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gap labelling

the gift that keeps on giving
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The One-Dimensional Anderson Model

Choose a compactly supported Borel probability measure v on R. Form the
product measure p = v%. For each w € Q := (supp Z/)Z, consider the potential
Vi,(n) = ws, n € Z, and the operator

[Hop](n) = ¥(n+1) + ¥(n — 1) + Vi(n)y(n)
in £2(Z).
The family {Hw}weg is called the one-dimensional Anderson model.

Theorem (Kunz-Souillard)
For p-almost every w € Q, we have

o(H,) =X :=[-2,2] 4 suppv
The critical aspects of this result are (i) the almost sure constancy of the

spectrum, (ii) the ability to determine the almost sure spectrum explicitly, and
(iii) the absence or scarcity of spectral gaps.



The Almost Mathieu Operator

Choose a coupling constant A > 0, a frequency ao € R\ Q, and a phase
w € T =R/Z. Consider the potential V,,(n) = 2\ cos(2n(w + na)), n € Z, and
the operator

[Hop](n) = 9(n+ 1) +1p(n — 1) + Vi,(n)y(n)
in £2(Z).
The family {H, }weq is called the almost Mathieu operator.

Theorem (Avila-Jitomirskaya)
There is a perfect nowhere dense set ¥ C R such that for every w € T, we have

o(H,) =X

The critical aspects of this result are (i) the constancy of the spectrum and (ii)
the persistent denseness of spectral gaps.



The Spectrum of the Almost Mathieu Operator
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(Almost Sure) Constancy of the Spectrum

Given a compact metric space €2, a homeomorphism T : Q — Q, f € C(Q,R),
we consider the potentials

Viw(n)=f(T'w), neZ, we
and the operators

[Hr.w®l(n) = (n+ 1) + ¢(n = 1) + Vr.o(n)e(n)
in 0*(Z).
Theorem (Pastur)

If uw is a T-ergodic Borel probability measure on S0, then there exists a compact
Y ¢, C R such that for pi-almost every w € Q, we have o(H,) = Xr ..

Theorem
If T is minimal, then there exists a compact ¢ C R such that for every w € €,
we have o(H,) = ¥



The Almost Sure Spectrum

Let us consider an ergodic family of Schrédinger operators {H }weq in £2(Z)
as above and, for some T-ergodic measure i, the associated almost sure
spectrum .

The density of states measure k = k¢ associated with the family {H., }.ecq is
given by

/édm=AwmAHJMdmm

In other words, & is the p-average of the spectral measure corresponding to the
pair (H.,d0). The accumulation function of &,

KE) = hur(E) = [ e

is called the integrated density of states (IDS).

It is not hard to see that x is a probability measure whose topological support
coincides with X. Thus k is an increasing function that grows precisely at
points in L and takes the value 0 below ¥ and the value 1 above %.

In particular, k is constant on each gap of X and each gap can be labeled
uniquely by the value k takes on it.



Gap Labelling via Schwartzman a la Johnson

Russell Johnson
(1947-2017)



Gap Labelling in One Dimension via the Schwartzman Group

Gap labelling theory attempts to characterize these gaps labels in useful ways.
The classical approach to gap labelling, developed by Bellissard et al., is based
on K-theory of C*-algebras. The advantage of this approach lies in its scope,
as it applies in arbitrary dimensions and to operators that are more general
than Schrédinger operators. The disadvantage is that actual computations of
gap labels are very difficult.

For Schrédinger operators in one dimension, there is an alternative approach
due to Johnson. While its scope is much more restricted, actual computations
of gap labels are far easier.

Given a topological dynamical system (92, T) as above, we define the
suspension of the dynamics (X, T) as follows: X is the quotient of Q x [0, 1]

modulo the equivalence relation (w,1) ~ (Tw,0) and T [w,s] = [w,s + t].

If s a T-ergodic Borel probability measure on 2, we define the suspension of
the measure 1z on X by

/deﬁ - /Ol/gf([w, s]) dpu(w) ds



Gap Labelling in One Dimension via the Schwartzman Group

Let C¥(X,T) be the set of equivalence classes in C(X,T) modulo homotopy;
C*(X,T) is a countable abelian group (with group operation

[$1] + [@2] = [¢1 + ¢2]).

Given ¢ € C(X,T) and x € X, we obtain a continuous function ¢, : R — T by
following the image of ¢ along the orbit of x, ¢«(t) = ¢(7tx).

With the canonical projection 7 : R — T, we observe that for each

a € 7 H{¢x(0)}, there is a unique continuous lift ¢, : R — R that satisfies

T o Px = Px and ¢x(0) = a.

Proposition (Johnson)

(a) For each ¢ € C(X,T), the limit

ox(t

rot(¢; x) = tlﬁl\ngo —

~—

exists for fi-almost every x € X and does not depend on the choice of lift.
Moreover, rot(¢; x) is i-almost surely independent of x and hence may be
denoted by ().

(b) If ¢ and @' are homotopic, then Az(¢) = Az(P').



Gap Labelling in One Dimension via the Schwartzman Group

The induced map
Ay CHX,T) > R

is called the Schwartzman homomorphism and its range
A=A(Q, T, p) == Ax(CH(X, T))
is called the Schwartzman group.
Theorem (Johnson’s Gap-Labelling Theorem)
Assume in the setting above that supp = Q. Then, for every f € C(Q,R),
k.r(E) e AN[0,1]

forall E€ R\ X, .

This result naturally arises from an alternative perspective on the IDS (via
normalized eigenvalue counting), oscillation theory (which relates eigenvalue
counting and sign changes/rotations) of solutions, and Johnson's theorem
(which provides continuous sections to which the Schwartzman homomorphism
can be applied).



Gap Labelling: A Survey and Some Novel Applications

Jake Fillman
(Texas State University)



Examples of Schwartzman Groups

Let us consider a few examples:

» (quasi-periodic) Q =T, T, : T? —» T9, w > w + «a, where a € T¢ has
rationally independent entries, ;1 = Leb:

AT, Ta, ) = Z%a + Z

> (skew-shift) Q = T?, Ti : T? — T?, (w1, wz) — (w1 + @, w1 + w2), where
a € T is irrational, p = Leb:

A(T?, Tee, pt) = Za+ Z

> (cat map) Q = T?, Tem : T? = T2, (w1, w2) > (w1 + wa, w1 + wa),
u = Leb:
A(T?, Tom, pt) = Z

The underlying general result is the following:

Theorem (D.-Fillman)

Consider Tap: T¢ — T¢, w — Aw + b, where A € SL(d,Z), b € T9. Suppose
w is Ta p-ergodic with supp(u) = T?. Then,

A(T?, Tap,p) = {kb+n:n€ZandkcZ Nker(l — A%)}



Gap Labelling: Generic Gap Opening

Artur Avila Jairo Bochi
(Universitat Ziirich) (Penn State University)



Gap Labelling: Generic Gap Opening
Johnson's gap-labelling theorem shows that for any continuous f € C(Q,R),
k.r(E) e AN[0,1]

for all E € R\ > ,.r. Two natural questions:
1. Is this collection of gap labels minimal, that is, are they all needed?

2. If a computation of 2 yields a dense set, can one use this to show Cantor
spectrum, that is, that the gaps are dense for some f € C(2,R)?

Theorem (Avila-Bochi-D.)

Suppose T s strictly ergodic and has a non-periodic finite-dimensional factor.
Then for each £ € AN [0, 1], the set

{f € C(2,R) : X, r has an open gap with label ¢}

is open and dense. In particular, for a generic f € C(Q,R), all gaps allowed by
the gap labelling theorem are open.

Remark

Among the three examples above, this theorem applies to torus translations
and the skew-shift. It would be interesting to clarify if a result of this type
holds for more general base dynamics.



Gap Labelling: Bellissard’s Question

Artur Avila Anton Gorodetski
(Universitat Ziirich) (University of California at Irvine)



The One-Dimensional Anderson Model

Let us recall the following fundamental result mentioned earlier:

Theorem (Kunz-Souillard)

If {H.} is the one-dimensional Anderson model with single-site measure v,
then for p-almost every w € QQ, we have

o(Hw) =X :=[-2,2] + suppv

As pointed out before, two critical aspects are the explicit formula and the
forced finiteness of the number of gaps. To appreciate the former, let us briefly
sketch the proof.

Proof.

“Y. C[—2,2] +suppv": suppu is the a.s. spectrum of {V,,} and they are
perturbed by A, which has ||A| < 2.

“Y. D [—2,2]+suppr”: Foreach a € suppv, we have o(A+a) =[a—2,a+2].
For a.e. w, V., has arbitrarily long stretches on which it is arbitrarily close to a.
Now use a Weyl sequence argument via trial vectors. O

The key to the proof is that we know two types of spectra explicitly, o(V.,) and
(A + a). In particular, it is absolutely essential to rely on the presence of
constant realizations.



Bellissard’s Question: The Question

Suppose we pass to more general random operators, for example random
perturbations of a regular background. Specifically, we could take the sum of
the two key examples:

[Hort](n) = (n + 1) +(n — 1) + [V (n) + 2\ cos(2mna)]is(n).

One terms wants to force few spectral gaps, while the other wants to force a
dense set of spectral gaps. Who wins?

Bellissard has asked whether one can show that the random terms always wins.
That is, in the model above and in models like it, the almost sure spectrum
only has finitely many gaps.

The proof of the result in the zero background case does not seem to extend,
because we have no constant realizations and indeed the unperturbed spectrum
is a Cantor set.

A naive application of gap labelling yields no answer, because the Schwartzman
group of the product system still yields a dense set of labels.

Are we stuck entirely or is there something that gap labelling can tell us about
Bellissard's question?



Bellissard’s Question: The Setup

Given a compact metric space X, a homeomorphism T : X — X, an ergodic
Borel probability measure p with full topological support, suppu = X, and a
sampling function f € C(X,R), we generate potentials

Vi(n) =f(T"x), xe X, neZ
and Schrodinger operators
[H](n) = ¥(n +1) + ¢(n — 1) + Vi(n)i(n)
in £2(Z). There is a compact set ¥ such that
Yo = o(Hx) for p-almost every x € X.
The random perturbation is given by
Wo(n) = wn, w € Q, n€Z,

where Q = (supp 1/)Z and v is a compactly supported probability measure on R
with topological support S := supp v satisfying #S > 2.
Since the product of y and fi := 1% is ergodic, there is a compact set X; such
that

Y1 = o(Hx + Wi,) for u X fi-almost every (x,w) € X x Q.



Bellissard’s Question: The Result

Definition

Suppose A and B are compact subsets of R. We define A% B as follows. If
diam(A) > diam(B), then A% B = A+ ch(B), and if diam(A) < diam(B), then
A% B = ch(A) + B.

Theorem (Avila-D.-Gorodetski)

Consider the setting described above and assume that X is connected. Then,
we have
¥ =%o%S.

This theorem provides an affirmative answer to Bellissard's question:

Corollary (Avila-D.-Gorodetski)

If X is connected, then the almost sure spectrum ¥ has only finitely many
gaps. Equivalently, X1 is given by a finite union of non-degenerate compact
intervals.



Bellissard’s Question: The Result

Theorem (Avila-D.-Gorodetski)

Consider the setting described above and assume that X is connected. Then,
we have

¥ =3%o%S.
The proof uses Johnson's approach to gap labelling in an essential way.
Moreover, the result extends the classical Kunz-Souillard formula.
Consider the two cases in question:
(a) If diam(S) < 4 = diam(Xo), then X1 = Yok S =[-2,2] + ch(S) = %o + S.
(b) If diam(S) > 4, then X1 = Yok S =ch([-2,2]) + S =Xo + S.



