of feedback (because users
actively provide it) that exhibits, at the same time, the one-class prop-
erty described before; the tags assigned to music items are only posi-
tive examples (even if the meaning of a tag is semantically negative).
A particular tag may not have been applied to a musical item, but this
does not imply that the tag is not suited to describe that musical item.
This property of social tags is also referred to as “weak labeling” [144].
It is reasonable to assume though, that the more often a tag has been
applied to a musical item, the more it should be trusted. Similarly, if a
user applies a tag very often, it may be assumed that the tag is to some
extent relevant for her to describe music items. To address the uncer-
tainty that arises from this wide range of possibilities, we propose
to exploit the tagging activity with a weighted matrix factorization
scheme similar to the one applied for collaborative filtering in implicit
feedback datasets. Observed tags can be given higher confidence. Un-
observed tags can be given lower confidence, but still positive, so that
they are not ignored in the recommender system.

3.1.4 Evaluation of recommender systems

The Netflix Prize [10] has motivated an important progress in the
domain of collaborative filtering, but probably due to the specific ap-
proach considered in the challenge, research has centered on attaining
maximum levels of accuracy in the prediction of ratings. However, im-
provements in predictive accuracy do not always translate to improved
user satisfaction [102].

To make the evaluation task more similar to a real use case (al-
though still in an off-line experiment), Koren [75] evaluates different
recommender systems on the basis of issued ranked lists of recommen-
dations. A recommender able to rank first the relevant items should
be considered better than a recommender that is not able to do so.
An extension of this evaluation methodology to deal with implicit
feedback datasets is proposed by Hu, Koren, and Volinsky [60] and
applied by Li et al. [83] and Johnson [68]. It consists in a central ten-
dency measure, called “expected percentile rank,” assessing how good
is the recommender at identifying relevant items.

The expected percentile rank is a valid metric to measure the average
behavior of a single recommender system, but in order to compare
the performance of different recommender systems, considering only

3.2 methodology 25

mean values can be inaccurate. We propose to use bootstrapping
techniques to examine the distribution of the expected percentile rank
and test for significant differences between models.

3.2 methodology

This work is framed in the context of music streaming services in
which users interact with music items, mainly listening to music, but
also through the free input of text describing them. We focus on the
task of artist recommendations. The listening data is aggregated at the
artist level, obtaining a user–artist–count matrix of implicit feedback.
The tagging activity yields a user–artist–tag matrix of one-class feed-
back, processed to obtain: a user–tag–count matrix, describing how
many times a user applied a tag, and an artist–tag–count matrix, de-
scribing how many times a tag was applied to an artist. The proposed
model is actually flexible regarding the tagging activity data. In our
experiments, we successfully use a collection of top used tags (not a
complete list of all the used tags) together with weights describing the
tag relevance (instead of actual counts).

3.2.1 Matrix factorization models

We compare three recommender systems based on matrix factorization.
The first is a standard collaborative filtering model for implicit feed-
back data. The second is a hybrid model incorporating textual data,
that we modify for the specific task of using tags. Finally, we introduce
a novel model, able to improve the quality of the recommendations
through a weighted factorization of the tagging activity.

Matrix factorization (“MF”)

We use the approach described by Hu, Koren, and Volinsky [60] to
perform collaborative filtering on implicit feedback data. It consists in
a weighted low-rank approximation of the user–artist–count matrix,
adjusting the confidence of each user–artist pair as a function of the
count. Given a system with N users and M artists, the counts for each
user–artist pair are tabulated in a matrix R ∈NN×M, where users are
stored row-wise and artists column-wise. A binary matrix R̃ is defined,
such that for each user u and each artist a

R̃ua =

1 if Rua > 0

0 if Rua = 0,
(3.1)

and the following weight function is defined as

w(η, x) = 1+ η log(1+ x). (3.2)

26 matrix co-factorization

Other weight functions can be defined and may better suit each specific
problem and distribution of the data. We choose a logarithmic relation,
and not the also common linear relation [41, 60, 68], to counteract the
long-tailed distribution of the data, where a majority of users have
a small percentage of the total observed interactions. However, the
optimization of this function is not within the scope of this work.

Finally, the matrix factorization consists in finding two D-rank
matrices P ∈ RN×D and Q ∈ RM×D (rows are latent features for
users and artists, respectively) minimizing the following cost function:

JMF(P,Q) =
∑

ua∈R
w(α,Rua)

(
R̃ua − PuQ

T
a

)2
+ λ

(
‖P‖2F + ‖Q‖2F

)
.

(3.3)

The matrix R̃ is reconstructed using P and Q. R̃ua is the entry of R̃
corresponding to user u and artist a. Pu is the row of P corresponding
to user u, and Qa is the row of Q corresponding to artist a. The
squared reconstruction error is weighted using a function of the actual
counts in Rua according to Equation (3.2), and it is summed over all the
user–artist pairs.1 The parameter α contributes to the weight function
and is determined by grid search. A regularization term involving
the Frobenius norm of P and Q is added to prevent the model from
over-fitting. The regularization parameter λ is also determined by grid
search.

Matrix factorization with tagging activity (“TMF”)

Equation (3.3) is extended by Fang and Si [41] to incorporate textual
information. We present a modification of their model to specifically
deal with tags. Given a system where T tags have been used, the counts
for each user–tag pair are stored in a matrix TU ∈NN×T , where rows
correspond to users and columns correspond to tags. The counts for
each artist–tag pair are stored in a matrix TA ∈NM×T , where rows
correspond to artists and columns correspond to tags. The modified
model factorizes together R̃, TU and TA into three D-rank matrices
P ∈ RN×D, Q ∈ RM×D and X ∈ RT×D (rows are latent features for

1 This includes the zero entries of R as well [60].

3.2 methodology 27

users, artists and tags respectively) minimizing the following cost
function:

JTMF(P,Q,X) =
∑

ua∈R
w(α,Rua)

(
R̃ua − PuQ

T
a

)2
+ µ1

∑
ut∈TU

(
TUut − PuX

T
t

)2
+ µ2

∑
at∈TA

(
TAat −QaX

T
t

)2
+ λ
(
‖P‖2F + ‖Q‖2F + ‖X‖2F

)
.

(3.4)

The first term is identical as in Equation (3.3). The second and third
terms account for the contribution of tags. Xt is the row of X corre-
sponding to tag t. Matrices TU and TA are reconstructed using P,Q
and X, and the squared reconstruction errors are summed over all user–
tag pairs and artist–tag pairs. The parameters µ1,µ2 account for the
contribution of each term to the cost function and are determined by
grid search. The regularization term is analogous as in Equation (3.3).

This formulation modifies the one proposed by Fang and Si [41], in
that it factorizes TU and TA using a single shared tags’ factor matrix X,
instead of two dedicated factor matrices. The tagging activity consists
of user–artist–tag observations. Even if we use separated user–tag–
count and artist–tag–count matrices as inputs for the model, the tags
must be factorized in the same space of latent features.

This model factorizes the user–tag and artist–tag raw counts. If, for
example, an artist–tag pair has never been observed, the model will
try to fit a value of 0 counts for it. This seems an unsuited model,
because we know that a tag that has not been applied may still be
relevant.

Matrix factorization with weighted tagging activity (“WTMF”)

We introduce a novel approach to improve the hybridization with
tagging activity by using a weighted factorization scheme similar to
the one used for implicit feedback data. The observed user–tag and
artist–tag pairs are given high confidence and therefore have a higher
contribution to the cost function. The unobserved user–tag and artist–
tag pairs are given low confidence. They become less relevant in the
cost function, and at the same time the model has more freedom to
fit them. As the results in Section 3.3.3 demonstrate, this is a better
approach to model the weak labeling property of social tags.

28 matrix co-factorization

We define binary matrices T̃U and T̃A, such that for each user u,
each artist a and each tag t

T̃Uut =

1 if TUut > 0

0 if TUut = 0,

T̃Aat =

1 if TAat > 0

0 if TAat = 0.

(3.5)

We factorize together R̃, T̃U and T̃A into three D-rank matrices P ∈
RN×D, Q ∈ RM×D and X ∈ RT×D (rows are latent features for users,
artists and tags respectively) minimizing the following cost function:

JWTMF(P,Q,X) =
∑

ua∈R
w(α,Rua)

(
R̃ua − PuQ

T
a

)2
+ µ1

∑
ut∈TU

w(β, TUut)
(
T̃Uut − PuX

T
t

)2
+ µ2

∑
at∈TA

w(γ, TAat)
(
T̃Aat −QaX

T
t

)2
+ λ
(
‖P‖2F + ‖Q‖2F + ‖X‖2F

)
.

(3.6)

This is similar to Equation (3.4), but now all the terms involve a
weighted factorization. Note that the second and third terms have
specific weight coefficients β and γ, determined by grid search.

3.2.2 Parameter estimation

Alternating Least Squares (ALS) is usually the preferred method to
minimize the objective functions of models based on matrix factor-
ization [9, 41, 50, 60, 68, 112, 169]. ALS is an iterative method, where
subsequently all but one of the factor matrices are kept fixed. This
results in quadratic functions that approximate the original one. At
each step, the cost value is expected to move closer to a local minimum,
and the process is repeated until convergence. Since the approximated
functions are quadratic, the exact solution for the factors can be com-
puted in closed form.

For each of the presented models, we provide the exact solution
for the factors of each user u stored in Pu, each artist a stored in Qa,
and each tag t stored in Xt. We introduce some additional notation.
Rru , Rca , TUra , TUct

, TAra , TAct
refer to the uth,ath, tth row or column (r, c)

of the corresponding matrix (R, TU, TA).2 We also need to define the
following matrices:

• Wru
R ∈ RM×M is a diagonal matrix with the weights computed

for the uth row of R in the diagonal,

2 TU and TA may be further transposed, reading TUT and TAT .

3.2 methodology 29

• Wca

R ∈ RN×N is a diagonal matrix with the weights computed
for the ath column of R in the diagonal,

• Wru
TU ∈ RT×T is a diagonal matrix with the weights computed

for the uth row of TU in the diagonal,

• Wct

TU ∈ RN×N is a diagonal matrix with the weights computed
for the tth column of TU in the diagonal,

• Wra
TA ∈ RT×T is a diagonal matrix with the weights computed

for the ath row of TA in the diagonal,

• Wct

TA ∈ RM×M is a diagonal matrix with the weights computed
for the tth column of TA in the diagonal.

Solution for JMF

For each user u and artist a, the latent factors are given by{
Pu =

(
QTWru

R Q+ λI
)−1(

QTWru
R R

T
ru

)
Qa =

(
PTWca

R P+ λI
)−1(

PTWca

R R
T
ca

)
.

(3.7)

Solution for JTMF

For each user u, artist a and tag t, the latent factors are given by

Pu =
(
QTWru

R Q+µ1X
TX+ λI

)−1(
QTWru

R R
T
ru

+ µ1X
TTUT

ra

)
Qa =

(
PTWca

R P+µ2X
TX+ λI

)−1(
PTWca

R R
T
ca

+ µ2X
TTAT

ra

)
Xt =

(
µ1P

TP+µ2Q
TQ+ λ

)−1(
µ1P

TTUT
ct

+ µ2Q
TTAT

ct

)
.

(3.8)

Solution for JWTMF

For each user u, artist a and tag t, the latent factors are given by

Pu =
(
QTWru

R Q+µ1X
TWru

TUX+ λI
)−1(

QTWru
R R

T
ru

+ µ1X
TWru

TUT
UT
ra

)
Qa =

(
PTWca

R P+µ2X
TWra

TAX+ λI
)−1(

PTWca

R R
T
ca

+ µ2X
TWra

TAT
AT
ra

)
Xt =

(
µ1P

TWct

TUP+ µ2Q
TWct

TAQ+ λ
)−1(

µ1P
TWct

TUT
UT
ct

+ µ2Q
TWct

TAT
AT
ct

)
.

(3.9)

30 matrix co-factorization

3.2.3 Producing recommendations

The technique employed to produce recommendations is the same for
all the models. Once the factor matrices P,Q and X are learned, the
user–artist preferences are predicted as Z = PQT . Note that the tags’
factor matrix X is not directly involved in the prediction although it
contributed to a better estimation of P and Q. The new matrix Z is
expected to be a reconstruction of R̃ for the observed user–artist pairs.
For unobserved entries, Z is expected to reveal potential preferences on
the basis of the learned user and artist factors. The closer a predicted
user–artist preference is to 1, the more confidence we have that it
corresponds to an interesting artist for the user. For each user u,
a recommendation list is prepared showing the artists with higher
predicted preference values in Zu.

3.3 experimental study

3.3.1 Dataset

We compare the different models on a dataset of Last.fm listening
histories, top tags used by users and top tags applied to artists, col-
lected through the Last.fm API.3 The combination of the standard
Taste Profile Subset4 with the Last.fm tags dataset5 would seem a
preferable choice, but the absence of users’ tagging activity makes it
unsuited.

The dataset is built as a stable subset of a running crawl of Last.fm
listening events. The original crawl includes only users with non-
empty country information, non-empty gender information and a
value in the age field between 10 and 80 years, although such filtering
is actually not needed. There is no constraint on the minimum or
maximum number of artists a user has listened to. However, we
only include users such that at least 95% of their listened artists
have a valid MusicBrainz6 identifier. This is to ensure that enough
artists are properly identified and that we will be able to accurately
crawl their tagging activity from the Last.fm. This does not bias the
dataset towards popular artists because MusicBrainz is an open and
collaborative platform that includes a wide variety of artists. The users’
tagging activity is fetched with the Last.fm user names.

The dataset includes 21,852,559 listening events, relating to 2,902

users and 71,223 artists, yielding 687,833 non-zero user–artist–count
entries. This corresponds to a matrix density of roughly 0.3%. Table 3.1

3 http://www.last.fm/api

4 http://labrosa.ee.columbia.edu/millionsong/tasteprofile

5 http://labrosa.ee.columbia.edu/millionsong/lastfm

6 https://musicbrainz.org

http://www.last.fm/api
http://labrosa.ee.columbia.edu/millionsong/tasteprofile
http://labrosa.ee.columbia.edu/millionsong/lastfm
https://musicbrainz.org

3.3 experimental study 31

Table 3.1: Distribution of users per number of listened artists.

listened artists users

1–10 64

11–20 84

21–30 122

31–40 77

41–50 96

50–100 466

101–2332 1993

total 2902

shows the distribution of users as a function of the number of artists
they listened to.

The top tags for each user (if any) are provided together with a
count variable describing how many times the user applied it. The
top tags applied to an artist (if any) are provided together with a
percentage relative to the most frequently applied tag [81]. Because
the API functions only return the top tags, we only observe a partial set
of the tagging activity. In addition, although the user is presented with
previously used tags, she can always input free text. To overcome these
limitations, we perform regularization and simplification operations to
the tag strings, namely: replacements of genre abbreviations with their
extended version, spelling corrections, removal of non-alphanumeric
characters, and mapping of different spelling variants to a unique tag
string, resulting in a unified set of tokens. After this process is applied
to the fetched tags, we are left with 630 unique tags for 600 users and
12,902 unique tags for 67,332 artists, among which 494 unique tags
are identified as identical between the user and the artist list. Note
that tags were found for most of the artists, but only for 20% of the
users. Probably, only a small subset of active users use the tagging
functionality.

The whole matrix of user–artist counts is used, although not all
users or artists have related tagging activity. Tags are a complement
whenever they are available.

3.3.2 Evaluation methodology

The most reliable evaluation method for a recommender system is an
actual large-scale on-line experiment, where real users interact with
the system [121, Chapter 8]. This requires a complex infrastructure
which, unfortunately, is not within the scope of this work. Since we
only have access to historical data, we can not measure how new

32 matrix co-factorization

recommendations would be perceived by the users. Furthermore, in
contrast to explicit feedback applications, accuracy metrics for pre-
dicted ratings are not meaningful for implicit feedback. Therefore, we
adopt the evaluation approach proposed by Koren [75] and adapted by
Hu, Koren, and Volinsky [60] to deal with implicit feedback datasets
in a recall-oriented setting, and we additionally propose an exten-
sion to it.

The observed user–artist pairs are split into training and test sets to
perform 5-fold cross validation, letting each user have approximately
80% of the listened artists in the training set and 20% in the test set.
For each user–artist pair u,a assigned to the test set, a random list of
artists (not including a) is drawn. The list is then ranked according to
the preferences of user u, learned from the training set as explained
in Section 3.2. Finally, a is inserted in the sorted list, and its percentile
rank within the list is stored as rankua.7 If a is ranked among the
top positions of the list, then its percentile rank is close to 0%. If it is
ranked in last positions, then its percentile rank is close to 100%.

After this process has been performed over all the splits, rankua is
known for all the observed user–artist pairs in the dataset. Then, the
expected percentile rank is defined as the weighted average of rankua

with weights given by the user–artist counts [41, 60, 68]:

rank =

∑
ua∈R

Ruarankua∑
ua∈R

Rua

. (3.10)

Correctly ranking a highly relevant artist is more important than
correctly ranking a less relevant artist. Likewise, failing to recommend
a highly relevant artist is worse than failing to recommend a less
relevant one. Values of rank close to 0% indicate that the recommender
is able to correctly rank the relevant artists. Producing ranked lists
uniformly at random results in an expected percentile rank of 50%.
Ranking all the relevant items in the last position of the list results in
an expected percentile rank of 100%.

We extend the evaluation methodology by building confidence
intervals of rank. This allow us to test for significant differences in the
performance of models. We use basic bootstrap confidence intervals,
based on the bootstrap distribution of the expected percentile rank.
For all the observed user–artist pairs in the dataset, random samples
with replacement and with the same size as the dataset are drawn.
For each sample of user–artist pairs, the expected percentile rank is
computed. We repeat this step 1,000 times to obtain the bootstrap
distribution of rank. We then build 95% confidence intervals of rank
using the basic bootstrap scheme [33].

7 Lists of any length may be prepared, and the percentile rank provides a unified scale.
We use lists of 100 artists in our experiments. According to our experience, longer
lists do not yield significant differences.

3.3 experimental study 33

Figure 3.1: Model comparison for different number of latent factors. The
dots correspond to rank and the error bars display 95% basic bootstrap
confidence intervals. The different models are dodged to avoid overlapping.
The top and center lines correspond to the baseline models. The lowest
corresponds to the presented model.

3.3.3 Model comparison

The models are evaluated and compared for a varying number of
latent factors D and for a varying number of training iterations. On
the one hand, we fix the number of iterations to 10 and evaluate the
models with 5, 10, 20, 50, 100 latent factors. On the other hand, we
fix the number of factors to 10 and evaluate the models for 5, 10,
20, 50, 100 training iterations. We choose 10 factors and 10 training
iterations as a basic setting, because they balance well performance
and computational requirements.

For each model and each combination of factors and iterations, we
tune the parameters α, β, γ, µ1, µ2 and λ by grid search. We choose the
set of values that provides lowest expected percentile rank, computed
by 5-fold cross validation as described in Section 3.3.2. Figures 3.1
and 3.2 show the results for different number of factors and iterations,
respectively.

Note that all models, including the plain matrix factorization model,
provide very good results, with values of expected percentile rank
under 4%. This implies that, on average, the models are able to rank
relevant artists among the top 4 positions of a list of 100 random
artists.

34 matrix co-factorization

Figure 3.2: Model comparison for different number of training iterations.
The dots correspond to rank and the error bars display 95% basic bootstrap
confidence intervals. The different models are dodged to avoid overlapping.
The top lines correspond to the baseline models. The lowest corresponds to
the presented model.

The performance of TMF and WTMF improves significantly when
more latent factors are used (Figure 3.1). The presented model outper-
forms the baselines, although for 100 factors the difference between
TMF and WTMF is small. We examine this case. We compute a 95%
basic bootstrap confidence interval for the difference of rank and it
does not include 0. We conclude that the difference in performance is
significant. For lower number of factors the differences between the
presented model and the baselines are remarkable. Good performance
at inexpensive computational requirements is a crucial property, espe-
cially if the recommender is implemented for large-scale applications.

Increasing the number of training iterations results in smaller im-
provements (Figure 3.2). TMF is not even monotonically decreasing.
After 5 iterations, the cost function for TMF is already close to a local
minimum and further minimization does not translate to significant
differences in the expected percentile rank. For the experiments with
20 or more training iterations MF performs exactly as well as TMF.
This is because the grid search process finds that discarding the tag-
ging activity yields best results for those cases. Using only 10 factors
as a basic setting, TMF is not able to exploit the tagging activity. Our
model clearly outperforms the baselines in this set of experiments too,
with a difference of 1% in expected percentile rank.

3.3 experimental study 35

Figure 3.3: Model comparison as a function of the number of observed
occurrences of the artists in the dataset. The dots correspond to rank and
the error bars display 95% basic bootstrap confidence intervals. The different
models are dodged to avoid overlapping. The top lines correspond to the
baseline model. The lower corresponds to the proposed model.

3.3.4 Cold start

We explore the effect of the number of observed occurrences of an
artist in the dataset on the performance of the recommender systems.
If an artist has only been listened by few users, plain collaborative
filtering has little information on the relations between this artist and
the users. Then, hybridizing with tags will prove advantageous.

Each user–artist pair in the dataset is assigned to a subset defined by
the number of occurrences of the artist in the dataset. Equation (3.10)
is computed for each subset, summing only over the corresponding
user–artist pairs. Figure 3.3 shows the expected percentile rank for
MF, TMF and WTMF for each subset. Artists with a single occurrence
in the dataset are poorly recommended by MF. TMF obtains superior
performance than MF for artists with one and two occurrences in
the dataset, but its performance quickly decreases and becomes even
slightly worse than the pure baseline MF. Thanks to the incorporation
of the weighted tagging activity, WTMF clearly outperforms MF and
TMF for artists with up to 5 occurrences in the dataset. The more
often an artist is observed in the dataset, the smaller the difference of
performance becomes.

We provide an example to give a qualitative explanation of the
effect of using tags. We train MF, TMF and WTMF using 80% of the
data. Table 3.2 shows the predicted preference Zua of a selected user
u for four different artists he or she listened to, but belong to the
20% of data withheld for test. MF is not able to identify that the

36 matrix co-factorization

Table 3.2: Prediction of MF, TMF and WTMF for the preference Zua of a
selected user for artists known to be relevant for the user but hidden from
the training.

artist name ZMF
ua ZTMF

ua ZWTMF
ua

Feliu Ventura 0.00 0.09 0.61

Joan Colomo 0.35 0.58 0.75

Manos de Topo 0.23 0.44 0.64

Mazoni 0.00 0.22 0.69

first and the fourth artist were interesting for the user. The reason is
that these artists were not observed at all in the training set. For the
second and third artists, MF predicts low values. TMF has a weak
belief on the artists without listening examples and becomes slightly
more confident for the other two. WTMF is fairly confident about the
four artists. Comparing the artist tags in the user’s training data with
the artist tags of these four artists we find several coincidences, like
“Catalan,” “indie pop” or “pop surrealista” (surreal pop). WTMF is
able to identify these relations.

3.4 conclusions

We have presented a novel matrix factorization model to incorporate
tagging activity into implicit feedback recommender systems. Our
approach consistently outperformed both pure and hybrid collabora-
tive filtering baselines on experiments conducted with real data from
Last.fm, a well-known music streaming service. Analyzing the results
as a function of the artist frequency in the dataset, we have found
that the proposed weighted scheme is able to deal with infrequent
artists by establishing connections through shared social tags. We have
extended the common evaluation methodology computing basic boot-
strap confidence intervals for the expected percentile rank, allowing
us to test for significant differences in the performance of models.

Part II

M U S I C P L AY L I S T C O N T I N U AT I O N

4 P L AY L I S T C H A R A C T E R I S T I C S

summary

The automated continuation of music playlists can be naturally re-
garded as a sequential task where a recommender system suggests
a stream of songs that constitute a listening session. Instead of cap-
turing general user preferences, the task of music playlist continua-
tion focuses on revealing specific session preferences encoded in the
most-recent user interactions. While the accuracy achieved in recom-
mendations is important, in this work we shift our focus towards a
deeper understanding of fundamental playlist characteristics, namely
the song context length, the song order and the song popularity, and
their relation to the recommendation of playlist continuations. We
also propose an approach to assess the quality of the recommenda-
tions that mitigates known problems of off-line experiments for music
recommender systems. Our results indicate that knowing a longer
song context has a positive impact on next-song recommendations. We
find that the long-tailed nature of the playlist datasets makes simple
and highly-expressive playlist continuation models appear to perform
comparably, but further analysis reveals the advantage of using highly-
expressive models. Finally, our experiments suggest either that the
song order is not crucial for next-song recommendations, or that even
highly-expressive models are unable to exploit it.

remarks

This is the first of two chapters devoted to the task of music playlist
continuation. The focus moves from understanding users’ general mu-
sic preferences to modeling local properties of listening sessions. Here
I investigate the importance of fundamental playlist characteristics on
next-song recommendations. The derived insights will be crucial in
the upcoming Chapter 5 to determine which components should be
build into music recommender systems for music playlist continuation.
This research initially yielded the following publications:

• Andreu Vall, Markus Schedl, Gerhard Widmer, Massimo Quad-
rana, and Paolo Cremonesi. “The importance of song context in
music playlists.” In: RecSys Poster Proceedings. Como, Italy, 2017,

• Andreu Vall, Massimo Quadrana, Markus Schedl, and Gerhard
Widmer. “The importance of song context and song order in

39

40 playlist characteristics

automated music playlist generation.” In: Proc. ICMPC-ESCOM.
Graz, Austria, 2018.

The current chapter extends these works and is considered for publi-
cation subject to minor revisions:

• Andreu Vall, Massimo Quadrana, Markus Schedl, and Gerhard
Widmer. “Order, context and popularity bias in next-song recom-
mendations.” In: International Journal of Multimedia Information
Retrieval (2019, in revision).

I conceived and conducted the research presented in this chapter.
Nevertheless, I maintain the use of the first-person plural (“we”) and
acknowledge the collaboration of the co-authors. Massimo Quadrana
contributed to the implementation of the experiments and provided
continuous feedback and expertise on sequence-aware recommender
systems. Markus Schedl and Gerhard Widmer provided valuable
feedback.

4.1 introduction

Automated music playlist continuation is a specific task in music
recommender systems where the user sequentially receives song rec-
ommendations, producing a listening experience similar to traditional
radio broadcasting. The sequential recommendation scenario is very
natural in the music domain, where a listening session typically in-
cludes several songs.

According to interviews with practitioners and postings to a dedi-
cated playlist-sharing website, Cunningham, Bainbridge, and Falconer
[31] identified the choice of songs and the song order as important
aspects of the playlist curation process. As we review in Section 4.2,
some approaches to automated playlist continuation take into account
the current and previous songs in the playlist (i.e., the song context1)
and the order of the songs in the playlist to recommend the next
song. However, to the best of our knowledge, previous works do not
explicitly analyze the impact of exploiting the song context and the
song order for next-song recommendations.

In this work, we compare four well-established and widely-used
playlist continuation models: a popularity-based model, a song-based
Collaborative Filtering (CF) model, a playlist-based CF model, and a
Recurrent-Neural-Network-based model (RNN). These playlist contin-
uation models are of increasing complexity and, by design, are able
to exploit the song context and the song order to different extents. By

1 We refer to the current and previous songs in the playlist as the song context as it
is commonly done in language models, but this should not be confused with the
incorporation of general contextual information into recommender systems.

4.2 related work 41

analyzing and comparing their performance on different off-line ex-
periments, we derive insights regarding the impact of the song context
and the song order for next-song recommendations and the necessity
to be aware of the bias towards popular songs. For the evaluation of
the off-line experiments, we propose to use metrics derived from com-
plete recommendation lists, instead of from top K recommendations.
This provides a more complete view on the performance of the playlist
continuation models.

The remainder of this chapter is organized as follows. Section 4.2
reviews the related work on automated music playlist continuation.
Section 4.3 introduces the guidelines for the off-line experiments
conducted throughout this work. We describe the recommendation
task that the playlist continuation models must fulfill and define the
metrics employed to assess their performance on the task. Section 4.4
describes the four playlist continuation models considered. Section 4.5
presents the datasets of hand-curated music playlists on which we
conduct the off-line experiments. Section 4.6 elaborates on the results
of the off-line experiments and is divided into three parts, which
discuss the impact of the song context, the popularity bias and the
song order on next-song recommendations, respectively. Conclusions
are drawn in Section 4.7.

4.2 related work

A well-researched approach to automated music playlist continuation
relies on the song content. Pairwise song similarities are computed
on the basis of features extracted from the audio signal (possibly en-
riched with social tags and metadata) and used to enforce content-wise
smooth transitions [47, 74, 93, 99, 116]. Recommendations based on
content similarity are expected to yield coherent playlists. However,
pure content-based recommendations can not capture complex rela-
tions and, in fact, it does not hold in general that the songs in a playlist
should all sound similar [80].

Playlist continuation has also been regarded as a form of Collab-
orative Filtering (CF), making the analogy that playlists are equiva-
lent to users’ listening histories, on the basis of which songs should
be recommended. Playlist-based nearest-neighbors CF models and
factorization-based CF models exploit the full playlist context [2, 17,
53]. Song-based nearest-neighbors CF models [126] are not common
in the playlist continuation literature. However, Hidasi et al. [57] show
(for e-commerce and video streaming) that an item-based CF model
that predicts the next item on the basis of the current item can effec-
tively deal with short histories, such as music playlists. In general, CF
models disregard the song order, but it is worth noting that the model
presented by Aizenberg, Koren, and Somekh [2] accounts for neighbor-

42 playlist characteristics

ing songs, and the model introduced by Rendle, Freudenthaler, and
Schmidt-Thieme [119] (for on-line shopping) is aware of sequential
behavior.

The Latent Markov Embedding introduced by Chen et al. [25] mod-
els playlists as Markov chains. It projects songs into a Euclidean space
such that the distance between two projected songs represents their
transition probability. The importance of the direction of song tran-
sitions is evaluated by testing a model on actual playlists and on
playlists with reversed transitions, yielding comparable performance
in both cases. McFee and Lanckriet [100] also treat playlists as Markov
chains, modeled as random walks on song hypergraphs, where the
edges are derived from multimodal song features, and the weights are
learned from hand-curated music playlists. The importance of model-
ing song transitions is assessed by learning the hypergraph weights
again but treating the playlists as a collection of song singletons. When
song transitions are ignored, the performance degrades. These works
examine the importance of accounting for song transitions and their
order, but the Markovian assumption implies that only adjacent songs
are considered.

Hariri, Mobasher, and Burke [53] represent songs by latent topics
extracted from song-level social tags. Sequential pattern mining is
performed at the topic level, so that given seed songs, a next topic
can be predicted. Re-ranking the results of a CF model with the
predicted latent topics is found to outperform the plain CF model.
This approach considers the ordering but only at the topic level, which
is more abstract than the song level.

Hidasi et al. [57] propose an approach to sequential recommendation
based on the combination of Recurrent Neural Networks (RNNs) with
ranking-aware loss functions (for e-commerce and video streaming).
This approach has gained attention and it has been further improved
and extended [56, 142]. Jannach and Ludewig [64] have applied it to the
task of automated music playlist continuation in a study that compares
the performance of RNN models and session-based nearest-neighbors
models for sequential recommendation. Among other analyses, Jan-
nach and Ludewig question whether the computational complexity of
RNN models is justified. Recommendation models based on RNNs
consider the full context of the sequence and are also aware of the
order.

For a comprehensive survey on automated music playlist continua-
tion, we point the interested reader to Bonnin and Jannach [17] and
Ricci, Rokach, and Shapira [121, Chapter13].

We conducted preliminary studies preceding this work analyzing
the importance of the song order and the song context in music play-
lists [154, 156]. This chapter covers these topics and further extends
them by incorporating a playlist-based CF model, additional exper-

4.3 experimental design 43

iments on the song order, a complete analysis of the impact of the
popularity bias, and the detailed configurations of the playlist models.

4.3 experimental design

We compare four well-established and widely-used playlist contin-
uation models: a popularity-based model, a song-based CF model,
a playlist-based CF model, and an RNN model (Section 4.4). We as-
sess their ability to recover withheld playlist continuations following
the off-line evaluation methodology proposed by Hidasi et al. [57]
(Section 4.3.1). By comparing the performance of the different playlist
continuation models on the same experiment, or the performance
of the same model on different experiments, we reason about the
importance of considering the song context and the song order for
next-song recommendations. Furthermore, we study the impact of the
song popularity on the performance of the different models.

Off-line evaluation approaches estimate the models’ behavior on the
recommendation task. However, they might not be able to estimate
the final user satisfaction. The aim of this work is to provide insights
on the importance of the order, the context and the popularity bias
on next-song recommendations. The off-line evaluation methodology
followed in this work serves this analysis well, because it allows
a systematic comparison of the playlist continuation models under
controlled conditions.

4.3.1 Evaluation methodology

A collection of music playlists is split into training and test playlists.
A trained playlist continuation model (Section 4.4) is evaluated by
repeating the following procedure over all the test playlists, which for
clarity, we describe alongside the example depicted in Figure 4.1. We
consider a test playlist (e.g., p = (s3, s5, s2)). In the first step, we show
the model the first song in the playlist (s3). The model ranks all the
songs in the dataset according to their likelihood to be the second song
in the playlist. We keep track of the rank attained by the actual second
song in the playlist (s5 attains rank 2). We also keep track of the fact
that this is a prediction for a song in second position. In the second
step, we show the model the first and the second actual songs in the
playlist (s3, s5). The model ranks all the songs in the dataset according
to their likelihood to be the third song in the playlist. We keep track
of the rank attained by the actual third song in the playlist (s2 attains
rank 3), etc. In this way, we progress until the end of the playlist,
always keeping track of the rank attained by the actual next song in
the playlist and the position in the playlist for which the prediction is
made.

44 playlist characteristics

Figure 4.1: Illustration of the evaluation methodology. The playlist contin-
uation model is evaluated on the test playlist p = (s3, s5, s2). It progresses
through p and ranks all the songs in the dataset according to their likelihood
to be the next song. The actual second song, s5, attains rank 2. The actual
third song, s2, attains rank 3.

We index the ordered list of next-song candidates from 1 (most
likely) until N (least likely), where N is the number of unique songs
in the dataset. A good playlist continuation model is expected to
rank the actual next song in top positions (small rank values). On the
other hand, a poor model would rank the actual next song on bottom
positions (large rank values). A random model would, on average,
rank the actual next song on positions around N/2.

4.3.2 Assessing the quality of the recommendations

Previous research in automated music playlist continuation has sum-
marized the distribution of attained ranks using metrics derived from
the top K positions of the ordered lists of next-song candidates. For
example, the recall at K (also named “hit rate” at K) is defined as
the proportion of times that the actual next songs in the test playlists
attain a rank lower than K [17, 53, 63, 64]. The rationale behind fixing
the length K is that, in practice, only the top K results are of interest
to the end user of the recommender system. However, Platt et al. [114]
and McFee and Lanckriet [99] pointed out the following limitation
of off-line evaluation approaches for playlist continuation models: a
playlist may be extended by a number of potentially relevant songs,
but off-line retrieval experiments only accept the exact match to the
actual next song. The rank attained by the actual next song can be
overly pessimistic, because the ordered list of next-song candidates
can contain relevant results in better positions.

We propose to summarize the distribution of attained ranks using
metrics derived from the whole ordered lists of next-song candidates,
as opposed to focusing only on the top K positions of the lists. We
believe that this provides a more complete view on the performance of
the playlist continuation models. We report the distribution of attained
ranks by means of boxplots representing the first quartile, median,
and third quartile rank values (see e.g., Figure 4.2). Alternatively, we

4.4 playlist models 45

Table 4.1: Summary of the playlist continuation models. The context length
is the number of songs considered by the model to predict the next song
(n means all the songs shown to the model). Order awareness indicates if
the model regards the order of songs in playlists.

playlist model context length order awareness

Song Popularity 0 7

Song-based CF 1 7

Playlist-based CF n 7

RNN n 3

report only the median rank value if this facilitates the interpretation
of the results (Figure 4.4).

4.4 playlist models

We describe the four well-established and widely-used playlist contin-
uation models involved in our experiments. By design, the models are
of increasing complexity and are able to exploit the song context and
the song order to different extents (Table 4.1). Hyperparameter tuning,
if necessary, is performed on validation playlists withheld from the
training playlists.

4.4.1 Song popularity

This is a unigram model that computes the popularity of a song s
according to its relative frequency in the training playlists, i.e.,

pop(s) =
|Ptr(s)|

|Ptr|
, (4.1)

where Ptr is the set of training playlists, Ptr(s) is the subset of training
playlists that contain the song s, and | · | denotes the number of playlists
in each set. Given a test playlist, the next-song candidates are ranked
by their popularity, disregarding the previous songs and their order.
Despite its simplicity, the popularity-based model is a competitive
playlist continuation model [17, 25].

4.4.2 Song-based collaborative filtering

This is a CF model based on song-to-song similarities. A song s is
represented by a binary vector ps that indicates the training playlists

46 playlist characteristics

to which it belongs. The similarity of a pair of songs s, t is computed
as the cosine between ps and pt, i.e.,

sim(s, t) = cos(ps, pt) =
ps · pt

‖ps‖‖pt‖
.

Two songs are similar if they co-occur in training playlists, regardless
of the positions they occupy in the playlists. We follow Hidasi et al.
[57] and implement the song-based CF model such that next-song
candidates are ranked according to their similarity to the current
song in the playlist only, ignoring previous songs. This approach is
relatively simple, but Hidasi et al. show its competitive performance
for sequential recommendation on short sessions.

4.4.3 Playlist-based collaborative filtering

This is a CF model based on playlist-to-playlist similarities. A playlist
p is represented by a binary vector sp indicating the songs that it
includes. The similarity of a pair of playlists p,q is computed as the
cosine between sp and sq, i,.e.,

sim(p,q) = cos(sp, sq) =
sp · sq
‖sp‖‖sq‖

. (4.2)

The score assigned to a song s as a candidate to extend a test playlist
p is computed as

score(s,p) =
∑

q∈Ptr(s)

sim(p,q), (4.3)

where Ptr(s) is the subset of training playlists that contain the song s.
This model considers a song to be a suitable continuation for playlist
p if it has occurred in training playlists that are similar to p. The
similarity between playlists (4.2) and the score of a song to extend a
playlist (4.3) depend on the full playlist p, i.e., on the full song context,
but they disregard the song order.

Playlist-based CF has proven to be a competitive playlist continu-
ation model [17, 53, 63, 64]. It usually has an additional parameter
defining the number of most-similar training playlists on which the
score (4.3) is calculated. We use all the training playlists because
we find that this yields best performance in our experiments (Ap-
pendix 4.A.3).

4.4.4 Recurrent neural networks

Recurrent Neural Networks (RNNs) are a class of neural network
models particularly suited to learn from sequential data. They have
a hidden state that accounts for the input at each time step while
recurrently incorporating information from previous hidden states.

4.5 datasets 47

We point the interested reader to Lipton and Berkowitz [91] for a
review of RNN models.

We adopt the approach and implementation2 proposed by Hidasi et
al. [57], where an RNN model with one layer of Gated Recurrent Units
(GRU) [26] is combined with a loss function designed to optimize the
ranking of next-item recommendations. The model hyperparameters
and architecture are detailed in Appendix 4.A.4.

Given a test playlist, the RNN model considers the full song context
and the song order and outputs a vector of song scores used to rank
the next-song candidates.

4.5 datasets

We evaluate the four playlist continuation models on two datasets of
hand-curated music playlists derived from the on-line playlist-sharing
platforms “Art of the Mix”3 and “8tracks.”4 Both platforms allow
music aficionados to publish their playlists on-line. Moreover, the Art
of the Mix platform hosted forums and blogs for discussion about
playlist curation, as well as social functionalities such as favoriting,
or providing direct feedback to a user.5 The 8tracks platform also
provides social functionalities, such as following users, liking, or com-
menting on specific playlists. Previous works in the automated music
playlist continuation literature have chosen to work with collections
derived from the Art of the Mix and the 8tracks databases because of
their presumably careful curation process [17, 53, 63, 99, 100]. As an
illustration of the users’ engagement, we refer the interested reader to
the study presented by Cunningham, Bainbridge, and Falconer [31],
that analyzes posts to the Art of the Mix forums requesting advice on,
e.g., the choice of songs, or ordering rules.

The “AotM-2011” dataset [100] is a publicly available playlist col-
lection derived from the Art of the Mix database. Each playlist is rep-
resented by song titles and artist names, linked to the corresponding
identifiers of the Million Song Dataset6 (MSD) [12], where available.
The “8tracks” dataset is a private playlists collection derived from
8tracks. Each playlist is represented by song titles and artist names.
Since we find multiple spellings for the same song-artist pairs, we
use fuzzy string matching to resolve the song titles and artist names
against the MSD, adapting the code released by Jansson, Raffel, and
Weyde [65] for a very similar task.

2 https://github.com/hidasib/GRU4Rec

3 http://www.artofthemix.org

4 https://8tracks.com

5 Publishing playlists and interacting with individual users are still active services on
the Art of the Mix, but the forums and blogs seem to be discontinued.

6 https://labrosa.ee.columbia.edu/millionsong

https://github.com/hidasib/GRU4Rec
http://www.artofthemix.org
https://8tracks.com
https://labrosa.ee.columbia.edu/millionsong

48 playlist characteristics

Table 4.2: Descriptive statistics of the filtered AotM-2011 and 8tracks playlist
collections. We report the distribution of playlist lengths, number of artists
per playlist, and song frequency in the dataset (i.e., the number of playlists
in which each song occurs).

dataset statistic min 1q med 3q max

AotM-2011 Playlist length 5 6 7 8 34

Artists per playlist 3 5 7 8 34

Song frequency 1 8 12 20 249

8tracks Playlist length 5 5 6 7 46

Artists per playlist 3 5 6 7 41

Song frequency 1 9 15 30 2320

We use the MSD as a common name space to correctly identify
song-artist pairs. In both datasets, the songs that could not be resolved
against the MSD are discarded, with one of two possible approaches.
The first approach consists in simply removing the non-matched songs.
The original playlists are preserved but with skips within them, which
we ignore. The second approach consists in breaking up the original
playlists into segments of consecutive matched songs, yielding shorter
playlists without skips. We base our analysis on the first approach, but
experiments on the second approach yield the same conclusions.

We keep only the playlists with at least 3 unique artists and with
a maximum of 2 songs per artist. This is to discard artist- or album-
themed playlists, which may correspond to a careless compilation
process. For example, such a playlist could be the result of saving a
full album as a playlist, which does not involve any curation effort. We
also keep only the playlists with at least 5 songs to ensure a minimum
playlist length. Songs occurring in less than 10 playlists are removed
to ensure that the models have sufficient observations for each song.

We randomly assign 80% of the playlists for training and the re-
maining 20% for test. As in any recommendation task blind to item
content, the songs that occur only in test playlists need to be removed
because they can not be modeled at training time. This affects the final
playlist length and song frequency.

The filtered AotM-2011 dataset has 17,178 playlists with 7,032

unique songs by 2,208 artists. The filtered 8tracks dataset has 76,759

playlists with 15,649 unique songs by 4,290 artists. Table 4.2 reports
the distribution of unique songs per playlist, unique artists per playlist
and song frequency in the datasets.

4.6 results 49

4.6 results

We elaborate on the off-line experiments and the derived findings on
the importance of the song context, the popularity bias and the song
order for next-song recommendations. As a reference, all the results
include the performance of a random model that assigns scores to
next-song candidates uniformly at random, yielding random ranks.

4.6.1 Song context

We compare the four playlist continuation models described in Section
4.4. The popularity-based model predicts the next song disregarding
the current and previous songs, i.e., it has no context. The song-based
CF model predicts the next song on the basis of the current song
but disregards the previous ones, i.e., it has a context of 1 song. The
playlist-based CF and the RNN models predict the next song on the
basis of the full playlist, i.e., they have full context.

Figure 4.2 reports the distribution of ranks attained by the actual
next songs in the test playlists, given the predictions of the four playlist
continuation models. The distributions of attained ranks are split
by the position in the playlist for which the next-song prediction is
made.7 We consider only predictions up to position 8, which represent
roughly the 90% of all the next-song predictions made in the AotM-
2011 and the 8tracks datasets. From position 9 onwards the number of
predictions quickly decreases and the results become less reliable.

The results in Figure 4.2 show that the popularity-based model and
the song-based CF model do not improve their predictions as they
progress through the playlists. This is the expected result because the
popularity-based model has no context, and the song-based CF model
has a context of 1 song. Their distributions of attained ranks remain
stable with only small fluctuations easily explained by the fact that at
each position the models deal with different songs. On the other hand,
the playlist-based CF model and the RNN model are aware of the full
song context. The results in Figure 4.2 show that the performance of
the playlist-based CF model and the RNN model improves as they
progress through the playlists, indicating that these models benefit
from increasingly longer song contexts.

In terms of absolute model performance, the song-based CF model
is the least competitive model, slightly better but not significantly dif-
ferent than the random reference model. The popularity-based model
and the RNN model show the most competitive overall performances.
The playlist-based CF model has difficulties when the song context

7 The position in the playlist for which the next-song prediction is made must not
be confused with the song context length of the playlist continuation model. For
example, making a next-song prediction for a song in position 5, the playlist-based
CF model has a context of 4 songs, while the song-based CF still has a context of 1

song (Table 4.1).

50 playlist characteristics

is short, but it consistently improves as it gains more context, until
eventually it outperforms the popularity-based model.

Summary of main observations:

• The playlist-based CF model and the RNN model, aware of
the song context, improve their performance as they obtain
increasingly longer contexts.

• Despite its simplicity, the popularity-based model performs
comparably to the RNN model and, except for long contexts,
better than the playlist-based CF model.

• The song-based CF model exhibits a poor performance.

4.6.2 Popularity bias

The previous results pose an apparent contradiction: the performance
of the popularity-based model, unaware of the song context, is com-
parable to the performance of the RNN model and, overall, slightly
superior to the performance of the playlist-based CF model, both
aware of the full playlist context. Is it then important or not to ex-
ploit the song context? Furthermore, as discussed by Jannach and
Ludewig [64], do marginal performance gains of the RNN model over
the playlist-based CF model and the popularity-based model justify
its higher computational complexity?

To shed light on these two questions we deem it important to
analyze the possible impact of song-popularity effects, ubiquitous in
the music consumption domain [21]. Within our off-line experiments,
we identify the popularity of a song with its frequency in the datasets,
i.e., with the number of playlists in which it occurs. Figure 4.3 and
Table 4.2 show the song frequency distribution of the AotM-2011 and
the 8tracks datasets. The AotM-2011 and the 8tracks datasets present
a clear popularity bias, with a vast majority of songs occurring in few
playlists and a few songs occurring in many playlists.

We consider again the performance of the four playlist continuation
models in Figure 4.4 but this time distinguishing whether the actual
next songs in the test playlists were popular or not. Precisely, we
define the popularity of a song as its relative frequency in the training
playlists, as given by Equation (4.1). The left panels in Figure 4.4
report the median rank attained by the actual next songs in the test
playlists considering all the next-song predictions. The central panels
in Figure 4.4 report the median rank attained by the actual next songs
in the test playlists when the actual next songs belong to the 10%
most popular songs in the datasets. The right panels in Figure 4.4
report the median rank attained by the actual next songs in the test
playlists when the actual next songs belong to the 90% least popular
songs in the datasets (which we refer to as the “long tail”). Figure 4.4
reports only the median rank to obtain a more compact graph that

4.6 results 51

34
34

18
4534

3434
3434

34

25
77

13
07

34
34

18
4534

34
34

34
34

34 25
77

13
07

34
34

18
45

34
3434

3434
34

25
77

13
07

34
34

18
45

34
34

34
34

34
34

25
77 13

07

34
34

18
45

34
34

34
34

34
34

25
77

13
07

RNN Popularity Playlist-CF Song-CF Random

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
1

1500

3000

4500

position

ra
nk

(a) AotM-2011 dataset

58
77

15
34

3
15

34
315

34
3

15
34

3

36
78

95
82 58

77

15
34

3
15

34
3

15
34

3
15

34
3

36
7895
82 58
77

15
34

3
15

34
3

15
34

3
15

34
3

36
78

95
82

58
77

15
34

3
15

34
3

15
34

3
15

34
3

36
7895
82

58
77

15
34

3
15

34
3

15
34

3
15

34
3

36
78

95
82

RNN Popularity Playlist-CF Song-CF Random

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
1

1500

5000

8000

11000

position

ra
nk

(b) 8tracks dataset

Figure 4.2: Song context length experiments. Distribution of ranks attained
by the actual next songs in the test playlists (lower is better) for the AotM-2011

and the 8tracks datasets. Each panel corresponds to a playlist continuation
model. The x-axis indicates the position in the playlist for which a prediction
is made. The y-axis indicates the attained ranks and its scale relates to the
number of songs in each dataset. The boxplots summarize the distribution of
attained ranks by their first quartile, median and third quartile values. The
number of rank values at every position is annotated.

52 playlist characteristics

(a) AotM-2011 dataset

(b) 8tracks dataset

Figure 4.3: Unique songs in the AotM-2011 and the 8tracks dataset, sorted
by frequency, i.e., by the number of playlists in which they occur. The colored
dots correspond to songs at percentile positions, with the song frequency
and the percentile annotated (the latter in parentheses). Examples of frequent
(popular) and infrequent (non-popular) songs in the datasets are provided,
with the frequency annotated in parentheses.

4.6 results 53

facilitates the comparison of the playlist continuation models over the
song-popularity levels.

The results in Figure 4.4 show that the popularity-based model per-
forms outstandingly well on the most popular songs, but it makes poor
predictions for songs in the long tail. This is the natural consequence
of the very design of the popularity-based model (Section 4.4.1). The
playlist-based CF model performs reasonably well on the most pop-
ular songs and shows a quick improvement as it gains song context.
Its performance on long-tail songs is poorer, but it shows a slight
improvement as it gains song context, until given a context of at least
5 songs, it outperforms the popularity-based model. The good per-
formance of the playlist-based CF model on popular songs is not
surprising because the scoring Equation (4.3) favors songs occurring
in many training playlists. However, the rather poor performance
on long-tail songs is less expected, especially if we remember that
our implementation of the playlist-based CF model considers all the
training playlists as neighbors, which could help to counteract the
large amount of non-popular songs in the AotM-2011 and the 8tracks
datasets (Section 4.4.3). The song-based CF model also performs better
on popular songs than on non-popular songs, especially in the 8tracks
dataset, where the bias is stronger. The RNN model is reasonably
competitive. Furthermore, in contrast to the other playlist continuation
models, the performance of the RNN model is largely unaffected by
the popularity of the actual next songs.

Focusing on the performance of the playlist continuation models
on all next-song predictions (left panels in Figure 4.4), the popularity-
based model seems comparable to the more sophisticated RNN model.
Given enough song context, the playlist-based CF model also seems
to compete with the RNN model. However, as we have just seen,
the overall strong performance of the popularity-based model and
the playlist-based CF model is the result of aggregating the accu-
rate predictions made for a few popular songs (central panels in
Figure 4.4) with the rather poor predictions made for a vast majority
of non-popular songs (right panels in Figure 4.4). On the contrary, the
performance of the RNN model is not affected by the song popularity.
This observation must be taken into consideration to judge whether
the higher computational complexity of the RNN model is justified,
also considering the particular use case and target users of the rec-
ommender system. For example, the robustness of the RNN model
to the popularity bias would be crucial to assist users interested in
discovering non-popular music.

Summary of main observations:

• The RNN model has a reasonably good performance, which
is not affected by the popularity of the actual next songs.

54 playlist characteristics

34
34

18
45

34
34

34
34

34
34

25
77

13
07

11
43

11
93 88

0

11
03

11
44 66

5

50
8

22
90

11
80

23
31

16
97

22
41

22
91 79

9

All songs Popular songs Long-tail songs

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
235

1500

2500

3658

position

ra
nk

RNN Popularity Playlist-CF Song-CF Random

(a) AotM-2011 dataset

58
77

15
34

3

15
34

3

15
34

3

15
34

3

36
78

95
82

75
40

18
77

75
31

73
23

29
24

75
95

46
78

29
53

80
20

78
12

78
03

77
48

18
01

49
04

All songs Popular songs Long-tail songs

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
159

2000
4000
6000

8135

position

ra
nk

RNN Popularity Playlist-CF Song-CF Random

(b) 8tracks dataset

Figure 4.4: Popularity effects experiments. Median rank attained by the
actual next songs in the test playlists (lower is better) for the AotM-2011

and the 8tracks datasets. Left: All songs are considered. Center: Only the
10% most popular songs in the dataset are considered. Right: Only the 90%
least popular (long-tail) songs in the dataset are considered. The x-axis
indicates the position in the playlist for which a prediction is made. The
y-axis indicates the attained ranks and its scale relates to the number of songs
in each dataset. The number of rank values at every position is annotated.

4.6 results 55

• The popularity-based model, the song-based CF model and
the playlist-based CF model exhibit a significant perfor-
mance gap depending on the popularity of the actual next
songs.

• Despite its overall poor performance on non-popular songs,
the playlist-based CF model can exploit the song context to
eventually outperform the popularity-based model.

4.6.3 Song order

The RNN playlist continuation model is the most complex one among
the four models considered and the only one aware of the song order.
Furthermore, we have shown its good performance and robustness
predicting playlist continuations. We now investigate the importance
of considering the song order on next-song recommendations by com-
paring the performance of the RNN model when it is shown original
playlists or playlists where the song order has been manipulated.

We devise three different song order manipulation experiments.
Firstly, we train the RNN model on original playlists, but we evaluate
it on shuffled playlists. This can be regarded as a weak check, because
the RNN model can still potentially exploit the song order at training
time. We refer to this setting as “shuffled test.” Secondly, we train the
RNN model on shuffled playlists and evaluate it on original playlists.
This is a strong check, because we now make sure that the RNN model
can not exploit the song order at training time. We refer to this setting
as “shuffled training.” Finally, we train and evaluate the RNN model
on shuffled playlists. We refer to this experiment as “shuffled training
and test.” For the last two settings we re-tune the hyperparameters
of the RNN model to make sure that the performance is not compro-
mised as a consequence of modifying the training playlists. However,
we keep the same architecture and hyperparameters because other
configurations do not yield significantly better performance.

Figure 4.5 reports the distribution of ranks attained by the actual
next songs in the test playlists given the predictions of the RNN model
under each song order randomization experiment. The distributions
of attained ranks are split by the position in the playlist for which
the next-song prediction is made. As before, we consider only pre-
dictions up to position 8, which represent roughly the 90% of all
the next-song predictions made in the AotM-2011 and the 8tracks
datasets (Section 4.6.1). As a reference, we also include the perfor-
mance of the RNN model trained and evaluated on original playlists.
Surprisingly, the distribution of ranks is comparable for all the song
order randomization experiments, regardless of whether the song
order is maintained, broken at test time, or broken at training time.
This result provides an indication that the song order may not be an
essential feature for next-song recommendations. Alternatively, even

56 playlist characteristics

though RNN models are the state of the art in many sequential tasks,
the result could be explained by the incapability of the considered
RNN model to properly exploit the song order. Further investigation
is required.

Analyzing closely Figure 4.5 we observe that, especially for the
8tracks dataset, the distribution of attained ranks when the song
context is short (positions 2 and 3) is slightly worse on randomized
playlists than on original playlists. However, even if the song order
has been randomized, the performance of the RNN model improves
as it is given more context. From position 5 onwards, the distributions
of attained ranks on randomized playlists are close to those obtained
on original playlists. Even though further experiments are required
to fully understand this result, a possible explanation could be the
following. Given a very short song context, the RNN model is un-
certain about the playlist it is extending. Thus, it can not properly
identify the relevant next-song candidates and resorts to “memorized”
relations between songs, resulting in next-song predictions sensitive to
the manipulation of the song order. On the other hand, given a longer
song context, the RNN model is well informed about the playlist it
is extending and it can successfully narrow down a relevant set of
next-song candidates, regardless of the exact order in which the songs
occurred in the playlist.

We further conduct a related set of experiments consisting in revers-
ing the song order instead of randomizing it. A similar experiment
was proposed by Chen et al. [25] to investigate the importance of
the “directionality” in next-song recommendations. Chen et al. found
only small performance differences evaluating the Latent Markov Em-
bedding model on original and reversed playlists. We replicate the
different settings from our previous experiments: we first train the
RNN model on original playlists and evaluate it on reversed playlists.
Then, we train the RNN model on reversed playlists and evaluate it
on original playlists. Finally, we train and evaluate the RNN model on
reversed playlists. Figure 4.6 reports the distribution of ranks attained
by the actual next songs in the test playlists given the predictions
of the RNN model under each reversed song order experiment. As
expected, the results are not significantly different from those reported
in Figure 4.5. That is, the distribution of ranks is comparable for all
the reversed song order experiments.

Summary of main observations:

• The RNN model achieves comparable performance on origi-
nal playlists and on playlists where the song order has been
reversed or randomized.

• The previous result suggests that either the song order is
not a crucial feature for next-song recommendations, or the
RNN model is unable to exploit the song order.

4.6 results 57

34
34

18
4534

3434
3434

34

25
77

13
07

34
34

34
34

34
34

25
7734

34

18
45 13

07

34
34

18
4534

3434
34

34
34

25
77 13

07 34
34

34
34

34
34

25
7734

34

18
45 13

07

RNN original Shuffled test Shuffled training Shuff. train. & test

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
1

1500

3000

4500

position

ra
nk

(a) AotM-2011 dataset

58
77

15
34

3
15

34
3

15
34

3
15

34
3

36
7895

82

15
34

3

15
34

3
15

34
3

95
82

15
34

3

58
77

36
78 58
7715
34

3
15

34
3

15
34

3
15

34
3

36
7895

82

15
34

3

15
34

3
15

34
3

95
82

15
34

3

58
77

36
78

RNN original Shuffled test Shuffled training Shuff. train. & test

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
1

2500

5000

7500

position

ra
nk

(b) 8tracks dataset

Figure 4.5: Randomized song order experiments. Distribution of ranks at-
tained by the actual next songs in the test playlists (lower is better) for the
AotM-2011 and the 8tracks datasets. The panels include the predictions of the
RNN on the original playlists and on the different song order randomization
experiments. The x-axis indicates the position in the playlist for which a
prediction is made. The y-axis indicates the attained ranks and its scale
relates to the number of songs in each dataset. The boxplots summarize
the distribution of attained ranks by their first quartile, median and third
quartile values. The number of rank values at every position is annotated.

58 playlist characteristics

34
34

18
4534

3434
3434

34

25
77

13
07 34

34

34
34

13
0725

77
18

4534
3434

34

34
34

18
4534

3434
3434

34

25
77 13

07

34
34

34
34

13
07

25
77

18
4534

3434
34

RNN original Reversed test Reversed training Rev. train. & test

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
1

1500

3000

4500

position

ra
nk

(a) AotM-2011 dataset

58
77

15
34

3
15

34
3

15
34

3
15

34
3

36
7895

82

15
34

3
15

34
3

58
77

36
7815

34
3

95
8215

34
3

58
77

15
34

3
15

34
3

15
34

3
15

34
3

36
7895

82

15
34

3
15

34
3

58
77

36
7815

34
3

95
8215

34
3

RNN original Reversed test Reversed training Rev. train. & test

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
1

2500

5000

7500

position

ra
nk

(b) 8tracks dataset

Figure 4.6: Reversed song order experiments. Distribution of ranks attained
by the actual next songs in the test playlists (lower is better) for the AotM-
2011 and the 8tracks datasets. The panels include the predictions of the RNN
on the original playlists and on the different reversed song order experiments.
The x-axis indicates the position in the playlist for which a prediction is made.
The y-axis indicates the attained ranks and its scale relates to the number of
songs in each dataset. The boxplots summarize the distribution of attained
ranks by their first quartile, median and third quartile values. The number of
rank values at every position is annotated.

4.7 conclusion 59

• Even when the song order is reversed or randomized, the
RNN model improves its performance as it gains song
context.

4.7 conclusion

We have explicitly investigated the impact of the song context length,
the song order and the song popularity in music playlists for the
task of predicting next-song recommendations. We have conducted
dedicated off-line experiments on two datasets of hand-curated mu-
sic playlists comparing the following playlist continuation models: a
popularity-based model, a song-based CF model, a playlist-based CF
model, and an RNN model. These models are well-established and
widely-used and exploit the song context and the song order to differ-
ent extents. Our results indicate that the playlist-based CF model and
the RNN model, which can consider the full song context, do benefit
from increasingly longer song contexts. However, we observe that a
longer song context does not necessarily translate into outperforming
the simpler popularity-based model, which is unaware of the song
context. This is explained by the popularity bias in the datasets, i.e.,
the coexistence of few, popular songs with many, non-popular songs.
Failing to take into account the popularity bias masks significant per-
formance differences: the popularity-based model, the song-based CF
model and the playlist-based CF model exhibit significantly different
performance depending on the popularity of the actual next songs in
the test playlists. On the contrary, the more complex RNN model has a
stable performance regardless of the song popularity. This effect must
be taken into account in the design of playlist continuation models
for specific use cases and target users. The RNN model is the only of
the considered playlist continuation models aware of the song order.
We have found that its performance on original, shuffled and reversed
playlists is comparable, suggesting either that the song order is not
crucial for next-song recommendations in such playlists, or that the
RNN model, despite being one of the strongest statistical model for
sequential tasks, is unable to fully exploit it. We have proposed an
approach to assess the quality of the recommendations that observes
the complete recommendation lists instead of focusing on the top K
recommendations. Doing so provides a more complete view on the
performance of the playlist continuation models.

60 playlist characteristics

4.a model configurations

4.a.1 Song popularity

This model computes the popularity of all the unique songs in the
dataset. That is 7,032 songs for the AotM-2011 dataset and 15,649

songs for the 8tracks dataset.

4.a.2 Song-based collaborative filtering

This model computes pairwise similarities for all the unique songs in
the dataset. That is 7,032 songs for the AotM-2011 dataset and 15,649

songs for the 8tracks dataset.

4.a.3 Playlist-based collaborative filtering

This model computes the similarity of each test playlist to all the
training playlists in the dataset. That is, 13,744 playlists for the AotM-
2011 dataset and 61,416 playlists for the 8tracks dataset. We also
experimented using 100, 500 and 1000 training playlists but did not
achieve better results.

4.a.4 Recurrent neural networks

We experiment with different loss functions, namely categorical cross-
entropy, Bayesian Pairwise Ranking (BPR) [120] and TOP-1 [57]. The
RNN is optimized using AdaGrad [38] with momentum and L2-
regularization. We also experiment with dropout [138] in the recurrent
layer, but none of the final configurations use it. We tune the number of
units, the learning rate, the batch size, the amount of momentum, the
L2-regularization weight and the dropout probability on a withheld
validation set, by running 100 random search experiments [11] for each
of the loss functions mentioned above. The final model configuration
is chosen according to the validation recall at 100 (i.e., the proportion
of times that the actual next song is included within the top 100 ranked
candidates), which we consider a proxy of the model’s ability to rank
the actual next songs in top positions. The number of training epochs
is chosen on the basis of the validation loss.

For the AotM-2011 dataset, the final model uses the TOP-1 loss and
it has 200 hidden units. It is trained on mini-batches of 16 playlists,
with a learning rate of 0.01, a momentum coefficient of 0.5 and an
L2-regularization weight of 0.1. For the 8tracks dataset, the final model
uses the TOP-1 loss and it has 200 hidden units. It is trained on mini-
batches of 64 playlists, with a learning rate of 0.025, a momentum
coefficient of 0.3 and an L2-regularization weight of 0.02. For both
datasets, the hyperparemeters and architecture of the RNN models

4.A model configurations 61

trained on shuffled and reversed playlists were re-tuned, but since
other configurations did not yield clearly better results, we decided to
use the same settings for consistency.

5 H Y B R I D P L AY L I S T S Y S T E M S

summary

Music recommender systems have become a key technology to support
the interaction of users with the increasingly larger music catalogs
of on-line music streaming services, on-line music shops, and per-
sonal devices. An important task in music recommender systems is
the automated continuation of music playlists, that enables the rec-
ommendation of music streams adapting to given (possibly short)
listening sessions. Previous works have shown that applying col-
laborative filtering to collections of curated music playlists reveals
underlying playlist–song co-occurrence patterns that are useful to pre-
dict playlist continuations. However, most music collections exhibit a
pronounced long-tailed distribution. The majority of songs occur only
in few playlists and, as a consequence, they are poorly represented by
collaborative filtering. We introduce two feature-combination hybrid
recommender systems that extend collaborative filtering by integrating
the collaborative information encoded in curated music playlists with
any type of song feature vector representation. We conduct off-line
experiments to assess the performance of the proposed systems to
recover withheld playlist continuations, and we compare them to com-
petitive pure and hybrid collaborative filtering baselines. The results
of the experiments indicate that the introduced feature-combination
hybrid recommender systems can more accurately predict fitting play-
list continuations as a result of their improved representation of songs
occurring in few playlists.

remarks

This is the second chapter devoted to the task of music playlist con-
tinuation. Building on the conclusions drawn in the previous chapter,
here I propose and thoroughly evaluate two hybrid recommender
systems for music playlist continuation which (1) consider the full
song context and (2) incorporate content information to improve the
representation of very infrequent songs. This research initially yielded
the following publications:

• Andreu Vall, Hamid Eghbal-zadeh, Matthias Dorfer, and Markus
Schedl. “Timbral and semantic features for music playlists.” In:

63

64 hybrid playlist systems

Machine Learning for Music Discovery Workshop at ICML. New
York, NY, USA, 2016,

• Andreu Vall, Hamid Eghbal-zadeh, Matthias Dorfer, Markus
Schedl, and Gerhard Widmer. “Music playlist continuation by
learning from hand-curated examples and song features: Allevi-
ating the cold-start problem for rare and out-of-set songs.” In:
Proc. DLRS Workshop at RecSys. Como, Italy, 2017, pp. 46–54,

• Andreu Vall, Matthias Dorfer, Markus Schedl, and Gerhard
Widmer. “A hybrid approach to music playlist continuation
based on playlist-song membership.” In: Proc. SAC. Pau, France,
2018, pp. 1374–1382.

The current chapter extends these works and has been accepted for
publication:

• Andreu Vall, Matthias Dorfer, Hamid Eghbal-zadeh, Markus
Schedl, Keki Burjorjee, and Gerhard Widmer. “Feature-combination
hybrid recommender systems for automated music playlist con-
tinuation.” In: User Modeling and User-Adapted Interaction (2019,
in press).

I conceived and conducted the research presented in this chap-
ter. Nevertheless, I maintain the use of the first-person plural (“we”)
and acknowledge the collaboration of the co-authors. Matthias Dor-
fer contributed to the design and implementation of the second of
the proposed recommender systems and contributed the extraction
of audio-based song features using convolutional neural networks.
Hamid Eghbal-zadeh contributed to the extraction of audio-based
song features using the “i-vectors” framework. Keki Burjorjee pro-
vided feedback and expertise on matrix factorization models. Markus
Schedl and Gerhard Widmer provided valuable feedback.

Implementations of the proposed hybrid recommender systems are
made available:

• Andreu Vall and Matthias Dorfer. Hybrid recommender systems for
music playlist continuation. Original date: 2017-04-20. url: https:
//github.com/andreuvall/HybridPlaylistContinuation (vis-
ited on 12/12/2018).

5.1 introduction

Music recommender systems have become an important component
of music platforms to assist users to navigate increasingly larger
music collections. Recommendable items in the music domain may
correspond to different entities such as songs, albums, or artists [24,

https://github.com/andreuvall/HybridPlaylistContinuation
https://github.com/andreuvall/HybridPlaylistContinuation

5.1 introduction 65

121, Chapter 13], and music streaming services even organize music
in more abstract categories, like genre or activity.

As a consequence of the relatively short time needed to listen to a
song (compared to watching a movie or reading a book) a user session
in an on-line music streaming service typically involves listening to,
not one, but several songs. Thus, modeling and understanding music
playlists is a central research goal in music recommender systems.
As in other item domains, music recommender systems often pro-
vide personalized lists of suggestions based on the users’ general
music preferences. This approach may work to recommend music
entities such as albums, artists, or ready-made listening sessions (like
curated playlists or charts) because it can be useful to provide the
users with a wide choice range. However, recommendations based
on the users’ general music preferences may be too broad for the
task of automated music playlist continuation, where it is crucial to
recommend individual songs that specifically adapt to the most-recent
songs played.

A common approach to explicitly address the automated continu-
ation of music playlists consists in applying Collaborative Filtering
(CF) to curated music playlists, revealing specialized playlist–song
co-occurrence patterns [2, 17]. While this approach works fairly well,
it has an important limitation: the performance of any CF system
depends on the availability of sufficiently dense training data [1].
In particular, songs occurring in few playlists can not be properly
modeled by CF because they are hardly related to other playlists and
songs. Music collections generally exhibit a bias towards few, pop-
ular songs [21]. In the case of collections of curated music playlists,
this translates into a vast majority of songs occurring only in very
few playlists. This majority of infrequent songs is poorly represented
by CF.

To overcome this limitation, we observe that songs occurring rarely
in the context of curated playlists are not necessarily completely un-
known to us. We can often gather rich song-level side information
from, e.g., the audio signal, text descriptions from social-tagging plat-
forms, or even listening logs from music streaming services. Such
additional song descriptions can be leveraged to make CF robust to
infrequent songs by means of hybridization [1, 19].

We introduce two feature-combination hybrid recommender sys-
tems that integrate curated music playlists with any type of song
feature vector derived from song descriptions. The curated music
playlists provide playlist–song co-occurrence patterns as in CF ap-
proaches. The song features make the proposed systems robust to data
scarcity problems. In contrast to previous hybrid playlist continuation
approaches, the proposed systems are feature-combination hybrids [19],
having the advantage that the collaborative information and the song
features are implicitly fused into standalone enhanced recommender

66 hybrid playlist systems

systems. The proposed systems can be used to play and sequentially
extend music streams, resulting in a lean-back listening experience
similar to traditional radio broadcasting, or to assist users to find
fitting songs to extend their own music playlists, stimulating their
engagement.

5.1.1 Contributions of the chapter

• We provide a unified view of music playlist continuation as a
matrix completion and expansion problem, encompassing

– pure CF systems, solely exploiting curated playlists,

– hybrid systems integrating curated playlists and song fea-
ture vectors.

• We introduce two feature-combination hybrid recommender
systems

– readily applicable to automated music playlist continuation,

– able to exploit any type of song feature vectors.

• Still, the proposed systems are domain-agnostic. They can gener-
ally leverage

– collaborative implicit feedback data from any domain,

– item feature vectors from any domain and modality.

• A thorough off-line evaluation comparing to pure and hybrid
state-of-the-art CF baselines shows that, having access to compa-
rable data, the proposed systems

– compete to CF when sufficient training data is available,

– outperform CF when training data is scarce,

– compete to, or outperform the hybrid baseline.

• The proposed systems further improve their performance by con-
sidering richer song feature vectors, e.g., concatenating features
from different modalities.

• The evaluation also provides a complete comparison of

– a widely-used matrix factorization CF system [60],

– its audio-based hybrid extension [109],

– a popular playlist-neighbors CF system [17].

5.1 introduction 67

• The appendices extend the evaluation of the proposed systems
with a detailed analysis of the contribution of each type of song
feature vector, showing

– the standalone performance of each type of song feature
vector,

– the incremental gains of stepwise combinations of song
feature vectors.

5.1.2 Scope of the chapter

Compiling a music playlist is a complex task. According to interviews
with practitioners and postings to a playlist-sharing website, Cunning-
ham, Bainbridge, and Falconer [31] found that the playlist curation
process is influenced by factors such as mood, theme, or purpose.
They also observed a lack of agreement on curation rules, except for
loose and subjective guidelines. Krause and North [77] studied music
listening in situations. Among other conclusions, they found that par-
ticipants of their study, when asked to compile playlists for specific
situations, selected music seeking to comply with perceived social
norms defining what music ought to be present in each situation.

The scope of our work is restricted to machine learning approaches
to music recommender systems. We focus on the exploitation of data
describing playlists and the songs therein, in order to identify patterns
useful to recommend playlist continuations. We acknowledge the
complexity of the playlist curation process, and we are aware of the
possible limitations of a pure machine-learning perspective.

5.1.3 Organization of the chapter

The remainder of the chapter is organized as follows. Section 5.2
reviews previous works on music playlist continuation. Section 5.3
formulates music playlist continuation as a matrix completion and
expansion problem. Sections 5.4 and 5.5 describe the proposed sys-
tems and the baselines for music playlist continuation, respectively.
The evaluation methodology is presented in Section 5.6. Section 5.7
describes the datasets of curated playlists and song features used in
our experiments. Section 5.8 elaborates on the results. Finally, con-
clusions are drawn in Section 5.9. Additional details of each playlist
continuation system, additional song feature types, and additional
results are provided in Appendices 5.A, 5.B and 5.C, respectively.

68 hybrid playlist systems

5.2 related work

Content-based recommender systems for automated music playlist
continuation generally compute pairwise song similarities on the basis
of previously extracted song features and use these similarities to
enforce content-wise smooth transitions. Such systems have typically
relied on audio-based song features [47, 93, 116], possibly combined
with features extracted from social tags [99] or web-based data [74].
While this approach is expected to yield coherent playlists, Lee, Bare,
and Meek [80] actually found that recommending music with stronger
audio similarity does not necessarily translate to higher user satis-
faction. This limitation relates to the so-called semantic gap in music
information retrieval, that is, the distance between the raw audio
signal of a song and a listener’s perception of the song [22].

Collaborative Filtering (CF) has been proven successful to reveal
underlying structure from user-item interactions [1, 121]. In particular,
CF has been applied to music playlist continuation by considering
collections of hand-curated playlists and regarding each playlist as a
user’s listening history on the basis of which songs should be recom-
mended. Previous research has mostly focused on playlist-neighbors
CF systems [17, 53, 63], but Aizenberg, Koren, and Somekh [2] also
presented a latent-factor CF model tailored to mine Internet radio sta-
tions, accounting for song, artist, time of the day, and song adjacency.
An important limitation of most latent-factor and playlist-neighbors
CF systems is that they need to profile the playlists at training time in
order to extend them, by computing their latent factors or finding their
nearest neighbors. As a consequence, such systems can not extend
playlists unseen at training time. To circumvent this issue, Aizenberg,
Koren, and Somekh [2] replaced the latent factors of unseen playlists
by the latent factors of their songs, and Jannach and Ludewig [64]
showed how to efficiently implement a playlist-neighbors CF system
able to extend unseen playlists in reasonable time, even for large
datasets. Song-neighbors CF systems have also been investigated [154,
158], and Bonnin and Jannach [17] proposed a successful variation
consisting in computing similarities between artists instead of between
songs, even when the ultimate recommendations were at the song
level. Their system also incorporated song popularity. A common
limitation of all pure CF systems is that they are only aware of the
songs occurring in training playlists. Thus, songs that never occurred
in training playlists, to which we refer as “out-of-set” songs, can not
be recommended in an informed manner. Furthermore, songs that do
occur in training playlists, but seldom, are not properly modeled by
CF because they lack connections to other playlists and songs.

Other collaborative systems (i.e., systems based on the exploitation
of playlist–song interactions) have been presented. Zheleva et al. [168]
proposed to adapt Latent Dirichlet Allocation (LDA) [14] to modeling

5.2 related work 69

listening sessions. They found that a variation of LDA that specifically
considers the sessions provided better recommendations than plain
LDA. Chen et al. [25] presented the Latent Markov Embedding, a
model that exploits radio playlists to learn an embedding of songs
into a Euclidean space such that the distance between embedded
songs relates to their transition probability in the training playlists.
Both systems can extend playlists unseen at training time, but can
only make informed recommendations for songs occurring in training
playlists.

Hybrid systems combining collaborative and content information
are a common approach to mitigate the difficulties of CF to represent
infrequent songs. Hariri, Mobasher, and Burke [53] represented the
songs in hand-curated playlists by topic models derived from social
tags and then mined frequent sequential patterns at the topic level. The
recommendations predicted by a playlist-neighbors CF system were re-
ranked according to the next topics predicted. The approach proposed
by Jannach, Lerche, and Kamehkhosh [63] pre-selected suitable next
songs for a given playlist using a weighted combination of the scores
yielded by a playlist-neighbors CF system and a content-based system.
The candidate songs were then re-ranked to match some characteristic
of the playlist being extended. In both cases the hybridization followed
from the combination of independently obtained scores, by means of
weighting heuristics or re-ranking. For songs occurring in few training
playlists, the recommendations predicted by CF could be boosted with
content information. However, the recommendations for out-of-set
songs would solely rely on the content-based component of the hybrid
systems.

McFee and Lanckriet [100] proposed a hybrid system integrating col-
laborative and content information more closely. The system was based
on a weighted song hypergraph, that is, a song graph where edges
can join multiple songs, and weights define the similarity between
the (possibly many) songs connected by an edge. The edges were
defined by assigning the songs in hand-curated playlists to possibly
overlapping song sets, which had been previously obtained through
clustering of extracted multimodal song features. The weights were
found in a second step as the best possible fit given a collection of
training playlists and the hypergraph edges. This system could better
deal with out-of-set songs, as it would only need to assign them to
appropriate edges. Not strictly applied to music playlist continuation
but to music understanding and recommendation in general, Oord,
Dieleman, and Schrauwen [109] introduced the use of convolutional
neural networks to estimate song factors from a latent-factor model,
given the log-compressed mel-spectrogram of the audio signal of
songs. Such networks can be essentially regarded as feature extraction
tools, but further combined with latent-feature models they enable
the informed recommendation of infrequent or out-of-set songs. This

70 hybrid playlist systems

approach was further combined with semantic features derived from
artist biographies by Oramas et al. [110].

Our own previous works on music playlist continuation focused on
two main research lines. On the one hand we studied the importance of
three main playlist characteristics (length, song order, and popularity
of the songs included) in music playlist continuation systems [154, 156,
158]. On the other hand, more related to the current work, we analyzed
the extent to which multimodal features can capture playlist–song
relationships, and we designed two feature-combination hybrid recom-
mender systems for music playlist continuation [152, 153, 155]. In the
current work we consolidate the second line of research. We present
the two feature-combination hybrid systems in full detail. We conduct
an extensive evaluation, comparing the proposed systems to four com-
petitive playlist continuation baselines, and incorporating uncertainty
estimation by means of bootstrap confidence intervals. We analyze ad-
ditional audio-based features extracted applying convolutional neural
networks on song spectrograms. Finally, the evaluation further pro-
vides new, insightful comparisons between well-established pure and
hybrid CF systems, namely the matrix factorization model proposed
by Hu, Koren, and Volinsky [60], its hybrid extension proposed by
Oord, Dieleman, and Schrauwen [109], and the playlist-neighbors CF
system [17, 53, 63].

5.3 problem formulation

Let P be a collection of music playlists. Let S be the universe of
songs available, including at least the set SP of songs occurring in the
playlists of the collection P, but possibly more (i.e., S ⊇ SP). A playlist
p ∈ P is regarded as a set of songs, where the song order is ignored.1

Playlists may have different lengths.
Since playlists are seen as song sets, any playlist p is a subset of

the universe of songs S. Thus, the set difference S \ p represents the
songs that do not belong to the playlist p. A song s can be regarded
as playlist of one song, i.e., as the singleton set {s}. Given a song s
in a playlist p, the set difference p \ {s} removes the song s from the
playlist p. The length of a playlist p is denoted by its cardinality |p|.

We refer to any playlist p ∈ P as an “in-set” playlist, and to any song
s ∈ SP as an “in-set” song. In contrast, we refer to any playlist p /∈ P
as an “out-of-set” playlist, and to any song s /∈ SP as an “out-of-set”
song.

1 Even though the process of listening to a playlist is inherently sequential, we found
in Chapter 4 that considering the song order in curated music playlists is actually not
crucial to extend such playlists. While more research is required to fully understand
the impact of the song order in music playlists, we feel confident that disregarding
the song order does not harm the contribution of the current work.

5.3 problem formulation 71

Figure 5.1: Playlist continuation as a matrix completion and expansion
problem. The matrix Y encodes the playlist collection P. CF systems discover
in-set potential positive playlist–song interactions by “completing” the matrix
Y. Hybrid systems can further “expand” the matrix Y towards out-of-set
songs by incorporating external song descriptions. Systems not specializing
in the playlists of P can expand the matrix towards out-of-set playlists,
possibly at the cost of slightly lower performance.

5.3.1 Playlist continuation as matrix completion

While a single playlist typically reflects individual preferences, a
collection of playlists constitutes a source of collaborative implicit
feedback [60, 112] encoding rich playlist–song co-occurrence patterns.
Similar to other recommendation tasks, music playlist continuation can
be regarded as a matrix completion problem. The playlist collection
P is arranged into a binary matrix Y ∈ {0, 1}|P|×|SP| of playlist–song
interactions, with as many rows as playlists and as many columns as
unique songs in the playlists (Figure 5.1). The interaction between a
playlist p and a song s indicates whether the song occurs (yp,s = 1)
or not (yp,s = 0) in the playlist. The matrix Y is typically very sparse
and thus it can be stored efficiently by keeping only the positive
interactions (e.g., the playlist collections introduced in Section 5.7 have
both a density rate of 0.08%).

“Completing” the matrix Y generally refers to discovering new po-
tential positive playlist–song interactions. Songs identified as potential
positive interactions to a given playlist are then recommended as can-
didates to extend the playlist. That is the approach followed by CF
systems, both neighborhood-based [17, 154, 158] and model-based [2].

We evaluate two CF baselines, one model-based and one neighbors-
based. For the model-based system, we adapt the matrix factorization
model for implicit feedback datasets by Hu, Koren, and Volinsky
[60] for the task of music playlist continuation (Section 5.5.1). For the
neighbors-based system, we modify the playlist-neighbors CF sys-
tem [17, 53, 63] to adapt to the challenging sparsity of the considered
playlist collections (Section 5.5.3).

72 hybrid playlist systems

5.3.2 Playlist continuation as matrix expansion

The matrix completion framework is limited to playlists and songs
within the matrix. However, common use cases may require extending
not-yet-seen playlists, or considering candidate songs that do not occur
in any of the playlists of the matrix.

Out-of-set songs

CF systems rely solely on playlist–song co-occurrence patterns. There-
fore, they are unable to recommend out-of-set songs as candidates to
extend playlists, precisely because out-of-set songs do not co-occur
with the playlists in the collection. Hybrid extensions to CF overcome
this limitation by incorporating external song descriptions seeking
to compensate for the lack of playlist–song co-occurrences. Hybrid
systems can not only enable the recommendation of out-of-set songs
(Figure 5.1) but also strengthen the representation of in-set but infre-
quent songs.

The feature-combination hybrid recommender systems proposed in
this work handle out-of-set and in-set but infrequent songs by fusing
any type of song feature vectors with collaborative patterns derived
from hand-curated music playlists (Sections 5.4.1 and 5.4.2). We also
evaluate the hybrid CF system proposed by Oord, Dieleman, and
Schrauwen [109], which predicts song latent factors from the audio
signal and passes them to a matrix factorization model. We extend
this latter approach by additionally considering song latent factors
derived from independent listening logs (Section 5.5.2).

Out-of-set playlists

Model-based CF systems relying on matrix factorization are not gen-
erally able to extend playlists unseen at training time. However, we
see that this limitation can be overcome for the matrix factorization
model considered in this work [60], and we show how to predict
continuations for out-of-set playlists (Figure 5.1) provided that latent
song factors are available (Section 5.5.1).

Neighbors-based CF systems can generally extend out-of-set play-
lists. Still, playlist-neighbors CF systems require a careful implemen-
tation to efficiently compute the similarity between out-of-set play-
lists and large training playlist collections [17, Appendix A.1]. This
computation can be accelerated by sampling a subset of the training
playlists [64]. The moderate size of the playlist collections consid-
ered in this work, however, does not make it necessary to apply such
sampling (Section 5.5.3).

The first of the hybrid systems proposed in this work specializes
towards the collection of training playlists (Section 5.4.1). It achieves
a very competitive performance, but it is not readily able to extend

5.4 proposed systems 73

out-of-set playlists. The second hybrid system is designed to generally
model whether any playlist and any song fit together (Section 5.4.2).
It achieves slightly lower performance but it can handle out-of-set
playlists.

5.3.3 Recommending playlist continuations

A playlist continuation system has to be able to predict a score quan-
tifying the fitness between a playlist p and a candidate song s. This
score may be interpreted as a probability (e.g., in the proposed sys-
tems) or as a similarity measure (e.g., in neighbors-based CF systems).
After assessing the fitness between a playlist and multiple song candi-
dates, we select the most suitable song recommendations to extend
the playlist.

5.4 proposed systems

We introduce two hybrid feature-combination recommender systems.
The feature-combination hybridization scheme integrates collaborative
and content information treating the collaborative information as an
additional feature associated to each playlist–song pair [19]. The hy-
bridization results in an enhanced, standalone system, informed about
both types of information. This is in contrast to other hybridization
schemes that simply combine the predictions of independent systems.

5.4.1 Profiles-based playlist continuation (“Profiles”)

This system specializes towards a playlist collection by means of
a song-to-playlist classifier. As a consequence of this specialization,
Profiles achieves very competitive performance, but it is not readily
able to extend out-of-set playlists. This system should be used to
recommend songs to stable user playlists. If new playlists needed to
be considered, the song-to-playlist classifier could be extended using
incremental training techniques [84]. Profiles can deal with out-of-set
songs.

Model definition

A song s is represented by a feature vector xs ∈ RD. We are interested
in the probability of song s fitting each of the playlists of a collection P.

The system is based on a song-to-playlist classifier implemented by
a neural network c : RD → R|P|. The network takes the song feature xs
as input. The output c(xs) ∈ R|P| is pointwise passed through logistic

74 hybrid playlist systems

Figure 5.2: Sketch of the Profiles system. A song feature vector is taken as
input and processed through the network to decide the playlists of P that
the song fits. The model is trained on labeled song-to-playlist examples.

activation functions,2 yielding a vector ŷs = σ
(
c(xs)

)
∈ [0, 1]|P| that

indicates the predicted probability of song s fitting each of the playlists
in the collection P (Figure 5.2).

The song-to-playlist classifier depends on a set of learnable weights
θc (omitted so far for simplicity). The weights are adjusted on the basis
of training examples {xs, ys} (Section 5.4.1) by comparing the model’s
predicted probabilities to the actual labels ys ∈ {0, 1}|P|. Precisely, the
weights θc are estimated to minimize the following binary cross-
entropy cost function

LProfiles
(
θc | {xs, ys}

)
=

−
∑
p,s

yp,s log
(
ŷp,s

)
+
(
1− yp,s

)
log
(
1− ŷp,s

)
. (5.1)

The terms yp,s and ŷp,s denote the components of ys and ŷs cor-
responding to playlist p, respectively. The dimensionality of the set
of parameters θc depends on the network architecture. The summa-
tion is done over all the possible playlist–song pairs, both occurring
(yp,s = 1) and non-occurring (yp,s = 0) in the training playlists. We
experimented with different weighting schemes for occurring and
non-occurring pairs, as suggested by Hu, Koren, and Volinsky [60] or
Pan et al. [112], but none yielded superior performance than using
equal weights.

Song-to-playlist training examples

SP is the set of unique songs in the playlists of P. For each song s ∈ SP,
ys ∈ {0, 1}|P| is the column of the playlist–song interactions matrix Y
corresponding to song s, which indicates the playlists of P to which
the song s belongs. The training set consists of all the pairs of song
features and playlist-indicator binary vectors {xs, ys}s∈SP

.

5.4.2 Membership-based playlist continuation (“Membership”)

This system generally models playlist–song membership relationships,
that is, whether a given playlist and a given song fit together. This ap-

2 The song-to-playlist classifier makes as many independent decisions as playlists in
the collection P. We also experimented with a softmax activation function yielding
a probability distribution over playlists, but using sigmoids provided better results
according to the followed evaluation methodology (Section 5.6).

5.4 proposed systems 75

Figure 5.3: Sketch of the Membership system. Given any playlist–song pair,
its feature matrix and vector are transformed into hidden representations
that are then used to decide if the playlist–song pair fits together. The model
is trained on labeled playlist–song pairs derived from Algorithm 1.

proach is related to the Profiles system, but here we seek to discourage
the specialization towards specific playlists by generally representing
any playlist by the feature vectors of the songs that it contains. In
this way, Membership can deal with out-of-set playlists and out-of-set
songs.

Model definition

A playlist p is represented by a feature matrix Xp ∈ R|p|×D that
contains, in each row, the feature vector of each song in the playlist.
A song s is represented by a feature vector xs ∈ RD. A playlist–song
pair (p, s) is then represented by the features (Xp, xs).

The system is based on a deep neural network with a “feature-
transformation” component t : RD → RH and a “match-discrimination”
component d : R2H → [0, 1]. The playlist feature matrix Xp is trans-
formed song-wise (i.e., row-wise) into a hidden matrix representation
t(Xp) ∈ R|p|×H (where we slightly abuse notation for t). This ma-
trix is averaged over songs yielding a summarized playlist feature
vector avg(t(Xp)) ∈ RH. The song feature vector xs is also trans-
formed into a hidden representation t(xs) ∈ RH. Both hidden repre-
sentations are passed through the match-discrimination component
that predicts the probability of the playlist–song pair fitting together,
ŷp,s = d

(
avg(t(Xp)), t(xs)

)
∈ [0, 1] (Figure 5.3).

The transformation and match-discrimination components depend
on sets of learnable weights θt and θd, respectively (omitted so far
for simplicity). These are adjusted on the basis of training examples
{(Xp, xs),yp,s} (Section 5.4.2) by comparing the model’s predicted
probability for a pair (p, s) to the actual label yp,s ∈ {0, 1}. Precisely,
the sets of weights θt, θd are estimated to minimize the following
binary cross-entropy cost function

LMembership

(
θt,θd

∣∣ {(Xp, xs),yp,s}
)
=

−
∑
p,s

yp,s log (ŷp,s) + (1− yp,s) log (1− ŷp,s) .
(5.2)

The dimensionalities of the sets of parameters θt and θd depend on
the network architecture.

76 hybrid playlist systems

Playlist–song training examples

We assume that any playlist p ∈ P implicitly defines matches to each
of its own songs. That is, each song s ∈ p matches the shortened
playlist ps = p \ {s}. We further assume that any song not occurring in
the playlist p is a “mismatch” to the shortened playlist ps.3 Thus, we
can obtain a mismatch by randomly drawing a song from S \ p.

Following this procedure, Algorithm 1 details how to derive a
training set with as many matching as mismatching playlist–song
pairs given a playlist collection P and a universe of available songs S.

Algorithm 1 Derive playlist–song matches and mismatches.

Input:
P . playlist collection
S . universe of songs

Output:
matches . list of playlist–song matches
mismatches . list of playlist–song mismatches

1: matches = [] . initialize empty lists
2: mismatches = []

3: for each p ∈ P do
4: for each s ∈ p do
5: ps = p \ {s} . remove s from p

6: s+ = s . s is a match to ps
7: s− = sample(S \ p) . draw a mismatch to ps
8: matches.append

((
Xps , xs+

)
, 1
)

. store training examples
9: mismatches.append

((
Xps , xs−

)
, 0
)

10: end for
11: end for
12: return matches, mismatches

Sampling strategy

The Membership system can be utilized as we have described so far.
However, we find that applying the following sampling strategy before
we derive the training playlist–song pairs and at recommendation time
is necessary to obtain competitive results.

We set a fix playlist length n given by the length of the shortest
playlist in a collection P. Given a playlist p ∈ P, we derive all the
sub-playlists p ′ that result from drawing n songs from p without
replacement. However, the number of possible draws can be large. To
keep the approach computationally tractable, if the number of possible

3 In the context of implicit feedback, the term “no-match” may be preferable to “mis-
match” because missing feedback does not necessarily reflect negative feedback.
However, we keep the latter for simplicity.

5.5 baseline systems 77

draws is larger than |p|, we select only |p| sub-playlists by randomly
drawing n songs from p without replacement |p| times.4

We apply this procedure to each playlist of P, thus obtaining a
modified playlist collection P ′ with many more, but shorter fix-length
playlists. Then, we apply Algorithm 1 to the modified collection P ′ to
derive training playlist–song pairs.

Once Membership is trained, we also apply the sampling strategy
to predict the match probability of an unseen playlist–song pair (p, s).
We derive no more than |p| sub-playlists out of p as described above.
We let Membership predict the match probability of (p ′, s) for each
derived sub-playlist p ′. Then we average the probabilities.

5.5 baseline systems

5.5.1 Matrix factorization (“MF”)

This is a purely collaborative system based on the weighted matrix
factorization model proposed by Hu, Koren, and Volinsky [60]. As
any pure CF system, it is unable to recommend out-of-set songs. In
principle it is also unable to extend out-of-set playlists, but we see how
to overcome this limitation with a fast one-step factorization update
(Section 5.5.1).

Model definition

We factorize the matrix of playlist–song interactions Y ∈ {0, 1}|P|×|SP|

into two low-rank matrices u ∈ R|P|×D, v ∈ R|SP|×D of playlist
and song latent factors, respectively, where D is the depth of the
factorization and the product Ŷ = u · vT approximately reconstructs
the original matrix Y. Precisely, the latent factors are estimated to
minimize the following weighted least squares cost function

LMF
(
u, v

∣∣ Y
)
=
∑
p,s

wp,s
(
yp,s − up · vT

s

)2
, (5.3)

where wp,s is the weight assigned to the playlist–song pair (p, s).
Following Hu, Koren, and Volinsky [60], we define the weights by
wp,s = 1+ αyp,s, where α is a parameter adjusted on a validation
set. However, since the matrix Y is binary, the weighting scheme is
reduced to

wp,s =

w1 if yp,s = 1

1 if yp,s = 0,

and the weight w1 is adjusted on a validation set.

4 The number of possible sub-playlists is
(
|p|
n

)
. For example, we could sample 2,002

sub-playlists of length 5 out of a playlist of length 14. In this case, we would randomly
draw 14 sub-playlists of length 5.

78 hybrid playlist systems

Minimization via Alternating Least Squares

The cost function (5.3) is minimized via Alternating Least Squares
(ALS), an iterative optimization procedure consisting in subsequently
keeping one of the factor matrices fixed while the other is updated.
The initial factor matrices u0, v0 are set randomly. At iteration k, the
song factors vk are obtained by minimizing an approximation of the
original cost function where the playlist factors have been fixed to uk:

L̃MF
(
v
∣∣ u = uk, Y

)
=
∑
p,s

wp,s
(
yp,s − uk

p · vT
s

)2
. (5.4)

The playlist factors uk+1 for the next iteration are obtained analo-
gously, by minimizing the approximate cost function where the song
factors have been fixed to vk:

L̃MF
(
u
∣∣ v = vk, Y

)
=
∑
p,s

wp,s
(
yp,s − up · vkT

s

)2
. (5.5)

The approximate cost functions (5.4) and (5.5), where one of the factor
matrices has been fixed, become quadratic on the other, unknown
factor matrix. Thus, they have a unique minimum and it can be found
exactly. At each iteration, the original cost function (5.3) is expected to
move closer to a local minimum and the procedure is repeated until
convergence.

Extension of out-of-set playlists

In principle, CF systems based on matrix factorization can only ex-
tend in-set playlists, for which latent playlist factors have been pre-
computed at training time. However, we observe that ALS enables a
fast procedure to obtain reliable playlist factors for out-of-set playlists.

Firstly, we have to insist that ALS is an iterative optimization proce-
dure whose updates are solved exactly. Given the song factors matrix
v∗, one update solving for cost function (5.5) yields the playlist factors
matrix u∗ deterministically. As an example, imagine two independent
optimization processes factorizing the same matrix but initialized dif-
ferently. If, by chance, both processes reached the same song factors
matrix v∗ at whichever iteration, then both processes would derive
u∗ as the next playlist factors matrix, regardless of when and how
they had arrived at v∗ in the first place. A simple corollary of this
observation is that, given the song factors matrix v∗, the playlist factors
matrix u∗ derived next is always an equally good solution, regardless
of how many ALS iterations had occurred before arriving at v∗.

Assume that the playlist collections P and P ′ are disjoint. We are
interested in predicting continuations for the playlists in the collection
P ′, but at training time we only have access to the collection P. Even
though the playlist collections are disjoint, the songs within them are
likely not. We arrange the collections P and P ′ into respective matrices

5.5 baseline systems 79

Y and Y ′ of playlist–song interactions. We factorize the matrix Y until
convergence and keep only the song factors v∗. We can now perform
one ALS update solving for the following cost function, which is
similar to cost function (5.5) but combines the song factors v∗ (derived
from Y) with the matrix Y ′:

L̃Out-of-set
(
u
∣∣ v = v∗, Y ′

)
=
∑
p,s

wp,s
(
y ′p,s − up · v∗Ts

)2
. (5.6)

This yields playlist factors u ′ for the playlists in P ′. We can finally
predict extensions for the playlists in P ′ by reconstructing Ŷ ′ = u ′ ·v∗T .

Even though the playlist factors are the result of a single ALS
update, they are as reliable as the song factors used to derive them.
This follows from the reasoning presented above, together with the
condition that matrix Y ′ is not much more sparse than Y, as this could
degrade the results.

5.5.2 Hybrid matrix factorization (“Hybrid MF”)

This is a hybrid extension to the just-presented weighted matrix factor-
ization model for implicit feedback datasets (Section 5.5.1). It is based
on the exploitation of song latent factors derived from sources other
than the playlist–song matrix Y, and it is enabled by an appropriate
application of the ALS procedure. This is a hybrid system because the
song latent factors are derived from independent song descriptions,
such as independent listening logs (Section 5.7.2) or the audio signal
(Section 5.7.2).

Let ve be a song factors matrix corresponding to the songs in Y but
derived from external song descriptions. We perform one ALS update
solving for cost function (5.5) but replacing vk by ve. This yields a
playlist factors matrix u corresponding to the playlists in Y. We can
then predict recommendations by reconstructing Ŷ = u · veT .

Using this system is not advised when the matrix Y contains suffi-
cient training data. However, it can be helpful to deal with infrequent
songs (poorly represented by pure CF), and it enables the recom-
mendation of out-of-set songs. The distinction between in-set and
out-of-set playlists is not meaningful for this system because the song
latent factors are derived independently from any playlist collection.
Then, one ALS iteration adapts to whichever playlist collection is being
considered.

5.5.3 Playlist neighbors-based playlist continuation (“Neighbors”)

This is a CF system based on playlist-to-playlist similarities. A playlist
p is represented by a binary vector sp ∈ {0, 1}|S| indicating the songs

80 hybrid playlist systems

that it includes. The similarity of a pair of playlists p,q is computed
as the cosine between sp and sq, i,.e.,

sim(p,q) = cos(sp, sq) =
sp · sq
‖sp‖‖sq‖

. (5.7)

Given a reference playlist collection P, the score assigned to a song s
as a candidate to extend a playlist p (which need not belong to P) is
computed as

score(s,p) =
∑

q∈P(s)

sim(p,q), (5.8)

where P(s) are the playlists from the collection P that contain the
song s. The system considers the song s to be a suitable continuation
for the playlist p if s has occurred in playlists of the collection P that
are similar to p.

This system is closely related to the playlist-based k-nearest neigh-
bors system [17, 53, 63]. The difference is that we consider the whole
collection P as the neighborhood of p instead of considering only
the k playlists most-similar to p. We found in preliminary experi-
ments that, given the sparsity of the playlist collections, considering
as many neighbors as possible is beneficial for the computation of the
playlist–song scores.

5.5.4 Popularity

This system computes the popularity of a song s according to its
relative frequency in a reference playlist collection P, i.e.,

pop(s) =
|P(s)|

|P|
, (5.9)

where P(s) are the playlists from the collection P that contain the
song s. Candidate songs to extend a playlist are ranked by their
popularity.

5.5.5 Random

This is a dummy system included as a reference. The fitness of any
playlist–song pair (p, s) is randomly drawn from a uniform distribu-
tion U[0, 1].

5.6 evaluation

We conduct off-line experiments to assess the performance of the
playlist continuation systems. Following the evaluation approaches

5.6 evaluation 81

Figure 5.4: Illustration of the off-line experiment for one playlist. A system
extends the playlist p = (s3, s6, s2). It ranks all the songs available according
to its predictions, leaving out the songs in the playlist p. The songs in the
continuation pc = (s1, s4) attain, respectively, ranks 3 and 1 in the ordered
list of candidate songs. The first hit is at rank 1, thus the continuation’s
reciprocal rank is 1

1 . If we recommend the top-2 results, one of the two is a
hit, therefore the continuation’s recall@2 is 1

2 .

used in the literature [2, 17, 53, 63], we devise a retrieval-based task
to measure the ability of the systems to recover withheld playlist
continuations. Even though off-line experiments can not directly assess
the user satisfaction as user experiments do, they provide a controlled
and reproducible approach to compare different systems.

5.6.1 Off-line experiment

Given a playlist p, we assume that a continuation pc, proportionally
shorter than p, is known and withheld for test. For example, if contin-
uations were set to have a length of 25% their original playlist length,
two playlists of 8 and 12 songs would have continuations of 2 and 3

songs, respectively. This follows the evaluation methodology used by
Aizenberg, Koren, and Somekh [2] but differs from the one used by
Hariri, Mobasher, and Burke [53], Bonnin and Jannach [17], and Jan-
nach, Lerche, and Kamehkhosh [63], where the withheld continuations
have always one song regardless of the length of the playlist p.

We let the system under evaluation predict the fitness of the playlist–
song pair (p, s) for each song s ∈ S \ p. The set of recommendable
songs is restricted to S \ p not to recommend songs from the very
playlist p. We rank the candidate songs in the order of preference to
extend p given by the system predictions. On the basis of this ordered
list of song candidates, we compute rank-based metrics reflecting the
ability of the system to recover the songs from the playlist continuation
pc. We find the rank that each song in the withheld continuation pc
occupies within the ordered list of song candidates. We compute two
additional metrics for the continuation pc as a whole: the reciprocal
rank, i.e., the inverse of the top-most rank achieved by a song from pc
within the ordered list of song candidates, and the recall@100, i.e., the
amount of songs from pc within the top 100 positions of the ordered
list of song candidates (Figure 5.4) [96, Chapter 8].

This process is repeated for all the playlists we set to extend. We
finally report the median rank over all the songs in all the continua-

82 hybrid playlist systems

tions, the mean reciprocal rank (MRR) over all the continuations, and
the mean recall@100 (R@100) over all the continuations. We construct
95% basic bootstrap confidence intervals for each of the reported met-
rics [33]. Since these are not necessarily symmetric, to avoid clutter
in the tables, we will show the nominal metric value plus/minus
the largest margin. For example, a median rank of 1091 with a confi-
dence interval of (1001, 1162) will not be reported as 1001 ± 71

90, but as
1001 ± 90.

5.6.2 Weak and strong generalization

We consider two evaluation settings as proposed by Aizenberg, Koren,
and Somekh [2]. The first setting, or “weak generalization” setting,
assumes that only one playlist collection P is available. The playlists
are used to train a playlist continuation system. Then, the system
recommends continuations to the very training playlists. The second
setting, or “strong generalization” setting, assumes that two disjoint
playlist collections P and P ′ are available. The playlists in the collection
P are used to train a playlist continuation system. Then, the system
recommends continuations to the playlists in the collection P ′, which
it has not seen before.

5.7 datasets

We compile two datasets, each consisting of a collection of hand-
curated music playlists and feature vectors for each of the songs in the
playlists.

The playlists are derived from Art of the Mix5 and 8tracks,6 two
on-line platforms where music aficionados can publish their playlists.
Previous research in automated music playlist continuation has fo-
cused on these databases precisely because of the presumable careful
curation of their playlists [17, 53, 63, 99, 100].

The song feature vectors are extracted from song audio clips gath-
ered from the content provider 7digital,7 and from social tags and
listening logs obtained from the Million Song Dataset (MSD)8 [12], a
public database providing an heterogeneous collection of data for a
million contemporary songs.

5 http://www.artofthemix.org

6 https://8tracks.com

7 https://www.7digital.com

8 https://labrosa.ee.columbia.edu/millionsong

http://www.artofthemix.org
https://8tracks.com
https://www.7digital.com
https://labrosa.ee.columbia.edu/millionsong

5.7 datasets 83

5.7.1 Playlist collections

For Art of the Mix, we use the playlists published in the AotM-2011

dataset, a publicly available corpus of playlists crawled by McFee and
Lanckriet [100]. The songs in the playlists that also belong to the MSD
come properly identified. For 8tracks, we are given access to a private
corpus of playlists. These playlists are represented by plain-text song
titles and artist names. We match them against the MSD to get access
to song-level descriptions and for comparability with the AotM-2011

dataset. The songs that are not present in the MSD are dropped from
both playlist collections because we can not extract feature vectors
without their song-level descriptions.

Playlist filtering

We presume that playlists with several songs by the same artist or
from the same album may correspond to a not so careful compilation
process (e.g., saving a full album as a playlist). We also observe that
social tags, which we use for feature extraction, can contain artist or
album information. Therefore, we decide not to consider artist- and
album-themed playlists to ensure the quality of the playlists and to
prevent leaking artist or album information into the evaluation. We
keep only playlists with at least 7 unique artists and with a maximum
of 2 songs per artist (the thresholds were manually chosen to yield
sufficient playlists after the whole filtering process).

This type of filtering, which we already proposed in our previous
works [153–156, 158], has also been adopted in the RecSys Challenge
2018.9 On the other hand, other previous works have typically not
filtered the playlists by such criteria [53, 99, 100] and have even inves-
tigated the exploitation of artist co-occurrences [17]. We believe that
either approach conditions the type of patterns that playlist continu-
ation systems will identify. Thus, filtering the playlists or not can be
regarded as a design choice depending on the use case and the target
users.

To ensure that the playlist continuation systems learn from playlists
of sufficient length, we further keep only the playlists with at least 14

songs. The final length of the playlists may still be shortened because
we drop songs missing some type of song-level description, for which
we can not extract all the feature vector types. Finally, in order to set
up training and evaluation playlist splits, we discard playlists that
have become shorter than 5 songs after the song filtering.

The filtered AotM-2011 dataset has 2,711 playlists with 12,286 songs
by 4,080 artists. The filtered 8tracks dataset has 3,269 playlists with
14,552 songs by 5,104 artists. Detailed statistics for the final playlist
collections are provided in Table 5.1.

9 https://recsys-challenge.spotify.com/details

https://recsys-challenge.spotify.com/details

84 hybrid playlist systems

Table 5.1: Descriptive statistics of the filtered AotM-2011 and 8tracks playlist
collections. We report the distribution of playlist lengths, number of artists
per playlist, and song frequency in the dataset (i.e., the number of playlists
in which each song occurs).

dataset statistic min 1q med 3q max

AotM-2011 Playlist length 5 7 9 11 26

Artists per playlist 4 7 9 11 26

Song frequency 1 1 1 2 42

8tracks Playlist length 5 8 10 12 38

Artists per playlist 3 8 10 11 34

Song frequency 1 1 1 2 140

Figure 5.5: Illustration of the playlist splits. In the weak generalization setting
every playlist is split withholding the last songs as a continuation. In the
strong generalization setting the playlist collection is split into disjoint sub-
collections. One sub-collection is used to train the system. Every playlist in
the other sub-collection is split withholding the last songs as a continuation.
The red stripes indicate the playlists used to train the systems. The blue
stripes indicate the playlists that the systems have to extend. The green
stripes indicate the withheld continuations used for evaluation.

Playlist splits

We create training and test playlist splits for the weak and strong
generalization settings. For the weak generalization setting, we split
each playlist leaving approximately the final 20% of the songs as
a withheld continuation. For the strong generalization setting, we
split each playlist collection into 5 disjoint sub-collections for cross
validation. At each iteration, 4 disjoint sub-collections are put together
for training and the playlists therein are not split. The playlists in
the remaining sub-collection are used for evaluation and are split as
in the weak generalization setting (Figure 5.5). The playlists in the
training splits of both generalization settings are further split leaving
approximately the final 20% of the songs as withheld continuations
for validation.

5.7 datasets 85

5.7.2 Song features

For all the feature types we extract 200-dimensional vectors. According
to our experiments, feature vectors of this dimensionality carry enough
information.

Latent factors from independent listening logs (“Logs”)

The Echo Nest Taste Profile Subset10 is a dataset of user listening
histories from undisclosed partners. It contains (user, song, play-count)
triplets for songs included in the MSD. We factorize the triplets using
the already discussed weighted matrix factorization model for implicit
feedback datasets [60] with a factorization depth of 200 dimensions.
However, the weighting scheme now depends on the play-counts. We
use the obtained song latent factors as song feature vectors.

Latent factors from audio signal (“Audio2CF”)

Following the work by Oord, Dieleman, and Schrauwen [109], we
build a feature extractor to predict collaborative filtering song factors
from song spectrograms. We use a convolutional neural network
inspired by the VGG-style architecture [134] consisting of sequences of
3×3 convolution stacks followed by 2×2 max pooling. To reduce the
dimensionality of the network output to the predefined song factor
dimensionality, we insert, as a final building block, a 1×1 convolution
having 200 feature maps followed by global average pooling [88].

We assemble a training set for the feature extractor using the latent
factors of the songs from the Echo Nest Taste Profile Subset (Sec-
tion 5.7.2) and the corresponding audio previews downloaded from
7digital. To prevent leaking information, we discard the songs present
in the playlist collections. We use the trained feature extractor to pre-
dict song latent factors for the songs in the playlist collections, given
audio snippets that we also download from 7digital.

Semantic features from social tags (“Tags”)

The Last.fm Dataset11 gathers social tags that users of the on-line
music service Last.fm12 assigned to songs included in the MSD. Along
with the tag strings, the dataset provides relevance weights describ-
ing how well a particular tag applies to a song, as returned by the
tracks.getTopTags function of the Last.fm API.13

We extract semantic features from the tags assigned to a song using
word2vec [103]. Even though we have experimented with word2vec

10 https://labrosa.ee.columbia.edu/millionsong/tasteprofile

11 https://labrosa.ee.columbia.edu/millionsong/lastfm

12 https://www.last.fm

13 https://www.last.fm/api/show/track.getTopTags

https://labrosa.ee.columbia.edu/millionsong/tasteprofile
https://labrosa.ee.columbia.edu/millionsong/lastfm
https://www.last.fm
https://www.last.fm/api/show/track.getTopTags

86 hybrid playlist systems

models trained on very large text corpora (e.g., on GoogleNews14), we
obtain best results using models trained on custom, smaller but music-
informed text corpora (more details can be found in our previous
works [153, 155]).

For each unique song in the playlists, we look up its social tags in
the music-informed word2vec model. If a tag is a compound of several
words (e.g., “pop rock”), we compute the average feature. Since a
song may have several tags, the final semantic feature is the weighted
average of all its tags’ features, where the weights are the relevance
weights provided by the Last.fm Dataset.

5.8 results

Tables 5.2, 5.3 and 5.4, 5.5 report the results achieved in the weak and
strong generalization settings, respectively. The Profiles system can
only operate in weak generalization and therefore it only appears in
Tables 5.2, 5.3. The purely collaborative systems, i.e., MF and Neigh-
bors, can not predict scores for out-of-set songs. During the evaluation
of these systems, if a withheld continuation contains an out-of-set
song, it is simply ignored. Thus, the overall performance of MF and
Neighbors is not directly comparable to the performance of the other
systems. To make this information clear, Tables 5.2–5.5 report the
number N of songs in the withheld continuations that each system
could consider, and the results corresponding to MF and Neighbors
are displayed in italics. A fair comparison of the hybrid systems and
MF is provided in Section 5.8.4, where the performance of each sys-
tem is shown as a function of how often the songs in the withheld
continuations occurred in training playlists.

5.8.1 Interpreting the results

Figure 5.6 displays the complete recall curve achieved by the playlist
continuation systems on the AotM-2011 dataset in the weak gener-
alization setting (all the hybrid systems use the Logs features). To
highlight that MF and Neighbors can only deal with in-set songs, their
recall curves are represented with dashed lines. Profiles, Membership,
MF and Hybrid MF bend considerably to the upper left corner. This
shows that they keep on predicting relevant songs as their recommen-
dation lists grow. Neighbors starts similarly, but it quickly flattens, not
finding additional relevant recommendations as its recommendation
list grows. However, if we look closer at the top 200 results (detail
box in Figure 5.6), we find that Neighbors actually starts comparably
well to MF, and even better than Profiles and Membership. Its quick
decline is likely explained by the high sparsity of the datasets: half

14 https://code.google.com/archive/p/word2vec

https://code.google.com/archive/p/word2vec

5.8 results 87

Figure 5.6: Recall curve on the AotM-2011 playlist collection in weak gener-
alization. The top 200 positions are detailed in the box. MF and Neighbors,
only evaluated for in-set songs, are displayed with a dashed line.

of the songs occur in one training playlist, and three quarters of the
songs occur in no more than 2 training playlists (Table 5.1). Neighbors
is only able to successfully predict recommendations for the most
frequent songs, which co-occur often, but it is unable to do so for
the vast majority of infrequent songs. Similarly, Popularity performs
reasonably well for the top-most positions of the recommendation list,
but its performance quickly degrades.

The median rank (corresponding approximately to the dots at 50%
recall in Figure 5.6) summarizes the overall distribution of ranks
attained by a system. The MRR and R@100 capture the performance
at the top positions of the recommendation lists. Focusing on the
overall performance of the systems, Profiles, Membership and MF are
clearly preferable over Neighbors. Looking at the top positions only,
Neighbors might appear preferable. It could be argued that only the
top positions matter, because a user could not possibly look further
than the top 10 recommendations. While this reasoning seems valid in
on-line systems, where users react to the predicted recommendations,
we believe that it is inaccurate in the context of off-line experiments.
Assessing the usefulness of music recommendations is highly sub-
jective. Given a playlist, there are multiple songs that a user could
accept as relevant continuations. However, off-line experiments only
accept exact matches to the withheld ground-truth continuation [99,
114]. For this reason, measuring the performance of a system focusing
only on the top positions of recommendation lists can be misleading.
Off-line experiments should be regarded as approximations of the
final system performance, and the performance should be measured
by the system’s global merits. Throughout this section, we will mostly
rely on the median rank as the metric to assess the global behavior of
the playlist continuation systems.

88 hybrid playlist systems

5.8.2 Overall performance of the playlist continuation systems

For now we only let the proposed systems use the Logs and Audio2CF
features, which the Hybrid MF system can also utilize. This makes the
comparison fair.

Weak generalization

Profiles and Membership obtain lower (better) median rank than
Hybrid MF using Logs and Audio2CF features, respectively (Ta-
bles 5.2, 5.3). Using Logs features, Profiles and Membership obtain
higher (better) R@100 than Hybrid MF, but their MRR is comparable.
Using Audio2CF features, the MRR and R@100 of Profiles, Member-
ship and Hybrid MF are comparable in the AotM-2011 dataset, but
Membership is clearly better than Profiles and Hybrid MF in the
8tracks dataset.

For all the hybrid systems (Profiles, Membership and Hybrid MF)
the Logs features yield better results than the Audio2CF features,
regardless of the metric considered. The improvements are not equally
pronounced in all the combinations of systems and datasets, but the
gains are clear. This is expected because Audio2CF features are an
approximation of Logs features derived from the audio signal of songs.
Despite its remarkable results, the Audio2CF features can not bridge
the music semantic gap [22, 109].

The performance of Profiles and Membership is comparable. Overall,
Profiles can achieve a higher performance when using Logs features,
but Membership is superior using Audio2CF features, especially in
the 8tracks dataset.

Finally, we comment on the performance of the pure CF baselines.
MF obtains a clearly lower (better) median rank than Neighbors. On
the other hand, Neighbors obtains MRR and R@100 comparable to MF.
The reason for this apparent mismatch between median rank, MRR
and R@100 was just exposed in Section 5.8.1.

Strong generalization

Membership obtains a clearly lower (better) median rank than Hybrid
MF, regardless of the feature used (Tables 5.4, 5.5). Using Logs features,
Membership and Hybrid MF obtain comparable MRR and R@100.
Using Audio2CF features, the MRR and R@100 of Membership and
Hybrid MF are comparable in the AotM-2011 dataset, but Membership
is clearly better in the 8tracks dataset.

For the hybrid systems, again the Logs features yield better results
than the Audio2CF features. Indeed, the different information that
these two features carry is independent of the generalization setting
used to evaluate the systems.

5.8 results 89

Ta
bl

e
5.

2:
W

ea
k

ge
ne

ra
liz

at
io

n
re

su
lt

s
fo

r
th

e
A

ot
M

-2
0
1
1

d
at

as
et

.T
he

fi
rs

t
tw

o
co

lu
m

ns
in

d
ic

at
e

th
e

sy
st

em
an

d
fe

at
u

re
na

m
es

(i
f

an
y)

.T
he

th
ir

d
co

lu
m

n
in

d
ic

at
es

th
e

nu
m

be
r
N

of
so

ng
s

in
th

e
w

it
hh

el
d

co
nt

in
u

at
io

ns
in

vo
lv

ed
in

ea
ch

ex
p

er
im

en
t.

M
F

an
d

N
ei

gh
bo

rs
,o

nl
y

ev
al

u
at

ed
fo

r
in

-s
et

so
ng

s,
ar

e
di

sp
la

ye
d

in
ita

lic
s.

Th
e

m
ed

ia
n

ra
nk

is
re

la
tiv

e
to

1
2
,2

8
6

un
iq

ue
so

ng
s.

Lo
w

er
is

be
tt

er
.F

or
M

R
R

an
d

R
@

1
0
0

hi
gh

er
is

be
tt

er
.S

ys
te

m
s

cl
ea

rl
y

ou
tp

er
fo

rm
in

g
th

e
be

st
re

su
lt

of
H

yb
ri

d
M

F
(n

on
-o

ve
rl

ap
pi

ng
9

5
%

C
Is

)
ar

e
in

di
ca

te
d

in
bo

ld
.M

F
or

N
ei

gh
bo

rs
cl

ea
rl

y
ou

tp
er

fo
rm

in
g

on
e

an
ot

he
r

ar
e

in
di

ca
te

d
in

it
al

ic
bo

ld
.

A
ot

M
-2

01
1

-
w

ea
k

ge
ne

ra
li

za
ti

on

sy
st

em
fe

at
ur

e
N

m
ed

ra
nk

M
R

R
[%

]
R

@
10

0
[%

]

Pr
ofi

le
s

A
ud

io
2
C

F
+

Ta
gs

+
Lo

gs
4
4
7
3

89
1
±

63
2.

49
±

0.
41

15
.9

1
±

1.
23

Lo
gs

4
4
7
3

10
91

±
90

1
.9

1
±

0
.3

3
13

.3
4
±

1.
12

A
ud

io
2

C
F

4
4
7
3

2
2
9
8
±

1
2
7

0
.7

5
±

0
.2

0
6
.6

8
±

0
.8

3

M
em

be
rs

hi
p

A
ud

io
2
C

F
+

Ta
gs

+
Lo

gs
4
4
7
3

10
52

±
73

2.
18

±
0.

37
14

.8
8
±

1.
16

Lo
gs

4
4
7
3

13
91

±
10

1
1
.7

1
±

0
.3

4
11

.2
5
±

1.
01

A
ud

io
2

C
F

4
4
7
3

20
42

±
11

3
1
.0

8
±

0
.2

5
7
.5

6
±

0
.8

8

M
F

—
28

35
15

72
±

15
0

2.
21
±

0.
45

13
.5

0
±

1.
36

H
yb

ri
d

M
F

Lo
gs

4
4
7
3

2
4
0
4
±

1
6
4

1
.4

7
±

0
.3

2
8
.8

6
±

0
.9

2

A
ud

io
2
C

F
4
4
7
3

2
9
2
1
±

1
6
4

0
.7

4
±

0
.2

1
5
.6

0
±

0
.7

7

N
ei

gh
bo

rs
—

28
35

51
12
±

32
1

2.
66
±

0.
55

11
.8

4
±

1.
28

Po
pu

la
ri

ty
—

4
4
7
3

5
2
1
7
±

5
7
0

1
.0

3
±

0
.2

7
6
.3

4
±

0
.8

0

R
an

do
m

—
4
4
7
3

6
1
6
3
±

2
1
8

0
.1

0
±

0
.0

3
0
.9

8
±

0
.3

4

90 hybrid playlist systems

Table
5.3:W

eak
generalization

results
for

the
8tracks

dataset.The
first

tw
o

colum
ns

indicate
the

system
and

feature
nam

es
(if

any).The
third

colum
n

ind
icates

the
nu

m
ber

N
of

songs
in

the
w

ithheld
continu

ations
involved

in
each

exp
erim

ent.M
F

and
N

eighbors,only
evalu

ated
for

in-set
songs,

are
d

isp
layed

in
italics.T

he
m

ed
ian

rank
is

relative
to

1
4,

5
5
2

u
niqu

e
songs.L

ow
er

is
better.For

M
R

R
and

R
@

1
0
0

higher
is

better.System
s

clearly
outperform

ing
the

best
result

of
H

ybrid
M

F
(non-overlapping

9
5%

C
Is)

are
indicated

in
bold.M

F
or

N
eighbors

clearly
outperform

ing
one

another
are

indicated
in

italic
bold.

8tracks
-

w
eak

generalization

system
feature

N
m

ed
rank

M
R

R
[%

]
R

@
100

[%
]

Profiles
A

udio
2C

F
+

Tags
+

Logs
6
2
8
9

556
±

38
3.90

±
0.43

23.51
±

1.21

Logs
6
2
8
9

718
±

58
3.62

±
0.44

?
20.03

±
1.12

A
udio

2C
F

6
2
8
9

1
9
8
8
±

9
0

1.
1
3
±

0.
2
4

8.
2
1
±

0.
8
0

M
em

bership
A

udio
2C

F
+

Tags
+

Logs
6
2
8
9

652
±

46
3.73

±
0.44

20.43
±

1.12

Logs
6
2
8
9

986
±

68
2.

8
9
±

0.
3
7

1
6.

9
2
±

1.
0
4

A
udio

2C
F

6
2
8
9

1149
±

69
2.

4
9
±

0.
3
5

1
5.

5
0
±

1.
0
2

M
F

—
4299

1198
±

145
4.04
±

0.56
18.62

±
1.29

H
ybrid

M
F

Logs
6
2
8
9

1
6
7
7
±

1
3
8

2.
7
9
±

0.
4
1

1
5.

8
8
±

1.
0
5

A
udio

2C
F

6
2
8
9

2
6
3
6
±

1
4
2

1.
0
9
±

0.
2
4

7.
0
3
±

0.
7
5

N
eighbors

—
4299

3566
±

318
4.93
±

0.64
19.50

±
1.32

Popularity
—

6
2
8
9

3
3
5
2
±

2
7
2

1.
8
0
±

0.
3
3

9.
7
1
±

0.
8
1

R
andom

—
6
2
8
9

7
0
9
4
±

2
3
4

0.
1
5
±

0.
0
6

0.
7
8
±

0.
2
4

?
T

he
9
5%

bootstrap
C

Is
for

the
M

R
R

of
P

rofi
les

(L
ogs)

and
H

ybrid
M

F
(L

ogs)
d

o
not

overlap.H
ow

ever,this
is

not
apparent

from
the

table
because,for

read
ability,w

e
only

display
the

largest
m

argin
of

the
C

Is.

5.8 results 91

Compared to one another, the pure CF baselines behave similarly as
in weak generalization. MF obtains lower (better) median rank than
Neighbors. However, Neighbors obtains R@100 comparable to MF and
MRR superior than MF, especially in the AotM-2011 dataset.

Robustness to strong generalization

We analyze the robustness of each system (but Profiles) to the strong
generalization setting by comparing whether its performance degrades
from Tables 5.2, 5.3 to Tables 5.4, 5.5.

Membership performs comparably well in both generalization set-
tings regardless of the feature utilized, the metric considered, and
the dataset. This result indicates that regarding playlist–song pairs
exclusively in terms of feature vectors (the key characteristic of Mem-
bership) does favor generalization and discourages the specialization
towards particular training playlists.

The performance of MF is also comparable in weak and strong
generalization. This supports the approach detailed in Section 5.5.1, by
which latent song factors derived from the factorization of a collection
of training playlists can be successfully utilized to extend out-of-set
playlists.

We pointed out in Section 5.5.2 that Hybrid MF does not distin-
guish between in-set and out-of-set playlists. Now we observe that
the performance of Hybrid MF is identical in both generalization
settings. Only the confidence intervals are slightly different due to the
randomness involved in bootstrap resampling.

The performance of Neighbors is not harmed in strong generaliza-
tion. In fact, it is slightly superior for the 8tracks dataset and superior
for the AotM-2011 dataset. Popularity is also not affected when rec-
ommending out-of-set playlists.

5.8.3 Combined features

Until now we only considered the proposed systems with Logs and
Audio2CF features to make the comparison to Hybrid MF fair. How-
ever, Profiles and Membership can flexibly exploit any type of song
feature vector. In particular, they can utilize feature vectors resulting
from the concatenation of other feature vectors. This simple approach
already yields performance gains.

To illustrate this effect, we now consider the Tags features as well.
For each song, we create a combined feature by concatenating its
Audio2CF, Tags and Logs feature vectors. Since each individual fea-
ture vector has 200 dimensions, the resulting feature vector is 600-
dimensional. Profiles and Membership achieve clearly better results
with the combined feature than with the Logs feature in terms of

92 hybrid playlist systems

Table
5.4:

Strong
generalization

resu
lts

for
the

A
otM

-
2
0
1
1

d
ataset.T

he
fi

rst
tw

o
colu

m
ns

ind
icate

the
system

and
featu

re
nam

es
(if

any).T
he

third
colu

m
n

ind
icates

the
nu

m
ber

N
of

songs
in

the
w

ithheld
continu

ations
involved

in
each

exp
erim

ent.M
F

and
N

eighbors,only
evalu

ated
for

in-set
songs,are

displayed
in

italics.The
m

edian
rank

is
relative

to
1
2,

2
8
6

unique
songs.Low

er
is

better.For
M

R
R

and
R

@
1
0
0

higher
is

better.System
s

clearly
outperform

ing
the

best
result

of
H

ybrid
M

F
(non-overlapping

9
5%

C
Is)

are
indicated

in
bold.M

F
or

N
eighbors

clearly
outperform

ing
one

another
are

indicated
in

italic
bold.

A
otM

-2011
-

strong
generalization

system
feature

N
m

ed
rank

M
R

R
[%

]
R

@
100

[%
]

M
em

bership
A

udio
2C

F
+

Tags
+

Logs
4
4
7
3

1150
±

72
1.

8
8
±

0.
3
3

13.69
±

1.13

Logs
4
4
7
3

1552
±

96
1.

4
2
±

0.
2
9

1
0.

7
1
±

1.
0
4

A
udio

2C
F

4
4
7
3

2065
±

120
0.

9
3
±

0.
2
1

7.
0
5
±

0.
8
5

M
F

—
2849

1428
±

135
2.72
±

0.53
15.43

±
1.44

H
ybrid

M
F

Logs
4
4
7
3

2
4
0
4
±

1
6
4

1.
4
7
±

0.
3
1

8.
8
6
±

0.
9
4

A
udio

2C
F

4
4
7
3

2
9
2
1
±

1
6
4

0.
7
4
±

0.
2
1

5.
6
0
±

0.
7
8

N
eighbors

—
2849

4502
±

304
4.89

±
0.82

15.16
±

1.43

Popularity
—

4
4
7
3

5
1
4
3
±

5
8
3

1.
0
3
±

0.
2
7

7.
2
8
±

0.
8
5

R
andom

—
4
4
7
3

6
1
6
1
±

1
8
8

0.
1
3
±

0.
0
5

1.
2
3
±

0.
3
7

5.8 results 93

Ta
bl

e
5.

5:
St

ro
ng

ge
ne

ra
liz

at
io

n
re

su
lts

fo
r

th
e

8
tr

ac
ks

da
ta

se
t.

Th
e

fir
st

tw
o

co
lu

m
ns

in
di

ca
te

th
e

sy
st

em
an

d
fe

at
ur

e
na

m
es

(i
f

an
y)

.T
he

th
ir

d
co

lu
m

n
in

d
ic

at
es

th
e

nu
m

be
r
N

of
so

ng
s

in
th

e
w

it
hh

el
d

co
nt

in
u

at
io

ns
in

vo
lv

ed
in

ea
ch

ex
p

er
im

en
t.

M
F

an
d

N
ei

gh
bo

rs
,o

nl
y

ev
al

u
at

ed
fo

r
in

-s
et

so
ng

s,
ar

e
d

is
p

la
ye

d
in

it
al

ic
s.

T
he

m
ed

ia
n

ra
nk

is
re

la
ti

ve
to

1
4

,5
5
2

u
ni

qu
e

so
ng

s.
L

ow
er

is
be

tt
er

.F
or

M
R

R
an

d
R

@
1
0
0

hi
gh

er
is

be
tt

er
.S

ys
te

m
s

cl
ea

rl
y

ou
tp

er
fo

rm
in

g
th

e
be

st
re

su
lt

of
H

yb
ri

d
M

F
(n

on
-o

ve
rl

ap
pi

ng
9

5
%

C
Is

)
ar

e
in

di
ca

te
d

in
bo

ld
.M

F
or

N
ei

gh
bo

rs
cl

ea
rl

y
ou

tp
er

fo
rm

in
g

on
e

an
ot

he
r

ar
e

in
di

ca
te

d
in

it
al

ic
bo

ld
.

8t
ra

ck
s

-
st

ro
ng

ge
ne

ra
li

za
ti

on

sy
st

em
fe

at
ur

e
N

m
ed

ra
nk

M
R

R
[%

]
R

@
10

0
[%

]

M
em

be
rs

hi
p

A
ud

io
2

C
F

+
Ta

gs
+

Lo
gs

6
2
8
9

71
0

±
51

3
.4

6
±

0
.4

3
20

.4
0
±

1.
12

Lo
gs

6
2
8
9

10
38

±
78

2
.8

5
±

0
.3

9
1
5
.9

0
±

1
.0

3

A
ud

io
2
C

F
6
2
8
9

13
17

±
86

2
.5

8
±

0
.3

7
1
4
.5

4
±

0
.9

9

M
F

—
42

98
99

7.
5
±

10
9.

5
4.

48
±

0.
61

20
.3

2
±

1.
35

H
yb

ri
d

M
F

Lo
gs

6
2
8
9

1
6
7
7
±

1
3
8

2
.7

9
±

0
.4

1
1
5
.8

8
±

1
.0

4

A
ud

io
2
C

F
6
2
8
9

2
6
3
6
±

1
4
2

1
.0

9
±

0
.2

4
7
.0

3
±

0
.7

5

N
ei

gh
bo

rs
—

42
98

30
45

.5
±

39
0.

5
5.

27
±

0.
68

20
.4

3
±

1.
41

Po
pu

la
ri

ty
—

6
2
8
9

3
2
9
3
±

2
7
8

1
.7

6
±

0
.3

2
9
.3

2
±

0
.7

8

R
an

do
m

—
6
2
8
9

6
8
7
6
±

1
5
8

0
.1

4
±

0
.0

6
0
.7

3
±

0
.2

5

94 hybrid playlist systems

median rank and R@100, and modest but visible improvements in
terms of MRR (Tables 5.2–5.5).

We have just exposed an example of a combined feature vector
to illustrate the capability of the proposed systems. Appendix 5.B
introduces additional feature types, and Appendix 5.C provides an
exhaustive evaluation of the results achieved using all the feature
types and their combinations.

5.8.4 Infrequent and out-of-set songs

We analyze the performance of the hybrid systems Profiles, Mem-
bership and Hybrid MF, as well as the performance of the purely
collaborative system MF, as a function of how often the songs in the
withheld continuations occurred in training playlists. We restrict the
analysis to the weak generalization setting, but the results are compa-
rable in the strong generalization setting. Figure 5.7 reports the results.
Profiles and Membership can use Audio2CF, Logs, or the combined
feature described in Section 5.8.3. Hybrid MF can only use Audio2CF
and Logs features. For the sake of space, MF is represented together
with Hybrid MF in the figure. The legend, which indicates the color
associated to each feature, points to MF with a dummy feature called
“None.”

MF can not recommend out-of-set songs, and it achieves very low
performance for songs that occurred in only one training playlist.
This is expected because purely collaborative systems can not derive
patterns in absence of sufficient playlist–song co-occurrences. MF
steadily improves its performance as songs become more frequent in
training playlists, until it achieves a very competitive performance for
songs occurring in 5+ training playlists.

Hybrid MF with Logs features outperforms MF for very infrequent
songs. Its performance improves as songs become more frequent, but
it does not achieve the high performance of MF for frequent songs.
Hybrid MF with Audio2CF features only outperforms MF for very
infrequent songs, but MF quickly becomes better.

Profiles and Membership compete with Hybrid MF in terms of
R@100, both using Logs and Audio2CF features. In terms of the
median rank, Profiles and Membership compete with Hybrid MF
using Audio2CF features, and they are generally superior using Logs
features. Profiles and Membership further improve their performance
using the combined feature, with which they perform reasonably well
even for out-of-set and very infrequent songs. Using the combined
features or Logs features, and despite some fluctuations, the proposed
systems improve their performance as songs become more frequent,
with results competitive with those of MF for songs occurring in 5+
training playlists, especially in the 8tracks dataset.

5.8 results 95

(a) AotM-2011: weak generalization

(b) 8tracks: weak generalization

Figure 5.7: Weak generalization results as a function of how often the songs
in the withheld continuations occurred in training playlists. Left, center and
right panels correspond to different systems. Upper and lower panels report
the median rank (lower is better) and the R@100 (higher is better). The central
values in the boxes correspond to the nominal metric value, and the ends
correspond to the 95% CI. Each color corresponds to a feature type (MF is
labeled as “None”). The text annotations on top indicate the number of songs
in the withheld continuations falling in each box.

96 hybrid playlist systems

5.8.5 Additional remarks on the sparsity of playlist collections

The hybrid systems discussed throughout the chapter mitigate the
sparsity of the playlist collections by introducing inherent song rela-
tionships derived from content information. In this way, they provide
performance improvements over systems based exclusively on the
playlist collections. An alternative, compatible approach to reduce
the sparsity of playlist collections consists in representing songs by
their artists. Bonnin and Jannach [17] proposed the Collocated Artists
Greatest Hits (CAGH) system, a song-neighbors CF system where the
pairwise song similarities are replaced by the pairwise similarities of
their artists, and the obtained playlist–song scores are further scaled
by the frequency of the songs in the training playlists. We have experi-
mented with CAGH, as well as with a variation of CAGH where the
playlist–song scores are not scaled by the song frequency, which we
name “Artists.” For comparison, we also evaluate Profiles and Mem-
bership for in-set songs only (Table 5.6). By design, CAGH is likely
suffering from a bias towards popular songs that should be investi-
gated in more detail. That is, the apparent outstanding performance
of CAGH, even if only for in-set songs, may be the result of averaging
accurate predictions for few but frequent songs, with poor predictions
for many but infrequent songs (Chapter 4). In any case, Artists should
not be affected by such bias and also provides competitive results
that seem to validate the assumption that songs can be successfully
approximated by their artists. This points to an interesting line for
future work, namely the combination of hybridization and artist-level
representations to reduce the sparsity in playlist collections.

5.9 conclusion

We have introduced Profiles and Membership, two feature-combination
hybrid recommender systems for automated music playlist contin-
uation. The proposed systems extend collaborative filtering by not
only considering hand-curated playlists but also incorporating any
type of song feature vector. We have designed feature-combination
hybrids, that is, systems that consolidate collaborative and content
information into enhanced, standalone systems. Even though we have
focused on music playlist continuation, the proposed systems are
domain-agnostic and can be applied to other item domains.

We have conducted an exhaustive off-line evaluation to assess the
ability of the proposed systems to retrieve withheld playlist continu-
ations, and to compare them to the state-of-the-art pure and hybrid
collaborative systems MF and Hybrid MF. The results of the off-line
experiments indicate that Profiles and Membership compete with MF
when sufficient training data is available and outperform MF for infre-

5.9 conclusion 97

Ta
bl

e
5.

6:
Se

le
ct

io
n

of
w

ea
k

ge
ne

ra
liz

at
io

n
re

su
lts

in
th

e
A

ot
M

-2
0
1
1

da
ta

se
tf

or
in

-s
et

so
ng

s
on

ly
.T

he
fir

st
tw

o
co

lu
m

ns
in

di
ca

te
th

e
sy

st
em

an
d

fe
at

ur
e

na
m

es
(i

f
an

y)
.T

he
th

ir
d

co
lu

m
n

in
d

ic
at

es
th

e
nu

m
be

r
N

of
so

ng
s

in
th

e
w

it
hh

el
d

co
nt

in
u

at
io

ns
in

vo
lv

ed
in

ea
ch

ex
p

er
im

en
t.

T
he

m
ed

ia
n

ra
nk

is
re

la
ti

ve
to

1
2

,2
8

6
un

iq
ue

so
ng

s.
Lo

w
er

is
be

tt
er

.F
or

M
R

R
an

d
R

@
1

0
0

hi
gh

er
is

be
tt

er
.

A
ot

M
-2

01
1

-
w

ea
k

ge
ne

ra
li

za
ti

on
on

in
-s

et
so

ng
s

sy
st

em
fe

at
ur

e
N

m
ed

ra
nk

M
R

R
[%

]
R

@
10

0
[%

]

Pr
ofi

le
s

A
ud

io
2
C

F
+

Ta
gs

+
Lo

gs
2
8
3
5

7
3
5
±

7
6

2
.6

4
±

0
.5

0
1
7
.7

6
±

1
.5

3

M
em

be
rs

hi
p

A
ud

io
2
C

F
+

Ta
gs

+
Lo

gs
2
8
3
5

7
5
6
±

7
3

2
.3

9
±

0
.4

5
1
8
.0

8
±

1
.5

4

C
A

G
H

—
2
8
3
5

8
2
1
±

8
9

1
.7

8
±

0
.3

6
1
5
.1

8
±

1
.4

1

A
rt

is
ts

—
2
8
3
5

1
4
6
3
±

1
4
0

0
.7

6
±

0
.2

0
8
.3

3
±

1
.1

3

98 hybrid playlist systems

quent and out-of-set songs. Profiles and Membership compete to, or
outperform Hybrid MF when using Logs or Audio2CF features. The
flexibility of the proposed systems to exploit any type of song feature
vector provides a straightforward means of further improving their
performance by simply combining different song feature vectors.

We have also evaluated MF, Hybrid MF and Neighbors thoroughly.
Hybrid MF outperforms MF only for very infrequent songs. Thus, if
we were restricted to use MF and Hybrid MF, it would seem advisable
to use Hybrid MF for infrequent songs (occurring in up to 3 training
playlists in our experiments) and switch to MF for more frequent songs.
It should be noted that the proposed systems, Profiles and Member-
ship, take care of this switch automatically. We have also investigated
why Neighbors obtains competitive MRR and R@100 metrics but very
poor median rank, and we have discussed the interpretation of these
metrics.

We have observed the low predictive performance of Audio2CF
features, derived exclusively from audio. While this can be explained
by the music semantic gap, using Audio2CF features (or other purely
audio-based features) as standalone features should be restricted to
the recommendation of new releases, where the audio signal is the
only song information available.

Preliminary experiments point to building artist-level representa-
tions into hybrid recommender systems as a promising line of future
work.

5.a additional system details

5.a.1 Profiles

System configuration

We conducted an initial, non-exhaustive exploration of architectures
on a validation set by evaluating networks with {2, 3, 4} hidden layers,
{50, 100, 200, 500} hidden units, learning rate values in {0.1, 0.5, 1.0},
and batch sizes of {10, 50, 100, 200} songs. We also experimented
with the hyperbolic tangent, the logistic function, and the rectifier as
activation functions for the hidden layers.

Given the results of the initial exploration, we systematically ex-
plored all the combinations of networks with {2, 3} hidden layers and
with {50, 100, 200} hidden units. We decided to fix the number of layers
to 3 and the number of units to 100. We further fixed the learning rate
to 0.5, the batch size to 50 songs, and the hyperbolic tangent as the
activation function for hidden layers. The output layer of the network
is passed through logistic functions by design (Section 5.4.1).

We used batch normalization [61]. We also experimented with dif-
ferent dropout probabilities [138] and with L1 and L2 regularization to

5.A additional system details 99

prevent overfitting. We finally decided to use dropout with probabili-
ties 0.1 and 0.5 at the input layer and the hidden layers, respectively.
The feature vectors were standardized and L2-normalized.

The networks were optimized to minimize the cost function (5.1)
using AdaGrad [38] with Nesterov momentum [107]. We trained for
a maximum of 1,000 epochs but stopped before if the value of the
cost function on the validation set did not decrease for 50 epochs.
The cost function drove the optimizer, but the best model was chosen
on the basis of the highest recall achieved on the validation set. We
also used the recall on the validation set to decide an appropriate
number of epochs for the final training on the entire training set. We
implemented the networks using Lasagne [34], which is built on top
of Theano [143].

Computational requirements

The instance of this system trained on the AotM-2011 dataset using
Logs features has 323,144 learnable weights (almost 4 and 10 times
fewer than Membership and MF, respectively). The system is trained
with any variant of stochastic gradient descent [18] using mini-batches.
That is, even if a much larger playlist collection were considered, the
system could still be trained efficiently in the same manner. Training
the aforementioned system until it achieved the reported results re-
quired 666.07 seconds (roughly 11 minutes) on a desktop computer
with an Intel Core i5-4570 CPU. The system required 4.46 seconds to
make the predictions necessary for the weak generalization evaluation.
The implementation of this system was not optimized to obtain fast
training and prediction times.

5.a.2 Membership

System configuration

We conducted an heuristic exploration of architectures and hyperpa-
rameters. We chose the architecture detailed in Table 5.7, which we
found to provide good performance. We selected the hyperparame-
ters that yielded lowest cost on the validation set. We used an initial
learning rate of 0.001 and a batch size of 100 playlist–song pairs (50

matches and 50 mismatches). The features were not standardized nor
normalized. The networks were optimized to minimize the cost func-
tion (5.2) using Adam [71]. We trained for a maximum of 1,000 epochs
but stopped before if the value of the cost function on the validation
set did not decrease for 25 epochs. We implemented the networks
using Lasagne [34] and Theano [143].

100 hybrid playlist systems

Table 5.7: Membership architecture. The input to the system are the features
(Xp, xs) of a playlist–song pair (p, s). Xt

p denotes the t-th row of the feature
matrix Xp, i.e., the t-th song of the playlist p. The upper part of the table
corresponds to the feature transformation component t, and the lower part of
the table corresponds to the match-discrimination component d. The boldface
layers DEk, BNk in the transformation component t share their weights for all
the songs in the playlist p and for song s (Section 5.4.2). The dimensionality
of each layer is annotated in parentheses. DE: Dense layer, RE: Rectifier
activation function, BN: Batch Normalization [61], DR: Dropout [138].

Computational requirements

Membership is computationally more demanding than Profiles, mean-
ing that we need to use a larger neural network to obtain competitive
results. This is reasonable after all, because by not specializing towards
the training playlists, Membership accomplishes a much more general
task. The instance of this system trained on the AotM-2011 dataset
using Logs features has 1,159,681 learnable weights (almost 3 times
fewer than MF). The system is trained with any variant of stochastic
gradient descent [18] using mini-batches. That is, even if a much larger
playlist collection were considered, the system could still be trained
efficiently in the same manner. Training the aforementioned system
until it achieved the reported results required 3649.90 seconds (roughly
1 hour) on a GeForce GTX 1080 Ti GPU. On the same GPU, the system
required 1193.88 seconds (roughly 20 minutes) to make the predictions
necessary for the weak generalization evaluation. The implementation
of this system was not optimized to obtain fast training and prediction
times.

5.a.3 MF and Hybrid MF

System configuration

We used the validation set to experiment with different values for
the weight w1 (Section 5.5.1). We found that using w1 = 2 yielded

5.B additional song features 101

best results. MF and Hybrid MF use L2 regularization to prevent
overfitting [60]. We did not describe the regularization in Section 5.5.1
for simplicity, but the discussion and properties of ALS remain valid.
We decided to use a weight of 10 for the L2 regularization term based
on experiments on the validation set.

Computational requirements

The instance of MF trained on the AotM-2011 dataset has 2,999,400

learnable weights. The system is trained efficiently with ALS. Training
MF until it achieved the reported results required 190.08 seconds
(roughly 3 minutes) on a desktop computer with an Intel Core i5-4570

CPU. MF required 0.22 seconds to make the predictions necessary
for the weak generalization evaluation. Hybrid MF required 2.48

seconds to complete the weak generalization evaluation, including
the ALS update and the predictions. We used the publicly available
implementation of MF provided by Frederickson [49], which is highly
optimized to obtain fast training times. The predictions, which simply
consist in the multiplication of low rank matrices, are very fast.

5.a.4 Neighbors

This system does not require adjusting any hyperparameters or learn-
ing any weights. The weak evaluation of Neighbors on the AotM-2011

dataset using a desktop computer with an Intel Core i5-4570 CPU re-
quired 0.81 seconds to compute the pairwise playlist similarities given
by Equation (5.7) and 1.38 seconds to compute the playlist–song scores
given by Equation (5.8). Given the moderate size of the considered
AotM-2011 and 8tracks playlist collections, both operations could be
implemented as fast matrix multiplications.

5.b additional song features

5.b.1 Semantic features from audio signal (“Audio2Tag”)

The on-line music service Jamendo15 hosts songs under Creative Com-
mons16 licenses and allows free downloads. We obtain a dump of the
Jamendo database, that includes, among other types of information,
the social tags assigned to songs hosted in Jamendo. Then, we use the
code released by Sonnleitner and Widmer [136] to collect the audio
files corresponding to the database dump. This results in a collection
of roughly 200k songs independent of the playlists collections and the

15 https://www.jamendo.com

16 https://creativecommons.org

https://www.jamendo.com
https://creativecommons.org

102 hybrid playlist systems

MSD, for which both a full-length audio file and a list of social tags is
known.

We build an auto-tagger system based on a convolutional neural
network. The network takes a song spectrogram as input, processes
it, and predicts the probability of this song being labeled with each
of a series of known tags. We train this network using the audio files
and the social tags from the Jamendo database. We use only the tags
that have been assigned to at least 1,000 songs, resulting in 156 unique
tags and 187,663 songs.

The tagging network is similar to the Audio2CF feature extractor
(Section 5.7.2). It is inspired by the VGG-style architecture [134] and
consists of sequences of 3×3 convolution stacks followed by 2×2 max
pooling. To reduce the dimensionality of the network output to the
predefined number of tags, we insert, as a final building block, a
1×1 convolution having 156 feature maps followed by global average
pooling [88]. Each output neuron, which corresponds to one of the
tags, is followed by a logistic activation function to obtain a valid tag
probability. However, we use the 156-dimensional output layer before
it is passed through the activation function as the Audio2Tag feature.

We use the trained auto-tagger to predict Audio2Tag features for
the songs in the playlist collections, given audio snippets downloaded
from 7digital. This approach is related to the systems presented
by Liang, Zhan, and Ellis [85] and Choi, Fazekas, and Sandler [27].

5.b.2 I-vectors from timbral features

I-vectors were first introduced in the field of speaker verification [32],
but recently they have also been successfully utilized for music simi-
larity and music artist recognition tasks [39, 40].

The MSD splits songs into segments of variable length (typically
under a second) and provides 12-dimensional timbral coefficients for
each segment similar to MFCCs [117]. We build a Gaussian mixture
model with 1,024 components using the segment-level timbral features
of a collection of representative songs (more details can be found in
our previous works [153, 155]). Using the unique songs in the play-
lists, we derive the total variability space yielding 200-dimensional
i-vectors. Following the standard i-vector extraction pipeline, we fur-
ther transform the obtained i-vectors using a linear discriminant anal-
ysis model [54] fit on the training playlists.

5.c additional results

We provide additional results to demonstrate the performance of
Profiles and Membership with different types of song features, and
with stepwise combinations of two or three types of song features.

5.C additional results 103

Tables 5.8 and 5.9 report weak generalization results for the AotM-2011

and the 8tracks datasets, respectively. Tables 5.10 and 5.11 report strong
generalization results for the AotM-2011 and the 8tracks datasets,
respectively.

We also analyze the performance of Profiles, Membership and Hy-
brid MF simulating the recommendation of new song releases. To
this end, we pretend that the audio signal is the only type of song
description available, and we only consider songs that occurred in 4

or less training playlists. Tables 5.12 and 5.13 report the results for the
AotM-2011 and the 8tracks datasets, respectively.

Besides the median rank, the MRR and the R@100, Tables 5.8–5.13

also report the Mean Average Precision (MAP), the R@10 and the R@30.

104 hybrid playlist systems
Table

5.8:
W

eak
generalization

resu
lts

for
the

A
otM

-
2
0
1
1

d
ataset.T

he
fi

rst
tw

o
colu

m
ns

ind
icate

the
system

and
featu

re
nam

es
(if

any).T
he

third
colum

n
indicates

the
num

ber
N

of
songs

in
the

w
ithheld

continuations
involved

in
each

experim
ent.M

F
and

N
eighbors,only

evaluated
for

in-setsongs,
are

displayed
in

italics.The
m

edian
rank

is
relative

to
1
2,2

8
6

unique
songs.Low

er
is

better.For
M

R
R

,M
A

P
and

R
@

{
1
0,

3
0,

1
0
0}

higher
is

better.System
s

clearly
outperform

ing
H

ybrid
M

F
(non-overlapping

9
5%

C
Is)are

indicated
in

bold.M
F

or
N

eighbors
clearly

outperform
ing

one
another

are
indicated

in
italic

bold.
A

otM
-2011

-
w

eak
generalization

system
feature

N
m

ed
rank

M
R

R
[%

]
M

A
P

[%
]

R
@

10
[%

]
R

@
30

[%
]

R
@

100
[%

]

Profiles
A

udio
2C

F
+

Tags
+

Logs
4
4
7
3

891
±

63
2.49

±
0.41

1.75
±

0.28
3.47

±
0.61

7.21
±

0.85
15.91

±
1.23

Tags
+

Logs
4
4
7
3

947
±

74
2.

0
1
±

0.
3
3

1.
4
2
±

0.
2
2

2.
8
2
±

0.
5
5

6.59
±

0.84
14.81

±
1.17

A
udio

2C
F

+
Logs

4
4
7
3

1010
±

86
1.

9
8
±

0.
3
3

1.
4
4
±

0.
2
7

2.
5
7
±

0.
5
4

6.17
±

0.80
14.29

±
1.16

Logs
4
4
7
3

1091
±

90
1.

9
1
±

0.
3
3

1.
3
1
±

0.
2
4

2.
3
3
±

0.
4
9

5.75
±

0.74
13.34

±
1.12

A
udio

2C
F

+
Tags

4
4
7
3

1340
±

95
1.

6
5
±

0.
3
1

1.
2
2
±

0.
2
4

2.
3
2
±

0.
5
2

5.
2
3
±

0.
7
7

12.15
±

1.08
Tags

4
4
7
3

1453
±

114
1.

4
5
±

0.
2
6

1.
0
5
±

0.
2
0

1.
8
4
±

0.
4
4

5.80
±

0.80
11.78

±
1.05

A
udio

2C
F

4
4
7
3

2
2
9
8
±

1
2
7

0.
7
5
±

0.
2
0

0.
5
4
±

0.
1
4

0.
8
0
±

0.
3
1

2.
3
8
±

0.
5
2

6.
6
8
±

0.
8
3

i-vectors
4
4
7
3

2
8
2
0
±

1
6
7

0.
5
9
±

0.
1
7

0.
4
1
±

0.
1
3

0.
6
0
±

0.
2
5

1.
4
5
±

0.
4
0

4.
4
5
±

0.
7
1

A
udio

2Tag
4
4
7
3

3
3
1
5
±

1
7
2

0.
3
1
±

0.
0
8

0.
2
3
±

0.
0
6

0.
2
5
±

0.
1
8

0.
9
8
±

0.
3
3

3.
1
4
±

0.
5
7

M
em

bership
A

udio
2C

F
+

Tags
+

Logs
4
4
7
3

1052
±

73
2.18

±
0.37

1.52
±

0.26
2.95

±
0.58

6.45
±

0.81
14.88

±
1.16

A
udio

2C
F

+
Logs

4
4
7
3

1144
±

78
1.

9
7
±

0.
3
4

1.
3
5
±

0.
2
4

2.
3
4
±

0.
5
0

5.
4
3
±

0.
7
3

12.88
±

1.09
Tags

+
Logs

4
4
7
3

1145
±

94
2.20

±
0.37

1.54
±

0.28
2.

6
8
±

0.
5
2

6.09
±

0.78
14.11

±
1.15

Tags
4
4
7
3

1201
±

104
1.

6
2
±

0.
2
9

1.
1
6
±

0.
2
0

2.
0
8
±

0.
4
8

4.
9
2
±

0.
7
1

12.55
±

1.08
A

udio
2C

F
+

Tags
4
4
7
3

1243
±

94
1.

5
3
±

0.
2
6

1.
1
2
±

0.
2
0

2.
0
8
±

0.
4
8

5.70
±

0.78
12.76

±
1.09

Logs
4
4
7
3

1391
±

101
1.

7
1
±

0.
3
4

1.
1
5
±

0.
2
2

2.
1
6
±

0.
4
7

4.
5
6
±

0.
6
9

11.25
±

1.01
A

udio
2C

F
4
4
7
3

2042
±

113
1.

0
8
±

0.
2
5

0.
7
7
±

0.
1
9

1.
2
8
±

0.
3
7

2.
9
6
±

0.
5
8

7.
5
6
±

0.
8
8

i-vectors
4
4
7
3

2
6
3
2
±

1
7
9

1.
0
1
±

0.
2
2

0.
7
2
±

0.
1
6

1.
3
2
±

0.
3
7

3.
2
6
±

0.
5
7

8.
1
3
±

0.
8
8

A
udio

2Tag
4
4
7
3

2
8
8
7
±

1
6
3

0.
5
7
±

0.
1
8

0.
4
0
±

0.
1
2

0.
6
9
±

0.
2
9

1.
6
6
±

0.
4
4

4.
4
8
±

0.
7
0

M
F

—
2835

1572
±

150
2.21
±

0.45
1.73
±

0.37
3.

4
9
±

0.
7
4

6.83
±

1.01
13.50

±
1.36

H
ybrid

M
F

Logs
4
4
7
3

2
4
0
4
±

1
6
4

1.
4
7
±

0.
3
2

1.
0
3
±

0.
2
2

1.
9
0
±

0.
4
7

4.
1
2
±

0.
6
6

8.
8
6
±

0.
9
2

A
udio

2C
F

4
4
7
3

2
9
2
1
±

1
6
4

0.
7
4
±

0.
2
1

0.
5
4
±

0.
1
5

0.
9
1
±

0.
3
3

2.
3
3
±

0.
5
2

5.
6
0
±

0.
7
7

N
eighbors

—
2835

5112
±

321
2.66
±

0.55
2.04
±

0.43
4.02
±

0.79
6.88
±

1.04
11.84

±
1.28

Popularity
—

4
4
7
3

5
2
1
7
±

5
7
0

1.
0
3
±

0.
2
7

0.
6
7
±

0.
1
7

1.
1
7
±

0.
3
6

3.
0
1
±

0.
5
7

6.
3
4
±

0.
8
0

R
andom

—
4
4
7
3

6
1
6
3
±

2
1
8

0.
1
0
±

0.
0
3

0.
0
7
±

0.
0
2

0.
0
9
±

0.
1
3

0.
2
4
±

0.
1
8

0.
9
8
±

0.
3
4

5.C additional results 105
Ta

bl
e

5.
9:

W
ea

k
ge

ne
ra

liz
at

io
n

re
su

lt
s

fo
r

th
e

8
tr

ac
ks

da
ta

se
t.

Th
e

fir
st

tw
o

co
lu

m
ns

in
di

ca
te

th
e

sy
st

em
an

d
fe

at
ur

e
na

m
es

(i
f

an
y)

.T
he

th
ir

d
co

lu
m

n
in

d
ic

at
es

th
e

nu
m

be
r
N

of
so

ng
s

in
th

e
w

it
hh

el
d

co
nt

in
ua

ti
on

s
in

vo
lv

ed
in

ea
ch

ex
pe

ri
m

en
t.

M
F

an
d

N
ei

gh
bo

rs
,o

nl
y

ev
al

ua
te

d
fo

r
in

-s
et

so
ng

s,
ar

e
d

is
pl

ay
ed

in
it

al
ic

s.
T

he
m

ed
ia

n
ra

nk
is

re
la

ti
ve

to
1

4
,5

5
2

un
iq

ue
so

ng
s.

L
ow

er
is

be
tt

er
.F

or
M

R
R

,M
A

P
an

d
R

@
{1

0
,3

0
,1

0
0
}

hi
gh

er
is

be
tt

er
.S

ys
te

m
s

cl
ea

rl
y

ou
tp

er
fo

rm
in

g
H

yb
ri

d
M

F
(n

on
-o

ve
rl

ap
pi

ng
9
5
%

C
Is

)a
re

in
di

ca
te

d
in

bo
ld

.M
F

or
N

ei
gh

bo
rs

cl
ea

rl
y

ou
tp

er
fo

rm
in

g
on

e
an

ot
he

r
ar

e
in

di
ca

te
d

in
it

al
ic

bo
ld

.
8t

ra
ck

s
-

w
ea

k
ge

ne
ra

li
za

ti
on

sy
st

em
fe

at
ur

e
N

m
ed

ra
nk

M
R

R
[%

]
M

A
P

[%
]

R
@

10
[%

]
R

@
30

[%
]

R
@

10
0

[%
]

Pr
ofi

le
s

A
ud

io
2
C

F
+

Ta
gs

+
Lo

gs
6
2
8
9

55
6
±

38
3.

90
±

0.
43

2.
46

±
0.

27
4.

79
±

0.
62

11
.4

6
±

0.
89

23
.5

1
±

1.
21

Ta
gs

+
Lo

gs
6
2
8
9

58
7
±

42
3.

85
±

0.
45

2.
48

±
0.

29
4.

84
±

0.
61

10
.6

5
±

0.
88

22
.3

7
±

1.
20

A
ud

io
2
C

F
+

Lo
gs

6
2
8
9

65
9
±

45
3

.4
0
±

0
.4

1
2
.1

7
±

0
.2

6
4
.0

9
±

0
.5

6
9.

42
±

0.
83

20
.6

2
±

1.
15

Lo
gs

6
2
8
9

71
8
±

58
3.

62
±

0.
44

?
2.

31
±

0.
28

4.
30

±
0.

58
9.

92
±

0.
83

20
.0

3
±

1.
12

A
ud

io
2
C

F
+

Ta
gs

6
2
8
9

96
5
±

61
2
.8

4
±

0
.4

0
1
.7

6
±

0
.2

5
3
.2

2
±

0
.4

9
7
.2

8
±

0
.7

5
1
5
.7

4
±

1
.0

3

Ta
gs

6
2
8
9

10
84

±
65

2
.5

4
±

0
.3

6
1
.6

3
±

0
.2

5
2
.8

6
±

0
.4

7
6
.5

5
±

0
.7

1
1
4
.6

4
±

0
.9

8

A
ud

io
2
C

F
6
2
8
9

1
9
8
8
±

9
0

1
.1

3
±

0
.2

4
0
.6

9
±

0
.1

3
0
.9

9
±

0
.2

9
2
.7

5
±

0
.4

7
8
.2

1
±

0
.8

0

i-
ve

ct
or

s
6
2
8
9

2
1
6
4
±

1
1
4

1
.3

4
±

0
.2

5
0
.7

3
±

0
.1

2
1
.3

2
±

0
.3

1
3
.0

2
±

0
.4

6
7
.1

0
±

0
.7

0

A
ud

io
2
Ta

g
6
2
8
9

2
9
4
6
±

1
3
8

0
.5

7
±

0
.1

5
0
.3

5
±

0
.0

9
0
.4

5
±

0
.1

8
1
.2

6
±

0
.3

2
4
.1

3
±

0
.5

6

M
em

be
rs

hi
p

A
ud

io
2
C

F
+

Ta
gs

+
Lo

gs
6
2
8
9

65
2
±

46
3.

73
±

0.
44

2.
35

±
0.

28
4.

52
±

0.
60

9.
58

±
0.

83
20

.4
3
±

1.
12

A
ud

io
2
C

F
+

Lo
gs

6
2
8
9

69
1
±

49
3

.3
3
±

0
.3

8
2
.1

6
±

0
.2

5
4
.2

0
±

0
.5

6
9.

55
±

0.
83

20
.0

5
±

1.
09

Ta
gs

+
Lo

gs
6
2
8
9

71
9
±

53
3

.4
7
±

0
.4

0
2
.1

8
±

0
.2

6
4.

68
±

0.
58

9.
45

±
0.

80
19

.5
9
±

1.
12

A
ud

io
2
C

F
+

Ta
gs

6
2
8
9

76
2
±

59
3
.5

6
±

0
.4

3
2
.1

9
±

0
.2

7
4
.1

8
±

0
.5

6
9.

42
±

0.
84

19
.5

8
±

1.
08

Ta
gs

6
2
8
9

80
4
±

54
3
.3

1
±

0
.4

0
2
.0

5
±

0
.2

5
4
.0

9
±

0
.5

6
8
.8

8
±

0
.7

9
18

.5
3
±

1.
10

Lo
gs

6
2
8
9

98
6
±

68
2
.8

9
±

0
.3

7
1
.7

8
±

0
.2

2
3
.7

9
±

0
.5

2
8
.0

0
±

0
.7

5
1
6
.9

2
±

1
.0

4

A
ud

io
2
C

F
6
2
8
9

11
49

±
69

2
.4

9
±

0
.3

5
1
.4

7
±

0
.2

0
2
.7

1
±

0
.4

6
6
.4

4
±

0
.6

7
1
5
.5

0
±

1
.0

2

i-
ve

ct
or

s
6
2
8
9

14
41

±
86

2
.2

3
±

0
.3

4
1
.3

1
±

0
.1

9
2
.3

1
±

0
.4

1
5
.7

2
±

0
.6

1
1
2
.7

6
±

0
.9

2

A
ud

io
2
Ta

g
6
2
8
9

1
8
4
1
±

8
7

2
.2

3
±

0
.3

6
1
.3

3
±

0
.2

2
2
.4

3
±

0
.4

2
5
.6

3
±

0
.6

3
1
1
.5

2
±

0
.8

8

M
F

—
42

99
11

98
±

14
5

4.
04
±

0.
56

2.
77
±

0.
42

5.
27
±

0.
72

10
.3

8
±

1.
01

18
.6

2
±

1.
29

H
yb

ri
d

M
F

Lo
gs

6
2
8
9

1
6
7
7
±

1
3
8

2
.7

9
±

0
.4

1
1
.7

4
±

0
.2

5
3
.1

9
±

0
.5

0
7
.3

9
±

0
.7

5
1
5
.8

8
±

1
.0

5

A
ud

io
2
C

F
6
2
8
9

2
6
3
6
±

1
4
2

1
.0

9
±

0
.2

4
0
.7

3
±

0
.1

8
1
.0

6
±

0
.3

0
2
.5

8
±

0
.4

6
7
.0

3
±

0
.7

5

N
ei

gh
bo

rs
—

42
99

35
66
±

31
8

4.
93
±

0.
64

3.
49
±

0.
48

6.
94

±
0.

86
12

.1
1
±

1.
08

19
.5

0
±

1.
32

Po
pu

la
ri

ty
—

6
2
8
9

3
3
5
2
±

2
7
2

1
.8

0
±

0
.3

3
1
.0

5
±

0
.1

9
1
.7

9
±

0
.3

6
4
.1

4
±

0
.5

3
9
.7

1
±

0
.8

1

R
an

do
m

—
6
2
8
9

7
0
9
4
±

2
3
4

0
.1

5
±

0
.0

6
0
.1

1
±

0
.0

6
0
.1

5
±

0
.1

3
0
.3

1
±

0
.1

7
0
.7

8
±

0
.2

4

?
Th

e
9

5
%

bo
ot

st
ra

p
C

Is
fo

r
th

e
M

R
R

of
Pr

ofi
le

s
(L

og
s)

an
d

H
yb

ri
d

M
F

(L
og

s)
do

no
t

ov
er

la
p.

H
ow

ev
er

,t
hi

s
is

no
t

ap
pa

re
nt

fr
om

th
e

ta
bl

e
be

ca
us

e,
fo

r
re

ad
ab

ili
ty

,w
e

on
ly

di
sp

la
y

th
e

la
rg

es
t

m
ar

gi
n

of
th

e
C

Is
.

106 hybrid playlist systems
Table

5.10:Strong
generalization

results
for

the
A

otM
-
2

0
1

1
d

ataset.T
he

fi
rst

tw
o

colum
ns

ind
icate

the
system

and
feature

nam
es

(if
any).T

he
third

colum
n

indicates
the

num
ber

N
of

songs
in

the
w

ithheld
continuations

involved
in

each
experim

ent.M
F

and
N

eighbors,only
evaluated

for
in-setsongs,

are
displayed

in
italics.The

m
edian

rank
is

relative
to

1
2,2

8
6

unique
songs.Low

er
is

better.For
M

R
R

,M
A

P
and

R
@

{
1
0,

3
0,

1
0
0}

higher
is

better.System
s

clearly
outperform

ing
H

ybrid
M

F
(non-overlapping

9
5%

C
Is)are

indicated
in

bold.M
F

or
N

eighbors
clearly

outperform
ing

one
another

are
indicated

in
italic

bold.

A
otM

-2011
-

strong
generalization

system
feature

N
m

ed
rank

M
R

R
[%

]
M

A
P

[%
]

R
@

10
[%

]
R

@
30

[%
]

R
@

100
[%

]

Profiles
—

—
—

—
—

—
—

—

M
em

bership
A

udio
2C

F
+

Tags
+

Logs
4
4
7
3

1150
±

72
1.

8
8
±

0.
3
3

1.
3
7
±

0.
2
5

2.
5
3
±

0.
5
1

5.91
±

0.78
13.69

±
1.13

Tags
+

Logs
4
4
7
3

1223
±

77
1.

8
2
±

0.
3
3

1.
2
3
±

0.
2
1

2.
2
0
±

0.
4
8

5.66
±

0.74
13.50

±
1.13

A
udio

2C
F

+
Logs

4
4
7
3

1248
±

95
1.

8
6
±

0.
3
3

1.
2
5
±

0.
2
3

2.
3
1
±

0.
4
8

5.
4
1
±

0.
7
5

12.64
±

1.08

A
udio

2C
F

+
Tags

4
4
7
3

1285
±

89
1.

7
3
±

0.
3
1

1.
2
6
±

0.
2
3

2.
5
7
±

0.
5
5

5.
4
2
±

0.
7
7

12.54
±

1.10

Tags
4
4
7
3

1423
±

106
1.

7
9
±

0.
3
5

1.
2
7
±

0.
2
6

1.
9
7
±

0.
4
6

4.
9
5
±

0.
7
3

12.33
±

1.07

Logs
4
4
7
3

1552
±

96
1.

4
2
±

0.
2
9

0.
9
8
±

0.
2
0

1.
8
8
±

0.
4
7

4.
1
8
±

0.
6
4

1
0.

7
1
±

1.
0
4

A
udio

2C
F

4
4
7
3

2065
±

120
0.

9
3
±

0.
2
1

0.
6
2
±

0.
1
2

1.
4
0
±

0.
3
9

3.
1
8
±

0.
5
8

7.
0
5
±

0.
8
5

i-vectors
4
4
7
3

2
7
6
8
±

1
8
5

0.
9
3
±

0.
2
0

0.
6
3
±

0.
1
5

1.
1
1
±

0.
3
5

2.
9
9
±

0.
5
8

7.
4
5
±

0.
8
5

A
udio

2Tag
4
4
7
3

2
9
0
0
±

1
5
1

0.
5
1
±

0.
1
4

0.
3
5
±

0.
0
9

0.
5
7
±

0.
2
6

1.
2
9
±

0.
3
7

4.
0
0
±

0.
6
4

M
F

—
2849

1428
±

135
2.72
±

0.53
2.12
±

0.42
4.03
±

0.81
8.41
±

1.10
15.43

±
1.44

H
ybrid

M
F

Logs
4
4
7
3

2
4
0
4
±

1
6
4

1.
4
7
±

0.
3
1

1.
0
3
±

0.
2
3

1.
9
0
±

0.
4
7

4.
1
2
±

0.
6
7

8.
8
6
±

0.
9
4

A
udio

2C
F

4
4
7
3

2
9
2
1
±

1
6
4

0.
7
4
±

0.
2
1

0.
5
4
±

0.
1
4

0.
9
1
±

0.
3
3

2.
3
3
±

0.
5
2

5.
6
0
±

0.
7
8

N
eighbors

—
2849

4502
±

304
4.89

±
0.82

4.26
±

0.73
6.54

±
1.03

10.31
±

1.24
15.16

±
1.43

Popularity
—

4
4
7
3

5
1
4
3
±

5
8
3

1.
0
3
±

0.
2
7

0.
6
7
±

0.
1
7

1.
0
9
±

0.
3
4

3.
0
7
±

0.
5
7

7.
2
8
±

0.
8
5

R
andom

—
4
4
7
3

6
1
6
1
±

1
8
8

0.
1
3
±

0.
0
5

0.
1
0
±

0.
0
5

0.
1
3
±

0.
1
5

0.
3
5
±

0.
2
2

1.
2
3
±

0.
3
7

5.C additional results 107
Ta

bl
e

5.
11

:S
tr

on
g

ge
ne

ra
liz

at
io

n
re

su
lts

fo
r

th
e

8
tr

ac
ks

da
ta

se
t.

Th
e

fir
st

tw
o

co
lu

m
ns

in
di

ca
te

th
e

sy
st

em
an

d
fe

at
ur

e
na

m
es

(if
an

y)
.T

he
th

ir
d

co
lu

m
n

in
d

ic
at

es
th

e
nu

m
be

r
N

of
so

ng
s

in
th

e
w

it
hh

el
d

co
nt

in
ua

ti
on

s
in

vo
lv

ed
in

ea
ch

ex
pe

ri
m

en
t.

M
F

an
d

N
ei

gh
bo

rs
,o

nl
y

ev
al

ua
te

d
fo

r
in

-s
et

so
ng

s,
ar

e
d

is
pl

ay
ed

in
it

al
ic

s.
T

he
m

ed
ia

n
ra

nk
is

re
la

ti
ve

to
1

4
,5

5
2

un
iq

ue
so

ng
s.

L
ow

er
is

be
tt

er
.F

or
M

R
R

,M
A

P
an

d
R

@
{1

0
,3

0
,1

0
0
}

hi
gh

er
is

be
tt

er
.S

ys
te

m
s

cl
ea

rl
y

ou
tp

er
fo

rm
in

g
H

yb
ri

d
M

F
(n

on
-o

ve
rl

ap
pi

ng
9
5
%

C
Is

)a
re

in
di

ca
te

d
in

bo
ld

.M
F

or
N

ei
gh

bo
rs

cl
ea

rl
y

ou
tp

er
fo

rm
in

g
on

e
an

ot
he

r
ar

e
in

di
ca

te
d

in
it

al
ic

bo
ld

.

8t
ra

ck
s

-
st

ro
ng

ge
ne

ra
li

za
ti

on

sy
st

em
fe

at
ur

e
N

m
ed

ra
nk

M
R

R
[%

]
M

A
P

[%
]

R
@

10
[%

]
R

@
30

[%
]

R
@

10
0

[%
]

Pr
ofi

le
s

—
—

—
—

—
—

—
—

M
em

be
rs

hi
p

A
ud

io
2
C

F
+

Ta
gs

+
Lo

gs
6
2
8
9

71
0

±
51

3
.4

6
±

0
.4

3
2
.1

9
±

0
.2

7
4.

31
±

0.
58

9.
77

±
0.

84
20

.4
0
±

1.
12

A
ud

io
2
C

F
+

Lo
gs

6
2
8
9

77
3

±
52

3
.2

8
±

0
.4

2
2
.0

4
±

0
.2

7
3
.5

7
±

0
.5

2
8
.6

8
±

0
.7

8
18

.3
8
±

1.
07

Ta
gs

+
Lo

gs
6
2
8
9

79
2

±
51

3
.4

1
±

0
.4

4
2
.1

0
±

0
.2

6
3
.6

9
±

0
.5

3
8
.8

3
±

0
.8

0
18

.9
0
±

1.
11

A
ud

io
2
C

F
+

Ta
gs

6
2
8
9

84
9

±
52

3
.2

3
±

0
.3

9
2
.0

4
±

0
.2

5
4
.1

7
±

0
.5

7
8
.5

8
±

0
.7

8
18

.9
4
±

1.
12

Ta
gs

6
2
8
9

86
9

±
73

3
.3

1
±

0
.4

2
1
.9

9
±

0
.2

5
3
.8

7
±

0
.5

3
7
.9

3
±

0
.7

6
1
7
.7

6
±

1
.0

5

Lo
gs

6
2
8
9

10
38

±
78

2
.8

5
±

0
.3

9
1
.7

0
±

0
.2

2
3
.1

0
±

0
.4

7
7
.3

6
±

0
.7

1
1
5
.9

0
±

1
.0

3

A
ud

io
2
C

F
6
2
8
9

13
17

±
86

2
.5

8
±

0
.3

7
1
.5

2
±

0
.2

2
2
.7

2
±

0
.4

4
5
.9

6
±

0
.6

4
1
4
.5

4
±

0
.9

9

i-
ve

ct
or

s
6
2
8
9

14
55

±
91

?
2

.0
1
±

0
.2

9
1
.2

2
±

0
.1

8
2
.3

2
±

0
.4

0
5
.7

1
±

0
.6

4
1
2
.8

3
±

0
.9

4

A
ud

io
2
Ta

g
6
2
8
9

2
0
9
3
±

1
2
5

1
.9

1
±

0
.3

1
1
.1

1
±

0
.1

9
2
.1

5
±

0
.3

8
4
.6

1
±

0
.5

7
9
.6

8
±

0
.8

1

M
F

—
42

98
99

7.
5
±

10
9.

5
4.

48
±

0.
61

3.
06
±

0.
42

5.
41
±

0.
75

1
1
.0

2
±

1
.0

5
2
0
.3

2
±

1
.3

5

H
yb

ri
d

M
F

Lo
gs

6
2
8
9

1
6
7
7
±

1
3
8

2
.7

9
±

0
.4

1
1
.7

4
±

0
.2

6
3
.1

9
±

0
.5

0
7
.3

9
±

0
.7

3
15

.8
8
±

1.
04

A
ud

io
2
C

F
6
2
8
9

2
6
3
6
±

1
4
2

1
.0

9
±

0
.2

4
0
.7

3
±

0
.1

8
1
.0

6
±

0
.3

0
2
.5

8
±

0
.4

7
7
.0

3
±

0
.7

5

N
ei

gh
bo

rs
—

42
98

30
45

.5
±

39
0.

5
5.

27
±

0.
68

3.
87
±

0.
54

7.
11

±
0.

85
12

.7
6
±

1.
14

2
0
.4

3
±

1
.4

1

Po
pu

la
ri

ty
—

6
2
8
9

3
2
9
3
±

2
7
8

1
.7

6
±

0
.3

2
1
.0

4
±

0
.2

0
1
.7

5
±

0
.3

6
4
.4

9
±

0
.5

5
9
.3

2
±

0
.7

8

R
an

do
m

—
6
2
8
9

6
8
7
6
±

1
5
8

0
.1

4
±

0
.0

6
0
.1

0
±

0
.0

5
0
.1

5
±

0
.1

3
0
.2

1
±

0
.1

4
0
.7

3
±

0
.2

5

?
Th

e
9

5
%

bo
ot

st
ra

p
C

Is
fo

r
th

e
m

ed
ia

n
ra

nk
of

M
em

be
rs

hi
p

(i
-v

ec
to

rs
)

an
d

H
yb

ri
d

M
F

(L
og

s)
do

no
t

ov
er

la
p.

H
ow

ev
er

,t
hi

s
is

no
t

ap
pa

re
nt

fr
om

th
e

ta
bl

e
be

ca
us

e,
fo

r
re

ad
ab

ili
ty

,w
e

on
ly

di
sp

la
y

th
e

la
rg

es
t

m
ar

gi
n

of
th

e
C

Is
.

108 hybrid playlist systems

Table
5.12:R

esults
on

the
A

otM
-
2

0
1

1
d

ataset
recom

m
end

ing
songs

that
occurred

in
4

or
less

training
playlists

using
only

features
d

erived
from

the
audio

signal.T
he

first
three

colum
ns

indicate
the

generalization
setting,the

system
nam

e,and
the

feature
nam

e
(if

any).T
he

fourth
colum

n
indicates

the
num

ber
N

of
songs

in
the

w
ithheld

continuations
involved

in
each

experim
ent.The

m
edian

rank
is

relative
to

1
2,

2
8

6
unique

songs.Low
er

is
better.

For
M

R
R

,M
A

P
and

R
@

{
1

0,
3

0,
1

0
0}

higher
is

better.System
s

clearly
outperform

ing
H

ybrid
M

F
(non-overlapping

9
5%

C
Is)

are
indicated

in
bold.

A
otM

-2011
-

recom
m

ending
songs

that
occurred

in
4

or
less

training
playlists

w
ith

audio-based
features

only

generalization
system

feature
N

m
ed

rank
M

R
R

[%
]

M
A

P
[%

]
R

@
10

[%
]

R
@

30
[%

]
R

@
100

[%
]

W
eak

Profiles
A

udio
2C

F
3
4
1
1

2130
±

140
0.

5
8
±

0.
1
6

0.
4
6
±

0.
1
3

0.
6
1
±

0.
3
0

2.
2
3
±

0.
5
5

6.
6
5
±

0.
9
4

i-vectors
3
4
1
1

2
7
3
8
±

1
7
7

0.
4
9
±

0.
1
5

0.
3
5
±

0.
1
0

0.
5
7
±

0.
2
9

1.
3
3
±

0.
4
3

4.
0
6
±

0.
7
3

A
udio

2Tag
3
4
1
1

3
1
4
1
±

1
8
9

0.
3
2
±

0.
0
8

0.
2
5
±

0.
0
7

0.
2
9
±

0.
2
0

1.
0
7
±

0.
4
0

3.
5
3
±

0.
6
8

M
em

bership
A

udio
2C

F
3
4
1
1

2264
±

135
0.

5
5
±

0.
1
7

0.
4
6
±

0.
1
6

0.
6
8
±

0.
3
3

1.
7
5
±

0.
5
0

5.
3
3
±

0.
8
4

A
udio

2Tag
3
4
1
1

3
1
0
6
±

1
7
4

0.
2
6
±

0.
0
5

0.
2
1
±

0.
0
4

0.
2
8
±

0.
2
2

0.
9
6
±

0.
3
9

3.
3
6
±

0.
6
9

i-vectors
3
4
1
1

3
5
1
4
±

1
5
4

0.
1
0
±

0.
0
1

0.
0
9
±

0.
0
1

0.
0
0
±

0.
0
0

0.
0
6
±

0.
1
0

0.
7
5
±

0.
3
4

H
ybrid

M
F

A
udio

2C
F

3
4
1
1

2
7
1
8
±

2
0
5

0.
7
5
±

0.
2
2

0.
6
2
±

0.
1
9

1.
1
0
±

0.
4
0

2.
7
4
±

0.
6
3

6.
1
2
±

0.
9
2

R
andom

—
3
4
1
1

6
1
0
8
±

2
2
4

0.
1
0
±

0.
0
3

0.
0
8
±

0.
0
3

0.
1
3
±

0.
1
7

0.
3
0
±

0.
2
4

1.
1
0
±

0.
4
1

Strong
Profiles

—
—

—
—

—
—

—
—

M
em

bership
A

udio
2C

F
3
4
5
6

2257.0
±

134.5
0.

4
3
±

0.
0
8

0.
3
5
±

0.
0
7

0.
6
8
±

0.
3
3

1.
9
0
±

0.
5
2

5.
2
0
±

0.
8
3

A
udio

2Tag
3
4
5
6

3
0
2
9
±

2
1
8

0.
2
5
±

0.
0
7

0.
1
9
±

0.
0
4

0.
2
1
±

0.
1
7

0.
5
3
±

0.
2
5

2.
8
2
±

0.
6
2

i-vectors
3
4
5
6

3
5
7
8.

5
±

1
9
4.

5
0.

1
1
±

0.
0
1

0.
0
9
±

0.
0
1

0.
0
0
±

0.
0
0

0.
0
8
±

0.
1
1

0.
8
0
±

0.
3
4

H
ybrid

M
F

A
udio

2C
F

3
4
5
6

2
7
0
5
±

2
0
2

0.
7
5
±

0.
2
1

0.
6
3
±

0.
2
0

1.
1
1
±

0.
4
1

2.
7
4
±

0.
6
3

6.
1
2
±

0.
9
2

R
andom

—
3
4
5
6

6
1
1
8
±

2
1
4

0.
1
2
±

0.
0
5

0.
1
0
±

0.
0
5

0.
1
5
±

0.
1
7

0.
4
3
±

0.
2
6

1.
2
3
±

0.
4
2

5.C additional results 109

Ta
bl

e
5.

13
:R

es
ul

ts
on

th
e

8
tr

ac
ks

da
ta

se
t

re
co

m
m

en
di

ng
so

ng
s

th
at

oc
cu

rr
ed

in
4

or
le

ss
tr

ai
ni

ng
pl

ay
lis

ts
us

in
g

on
ly

fe
at

ur
es

de
ri

ve
d

fr
om

th
e

au
di

o
si

gn
al

.T
he

fi
rs

t
th

re
e

co
lu

m
ns

in
d

ic
at

e
th

e
ge

ne
ra

liz
at

io
n

se
tt

in
g,

th
e

sy
st

em
na

m
e,

an
d

th
e

fe
at

u
re

na
m

e
(i

f
an

y)
.T

he
fo

u
rt

h
co

lu
m

n
in

d
ic

at
es

th
e

nu
m

be
r
N

of
so

ng
s

in
th

e
w

ith
he

ld
co

nt
in

ua
tio

ns
in

vo
lv

ed
in

ea
ch

ex
pe

ri
m

en
t.

Th
e

m
ed

ia
n

ra
nk

is
re

la
tiv

e
to

1
4
,5

5
2

un
iq

ue
so

ng
s.

Lo
w

er
is

be
tt

er
.F

or
M

R
R

,M
A

P
an

d
R

@
{1

0
,3

0
,1

0
0

}
hi

gh
er

is
be

tt
er

.S
ys

te
m

s
cl

ea
rl

y
ou

tp
er

fo
rm

in
g

H
yb

ri
d

M
F

(n
on

-o
ve

rl
ap

pi
ng

9
5

%
C

Is
)

ar
e

in
di

ca
te

d
in

bo
ld

.

8t
ra

ck
s

-
re

co
m

m
en

di
ng

so
ng

s
th

at
oc

cu
rr

ed
in

4
or

le
ss

tr
ai

ni
ng

pl
ay

li
st

s
w

it
h

au
di

o-
ba

se
d

fe
at

ur
es

on
ly

ge
ne

ra
li

za
ti

on
sy

st
em

fe
at

ur
e

N
m

ed
ra

nk
M

R
R

[%
]

M
A

P
[%

]
R

@
10

[%
]

R
@

30
[%

]
R

@
10

0
[%

]

W
ea

k
Pr

ofi
le

s
A

ud
io

2
C

F
4
0
8
8

17
78

±
15

2
0

.9
9
±

0
.2

2
0
.7

1
±

0
.1

7
1
.1

3
±

0
.3

6
2
.9

4
±

0
.5

8
8
.7

9
±

1
.0

1

i-
ve

ct
or

s
4
0
8
8

2
2
7
9
.5
±

1
4
5
.5

0
.7

1
±

0
.1

7
0
.4

8
±

0
.1

0
0
.8

6
±

0
.3

2
2
.1

4
±

0
.5

0
5
.4

8
±

0
.7

7

A
ud

io
2
Ta

g
4
0
8
8

2
7
2
7
.0
±

1
5
6
.5

0
.5

6
±

0
.1

7
0
.3

8
±

0
.1

1
0
.5

1
±

0
.2

3
1
.4

8
±

0
.4

1
4
.6

2
±

0
.7

2

M
em

be
rs

hi
p

A
ud

io
2
C

F
4
0
8
8

1
9
2
2
±

1
1
8

0
.5

7
±

0
.1

5
0
.4

3
±

0
.0

9
0
.5

9
±

0
.2

7
1
.9

6
±

0
.4

9
6
.6

0
±

0
.8

9

i-
ve

ct
or

s
4
0
8
8

2
5
9
6
.5
±

1
1
9
.0

0
.3

2
±

0
.1

2
0
.2

3
±

0
.0

7
0
.2

0
±

0
.1

6
0
.6

6
±

0
.2

7
2
.3

5
±

0
.5

1

A
ud

io
2
Ta

g
4
0
8
8

2
7
7
9
.5
±

1
5
5
.5

0
.2

6
±

0
.0

4
0
.2

1
±

0
.0

3
0
.1

7
±

0
.1

3
0
.9

3
±

0
.3

3
3
.3

1
±

0
.6

4

H
yb

ri
d

M
F

A
ud

io
2
C

F
4
0
8
8

2
1
8
0
±

1
8
7

1
.1

5
±

0
.2

8
0
.8

4
±

0
.2

1
1
.3

3
±

0
.4

0
3
.0

3
±

0
.6

1
8
.0

9
±

0
.9

4

R
an

do
m

—
4
0
8
8

7
1
6
8
±

2
5
6

0
.1

0
±

0
.0

4
0
.0

7
±

0
.0

3
0
.1

0
±

0
.1

2
0
.2

0
±

0
.1

5
0
.7

0
±

0
.2

7

St
ro

ng
Pr

ofi
le

s
—

—
—

—
—

—
—

—

M
em

be
rs

hi
p

A
ud

io
2
C

F
4
1
3
4

2
0
0
2
±

1
3
6

0
.5

8
±

0
.1

5
0
.4

3
±

0
.1

1
0
.5

1
±

0
.2

3
1
.5

5
±

0
.4

3
6
.0

3
±

0
.8

5

i-
ve

ct
or

s
4
1
3
4

2
5
2
2
.5
±

1
2
3
.0

0
.2

3
±

0
.0

5
0
.1

7
±

0
.0

2
0
.0

5
±

0
.0

6
0
.5

5
±

0
.2

4
2
.1

1
±

0
.5

0

A
ud

io
2
Ta

g
4
1
3
4

2
7
4
7
.5
±

1
5
2
.5

0
.3

5
±

0
.1

1
0
.2

5
±

0
.0

6
0
.3

0
±

0
.1

8
0
.8

3
±

0
.3

2
3
.5

9
±

0
.6

4

H
yb

ri
d

M
F

A
ud

io
2
C

F
4
1
3
4

2
2
0
2
.5
±

1
9
0
.0

1
.1

6
±

0
.2

9
0
.8

4
±

0
.2

1
1
.3

5
±

0
.4

1
3
.0

3
±

0
.6

0
8
.1

1
±

0
.9

6

R
an

do
m

—
4
1
3
4

6
9
2
1
.5
±

2
2
0
.5

0
.0

8
±

0
.0

3
0
.0

6
±

0
.0

2
0
.0

2
±

0
.0

4
0
.0

5
±

0
.0

6
0
.6

1
±

0
.2

7

6 C O N C L U S I O N

Music recommender systems have become crucial technologies to
support the navigation of large music catalogs in music streaming
services, on-line shops and private collections. This thesis has con-
centrated on the machine learning aspects of music recommendation,
proposing hybrid recommender systems that integrate the strengths of
collaborative and content information while taking into consideration
the particularities of the music domain.

The first part of the thesis focused on the task of music artist
recommendation as an approximation of the users’ general music
preferences over an extended period of time. I proposed a hybrid
extension to a well-established matrix factorization model consisting
in a co-factorization of listening and tagging histories. Incorporating
the tagging histories with an appropriate weighting scheme improved
the accuracy of artist recommendations in the conducted experiments.

The second part of the thesis studied the task of automated music
playlist continuation and, in contrast to the first part, had a focus on
local relationships in short listening sessions. I investigated fundamen-
tal playlist characteristics — namely the song context length, the song
order and the song popularity — and their impact on the prediction
of next-song recommendations. The conducted experiments revealed
interwoven effects, but it could generally be observed that: (1) a longer
song context had a positive effect on the accuracy of next-song recom-
mendations; (2) dealing with infrequent music items was challenging
for some recommender systems; (3) knowing the song order did not
affect the accuracy of next-song recommendations with the considered
systems and datasets. Building on these observations, I introduced two
hybrid recommender systems for music playlist continuation based
on neural network models. The proposed hybrid systems consider the
full song context and efficiently deal with infrequent music through
the incorporation of song feature vectors derived from any type of
music descriptions.

The hybrid music recommender systems proposed throughout the
thesis performed comparably or better than the considered baselines
in the conducted off-line experiments, and further analysis revealed
that the improvements were largely explained by the superior ability
of the proposed systems to deal with infrequent music. Thus, the
proposed systems provide means to mitigate the cold-start problem
for infrequent music and can be utilized to support the discovery of
music beyond the charts of popular music.

111

112 conclusion

6.1 open challenges

In the following I discuss two main limitations of the research pre-
sented in this thesis: the evaluation of music recommender systems
using off-line experiments, and the obvious but ineludible impact of
the chosen datasets on the final system recommendations.

6.1.1 Off-line evaluation of subjective opinions

Retrieval tasks like music identification [130] or music fingerprint-
ing [136] have well-defined sets of relevant results for a given query. In
contrast, music recommendation (or the recommendation of any items
depending on the users’ taste) is a much more undefined task. Even
given accurate user preference profiles and rich contextual information,
users can find multiple items relevant, and their final choice is likely
subjective and affected by uncertainty [3, 66]. Evaluating recommender
systems with off-line experiments is challenging precisely because the
final judgment of the user is missing, and the assessment is only
based on the comparison of system predictions to withheld historical
user–item interactions. I provide examples to illustrate this challenge.

Figure 6.1 shows music playlists curated and published by users of
the Art of the Mix playlist-sharing platform. As described in Chap-
ters 4 and 5, and according to the study conducted by Cunningham,
Bainbridge, and Falconer [31], it is reasonable to presume a careful
compilation process in playlists from this database.

Playlists 1 and 2 are similar: they share four songs and contain five
more songs by the same artists. The remaining songs are different. A
recommender system predicting any of these remaining songs when
seeded with the intersection of playlists 1 and 2 should be considered
to work reasonably well, even if the system does not reproduce any
of the original playlists exactly. However, missing to reproduce the
playlists exactly will be penalized in an off-line experiment, and the
assessed system performance will be too pessimistic [99, 114].

Playlist 3 consists of pairs of different songs which happen to have
the same title. Cunningham, Bainbridge, and Falconer [31] already
identified the existence of playlists satisfying artificial criteria. Even
if this compilation rule is not musically motivated, Art of the Mix
users provided positive comments to the playlist.1 However, unless
specifically designed to do so, a usual music recommender system
would never produce such an artificial playlist.

These playlists illustrate the subjectivity involved in the music se-
lection process and the consequent difficulty of evaluating music
recommendations with off-line experiments. Trying to account for it,
in Chapters 4 and 5 I proposed approaches to interpreting off-line
retrieval-based experiments. I summarize them here again.

1 http://www.artofthemix.org/FindAMix/getcontents2.aspx?strMixID=94784

http://www.artofthemix.org/FindAMix/getcontents2.aspx?strMixID=94784

6.1 open challenges 113

E
el

s
-

N
o

v
o

ca
in

e
fo

r
th

e
S

o
u

l

P
ix

ie
s

-
W

av
e

o
f

M
u

ti
la

ti
o

n

W
ee

ze
r

-
S

ay
 I

t
A

in
’t

 S
o

A
li

ce
 I

n
 C

h
ai

n
s

-
T

h
em

 B
o

n
es

N
ir

v
an

a
-

S
m

el
ls

 L
ik

e
T

ee
n

 S
p

ir
it

B
u

sh
 -

 G
ly

ce
ri

n
e

S
m

as
h

in
g

 P
u

m
p

k
in

s
-

D
is

ar
m

L
iv

e
-

L
ig

h
tn

in
g

 C
ra

sh
es

G
re

en
 D

ay
 -

B
as

k
et

 C
as

e

R
ad

io
h

ea
d

 -
C

re
ep

F
ai

th
 N

o
 M

o
re

 -
E

p
ic

P
ea

rl
 J

am
 -

Je
re

m
y

M
et

al
li

ca
 -

N
o

th
in

g
 E

ls
e

M
at

te
rs

S
to

n
e

T
em

p
le

 P
il

o
ts

 -
P

lu
sh

S
o

u
n

d
g

ar
d

en
 -

B
la

ck
 H

o
le

 S
u

n

S
p

ac
eh

o
g

 -
 I

n
 t

h
e

M
ea

n
ti

m
e

R
ed

 H
o

t
C

h
il

i
P

ep
p

er
s

-
U

n
d

er
 t

h
e

B
ri

d
g

e

L
if

e
is

 h
ar

d
...

 a
n

d
 s

o
 a

m
 I

A
rt

 o
f

th
e

M
ix

 i
d

 2
80

16
, u

se
r

’P
u

sh
k

in
_S

an
ch

ez
’

1
2

F
a

it
h

 N
o

 M
o

re
 -

 E
p

ic

N
ir

v
a

n
a

-
S

m
el

ls
 L

ik
e

T
ee

n
 S

p
ir

it

P
ea

rl
 J

a
m

 -
 E

v
en

fl
o

w

S
o

u
n

d
g

a
rd

en
 -

 R
u

st
y

 C
ag

e

R
ed

 H
o

t
C

h
il

i
P

ep
p

er
s

-
G

iv
e

It
 A

w
ay

C
o

ll
ec

ti
v

e
S

o
u

l
-

G
el

T
h

e
B

ea
st

ie
 B

o
y

s
-

S
a

b
o

ta
g

e

S
to

n
e

T
em

p
le

 P
il

o
ts

 -
 P

lu
sh

M
et

al
li

ca
 -

 E
n

te
r

S
an

d
m

a
n

G
re

en
 D

ay
 -

 B
a

sk
et

 C
as

e

L
en

n
y

 K
ra

v
it

z
 -

 A
re

 Y
o

u
 G

o
n

n
a

G
o

 M
y

 W
ay

B
ec

k
 -

 L
o

se
r

S
p

a
ce

h
o

g
 -

 I
n

 t
h

e
M

ea
n

ti
m

e

W
h

it
e

Z
o

m
b

ie
 -

 M
o

re
 H

u
m

a
n

 T
h

an
 H

u
m

a
n

B
lu

r
-

S
o

n
g

 2

H
ar

v
ey

 D
an

g
er

 -
 F

la
g

p
o

le
 S

it
ta

M
o

n
st

er
 M

ag
n

et
 -

 S
p

a
ce

lo
rd

F
o

o
 F

ig
h

te
rs

 -
 E

v
er

lo
n

g

K
id

 R
o

ck
 -

 B
aw

it
a

b
a

d
a

O
ff

sp
ri

n
g

 -
 P

re
tt

y
 F

ly
 (

fo
r

a
 W

h
it

e
G

u
y

)

L
im

p
 B

iz
k

it
 -

 N
o

o
k

ie

9
0’

s
n

o
st

a
lg

ia
 (

th
e

 K
-t

el
 m

ix
)

A
rt

 o
f

th
e

M
ix

 i
d

 8
7

1
2,

 u
se

r
’A

M
P

H
E

A
D

1
’

3

P
h

a
n

to
m

 P
la

n
et

 -
 C

a
li

fo
rn

ia

R
u

fu
s

W
a

in
w

ri
g

h
t

-
C

a
li

fo
rn

ia

Jo
e

Ja
ck

so
n

 -
 A

n
o

th
er

 W
o

rl
d

T
h

e
R

o
ch

es
 -

 A
n

o
th

er
 W

o
rl

d

T
h

e
M

a
rt

in
is

 -
 F

re
e

T
ra

in
 -

 F
re

e

P
h

is
h

 -
 B

li
ss

T
o

ri
 A

m
o

s
-

B
li

ss

T
h

e
B

ea
st

ie
 B

o
y

s
-

G
ir

ls

P
ro

d
ig

y
 -

 G
ir

ls

F
ra

n
k

ie
 G

o
es

 t
o

 H
o

ll
y

w
o

o
d

 -
 R

el
a

x

G
. L

o
v

e
&

 S
p

ec
ia

l
S

a
u

ce
 -

 R
el

a
x

M
a

rt
in

 S
ex

to
n

 -
 H

a
ll

el
u

ja
h

R
u

fu
s

W
a

in
w

ri
g

h
t

-
H

a
ll

el
u

ja
h

G
re

en
 D

ay
 -

 B
a

sk
et

 C
a

se

W
a

rr
en

 Z
ev

o
n

 -
 B

a
sk

et
 C

a
se

B
lu

se
 T

ra
v

el
er

 -
 F

re
ed

o
m

P
a

u
l

M
cC

a
rt

n
ey

 -
 F

re
ed

o
m

P
o

e
 -

 T
o

d
ay

S
m

a
sh

in
g

 P
u

m
p

k
in

s
-

T
o

d
ay

B
en

 H
a

rp
er

 -
 F

ad
ed

H
o

w
ie

 D
ay

 -
 F

ad
ed

G
. L

o
v

e
&

 S
p

ec
ia

l
S

a
u

ce
 -

 L
o

v
e

S
m

a
sh

in
g

 P
u

m
p

k
in

s
-

L
o

v
e

Ja
ck

 J
o

h
n

so
n

 -
 G

o
n

e

B
en

 F
o

ld
s

-
G

o
n

e

S
a

m
e

 n
a

m
e,

 d
iff

e
re

n
t

so
n

g

A
rt

 o
f

th
e

M
ix

 i
d

 9
4

78
4

, u
se

r
’R

a
ch

el
F

a
it

h
’

Fi
gu

re
6.

1:
H

an
d

-c
u

ra
te

d
p

la
yl

is
ts

fr
om

th
e

A
rt

of
th

e
M

ix
p

la
tf

or
m

.S
on

gs
oc

cu
rr

in
g

in
m

or
e

th
an

on
e

p
la

yl
is

t
ar

e
in

d
ic

at
ed

w
it

h
a

ci
rc

le
.A

rt
is

ts
oc

cu
rr

in
g

in
m

or
e

th
an

on
e

pl
ay

lis
t

(w
it

h
di

ff
er

en
t

so
ng

s)
ar

e
in

di
ca

te
d

w
it

h
a

tr
ia

ng
le

.

114 conclusion

Inspecting the full list of recommendations

Off-line retrieval-based experiments usually focus on the amount of
relevant music items that a recommender system can rank in the top
positions of a list of recommendations. While top positions are the
most relevant for end users, off-line experiments do not have access
to actual user assessments. In fact, focusing only on top positions can
provide inaccurate performance estimates. For example, in Chapter 5,
the collaborative systems MF and Neighbors achieved comparable
R@100 in a playlist continuation experiment (Table 5.8). However,
if we inspect the complete recall curves of both systems, the global
performance of MF is clearly superior (Figure 5.6). Therefore, I propose
to utilize metrics that consider the full list of recommendations, such
as the expected percentile rank (Chapter 3), the rank distribution
(Chapter 4), or the median rank (Chapters 4 and 5). This can provide
fairer estimates of the overall system performance.

The effects of song popularity

The music domain is strongly affected by popularity effects [21]. In
most music collections a few items are frequently listened to, while
the majority of them are rarely listened to (Figure 4.3, Tables 4.2, 5.1).
Music recommender systems respond differently to such biases. For
example, in a playlist continuation experiment in Chapter 4, the per-
formance of the RNN-based system was mostly unaffected by the
popularity of the withheld next songs, but the playlist-neighbors sys-
tem was only competitive when the withheld next songs were popular
(Figure 4.4). These behaviors must be taken into consideration and
related to the final use case. Users interested in music discovery may
prefer the recommendations of the RNN-based system. On the other
hand, the higher computational complexity of the RNN-based system
may be unnecessary for users interested in popular music.

6.1.2 Impact of data selection and preparation

The music recommender systems proposed in the thesis are based
on machine learning models trained using datasets of user–item in-
teractions and music descriptions. In this way, they are expected to
automatically identify music taste patterns from data. This contrasts
to recommender systems following hand-designed, arbitrary rules,
such as recommending items with similar acoustic features, or from
the same genre. I generally advocate the purely data-driven approach,
but it must be noted that arbitrary design choices may actually be
transferred (voluntarily or not) to the selection and preparation of the
training dataset. I provide two examples to illustrate this limitation.

Chapter 3, as other works [17, 24, 63, 64, 97, 167], exploits listen-
ing histories from the Last.fm music platform. Unfortunately, these

6.2 outlook 115

histories can be influenced by recommendations of the very platform.
Consequently, recommender systems trained on such histories can
not distinguish the actual user preferences from patterns caused by
previous automatic recommendations [23].

Chapters 4 and 5 improve on this situation by exploiting collections
of hand-curated music playlists, which are not influenced by automatic
recommendations. However, I decided to apply filters to ensure the
quality of the considered playlists and of the songs therein. The songs
occurring in both playlist collections were linked to the MSD to resolve
spelling duplicates and thus identify them accurately. The songs not
present in the MSD were discarded. The songs for which some type
of description was not available were further discarded in Chapter 5

for the sake of comparability. Furthermore, I considered only playlists
with a minimum length and with enough songs from different artists
in order to discard artist- and album-themed playlists. The goal of
filtering was to ensure the quality of the data, but in any case this was a
design choice with an impact on the patterns that music recommender
systems would be able to identify.

Data filtering or preprocessing need to be considered when com-
paring results from different works which apparently use the same
datasets. In my own work, Chapters 4 and 5 filter the playlist col-
lections differently (compare Tables 4.2 and 5.1). This is because the
former study does not require the availability of song descriptions, but
the latter does. Similarly, other works exploiting the same or related
collections of hand-curated music playlists did not report to have
applied such filters [17, 53, 63, 99, 100].

6.2 outlook

Finally, and despite the important advances in music understanding,
recommender systems, and their interplay, I outline interesting future
research directions where there is still much room for improvement.

evaluation As already discussed, the assessment of recommender
systems is one of the most critical research directions, and it is neces-
sary to develop off-line evaluation protocols that relate more closely
to the final user satisfaction. This topic attracts the attention of re-
searchers, as demonstrated by the recent organization of the spe-
cialized REVEAL Workshop [67]. Research efforts include the better
understanding of off-line metrics and their biases [20, 62, 146], the
development of beyond-accuracy metrics [70, 159], and the proposal
of alternative off-line evaluation paradigms such as reinforcement
learning [82, 122, 166]. The evaluation of recommender systems would
also benefit from a better understanding and a wider adoption of
small- and medium-scale user experiments [121, Chapter 9]. Finally, a

116 conclusion

tighter collaboration between academy and industrial platforms able
to conduct large-scale on-line experiments would be greatly advanta-
geous.

user needs and interaction Recommending music is complex,
especially due to the changeable needs of the users and their subjec-
tive assessment of the received recommendations. Research in music
recommender systems has mostly concentrated on automatically infer-
ring the user music preferences and needs, but the truth is that current
systems only partially manage to do so. This gap could be reduced by
letting the users explicitly indicate their needs. Conversational recom-
mender systems provide contributions in this direction, for example,
letting the users critique recommendations [160], suggesting query
revisions [13], or providing interfaces that let the users refine their
recommendations [141], and they should be further investigated. In
fact, conversational systems are becoming central also beyond rec-
ommender systems, with well-known examples such as Amazon’s
Alexa,2 the Google Assistant,3 or Yandex’s Alice.4

methods The algorithmic and machine learning aspects of recom-
mender systems have received and continue to receive much attention.
The technologies powering recommender systems have evolved in
parallel to the advances in machine learning, such as matrix factor-
ization [60], support vector machines [118], learning to rank [133], or
deep learning [7]. Thus, the recent explosion of research in machine
learning may also foster original, brave ideas beyond improvements in
predictive accuracy, such as the combination of recommender systems
and generative models to suggest items that may not yet exist [161],
or the explanation of recommendations using model interpretability
techniques [90]. Scalability must remain a priority, especially given
the ever-increasing volume of music available and the fact that deep
learning models can easily become computationally demanding.

2 https://developer.amazon.com/alexa

3 https://assistant.google.com

4 https://alice.yandex.ru

https://developer.amazon.com/alexa
https://assistant.google.com
https://alice.yandex.ru

B I B L I O G R A P H Y

[1] Gediminas Adomavicius and Alexander Tuzhilin. “Toward the
next generation of recommender systems: A survey of the state-
of-the-art and possible extensions.” In: IEEE Transactions on
Knowledge and Data Engineering 17.6 (2005), pp. 734–749.

[2] Natalie Aizenberg, Yehuda Koren, and Oren Somekh. “Build
your own music recommender by modeling internet radio
streams.” In: Proc. WWW. Lyon, France, 2012, pp. 1–10.

[3] Xavier Amatriain, Josep M. Pujol, and Nuria Oliver. “I like
it... i like it not: Evaluating user ratings noise in recommender
systems.” In: Proc. UMAP. Trento, Italy, 2009, pp. 247–258.

[4] Kristina Andersen and Peter Knees. “Conversations with expert
users in music retrieval and research challenges for creative
MIR.” In: Proc. ISMIR. New York, NY, USA, 2016, pp. 122–128.

[5] Chris Anderson. The long tail: How endless choice is creating
unlimited demand. Random House, 2007.

[6] Jean-Julien Aucouturier and François Pachet. “Improving tim-
bre similarity: How high is the sky.” In: Journal of Negative
Results in Speech and Audio Sciences 1.1 (2004), pp. 1–13.

[7] Zeynep Batmaz, Ali Yurekli, Alper Bilge, and Cihan Kaleli. “A
review on deep learning for recommender systems: Challenges
and remedies.” In: Artificial Intelligence Review (2018).

[8] Nicholas J. Belkin and W. Bruce Croft. “Information filtering
and information retrieval: Two sides of the same coin?” In:
Communications of the ACM 35.12 (1992), pp. 29–38.

[9] Robert M. Bell and Yehuda Koren. “Scalable collaborative filter-
ing with jointly derived neighborhood interpolation weights.”
In: Proc. ICDM. Omaha, NE USA, 2007, pp. 43–52.

[10] James Bennett and Stan Lanning. “The Netflix Prize.” In: Proc.
KDDCup. San Jose, CA, USA, 2007, p. 35.

[11] James Bergstra and Yoshua Bengio. “Random search for hyper-
parameter optimization.” In: Journal of Machine Learning Re-
search 13.1 (2012), pp. 281–305.

[12] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and
Paul Lamere. “The million song dataset.” In: Proc. ISMIR. Mi-
ami, FL, USA, 2011, pp. 591–596.

[13] Henry Blanco and Francesco Ricci. “Acquiring user profiles
from implicit feedback in a conversational recommender sys-
tem.” In: Proc. RecSys. Hong Kong, China, 2013, pp. 307–310.

117

118 bibliography

[14] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent
dirichlet allocation.” In: Journal of Machine Learning Research 3

(2003), pp. 993–1022.

[15] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. “Recom-
mender systems survey.” In: Knowledge-Based Systems 46 (2013),
pp. 109–132.

[16] Dmitry Bogdanov and Perfecto Herrera. “Taking advantage
of editorial metadata to recommend music.” In: Proc. CMMR.
London, UK, 2012, pp. 618–632.

[17] Geoffray Bonnin and Dietmar Jannach. “Automated genera-
tion of music playlists: Survey and experiments.” In: ACM
Computing Surveys 47.2 (2014), pp. 1–35.

[18] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. “Optimization
methods for large-scale machine learning.” In: arXiv preprint
arXiv:1606.04838 (2018).

[19] Robin Burke. “Hybrid recommender systems: Survey and ex-
periments.” In: User Modeling and User-Adapted Interaction 12.4
(2002), pp. 331–370.

[20] Pablo Castells and Rocío Cañamares. “Characterization of fair
experiments for recommender system evaluation - A formal
analysis.” In: REVEAL Workshop at RecSys. Vancouver, British
Columbia, Canada, 2018.

[21] Òscar Celma. Music recommendation and discovery. Springer,
2010.

[22] Òscar Celma, Perfecto Herrera, and Xavier Serra. “Bridging the
music semantic gap.” In: Proc. ESWC Workshop on Mastering
the Gap: From Information Extraction to Semantic Representation.
Budva, Montenegro, 2006.

[23] Allison J. B. Chaney, Brandon M. Stewart, and Barbara E. En-
gelhardt. “How algorithmic confounding in recommendation
systems increases homogeneity and decreases utility.” In: Proc.
RecSys. Vancouver, British Columbia, Canada, 2018, pp. 224–
232.

[24] Chih-Ming Chen, Ming-Feng Tsai, Yu-Ching Lin, and Yi-Hsuan
Yang. “Query-based music recommendations via preference
embedding.” In: Proc. RecSys. Boston, MA, USA, 2016, 79–82.

[25] Shuo Chen, Josh L. Moore, Douglas Turnbull, and Thorsten
Joachims. “Playlist prediction via metric embedding.” In: Proc.
SIGKDD. Beijing, China, 2012, pp. 714–722.

bibliography 119

[26] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Ben-
gio. “Learning phrase representations using RNN encoder-
decoder for statistical machine translation.” In: arXiv preprint
arXiv:1406.1078 (2014).

[27] Keunwoo Choi, George Fazekas, and Mark Sandler. “Auto-
matic tagging using deep convolutional neural networks.” In:
Proc. ISMIR. New York, NY, USA, 2016.

[28] Tom Collins, Peter Knees, and Christian Coulon. “MIR web
interface for shaping musical creativity.” In: Extended abstracts
for the Late-Breaking Demo Session of ISMIR. New York, NY, USA,
2016.

[29] Dan Cosley, Shyong K. Lam, Istvan Albert, Joseph A. Kon-
stan, and John Riedl. “Is seeing believing?: How recommender
system interfaces affect users’ opinions.” In: Proc. CHI. Ft. Laud-
erdale, FL, USA, 2003, pp. 585–592.

[30] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. “Perfor-
mance of recommender algorithms on top-N recommendation
tasks.” In: Proc. RecSys. Barcelona, Spain, 2010, pp. 39–46.

[31] Sally Jo Cunningham, David Bainbridge, and Annette Falconer.
““More of an art than a science”: Supporting the creation of
playlists and mixes.” In: Proc. ISMIR. Victoria, British Columbia,
Canada, 2006.

[32] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Dumouchel,
and Pierre Ouellet. “Front-end factor analysis for speaker veri-
fication.” In: IEEE Transactions on Audio, Speech, and Language
Processing 19.4 (2011), pp. 788–798.

[33] Thomas J. DiCiccio and Bradley Efron. “Bootstrap confidence
intervals.” In: Statistical Science (1996), pp. 189–212.

[34] Sander Dieleman et al. Lasagne: First release. 2015. url: http:
//dx.doi.org/10.5281/zenodo.27878.

[35] Matthias Dorfer, Jan Schlüter, Andreu Vall, Filip Korzeniowski,
and Gerhard Widmer. “End-to-end cross-modality retrieval
with CCA projections and pairwise ranking loss.” In: Inter-
national Journal of Multimedia Information Retrieval 7.2 (2018),
pp. 117–128.

[36] Gideon Dror, Noam Koenigstein, and Yehuda Koren. “Yahoo!
music recommendations: modeling music ratings with tempo-
ral dynamics and item taxonomy.” In: Proc. RecSys. Chicago,
IL, USA, 2011, pp. 165–172.

[37] Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus
Weimer. “The Yahoo! Music Dataset and KDD-Cup’11.” In:
Proc. KDD-Cup 2011 competition. San Diego, CA, USA, 2012,
pp. 8–18.

http://dx.doi.org/10.5281/zenodo.27878
http://dx.doi.org/10.5281/zenodo.27878

120 bibliography

[38] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgra-
dient methods for online learning and stochastic optimization.”
In: Journal of Machine Learning Research 12 (2011), pp. 2121–2159.

[39] Hamid Eghbal-zadeh, Markus Schedl, and Gerhard Widmer.
“Timbral modeling for music artist recognition using i-vectors.”
In: Proc. EUSIPCO. Nice, France, 2015, pp. 1286–1290.

[40] Hamid Eghbal-zadeh, Bernhard Lehner, Markus Schedl, and
Gerhard Widmer. “I-vectors for timbre-based music similarity
and music artist classification.” In: Proc. ISMIR. Málaga, Spain,
2015, pp. 554–560.

[41] Yi Fang and Luo Si. “Matrix co-factorization for recommenda-
tion with rich side information and implicit feedback.” In: Proc.
HETREC. Chicago, IL, USA, 2011, pp. 65–69.

[42] Katayoun Farrahi, Markus Schedl, Andreu Vall, David Hauger,
and Marko Tkalčič. “Impact of listening behavior on music
recommendation.” In: Proc. ISMIR. Taipei, Taiwan, 2014, 483–
488.

[43] Bruce Ferwerda, Andreu Vall, Marko Tkalčič, and Markus
Schedl. “Exploring music diversity needs across countries.” In:
Proc. UMAP. Halifax, Nova Scotia, Canada, 2016, pp. 287–288.

[44] Bruce Ferwerda, Mark P. Graus, Andreu Vall, Marko Tkalčič,
and Markus Schedl. “The influence of users’ personality traits
on satisfaction and attractiveness of diversified recommenda-
tion lists.” In: EMPIRE Workshop at RecSys. Boston, MA, USA,
2016, pp. 43–47.

[45] Bruce Ferwerda, Mark P. Graus, Andreu Vall, Marko Tkalčič,
and Markus Schedl. “How item discovery enabled by diversity
leads to increased recommendation list attractiveness.” In: Proc.
SAC. Marrakech, Morocco, 2017, pp. 1693–1696.

[46] Ben Fields, Christophe Rhodes, and Mark d’Inverno. “Using
song social tags and topic models to describe and compare
playlists.” In: Workshop on Music Recommendation and Discovery
at RecSys. Barcelona, Spain, 2010.

[47] Arthur Flexer, Dominik Schnitzer, Martin Gasser, and Gerhard
Widmer. “Playlist generation using start and end songs.” In:
Proc. ISMIR. Philadelphia, PA, USA, 2008, pp. 173–178.

[48] Frederic Font. “Tag recommendation using folksonomy in-
formation for online sound sharing platforms.” PhD thesis.
Barcelona, Spain, 2015.

[49] Ben Frederickson. Fast Python collaborative filtering for implicit
feedback datasets. Original date: 2016-04-17. url: https : / /

github.com/benfred/implicit (visited on 12/12/2018).

https://github.com/benfred/implicit
https://github.com/benfred/implicit

bibliography 121

[50] K. Ruben Gabriel and S. Zamir. “Lower rank approximation
of matrices by least squares with any choice of weights.” In:
Technometrics 21.4 (1979), p. 489.

[51] Stephen J. Green, Paul Lamere, Jeffrey Alexander, François
Maillet, Susanna Kirk, Jessica Holt, Jackie Bourque, and Xiao-
Wen Mak. “Generating transparent, steerable recommendations
from textual descriptions of items.” In: Proc. RecSys. New York,
NY, USA, 2009, pp. 281–284.

[52] Uri Hanani, Bracha Shapira, and Peretz Shoval. “Information
filtering: Overview of issues, research and systems.” In: User
Modeling and User-Adapted Interaction 11.3 (2001), pp. 203–259.

[53] Negar Hariri, Bamshad Mobasher, and Robin Burke. “Context-
aware music recommendation based on latent topic sequential
patterns.” In: Proc. RecSys. Dublin, Ireland, 2012, pp. 131–138.

[54] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
elements of statistical learning. Springer series in statistics, 2008.

[55] Ruining He and Julian McAuley. “VBPR: Visual Bayesian per-
sonalized ranking from implicit feedback.” In: Proc. AAAI.
Phoenix, AR, USA, 2016, pp. 144–150.

[56] Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou,
and Domonkos Tikk. “Parallel Recurrent Neural Network Ar-
chitectures for Feature-rich Session-based Recommendations.”
In: Proc. RecSys. Boston, MA, USA, 2016, pp. 241–248.

[57] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and
Domonkos Tikk. “Session-based recommendations with recur-
rent neural networks.” In: Proc. ICLR. 2016.

[58] Matthew D. Hoffman, David M. Blei, and Perry R. Cook. “Easy
as CBA: A simple probabilistic model for tagging music.” In:
Proc. ISMIR. Kobe, Japan, 2009, pp. 369–374.

[59] Thomas Hofmann. “Latent semantic models for collaborative
filtering.” In: ACM Transactions on Information Systems 22.1
(2004), pp. 89–115.

[60] Yifan Hu, Yehuda Koren, and Chris Volinsky. “Collaborative
filtering for implicit feedback datasets.” In: Proc. ICDM. Pisa,
Italy, 2008, pp. 263–272.

[61] Sergey Ioffe and Christian Szegedy. “Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift.” In: arXiv preprint arXiv:1502.03167 (2015).

[62] Dietmar Jannach, Iman Kamehkhosh, and Geoffray Bonnin.
“Biases in automated music playlist generation: A compari-
son of next-track recommending techniques.” In: Proc. UMAP.
Halifax, Nova Scotia, Canada, 2016, pp. 281–285.

122 bibliography

[63] Dietmar Jannach, Lukas Lerche, and Iman Kamehkhosh. “Be-
yond “hitting the hits”: Generating coherent music playlist
continuations with the right tracks.” In: Proc. RecSys. Vienna,
Austria, 2015, pp. 187–194.

[64] Dietmar Jannach and Malte Ludewig. “When recurrent neural
networks meet the neighborhood for session-based recommen-
dation.” In: Proc. RecSys. Como, Italy, 2017, pp. 306–310.

[65] Andreas Jansson, Colin Raffel, and Tillman Weyde. “This is my
jam data dump.” In: Proc. ISMIR. Málaga, Spain, 2015.

[66] Kevin Jasberg and Sergej Sizov. “Human uncertainty and rank-
ing error: Fallacies in metric-based evaluation of recommender
systems.” In: Proc. SAC. Pau, France, 2018.

[67] Thorsten Joachims, Adith Swaminathan, Yves Raimond, Olivier
Koch, and Flavian Vasile. “REVEAL 2018: Offline evaluation
for recommender systems.” In: Proc. RecSys. Vancouver, British
Columbia, Canada, 2018, pp. 514–515.

[68] Christopher C. Johnson. “Logistic Matrix Factorization for Im-
plicit Feedback Data.” In: Distributed Machine Learning and Ma-
trix Computations Workshop at NIPS. 2014.

[69] Iman Kamehkhosh and Dietmar Jannach. “User perception of
next-track music recommendations.” In: Proc. UMAP. Bratislava,
Slovakia, 2017, pp. 113–121.

[70] Marius Kaminskas and Derek Bridge. “Diversity, serendipity,
novelty, and coverage: A survey and empirical analysis of
beyond-accuracy objectives in recommender systems.” In: ACM
Transactions on Interactive Intelligent Systems 7.1 (2016), pp. 1–42.

[71] Diederik P. Kingma and Jimmy Ba. “Adam: A method for
stochastic optimization.” In: Proc. ICLR. San Diego, CA, USA,
2015.

[72] Peter Knees. “Text-based description of music for indexing,
retrieval, and browsing.” PhD thesis. Linz: Johannes Kepler
University, 2010.

[73] Peter Knees and Kristina Andersen. “Searching for audio by
sketching mental images of sound: A brave new idea for audio
retrieval in creative music production.” In: Proc. ICMR. New
York, NY, USA, 2016, pp. 95–102.

[74] Peter Knees, Tim Pohle, Markus Schedl, and Gerhard Widmer.
“Combining audio-based similarity with web-based data to
accelerate automatic music playlist generation.” In: Proc. Inter-
national Workshop on Multimedia IR. Santa Barbara, CA USA,
2006, pp. 147–154.

bibliography 123

[75] Yehuda Koren. “Factorization meets the neighborhood: a mul-
tifaceted collaborative filtering model.” In: Proc. SIGKDD. Las
Vegas, NV, USA, 2008, pp. 426–434.

[76] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix fac-
torization techniques for recommender systems.” In: Computer
42.8 (2009), pp. 30–37.

[77] Amanda E. Krause and Adrian C. North. “Contextualized mu-
sic listening: Playlists and the Mehrabian and Russell model.”
In: Psychology of Well-Being 4.1 (2014), p. 22.

[78] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “Ima-
genet classification with deep convolutional neural networks.”
In: Proc. NIPS. 2012, pp. 1097–1105.

[79] Alejandro Lago, Victor Martínez-de-Albéniz, Philip Moscoso,
and Andreu Vall. “The role of quick response in accelerating
sales of fashion goods.” In: Analytical modeling research in fashion
business. Springer Series in Fashion Business. Springer, 2016,
pp. 51–78.

[80] Jin Ha Lee, Bobby Bare, and Gary Meek. “How similar is too
similar?: Exploring users’ perceptions of similarity in playlist
evaluation.” In: Proc. ISMIR. Miami, FL, USA, 2011, 109–114.

[81] M. Levy and M. Sandler. “Music information retrieval using
social tags and audio.” In: IEEE Transactions on Multimedia 11.3
(2009), pp. 383–395.

[82] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. “Unbi-
ased offline evaluation of contextual-bandit-based news article
recommendation algorithms.” In: Proc. WSDM. Hong Kong,
China, 2011, pp. 297–306.

[83] Yanen Li, Jia Hu, ChengXiang Zhai, and Ye Chen. “Improv-
ing one-class collaborative filtering by incorporating rich user
information.” In: Proc. CIKM. Toronto, Ontario, Canada, 2010,
pp. 959–968.

[84] Zhizhong Li and Derek Hoiem. “Learning without forgetting.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2017).

[85] Dawen Liang, Minshu Zhan, and Daniel P.W. Ellis. “Content-
aware collaborative music recommendation using pre-trained
neural networks.” In: Proc. ISMIR. Málaga, Spain, 2015, 295–
301.

[86] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and
Tony Jebara. “Variational autoencoders for collaborative filter-
ing.” In: Proc. WWW. Lyon, France, 2018.

124 bibliography

[87] Elad Liebman, Maytal Saar-Tsechansky, and Peter Stone. “DJ-
MC: A reinforcement-learning agent for music playlist recom-
mendation.” In: Proc. AAMAS. Istanbul, Turkey, 2015, 591–599.

[88] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in net-
work.” In: arXiv preprint arXiv:1312.4400 (2013).

[89] Greg Linden, Brent Smith, and Jeremy York. “Amazon. com rec-
ommendations: Item-to-item collaborative filtering.” In: IEEE
Internet Computing 7.1 (2003), pp. 76–80.

[90] Zachary C. Lipton. “The mythos of model interpretability.” In:
arXiv:1606.03490 (2016).

[91] Zachary C. Lipton and John Berkowitz. “A critical review of
recurrent neural networks for sequence learning.” In: arXiv
preprint arXiv:1506.00019 (2015).

[92] Beth Logan. “Mel frequency cepstral coefficients for music mod-
eling.” In: Proc. International Symposium on Music Information
Retrieval. Plymouth, MA, USA, 2000.

[93] Beth Logan. “Content-based playlist generation: Exploratory
experiments.” In: Proc. ISMIR. Paris, France, 2002.

[94] Hao Ma, Tom Chao Zhou, Michael R. Lyu, and Irwin King. “Im-
proving recommender systems by incorporating social contex-
tual information.” In: ACM Transactions on Information Systems
29.2 (2011), pp. 1–23.

[95] François Maillet, Douglas Eck, Guillaume Desjardins, Paul
Lamere, and others. “Steerable playlist generation by learning
song similarity from radio station playlists.” In: Proc. ISMIR.
Kobe, Japan, 2009, pp. 345–350.

[96] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. An introduction to information retrieval. Cambridge Uni-
versity Press, 2009.

[97] Brian McFee, Luke Barrington, and Gert RG Lanckriet. “Learn-
ing similarity from collaborative filters.” In: Proc. ISMIR. Utrecht,
Netherlands, 2010, pp. 345–350.

[98] Brian McFee and Gert RG Lanckriet. “Heterogeneous embed-
ding for subjective artist similarity.” In: Proc. ISMIR. Kobe,
Japan, 2009, pp. 513–518.

[99] Brian McFee and Gert RG Lanckriet. “The natural language of
playlists.” In: Proc. ISMIR. Miami, FL, USA, 2011, pp. 537–542.

[100] Brian McFee and Gert RG Lanckriet. “Hypergraph models of
playlist dialects.” In: Proc. ISMIR. Porto, Portugal, 2012, 343–
348.

[101] Brian McFee, Thierry Bertin-Mahieux, Daniel P.W. Ellis, and
Gert R.G. Lanckriet. “The million song dataset challenge.” In:
Proc. WWW Companion. Lyon, France, 2012, pp. 909–909.

bibliography 125

[102] Sean M. McNee, John Riedl, and Joseph A. Konstan. “Being
accurate is not enough: How accuracy metrics have hurt recom-
mender systems.” In: Proc. CHI’06 Extended Abstracts. Montréal,
Québec, Canada, 2006, pp. 1097–1101.

[103] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and
Jeff Dean. “Distributed representations of words and phrases
and their compositionality.” In: Proc. NIPS. 2013, 3111–3119.

[104] Andriy Mnih and Ruslan Salakhutdinov. “Probabilistic matrix
factorization.” In: Proc. NIPS. 2007, pp. 1257–1264.

[105] Raymond J. Mooney and Loriene Roy. “Content-based book
recommending using learning for text categorization.” In: Proc.
DL. San Antonio, TX, U.S., 2000, pp. 195–204.

[106] Meinard Müller. Fundamentals of music processing: Audio, analy-
sis, algorithms, applications. Springer, 2015.

[107] Yurii Nesterov. “A method of solving a convex programming
problem with convergence rate O(1/k2).” In: Soviet Mathematics
Doklady 27.2 (1983), pp. 372–376.

[108] Xia Ning and George Karypis. “Slim: Sparse linear methods
for top-N recommender systems.” In: Proc. ICDM. Vancouver,
BC, Canada, 2011, pp. 497–506.

[109] Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen.
“Deep content-based music recommendation.” In: Proc. NIPS.
2013, pp. 2643–2651.

[110] Sergio Oramas, Oriol Nieto, Mohamed Sordo, and Xavier Serra.
“A deep multimodal approach for cold-start music recommen-
dation.” In: Proc. DLRS Workshop at RecSys. Como, Italy, 2017,
pp. 32–37.

[111] Elias Pampalk, Tim Pohle, and Gerhard Widmer. “Dynamic
playlist generation based on skipping behavior.” In: Proc. IS-
MIR. Vol. 5. London, UK, 2005, pp. 634–637.

[112] Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu, Rajan
Lukose, Martin Scholz, and Qiang Yang. “One-class collabora-
tive filtering.” In: Proc. ICDM. Pisa, Italy, 2008, pp. 502–511.

[113] Michael J. Pazzani. “A framework for collaborative, content-
based and demographic filtering.” In: Artificial Intelligence Re-
view 13.5-6 (1999), pp. 393–408.

[114] John C. Platt, Christopher JC Burges, Steven Swenson, Christo-
pher Weare, and Alice Zheng. “Learning a Gaussian process
prior for automatically generating music playlists.” In: Proc.
NIPS. 2002, pp. 1425–1432.

[115] Tim Pohle. “Automatic characterization of music for intuitive
retrieval.” PhD thesis. Linz, Austria: Johannes Kepler Univer-
sity, 2009.

126 bibliography

[116] Tim Pohle, Elias Pampalk, and Gerhard Widmer. “Generating
similarity-based playlists using traveling salesman algorithms.”
In: Proc. DAFx. Madrid, Spain, 2005, pp. 220–225.

[117] Lawrence R Rabiner and Biing-Hwang Juang. Fundamentals of
speech recognition. PTR Prentice Hall, 1993.

[118] Steffen Rendle. “Factorization machines.” In: Proc. ICDM. Sid-
ney, Australia, 2010, pp. 995–1000.

[119] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-
Thieme. “Factorizing personalized markov chains for next-
basket recommendation.” In: Proc. WWW. Raleigh, NC, USA,
2010, pp. 811–820.

[120] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and
Lars Schmidt-Thieme. “BPR: Bayesian personalized ranking
from implicit feedback.” In: Proc. UAI. 2009, pp. 452–461.

[121] Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender
systems handbook. 2nd. Springer US, 2015.

[122] David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile,
and Alexandros Karatzoglou. “RecoGym: A reinforcement
learning environment for the problem of product recommen-
dation in online advertising.” In: REVEAL Workshop at RecSys.
Vancouver, British Columbia, Canada, 2018.

[123] Bernard Rous. “Major update to ACM’s Computing Classifi-
cation System.” In: Communications of the ACM 55.11 (2012),
pp. 12–12.

[124] Ruslan Salakhutdinov and Andriy Mnih. “Bayesian probabilis-
tic matrix factorization using Markov chain Monte Carlo.” In:
Proc. ICML. Helsinki, Finland, 2008, pp. 880–887.

[125] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton.
“Restricted Boltzmann machines for collaborative filtering.” In:
Proc. ICML. Corvallis, OR, USA, 2007, pp. 791–798.

[126] Badrul Sarwar, George Karypis, Joseph Konstan, and John
Riedl. “Item-based collaborative filtering recommendation al-
gorithms.” In: Proc. WWW. Hong Kong, China, 2001, 285–295.

[127] Markus Schedl, Andreu Vall, and Katayoun Farrahi. “User
geospatial context for music recommendation in microblogs.”
In: Proc. SIGIR. Gold Coast, QLD, Australia, 2014, pp. 987–990.

[128] Markus Schedl, Gerhard Widmer, Peter Knees, and Tim Pohle.
“A music information system automatically generated via Web
content mining techniques.” In: Information Processing & Man-
agement 47.3 (2010), pp. 426–439.

bibliography 127

[129] Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deld-
joo, and Mehdi Elahi. “Current challenges and visions in music
recommender systems research.” In: International Journal of Mul-
timedia Information Retrieval 7.2 (2018), pp. 95–116.

[130] J. Serra, E. Gomez, P. Herrera, and X. Serra. “Chroma binary
similarity and local alignment applied to cover song identifi-
cation.” In: IEEE Transactions on Audio, Speech, and Language
Processing 16.6 (2008), pp. 1138–1151.

[131] Guy Shani, David Heckerman, and Ronen I. Brafman. “An
MDP-based recommender system.” In: Journal of Machine Learn-
ing 6 (2005), pp. 1265–1295.

[132] Upendra Shardanand and Pattie Maes. “Social information
filtering: Algorithms for automating “word of mouth”.” In:
Proc. CHI. Denver, CO, USA, 1995, pp. 210–217.

[133] Yue Shi, Martha Larson, and Alan Hanjalic. “List-wise learning
to rank with matrix factorization for collaborative filtering.” In:
Proc. RecSys. Barcelona, Spain, 2010, p. 269.

[134] Karen Simonyan and Andrew Zisserman. “Very deep convo-
lutional networks for large-scale image recognition.” In: Proc.
ICLR (2014).

[135] Vikas Sindhwani, Serhat S. Bucak, Jianying Hu, and Aleksandra
Mojsilovic. “One-class matrix completion with low-density
factorizations.” In: Proc. ICDM. Sidney, Australia, 2010, 1055–
1060.

[136] Reinhard Sonnleitner and Gerhard Widmer. “Robust quad-
based audio fingerprinting.” In: IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing 24.3 (2016), pp. 409–421.

[137] Nathan Srebro, Jason DM Rennie, and Tommi S. Jaakkola.
“Maximum-margin matrix factorization.” In: Proc. NIPS. Vol. 17.
2004, pp. 1329–1336.

[138] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. “Dropout: A simple way to prevent
neural networks from overfitting.” In: Journal of Machine Learn-
ing Research 15.1 (2014), pp. 1929–1958.

[139] Kirsten Swearingen and Rashmi Sinha. “Beyond algorithms: An
HCI perspective on recommender systems.” In: SIGIR Workshop
on Recommender Systems. Vol. 13. 2001, pp. 1–11.

[140] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Van-
houcke, and Andrew Rabinovich. “Going deeper with convolu-
tions.” In: Proc. CVPR. Boston, MA, USA, 2015.

128 bibliography

[141] Taavi T. Taijala, Martijn C. Willemsen, and Joseph A. Konstan.
“Movieexplorer: Building an interactive exploration tool from
ratings and latent taste spaces.” In: Proc. SAC. Pau, France,
2018, pp. 1383–1392.

[142] Yong Kiam Tan, Xinxing Xu, and Yong Liu. “Improved recur-
rent neural networks for session-based recommendations.” In:
Proc. DLRS Workshop at RecSys. Boston, MA, USA, 2016, 17–22.

[143] Theano Development Team. “Theano: A Python framework
for fast computation of mathematical expressions.” In: arXiv
e-prints abs/1605.02688 (2016).

[144] Douglas Turnbull, Luke Barrington, and Gert Lanckriet. “Five
approaches to collecting tags for music.” In: Proc. ISMIR. Vol. 8.
Philadelphia, PA, USA, 2008, pp. 225–230.

[145] Douglas Turnbull, Luke Barrington, Gert Lanckriet, and Mehrdad
Yazdani. “Combining audio content and social context for se-
mantic music discovery.” In: Proc. SIGIR. Boston, MA, USA,
2009, pp. 387–394.

[146] Daniel Valcarce, Alejandro Bellogín, Javier Parapar, and Pablo
Castells. “On the robustness and discriminative power of infor-
mation retrieval metrics for top-N recommendation.” In: Proc.
RecSys. Vancouver, British Columbia, Canada, 2018, 260–268.

[147] Andreu Vall. Matrix factorization models with social tags for mu-
sic recommendation. Original date: 2015-11-19. url: https://
github.com/andreuvall/WeightedTags-MF (visited on 12/12/2018).

[148] Andreu Vall. “Listener-inspired automated music playlist gen-
eration.” In: Proc. RecSys. Vienna, Austria, 2015, pp. 387–390.

[149] Andreu Vall and Matthias Dorfer. Hybrid recommender systems
for music playlist continuation. Original date: 2017-04-20. url:
https://github.com/andreuvall/HybridPlaylistContinuation

(visited on 12/12/2018).

[150] Andreu Vall and Gerhard Widmer. “Machine learning ap-
proaches to hybrid music recommender systems.” In: Proc.
ECML PKDD. Dublin, Ireland, 2018.

[151] Andreu Vall, Marcin Skowron, Peter Knees, and Markus Schedl.
“Improving music recommendations with a weighted factor-
ization of the tagging activity.” In: Proc. ISMIR. Málaga, Spain,
2015, pp. 65–71.

[152] Andreu Vall, Hamid Eghbal-zadeh, Matthias Dorfer, and Markus
Schedl. “Timbral and semantic features for music playlists.” In:
Machine Learning for Music Discovery Workshop at ICML. New
York, NY, USA, 2016.

https://github.com/andreuvall/WeightedTags-MF
https://github.com/andreuvall/WeightedTags-MF
https://github.com/andreuvall/HybridPlaylistContinuation

bibliography 129

[153] Andreu Vall, Hamid Eghbal-zadeh, Matthias Dorfer, Markus
Schedl, and Gerhard Widmer. “Music playlist continuation by
learning from hand-curated examples and song features: Alle-
viating the cold-start problem for rare and out-of-set songs.”
In: Proc. DLRS Workshop at RecSys. Como, Italy, 2017, pp. 46–54.

[154] Andreu Vall, Markus Schedl, Gerhard Widmer, Massimo Quad-
rana, and Paolo Cremonesi. “The importance of song context
in music playlists.” In: RecSys Poster Proceedings. Como, Italy,
2017.

[155] Andreu Vall, Matthias Dorfer, Markus Schedl, and Gerhard
Widmer. “A hybrid approach to music playlist continuation
based on playlist-song membership.” In: Proc. SAC. Pau, France,
2018, pp. 1374–1382.

[156] Andreu Vall, Massimo Quadrana, Markus Schedl, and Gerhard
Widmer. “The importance of song context and song order in
automated music playlist generation.” In: Proc. ICMPC-ESCOM.
Graz, Austria, 2018.

[157] Andreu Vall, Matthias Dorfer, Hamid Eghbal-zadeh, Markus
Schedl, Keki Burjorjee, and Gerhard Widmer. “Feature-combination
hybrid recommender systems for automated music playlist con-
tinuation.” In: User Modeling and User-Adapted Interaction (2019,
in press).

[158] Andreu Vall, Massimo Quadrana, Markus Schedl, and Ger-
hard Widmer. “Order, context and popularity bias in next-song
recommendations.” In: International Journal of Multimedia Infor-
mation Retrieval (2019, in revision).

[159] Saúl Vargas and Pablo Castells. “Rank and relevance in nov-
elty and diversity metrics for recommender systems.” In: Proc.
RecSys. Chicago, IL, USA, 2011, pp. 109–116.

[160] Paolo Viappiani, Pearl Pu, and Boi Faltings. “Conversational
recommenders with adaptive suggestions.” In: Proc. RecSys.
Minneapolis, MN, USA, 2007, p. 89.

[161] Thanh Vinh Vo and Harold Soh. “Generation meets recommen-
dation: Proposing novel items for groups of users.” In: Proc.
RecSys. Vancouver, British Columbia, Canada, 2018, 145–153.

[162] Richard Vogl, Matthias Leimeister, Carthach Ó Nuanáin, Sergi
Jordà, Michael Hlatky, and Peter Knees. “An intelligent inter-
face for drum pattern variation and comparative evaluation of
algorithms.” In: Journal of the Audio Engineering Society 64.7/8

(2016), pp. 503–513.

[163] Chong Wang and David M. Blei. “Collaborative topic modeling
for recommending scientific articles.” In: Proc. KDD. San Diego,
CA, USA, 2011, pp. 448–456.

130 bibliography

[164] Xinxi Wang, Yi Wang, David Hsu, and Ye Wang. “Exploration
in interactive personalized music recommendation: a reinforce-
ment learning approach.” In: ACM Transactions on Multimedia
Computing, Communications, and Applications 11.1 (2014).

[165] Markus Weimer, Alexandros Karatzoglou, and Alex Smola.
“Improving maximum margin matrix factorization.” In: Ma-
chine Learning 72.3 (2008), pp. 263–276.

[166] Zhe Xing, Xinxi Wang, and Ye Wang. “Enhancing collaborative
filtering music recommendation by balancing exploration and
exploitation.” In: Proc. ISMIR. Taipei, Taiwan, 2014, 445–450.

[167] Yuan Cao Zhang, Diarmuid Ó Séaghdha, Daniele Quercia, and
Tamas Jambor. “Auralist: Introducing serendipity into music
recommendation.” In: Proc. WSDM. Seattle, WA, USA, 2012,
pp. 13–22.

[168] Elena Zheleva, John Guiver, Eduarda Mendes Rodrigues, and
Nataša Milić-Frayling. “Statistical models of music-listening
sessions in social media.” In: Proc. WWW. Raleigh, NC, USA,
2010, pp. 1019–1028.

[169] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong
Pan. “Large-scale parallel collaborative filtering for the Netflix
Prize.” In: Algorithmic Aspects in Information and Management.
2008, pp. 337–348.

[170] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and
Georg Lausen. “Improving recommendation lists through topic
diversification.” In: Proc. WWW. Chiba, Japan, 2005, pp. 22–32.

	Declaration
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Outline
	1.2 Contributions
	1.2.1 Music artist recommendation
	1.2.2 Music playlist continuation

	1.3 Main publications
	1.4 Additional publications

	2 Music Recommendation
	2.1 Recommender systems
	2.1.1 Components
	2.1.2 Recommendation approaches

	2.2 The music domain
	2.2.1 Representation levels
	2.2.2 Sequential consumption
	2.2.3 Recommendation scenarios
	2.2.4 Data sources

	2.3 Evaluation
	2.3.1 On-line experiments
	2.3.2 Off-line experiments

	 Music Artist Recommendation
	3 Matrix Co-Factorization
	3.1 Introduction and related work
	3.1.1 Explicit, implicit and one-class feedback
	3.1.2 Matrix factorization
	3.1.3 Hybrid recommender systems
	3.1.4 Evaluation of recommender systems

	3.2 Methodology
	3.2.1 Matrix factorization models
	3.2.2 Parameter estimation
	3.2.3 Producing recommendations

	3.3 Experimental study
	3.3.1 Dataset
	3.3.2 Evaluation methodology
	3.3.3 Model comparison
	3.3.4 Cold start

	3.4 Conclusions

	 Music Playlist Continuation
	4 Playlist characteristics
	4.1 Introduction
	4.2 Related work
	4.3 Experimental design
	4.3.1 Evaluation methodology
	4.3.2 Assessing the quality of the recommendations

	4.4 Playlist models
	4.4.1 Song popularity
	4.4.2 Song-based collaborative filtering
	4.4.3 Playlist-based collaborative filtering
	4.4.4 Recurrent neural networks

	4.5 Datasets
	4.6 Results
	4.6.1 Song context
	4.6.2 Popularity bias
	4.6.3 Song order

	4.7 Conclusion
	4.A Model configurations
	4.A.1 Song popularity
	4.A.2 Song-based collaborative filtering
	4.A.3 Playlist-based collaborative filtering
	4.A.4 Recurrent neural networks

	5 Hybrid Playlist Systems
	5.1 Introduction
	5.1.1 Contributions of the chapter
	5.1.2 Scope of the chapter
	5.1.3 Organization of the chapter

	5.2 Related work
	5.3 Problem formulation
	5.3.1 Playlist continuation as matrix completion
	5.3.2 Playlist continuation as matrix expansion
	5.3.3 Recommending playlist continuations

	5.4 Proposed systems
	5.4.1 Profiles
	5.4.2 Membership

	5.5 Baseline systems
	5.5.1 Matrix factorization (``MF'')
	5.5.2 Hybrid matrix factorization (``Hybrid MF'')
	5.5.3 Playlist neighbors (``Neighbors'')
	5.5.4 Popularity
	5.5.5 Random

	5.6 Evaluation
	5.6.1 Off-line experiment
	5.6.2 Weak and strong generalization

	5.7 Datasets
	5.7.1 Playlist collections
	5.7.2 Song features

	5.8 Results
	5.8.1 Interpreting the results
	5.8.2 Overall performance of the playlist systems
	5.8.3 Combined features
	5.8.4 Infrequent and out-of-set songs
	5.8.5 Remarks on the sparsity of playlist collections

	5.9 Conclusion
	5.A Additional system details
	5.A.1 Profiles
	5.A.2 Membership
	5.A.3 MF and Hybrid MF
	5.A.4 Neighbors

	5.B Additional song features
	5.B.1 Semantic features from audio signal
	5.B.2 I-vectors from timbral features

	5.C Additional results

	6 Conclusion
	6.1 Open challenges
	6.1.1 Off-line evaluation of subjective opinions
	6.1.2 Impact of data selection and preparation

	6.2 Outlook

	 Bibliography

