Szegé measures and vibration of Krein strings

Roman Bessonov

St. Petersburg State University and PDMI

Complex Analysis, Spectral Theory and
Approximation meet in Linz, 2022

Joint work with Sergey Denisov



Travelling waves

String equation (1D wave equation)
ure(x, t) = u(x,t),  u(x,0) = uo(x), wue(x,0)=0, x,teR.

u(x, t) is the displacement of the string at x, it changes with time t
up is the initial form of the string;
ut(x,0) = 0 means that the velocity of string at time t = 0 is zero.
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Travelling waves

String equation (1D wave equation)
ure(x, t) = u(x,t),  u(x,0) = uo(x), wue(x,0)=0, x,teR.

u(x, t) is the displacement of the string at x, it changes with time t
up is the initial form of the string;

ut(x,0) = 0 means that the velocity of string at time t = 0 is zero.

d'Alembert solution

u(x, t) = up(x + t) + wo(x — t)

2 )

x,t € R.

u(x, t) is a linear combination of two travelling waves: ug(x + t)



p(xX)uee(x, t) = uex(x, t), u(x,0) = up(x), ue(x,0) =0, x,t € R.
p is the density of the material of the string. If p Z const, the
string is called non-homogeneous.
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p(xX)uee(x, t) = uex(x, t), u(x,0) = up(x), ue(x,0) =0, x,t € R.

p is the density of the material of the string. If p Z const, the
string is called non-homogeneous.

For which strings the waves u(x, t) look like travelling waves at
large times t — +007
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Problem setting

Non-homogeneous strings
p(x)uee(x, t) = u(x, t), u(x,0) = uo(x), ue(x,0) =0, x,t € R.

p is the density of the material of the string. If p Z const, the
string is called non-homogeneous.

“Problem”

For which strings the waves u(x, t) look like travelling waves at
large times t — +007

“Answer”

This occurs if and only if the spectral measure of the string has a
finite logarithmic integral (belongs to the Szegé class). Densities p
of such strings can be explicitly described.
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Non-homogeneous strings

Parameters

L € (0,400] is the length of the string;

m is the density measure: a Borel measure such that m([0, x]) is
the mass of the piece [0, x] of the string, x € [0, L).

Assumptions
m = p dx + ms is nonnegative, supported on [0, L);
m([0, x]) € (0, +o0) for every x € (0, L);

L+ m([0,L)) = +o0;
m 75 50.

Examples
homogeneous

POINt MASSES ~ seeseeessssesssnsessnnassnnessaseosacsesssstossnnessencns
two materals —
singular continuous




m(x)uze(x, t) = uxx(x, t),
u(x,0) = up(x), ue(x,0)=0,
ux(0,t) =0

X € [O, L), te R+,
(N) Neumann boundary condition.
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The string equation

The string equation, non-homogeneous case

m(x)ug(x, t) = ux(x, t),
u(x,0) = up(x), wue(x,0) =0, x€[0,L), teRy,
u(0,t) =0 (N) Neumann boundary condition.

For a general density measure m and general ug € L?(m), the
mathematical interpretation (and solution) is via operator calculus:

u(x, t) = cos(tr/Sm)uo
1 d

where S, = —. =% is the Krein string operator (a self-adjoint

nonnegative operator densely defined (N) on L?(m)).



Szegd class

Szego class on the unit circle T
Probability measures n = w dm + ps on T such that

/Iogwdm> —00
T

Szego class on the real line R
Measures 1 = w d\ + ps on R such that (1 + A\2)~1 € L1(u) and

log w(A)
/R 112 d\ > —o0

Szego class on the half-line R
Measures 0 = v d\ + o5 on R such that (1 + )=t € L1(0) and

logvD) s s

R. VAL + )



For a compactly supported up € L2(m), define the front of the
propagating wave by

fr(t) =inf{y > 0:u(x,t) =0 for m-a.e. x > y}.
\//\

fr(t)
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Theorem 1

For a compactly supported uy € L?(m), define the front of the
propagating wave by

fr(t) =inf{y > 0: u(x,t) =0 for m-a.e. x > y}.

AL

——————  fr(t-a) fr(t)

Theorem 1

Let [m, L] be a string, let a > O and let o be the spectral measure
of the string operator S, = *EW densely defined (N) on L2(m).
Then we have

fr(t)
lim inf/ lu(-, t)[>dm > 0
fi

t—L r(t—a)

for every (for some) nonzero ug € L2,,.(m) iff o € Sz(R.).



Theorem 1: remarks

Proof of Theorem 1: idea

Let 1 be an even measure on R such that u([x1, x]) = o([xZ, x3]).
It turns out that condition

fr(t)
Iiminf/ lu(-,t)|?dm >0, a>0
=L Jfr(t—a)

implies that some function in L?(u) cannot be approximated in
norm of L2(p) by smooth functions with positive Fourier spectrum.
Then Krein-Wiener theorem yields p € Sz(R), hence o € Sz(Ry).



Theorem 1: remarks

Proof of Theorem 1: idea

Let 1 be an even measure on R such that u([x1, x]) = o([xZ, x3]).
It turns out that condition

fr(t)
Iiminf/ lu(-,t)?dm >0, a>0
t—L fr(t—a)

implies that some function in L?(u) cannot be approximated in

norm of L2(p) by smooth functions with positive Fourier spectrum.
Then Krein-Wiener theorem yields p € Sz(R), hence o € Sz(Ry).

This idea works if you know how to calculate fr(t). In literature,
the formula

fr(t) = L(fr(0) + t), L(y)= inf{x >0 /OX Vo/(s)ds = y}

is known for regular strings or for special initial data up = dx,. The
general case requires additional work and BM multiplier theorem!



Front of a wave and BM theorem

Theorem 2 (Ref. 7)

Let [m = pdx + ms, L] be a string, and let u(x, t) be the solution
of the string equation corresponding to a compactly supported real
initial profile ug € L?(m). Then

fr(t) = L(fr(0) + t), t e R\ {0}.

Beurling-Malliavin theorem
Let E be an entire function of finite exponential type such that

| aF
/ 06 1=Vl ()] dx < 0.
R 1 +X2

Then there is an entire function ¢ of an arbitrarily small
exponential type such that ¢ is not identically zero and (1 + |E|)p
is bounded on R.



Main result

Ly)=inf{x>0: T(x) =y}, T(x)= /OX Vo (s) ds.

Theorem 3

Let [m = pdx + ms, L] be a string, a > 0. Assume that the spectral
measure o of [m, L] is in the Szeg6 class Sz(R). Let u(x, t) be
the solution of the string equation, u(x,0) = ug, g € L2(m). Then
there exists F,, € L2(R) such that

u(x,t) = p(x) Y4 F, (T(x) = t) + o(1),  t — +oo0,

Wlth 0(1) in L2(m,At), At = [Lffa7 Lt+a]-



Main result

Ly)=inf{x>0: T(x) =y}, T(x)= /OX Vo (s) ds.

Theorem 3

Let [m = pdx + ms, L] be a string, a > 0. Assume that the spectral
measure o of [m, L] is in the Szeg6 class Sz(R). Let u(x, t) be
the solution of the string equation, u(x,0) = ug, g € L2(m). Then
there exists F,, € L2(R) such that

u(x,t) = p(x) Y4 F, (T(x) = t) + o(1),  t — +oo0,
with o(1) in L2(m, A), D¢ = [Lt—a, Leya)-

In other words, the Szego case occurs if and only if we have a stable
propagation near the front of the wave, F,, is a “travelling wave".

If up € Hac(Sm), then o(1) in Theorem 3 is with respect to L2(m)
norm. We always have ||Fy, || ;2r) = [|Pactoll ;2(m)-



Theorem 3: remarks

Steps in the proof of Theorem 3
@ Define an entropy function of a string (or canonical system)
and prove its monotonicity and additivity properties;

@® Define regularized Krein's orthogonal entire functions and
prove Khrushchev formula from OPUC for them

©® Use Khrushchev's idea of weak/strong convergence and
properties of regularized Krein's functions to find long-time
asymptotics of generalized eigenvectors of a string

O Compare the free dynamics (pure travelling waves) with
perturbed one near the front of waves.



Strings with spectral measures in Sz(R.)

Theorem 4 (2017)

The spectral measure o = vdx + o5 of a string [m = pdx + o5, L]
lies in the Szegé class Sz(R), i.e.,

log v(\) ~
R, VA(L+ ) A= ’

if and only if

> (tnyz — to)mltn, tasa] — < o M;de)2 < 00

k>0 tn

for some (for every) sequence t, 1 L such that ft”“ Vp(x)dx ~ 1

th



Example: strings that are made from 2 materials

Consider a string with density

(x) a, xekE
X) =
p b, xeF

for some measurable partition E U F = R.

0 1 2 3 1 5 6

Corollary

We have o € Sz(R) if and only if ether a = b (homogeneous
case) or min(|E|, |F|) < co. In particular, the geometry of the
partition does not affect the character of propagation of waves.



Here L = +00, m = xgr, dx + ms, mg_Ldx, ug € Lgomp(m).
Front of the wave: esssup u(x,t) = esssup ugp + |t|, t € R.
If mg(R;) = +o00, then for every a > 0 we have
im (s )]l 2(m,fe-a,e42)) = O-
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Example: almost homogeneous strings

Here L = 400, m = xr, dx + ms, msLdx, ug € Lcomp( m).
Front of the wave: esssup u(x,t) = esssup ugp + |t|, t € R.
Asymptotic behaviour, non-Szegé case

If mg(R;) = +o00, then for every a > 0 we have
im u(x, )| i2(m fe-at4a)) = 0.

Asymptotic behaviour, Szeg6 case
If ms(R1) < +o0, then for every a > 0 we have

tl:TOO ||u(X7 t)||l-2(ms,[t—a,t+a]) = 0,

|iT Ju(x, t) = F(x = t)|l 2(t—a,t+a)) = O,

t—+o00

for some nonzero F € L?(R).



Example: Dirac operators, Wiegner-von Neumann potentials

Fora,B € R, setq—M Let Qu 3 = (0 )or Qup = (g_oq).
DQB Xi—>( )X’—i—QaﬁX
is the Dirac operator densely defmed (D) on L?(Ry,C?). Let np

denote its main spectral measure, and let Dy be the free Dirac
operator (Q = 0).



Example: Dirac operators, Wiegner-von Neumann potentials

For a, B € R, setq—M LetQag—(O )orQaﬂ:(g_oq)

DQ(MB Xi—>( )X’—i—QaﬁX
is the Dirac operator densely defmed (D) on L?(Ry,C?). Let np
denote its main spectral measure, and let Dy be the free Dirac
operator (Q = 0).

Corollary

. —itD 3 ]
The wave operators W, (Dg, 2 Do) = limi 100 € 0,5 0itDo exist

iff pag € Sz(R) iff (o, B) € Q (the set Q is below).
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