Szegő measures and vibration of Krein strings

Roman Bessonov

St. Petersburg State University and PDMI

Complex Analysis, Spectral Theory and Approximation meet in Linz, 2022

Joint work with Sergey Denisov

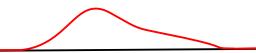
Travelling waves

String equation (1D wave equation)

$$u_{tt}(x,t) = u_{xx}(x,t), \quad u(x,0) = u_0(x), \quad u_t(x,0) = 0, \quad x,t \in \mathbb{R}.$$

u(x, t) is the displacement of the string at x, it changes with time t u_0 is the initial form of the string;

 $u_t(x,0) = 0$ means that the velocity of string at time t = 0 is zero.



String equation (1D wave equation)

$$u_{tt}(x,t) = u_{xx}(x,t), \quad u(x,0) = u_0(x), \quad u_t(x,0) = 0, \quad x,t \in \mathbb{R}.$$

u(x, t) is the displacement of the string at x, it changes with time t u_0 is the initial form of the string;

 $u_t(x,0) = 0$ means that the velocity of string at time t = 0 is zero.

d'Alembert solution

$$u(x,t)=\frac{u_0(x+t)+u_0(x-t)}{2}, \quad x,t\in\mathbb{R}.$$

u(x,t) is a linear combination of two travelling waves: $u_0(x \pm t)$

Non-homogeneous strings

$$\rho(x)u_{tt}(x,t)=u_{xx}(x,t),\ u(x,0)=u_0(x),\ u_t(x,0)=0,\ x,t\in\mathbb{R}.$$

 ρ is the **density** of the material of the string. If $\rho \not\equiv const$, the string is called non-homogeneous.

Non-homogeneous strings

$$\rho(x)u_{tt}(x,t)=u_{xx}(x,t),\ u(x,0)=u_0(x),\ u_t(x,0)=0,\ x,t\in\mathbb{R}.$$

 ρ is the **density** of the material of the string. If $\rho \not\equiv const$, the string is called non-homogeneous.

"Problem"

For which strings the waves u(x,t) look like travelling waves at large times $t \to \pm \infty$?

Non-homogeneous strings

$$\rho(x)u_{tt}(x,t)=u_{xx}(x,t),\ u(x,0)=u_0(x),\ u_t(x,0)=0,\ x,t\in\mathbb{R}.$$

 ρ is the **density** of the material of the string. If $\rho \not\equiv const$, the string is called non-homogeneous.

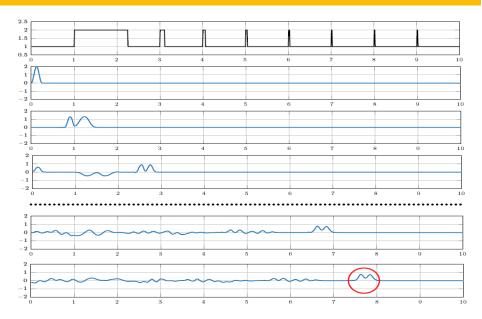
"Problem"

For which strings the waves u(x,t) look like travelling waves at large times $t \to \pm \infty$?

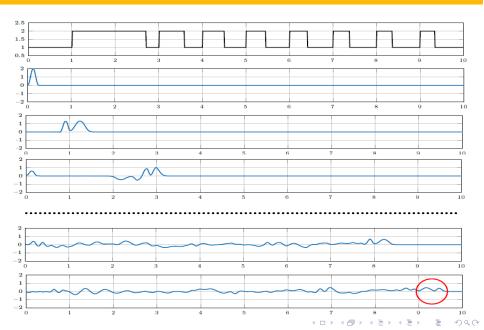
"Answer"

This occurs if and only if the spectral measure of the string has a finite logarithmic integral (belongs to the Szegő class). Densities ρ of such strings can be explicitly described.

Propagation of waves, example 1



Propagation of waves, example 2



Parameters

 $L \in (0, +\infty]$ is the length of the string; m is the density measure: a Borel measure such that m([0, x]) is the mass of the piece [0, x] of the string, $x \in [0, L)$.

Assumptions

```
m=
ho\,dx+m_{\rm s} is nonnegative, supported on [0,L); m([0,x])\in(0,+\infty) for every x\in(0,L); L+m([0,L))=+\infty; m\neq\delta_0.
```

Examples

homogeneous point masses two materals singular continuous

•••••	•••••	•••••	•••••	•••••	•••••	•••••
					_	

The string equation

The string equation, non-homogeneous case

$$\begin{split} &m(x)u_{tt}(x,t)=u_{xx}(x,t),\\ &u(x,0)=u_0(x),\ u_t(x,0)=0,\qquad x\in[0,L),\quad t\in\mathbb{R}_+,\\ &u_x(0,t)=0 \end{split}$$

For a general density measure m and general $u_0\in L^2(m)$, the mathematical interpretation (and solution) is via operator calculus

 $u(x,t) = \cos(t\sqrt{S_m})u_0$

where $S_m=-rac{1}{m}rac{a}{dx^2}$ is the Krein string operator (a self-adjoint nonnegative operator densely defined (N) on $L^2(m)$).

The string equation, non-homogeneous case

$$\begin{split} &m(x)u_{tt}(x,t)=u_{xx}(x,t),\\ &u(x,0)=u_0(x),\ u_t(x,0)=0,\qquad x\in[0,L),\quad t\in\mathbb{R}_+,\\ &u_x(0,t)=0 \end{split}$$

For a general density measure m and general $u_0 \in L^2(m)$, the mathematical interpretation (and solution) is via operator calculus:

$$u(x,t)=\cos(t\sqrt{S_m})u_0$$

where $S_m = -\frac{1}{m} \frac{d}{dx^2}$ is the Krein string operator (a self-adjoint nonnegative operator densely defined (N) on $L^2(m)$).

Szego class on the unit circle ${\mathbb T}$

Probability measures $\mu = w \ dm + \mu_s$ on $\mathbb T$ such that

$$\int_{\mathbb{T}} \log w \, dm > -\infty$$

Szego class on the real line $\mathbb R$

Measures $\mu = w \ d\lambda + \mu_s$ on $\mathbb R$ such that $(1+\lambda^2)^{-1} \in L^1(\mu)$ and

$$\int_{\mathbb{R}} \frac{\log w(\lambda)}{1+\lambda^2} \, d\lambda > -\infty$$

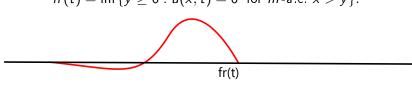
Szego class on the half-line \mathbb{R}_+

Measures $\sigma = \textit{v} \; d\lambda + \sigma_{\textit{s}}$ on \mathbb{R}_+ such that $(1+\lambda)^{-1} \in \textit{L}^1(\sigma)$ and

$$\int_{\mathbb{R}_+} rac{\log v(\lambda)}{\sqrt{\lambda}(1+\lambda)} \, d\lambda > -\infty$$

For a compactly supported $u_0 \in L^2(m)$, define the front of the propagating wave by

$$fr(t) = \inf\{y \ge 0 : u(x, t) = 0 \text{ for } m\text{-a.e. } x > y\}.$$



For a compactly supported $u_0 \in L^2(m)$, define the front of the propagating wave by

$$fr(t) = \inf\{y \ge 0 : u(x, t) = 0 \text{ for } m\text{-a.e. } x > y\}.$$

Theorem 1

Let [m, L] be a string, let a > 0, and let σ be the spectral measure of the string operator $S_m = -\frac{1}{m}\frac{d^2}{dx^2}$ densely defined (N) on $L^2(m)$. Then we have

$$\liminf_{t\to L}\int_{fr(t-a)}^{fr(t)}|u(\cdot,t)|^2\,dm>0$$

for every (for some) nonzero $u_0 \in L^2_{comp}(m)$ iff $\sigma \in Sz(\mathbb{R}_+)$.

4 D > 4 D > 4 E > 4 E > E 9 4 C

Proof of Theorem 1: idea

Let μ be an even measure on \mathbb{R} such that $\mu([x_1, x_2]) = \sigma([x_1^2, x_2^2])$. It turns out that condition

$$\liminf_{t\to L}\int_{fr(t-a)}^{fr(t)}|u(\cdot,t)|^2\,dm>0,\qquad a>0$$

implies that some function in $L^2(\mu)$ cannot be approximated in norm of $L^2(\mu)$ by smooth functions with positive Fourier spectrum. Then Krein-Wiener theorem yields $\mu \in Sz(\mathbb{R})$, hence $\sigma \in Sz(\mathbb{R}_+)$.

is known for regular strings or for special initial data $u_0=\delta_{x_0}.$ The general case requires additional work and BM multiplier theorem!

Proof of Theorem 1: idea

Let μ be an even measure on \mathbb{R} such that $\mu([x_1, x_2]) = \sigma([x_1^2, x_2^2])$. It turns out that condition

$$\liminf_{t\to L} \int_{fr(t-a)}^{fr(t)} |u(\cdot,t)|^2 dm > 0, \qquad a > 0$$

implies that some function in $L^2(\mu)$ cannot be approximated in norm of $L^2(\mu)$ by smooth functions with positive Fourier spectrum. Then Krein-Wiener theorem yields $\mu \in Sz(\mathbb{R})$, hence $\sigma \in Sz(\mathbb{R}_+)$.

This idea works if you know how to calculate fr(t). In literature, the formula

$$fr(t) = L(fr(0) + t), \quad L(y) = \inf\left\{x \ge 0 : \int_0^x \sqrt{\rho'(s)} \, ds = y\right\}$$

is known for regular strings or for special initial data $u_0 = \delta_{x_0}$. The general case requires additional work and BM multiplier theorem!

Front of a wave and BM theorem

Theorem 2 (Ref. ?)

Let $[m = \rho dx + m_s, L]$ be a string, and let u(x, t) be the solution of the string equation corresponding to a compactly supported real initial profile $u_0 \in L^2(m)$. Then

$$fr(t) = L(fr(0) + t), \qquad t \in \mathbb{R} \setminus \{0\}.$$

Beurling-Malliavin theorem

Let E be an entire function of finite exponential type such that

$$\int_{\mathbb{R}} \frac{\log^+ |E(x)|}{1+x^2} \, dx < \infty.$$

Then there is an entire function φ of an arbitrarily small exponential type such that φ is not identically zero and $(1+|E|)\varphi$ is bounded on \mathbb{R} .

$$L(y) = \inf\{x \ge 0 : T(x) = y\}, \quad T(x) = \int_0^x \sqrt{\rho'(s)} \, ds.$$

Theorem 3

Let $[m=\rho dx+m_s,L]$ be a string, a>0. Assume that the spectral measure σ of [m,L] is in the Szegő class $Sz(\mathbb{R}_+)$. Let u(x,t) be the solution of the string equation, $u(x,0)=u_0,\ u_0\in L^2(m)$. Then there exists $F_{u_0}\in L^2(\mathbb{R})$ such that

$$u(x,t) = \rho(x)^{-1/4} F_{u_0}(T(x) - t) + o(1), \qquad t \to +\infty,$$

with o(1) in $L^2(m, \Delta_t)$, $\Delta_t = [L_{t-a}, L_{t+a}]$.

In other words, the Szego case occurs if and only if we have a stable propagation near the front of the wave, F_{u_0} is a "travelling wave". If $u_0 \in H_{ac}(S_m)$, then o(1) in Theorem 3 is with respect to $L^2(m)$ norm. We always have $\|F_{u_0}\|_{L^2(\mathbb{R}^n)} = \|P_{u_0}u_0\|_{L^2(\mathbb{R}^n)}$.

$$L(y) = \inf\{x \ge 0 : T(x) = y\}, \quad T(x) = \int_0^x \sqrt{\rho'(s)} \, ds.$$

Theorem 3

Let $[m=\rho dx+m_s,L]$ be a string, a>0. Assume that the spectral measure σ of [m,L] is in the Szegő class $Sz(\mathbb{R}_+)$. Let u(x,t) be the solution of the string equation, $u(x,0)=u_0,\ u_0\in L^2(m)$. Then there exists $F_{u_0}\in L^2(\mathbb{R})$ such that

$$u(x,t) = \rho(x)^{-1/4} F_{u_0}(T(x)-t) + o(1), \qquad t \to +\infty,$$

with
$$o(1)$$
 in $L^2(m, \Delta_t)$, $\Delta_t = [L_{t-a}, L_{t+a}]$.

In other words, the Szego case occurs if and only if we have a stable propagation near the front of the wave, F_{u_0} is a "travelling wave". If $u_0 \in H_{ac}(S_m)$, then o(1) in Theorem 3 is with respect to $L^2(m)$ norm. We always have $\|F_{u_0}\|_{L^2(\mathbb{R})} = \|P_{ac}u_0\|_{L^2(m)}$.

Steps in the proof of Theorem 3

- Define an entropy function of a string (or canonical system) and prove its monotonicity and additivity properties;
- 2 Define regularized Krein's orthogonal entire functions and prove Khrushchev formula from OPUC for them
- 3 Use Khrushchev's idea of weak/strong convergence and properties of regularized Krein's functions to find long-time asymptotics of generalized eigenvectors of a string
- 4 Compare the free dynamics (pure travelling waves) with perturbed one near the front of waves.

Strings with spectral measures in $Sz(\mathbb{R}_+)$

Theorem 4 (2017)

The spectral measure $\sigma = vdx + \sigma_s$ of a string $[m = \rho \, dx + \sigma_s, L]$ lies in the Szegő class $Sz(\mathbb{R}_+)$, i.e.,

$$\int_{\mathbb{R}_+} \frac{\log \nu(\lambda)}{\sqrt{\lambda}(1+\lambda)} \, d\lambda > -\infty,$$

if and only if

$$\sum_{k>0} (t_{n+2} - t_n) m[t_n, t_{n+2}] - \left(\int_{t_n}^{t_{n+2}} \sqrt{\rho(x)} \, dx \right)^2 < \infty$$

for some (for every) sequence $t_n \uparrow L$ such that $\int_{t_n}^{t_{n+1}} \sqrt{
ho(x)} \, dx \sim 1$

Example: strings that are made from 2 materials

Consider a string with density

$$\rho(x) = \begin{cases} a, & x \in E \\ b, & x \in F \end{cases}$$

for some measurable partition $E \cup F = \mathbb{R}$.



Corollary

We have $\sigma \in Sz(\mathbb{R}_+)$ if and only if ether a=b (homogeneous case) or $\min(|E|,|F|)<\infty$. In particular, the geometry of the partition does not affect the character of propagation of waves.

Example: almost homogeneous strings

Here $L=+\infty$, $m=\chi_{\mathbb{R}_+}dx+m_s$, $m_s\perp dx$, $u_0\in L^2_{comp}(m)$. Front of the wave: $\operatorname{ess\,sup} u(x,t)=\operatorname{ess\,sup} u_0+|t|,\ t\in\mathbb{R}$.

Asymptotic behaviour, non-Szegő case

If
$$m_s(\mathbb{R}_+)=+\infty$$
, then for every $a>0$ we have
$$\lim_{t\to +\infty}\|u(x,t)\|_{L^2(m,[t-a,t+a])}=0.$$

Asymptotic behaviour, Szegő case $\text{If } m_s(\mathbb{R}_+) < +\infty, \text{ then for every } a>0 \text{ we have } \\ \lim_{t\to +\infty} \|u(x,t)\|_{L^2(m_s,[t-a,t+a])} = 0,$

$$\lim_{t \to +\infty} \|u(x,t) - F(x-t)\|_{L^2([t-a,t+a])} = 0$$

for some nonzero $F \in L^2(\mathbb{R})$

Example: almost homogeneous strings

Here $L=+\infty$, $m=\chi_{\mathbb{R}_+}dx+m_s$, $m_s\perp dx$, $u_0\in L^2_{comp}(m)$. Front of the wave: $\operatorname{ess\,sup} u(x,t)=\operatorname{ess\,sup} u_0+|t|,\ t\in\mathbb{R}$.

Asymptotic behaviour, non-Szegő case

If
$$m_s(\mathbb{R}_+)=+\infty$$
, then for every $a>0$ we have
$$\lim_{t\to +\infty}\|u(x,t)\|_{L^2(m,[t-a,t+a])}=0.$$

Asymptotic behaviour, Szegő case

If
$$m_s(\mathbb{R}_+)<+\infty$$
, then for every $a>0$ we have
$$\lim_{t\to+\infty}\|u(x,t)\|_{L^2(m_s,[t-a,t+a])}=0,$$

$$\lim_{t\to+\infty}\|u(x,t)-F(x-t)\|_{L^2([t-a,t+a])}=0,$$

for some nonzero $F \in L^2(\mathbb{R})$.

Example: Dirac operators, Wiegner-von Neumann potentials

For
$$\alpha, \beta \in \mathbb{R}$$
, set $q = \frac{\sin x^{\alpha}}{x^{\beta}}$. Let $Q_{\alpha,\beta} = \begin{pmatrix} 0 & q \\ q & 0 \end{pmatrix}$ or $Q_{\alpha,\beta} = \begin{pmatrix} q & 0 \\ 0 & -q \end{pmatrix}$. $D_{Q_{\alpha,\beta}} : X \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} X' + Q_{\alpha,\beta} X$

is the Dirac operator densely defined (D) on $L^2(\mathbb{R}_+, \mathbb{C}^2)$. Let $\mu_{\alpha,\beta}$ denote its main spectral measure, and let D_0 be the free Dirac operator (Q=0).

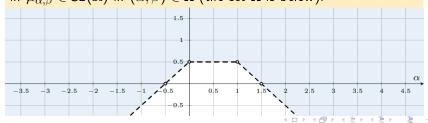
Example: Dirac operators, Wiegner-von Neumann potentials

For
$$\alpha, \beta \in \mathbb{R}$$
, set $q = \frac{\sin x^{\alpha}}{x^{\beta}}$. Let $Q_{\alpha,\beta} = \begin{pmatrix} 0 & q \\ q & 0 \end{pmatrix}$ or $Q_{\alpha,\beta} = \begin{pmatrix} q & 0 \\ 0 & -q \end{pmatrix}$. $D_{Q_{\alpha,\beta}} : X \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} X' + Q_{\alpha,\beta} X$

is the Dirac operator densely defined (D) on $L^2(\mathbb{R}_+,\mathbb{C}^2)$. Let $\mu_{\alpha,\beta}$ denote its main spectral measure, and let D_0 be the free Dirac operator (Q=0).

Corollary

The wave operators $W_{\pm}(D_{Q_{\alpha,\beta}},D_0)=\lim_{t\to\pm\infty}e^{-itD_{Q_{\alpha,\beta}}}e^{itD_0}$ exist iff $\mu_{\alpha,\beta}\in Sz(\mathbb{R})$ iff $(\alpha,\beta)\in\Omega$ (the set Ω is below).



Main tool: entropy function

Main tool: entropy function

Some references

☐ MR4425804 Bessonov, Roman; Denisov, Sergey; A new life of the classical Szegő formula. Extended abstracts fall 2019—spaces of analytic functions: approximation, interpolation, sampling, 31–36, Trends Math. Res. Perspect. CRM Barc., 12, Birkhäuser/Springer, Cham, [2021], ©2021. 30C40 (33C45 42C05)
☐ MR1952927 (2003m:47019) Christ, M.; Kiselev, A. Scattering and wave operators for one-dimensional Schrödinger operators with slowly decaying nonsmooth potentials. <i>Geom. Funct. Anal.</i> 12 (2002), no. 6, 1174–1234. (Reviewer: Christoph M. Thiele) 47A40 (34L25 34L40 47B80 47E05 47N50 81U99)
☐ MR4322036 Damanik, David; Eichinger, Benjamin; Yuditskii, Peter Szegő's theorem for canonical systems: the Arov gauge and a sum rule. <i>J. Spectr. Theory</i> 11 (2021), no. 3, 1255–1277. (Reviewer: Leonid B. Golinskiï) 42C05 (30H10 47A48)
■ MR1815919 (2002b:42032) Khrushchev, Sergei Schur's algorithm, orthogonal polynomials, and convergence of Wall's continued fractions in $L^2(\mathbb{T})$. <i>J. Approx. Theory</i> 108 (2001), no. 2, 161–248. (Reviewer: Leonid B. Golinskiĩ) 42C05 (30C10 30D50 33C47)
MR0080735 (18,291b) Kreĭn, M. G. Continuous analogues of propositions on polynomials orthogonal on the unit circle. (Russian) <i>Dokl. Akad. Nauk SSSR (N.S.)</i> 105 (1955), 637–640. (Reviewer: F. V. Atkinson) 30.0X

☐ MR2105089 (2006a:42002b) Simon, Barry Orthogonal polynomials on the unit circle. Part 2. Spectral theory. American Mathematical Society Colloquium Publications, 54, Part 2. American Mathematical Society, Providence, RI, 2005. pp. i–xxii and 467–1044. ISBN: 0-8218-3675-7 (Reviewer: P. L. Duren) 42-02 (30C85)

33C45 42C05 47B36 47N50)

Thank you!

