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1. Some basic facts

Let H be a Hilbert space and A be a bounded self-adjoint operator acting
on it. We can study the spectrum of this operator by obtaining a
decomposition of H into an orthogonal sum of cyclic subspaces of A. That
is, take any g1 ∈ H with unit norm, i.e., ∥g1∥ = 1, and generate the cyclic
subspace

C1 := span{Amg1 : m = 0, 1, . . .}.

We shall call g1 the first generator and C1 the first cyclic subspace. One
can show that C1 is invariant with respect to A. If C1 ⊂ H, we take
g2 ∈ H, that satisfies ∥g2∥ = 1 and g2 ⊥ C1. We denote by C2 the cyclic
space generated by g2. It is also invariant under A and satisfies C1 ⊥ C2.
Continuing this way, we obtain the following representation of H as a sum
of orthogonal cyclic subspaces:

H = ⊕N
m=1Cm, (1)

where N ∈ N ∪∞.
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Since A is self-adjoint, the operator (A− z)−1 is bounded on H for every
z ∈ C+, the upper half-plane. For each f ∈ H, the function
⟨(A− z)−1f, f⟩ is in Herglotz-Nevanlinna class, i.e., it is analytic in C+

and has non-negative imaginary part there. Moreover, since A is bounded,
we have an integral representation

⟨(A− z)−1f, f⟩ =
∫
R

dρf (x)

x− z
, z ∈ C+ ,

where the measure ρf is called the spectral measure of f .
It holds that

σ(A) =

N⋃
m=1

supp ρgm ,

where ρgm is the spectral measure of the generator gm for the cyclic
subspace Cm from decomposition (1).

Sergey Denisov, University of Wisconsin-Madison Jacobi matrices on trees and MOP 4 / 37



Decomposition (1) can be used as follows. Fix Cm. Taking a sequence of
vectors

{gm,Agm,A2gm, . . .}

and running Gramm-Schmidt orthogonalization procedure gives the
orthonormal basis in Cm in which the restriction of A to Cm takes the
form of either an infinite or a finite (depending on dimCm) one-sided
Jacobi matrix.
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Let {aj}, {bj} ∈ ℓ∞(Z+) and aj > 0, bj ∈ R, hereafter Z+ := {0, 1, 2, . . .}
and N := {1, 2, . . .}. An infinite one-sided Jacobi matrix is a matrix of the
form

J :=


b0

√
a0 0 0 . . .√

a0 b1
√
a1 0 . . .

0
√
a1 b2

√
a2 . . .

0 0
√
a2 b3 . . .

. . . . . . . . . . . . . . .

 , (2)

and an N–dimensional Jacobi matrix is the upper-left N ×N corner of
(2). We define two sets of measures on the real line

M :=
{
µ : suppµ ⊂ [−Rµ, Rµ], Rµ < ∞, #suppµ = ∞

}
and

M1 :=
{
µ ∈ M : µ(R) = 1

}
,
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One-sided infinite Jacobi matrices with uniformly bounded entries are
known to be in one-to-one correspondence with M1, the set of probability
measures on R whose support is compact and has infinite cardinality. This
bijection is realized via polynomials orthogonal on the real line. On the
one hand, since J defines a bounded self-adjoint operator on the Hilbert
space ℓ2(Z+), we can consider the spectral measure of the vector
(1, 0, 0, . . .). We will call it ρ(J ). On the other hand, given µ ∈ M1, one
can produce a Jacobi matrix in the following way. Let pn(x, µ) be the n-th
orthonormal polynomial with respect to µ, i.e., pn(x, µ) is a polynomial of
degree n such that∫

R
pn(x, µ)x

mdµ(x) = 0, m = 0, . . . , n− 1 ,

that is normalized so that

coeffnpn > 0,

∫
R
p2n(x, µ)dµ(x) = 1 ,

where coeffnQ is the coefficient in front of xn of the polynomial Q(x).
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It is known that polynomials pn(x, µ) satisfy the three-term recurrence
relations

xpn(x, µ) =
√
anpn+1(x, µ)+bnpn(x, µ)+

√
an−1pn−1(x, µ), n = 0, 1, . . . ,

(3)
where an > 0, bn ∈ R and p−1 := 0, a−1 := 0. The coefficients {an}, {bn}
are defined uniquely by µ and one can show that

{an}, {bn} ∈ ℓ∞(Z+) .

Let J be defined via (2) with these coefficients. It is a general fact of the
theory that

ρ(J ) = µ and therefore σ(J ) = suppµ .
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The above correspondence is one-to-one: one can start with a bounded
self-adjoint Jacobi matrix (2), compute ρ(J ), the spectral measure of
(1, 0, 0, . . .), via (4), take ρ(J ) as a measure of orthogonality µ and,
finally, define the orthogonal polynomials whose recurrence coefficients will
give rise to the same J .
It follows from (3) that the sequence {pn(x, µ)}, with µ = ρ(J ),
represents the generalized eigenfunction of J . That can be made explicit
by the following statement, which, together with (3), can be taken as a
definition of a generalized eigenfunction.
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Lemma

Suppose µ ∈ M1. The map

α(x) 7→ α̂ =
{
α̂(n)

}
n∈Z+

, α̂(n) :=

∫
α(x)pn(x, µ)dµ(x),

is a unitary map from L2(µ) onto ℓ2(Z+) such that

∥α∥2L2(µ) = ∥α̂∥2ℓ2(Z+) .

This map establishes unitary equivalence of the operator J on ℓ2(Z+) and
the operator of multiplication by x on L2(µ). In particular,

xα(x) 7→ J α̂.
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2. Multiple orthogonal polynomials

The system of polynomials orthogonal on the real line can be generalized
to the case of orthogonality with respect to several measures. This
multiple orthogonality, being a classical area of approximation theory, has
connections to number theory (e.g., Hermite’s proof that e is
transcendental), numerical analysis (simultaneous rational approximation
of analytic vector-function, simultaneous Gaussian quadrature for
numerical calculation of integrals), Random Matrix Theory, etc.. To define
it, consider

µ⃗ := (µ1, µ2), suppµk ⊆ R, and n⃗ := (n1, n2) ∈ Z2
+, |n⃗| := n1+n2,

where we assume that all the moments of the measures µ1, µ2 are finite.
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Definition. Polynomials A
(1)
n⃗ (x) and A

(2)
n⃗ (x), degA

(k)
n⃗ ⩽ nk − 1,

k ∈ {1, 2}, that satisfy∫
R
xm

(
A

(1)
n⃗ (x)dµ1(x) +A

(2)
n⃗ (x)dµ2(x)

)
= 0, m ∈ {0, . . . , |n⃗| − 2} , (4)

are called type I multiple orthogonal polynomials (type I MOP). We

assume that A
(k)
n⃗ (x) ̸≡ 0 unless nk − 1 < 0. Furthermore, non-identically

zero polynomial Pn⃗(x) is called type II multiple orthogonal polynomial
(type II MOP) if it satisfies

degPn⃗ ⩽ |n⃗|,
∫
R
Pn⃗(x)x

mdµk(x) = 0 (5)

for all m ∈ {0, . . . , nk − 1} and k ∈ {1, 2}.
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Polynomials of the first and second type always exist. The question of
uniqueness is more involved. The index n⃗ is called normal if monic
Pn⃗ = x|n⃗| + · · · exists and is unique. It turns out that n⃗ is normal if and
only if the linear form

Qn⃗(x) := A
(1)
n⃗ (x)dµ1(x) +A

(1)
n⃗ (x)dµ2(x)

that satisfies (4) and ∫
R
x|n⃗|−1Qn⃗(x) = 1

exists and is unique.
If d = 1, type II polynomials Pn⃗(x) are the standard monic polynomials
orthogonal on the real line with respect to the measure µ1 and the

polynomials A
(1)
n⃗ (x) are proportional to pn−1(x, µ1) with the coefficient of

proportionality that can be computed explicitly.
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Definition. The vector µ⃗ is called perfect if all the multi-indices n⃗ ∈ Z2
+

are normal.
We will consider only perfect systems (most of the systems studied in the
literature are perfect).
Besides the orthogonal polynomials, we will need the functions of the
second kind.
Definition. The functions

Ln⃗(z) :=

∫
R

Qn⃗(x)

z − x
and Rn⃗,k(z) :=

∫
R

Pn⃗(x)dµk(x)

z − x
, k ∈ {1, 2},

are called functions of the second kind associated to the linear forms
Qn⃗(x) and to polynomials Pn⃗(x), respectively.
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In the literature on orthogonal polynomials, the following Cauchy-type
integral

µ̂(z) :=

∫
R

dµ(x)

z − x
, z ̸∈ suppµ , µ ∈ M, (6)

is often referred to as a Markov function. If µ1, µ2 ∈ M, we can rewrite
Ln⃗(z) as

Ln⃗(z) = A
(1)
n⃗ (z)µ̂1(z) +A

(2)
n⃗ (z)µ̂2(z)−A

(0)
n⃗ (z),

where A
(0)
n⃗ (z) is a polynomial given by

A
(0)
n⃗ (z) :=

∫
R

A
(1)
n⃗ (z)−A

(1)
n⃗ (x)

z − x
dµ1(x) +

∫
R

A
(2)
n⃗ (z)−A

(2)
n⃗ (x)

z − x
dµ2(x).
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Type I Hermite-Pade approximation of {µ̂j}, j ∈ {1, 2} reads

Ln⃗(z) = O(|z|−|n⃗|), |z| → ∞ .

Type II approximation gives

Pn⃗ µ̂j −Rn⃗,j = O(|z|−nj−1), |z| → ∞, j ∈ {1, 2}.

Similarly to classical orthogonal polynomials on the real line, the above
MOP also satisfy nearest-neighbor lattice recurrence relations. Denote by
e⃗1 := (1, 0) and e⃗2 := (0, 1) the standard basis vectors in R2. Assume that

µ⃗ = (µ1, µ2) is perfect .
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In this case, there exist real constants {an⃗,1, an⃗,2, bn⃗,1, bn⃗,2}n⃗∈Z2
+
, which we

call the recurrence coefficients corresponding to the system µ⃗, such that
the linear forms Qn⃗(x) satisfy

xQn⃗(x) = Qn⃗−e⃗i(x)+bn⃗−e⃗i,iQn⃗(x)+an⃗,1Qn⃗+e⃗1(x)+an⃗,2Qn⃗+e⃗2(x) , n⃗ ∈ N2,
(7)

for each i ∈ {1, 2}, while it holds for type II polynomials that

xPn⃗(x) = Pn⃗+e⃗i(x)+ bn⃗,iPn⃗(x)+an⃗,1Pn⃗−e⃗1(x)+an⃗,2Pn⃗−e⃗2(x) , n⃗ ∈ Z2
+,
(8)

again, for each i ∈ {1, 2}, where we let Pn⃗−e⃗l(x) ≡ 0 when the l-th
components of n⃗− e⃗l is negative.

Sergey Denisov, University of Wisconsin-Madison Jacobi matrices on trees and MOP 17 / 37



It is known that

an⃗,i ̸= 0, n⃗ ∈ N2, i ∈ {1, 2}, and

{
a(n,0),1, a(0,n),2 > 0, n ∈ N,

a(0,n),1 = a(n,0),2 := 0, n ∈ Z+,

where the first conclusion follows from perfectness and an explicit integral
representation for an⃗,i, and the second one is part definition and part a
consequence of positivity of parameters {an} in (3).
For perfect systems µ⃗, one can show that (7) implies the recursion for the
type I polynomials themselves:

xA
(j)
n⃗ (x) = A

(j)
n⃗−e⃗i

(x)+bn⃗−e⃗i,iA
(j)
n⃗ (x)+an⃗,1A

(j)
n⃗+e⃗1

(x)+an⃗,2A
(j)
n⃗+e⃗2

(x) , (9)

where n⃗ ∈ N2, i, j ∈ {1, 2} .
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Two equations for Q at point n⃗ = (1, 1) from (7)
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The recurrence coefficients {an⃗,i, bn⃗,i} are uniquely determined by µ⃗.
However, when d > 1, unlike in the one-dimensional case, we can not
prescribe them arbitrarily. In fact, coefficients in (7) and (8) satisfy the
so-called “consistency conditions”, which is a system of nonlinear
difference equations:

bn⃗+e⃗i,j − bn⃗,j = bn⃗+e⃗j ,i − bn⃗,i,

2∑
k=1

an⃗+e⃗j ,k −
2∑

k=1

an⃗+e⃗i,k = bn⃗+e⃗j ,ibn⃗,j − bn⃗+e⃗i,jbn⃗,i,

an⃗,i(bn⃗,j − bn⃗,i) = an⃗+e⃗j ,i(bn⃗−e⃗i,j − bn⃗−e⃗i,i),

where n⃗ ∈ N2 and i, j ∈ {1, 2}. Conversely, solution to this nonlinear
system is unique and uniquely defines µ⃗ (µk’s are the spectral measures of
the Jacobi operators corresponding to the boundary values) provided the
boundary values are properly defined.
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3. Jacobi matrices on binary trees generated by MOP

The finite binary trees and Jacobi matrices on them correspond to MOP of
the second type {Pn⃗} and infinite binary trees and Jacobi matrices on

them correspond to MOP of the first type {A(j)
n⃗ }.

Let us focus on the latter case and consider (7) and untwine it to the
infinite rooted tree.

(1, 1) ∼ O = Y(p)

(2, 1) (1, 2) ∼ Y = O(ch),2

(3, 1) (2, 2) (2, 2) ∼ Y(ch),1 (1, 3) ∼ Y(ch),2

Figure: Three generations of T .
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Specifically, let T be an infinite 2-homogeneous rooted tree (rooted Cayley
tree) and V be the set of its vertices with O being the root. On the lattice
N2, consider an infinite path{

n⃗(1), n⃗(2), . . .
}
, n⃗(1) = 1⃗ := (1, 1) and

n⃗(l+1) = n⃗(l) + e⃗kl , kl ∈ {1, 2}, l ∈ N.

These are paths for which, as we move from 1⃗ to infinity, the multi-index
of each next vertex is increasing by 1 at exactly one position. Each such
path can be mapped bijectively to a non-self-intersecting path on T that
starts at O. This construction defines a projection Π : V → N2 as follows:
given Y ∈ V we consider the non-self-intersecting path from O to Y , map
it to a path on N2 and let Π(Y ) be the endpoint of the mapped path.
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Every vertex Y ∈ V, which is different from O, has a unique parent, which
we denote by Y(p). That allows us to define the following index function:

ı : V → {1, 2}, Y 7→ ıY such that Π(Y ) = Π(Y(p)) + e⃗ıY .

This way, if Z = Y(p), then we write that Y = Z(ch),ιY . For a function f
on V, we denote its value at a vertex Y ∈ V by fY . Fix κ⃗ ∈ R2 such that
|κ⃗| = 1 and define the potentials V = V µ⃗,W = W µ⃗ : V → R by

VO := κ1b(0,1),1 + κ2b(1,0),2, WO := 1,

VY := bΠ(Y(p)),ιY , WY := aΠ(Y(p)),ιY , Y ̸= O.
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4. Angelesco system

Consider Angelesco system, a system for which {∆j} are disjoint where
∆j is the convex hull of suppµj . It is known to be perfect, an⃗,j > 0 and
{an⃗,j}, {bn⃗,j} are uniformly bounded.
That follows from two facts:

Lemma

We have representations

an⃗,j =

∫
R
Pn⃗(x)x

njdµj(x)∫
R
Pn⃗−e⃗j (x)x

nj−1dµj(x)

, n⃗ ∈ Zd
+, j ∈ {1, . . . , d}, nj−1 ≥ 0,

and

bn⃗−e⃗j ,j =

∫
R
x|n⃗|Qn⃗(x)−

∫
R
x|n⃗|−1Qn⃗−e⃗j (x), n⃗ ∈ Nd, j ∈ {1, . . . , d} .
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and the second fact that Pn⃗ has n1 simple roots on ∆1 and n2 roots on
∆2 that interlace when n⃗ is increased. Putting these two facts together
with the variational properties of monic orthogonal polynomials, we get
boundedness and positivity of {an⃗,j}. The boundedness of {bn⃗,j} can be
obtained in several ways.

Now we can define Jacobi matrix Jκ⃗ = J µ⃗
κ⃗ on T :

(Jκ⃗f)Y := VY fY +W
1/2
Y fY(p)

+W
1/2
Y(ch),1

fY(ch),1
+W

1/2
Y(ch),2

fY(ch),2
.

It is self-adjoint and bounded operator on ℓ2(T ).
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We can relate the spectral quantities of Jacobi matrix to MOPS. Define

Ln⃗(z) :=

∫
R

Qn⃗(x)

z − x
, z /∈ R and

lY (z) = m−1
Y LY (z),

LY (z) := LΠ(Y )(z), and mY :=
∏

Z∈path(Y,O)

W
−1/2
Z .

Then, one can show

lY (z) = −Lκ⃗(z)G(O, Y, z), Lκ⃗ =
(
κ1∥µ1∥−1

)
µ̂1(z) +

(
κ2∥µ2∥−1

)
µ̂2(z)

which establishes the connection between Green’s function of Jκ⃗ and Ln⃗.
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5. Some results for Angelesco systems

• We obtain a decomposition (1) of Hilbert space ℓ2(T ) into the
orthogonal sum of cyclic invariant subspaces and the generators are
described in terms of MOP and measures µ1 and µ2.

Theorem

We have
σ(Jκ⃗) ⊆ ∆1 ∪∆2 ∪ Eκ⃗

where Eκ⃗ is a single point outside ∆1 ∪∆2 or an empty set (can be found
exactly). In general, this can be proper inclusion but it becomes equality if
suppµj = ∆j , j ∈ {1, 2}.

Warning: it is not true in general that σ(Jκ⃗) = suppµ1 ∪ suppµ2.
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• The analysis of spectral type can be performed in many cases.

Theorem

Suppose that {µj}, j ∈ {1, 2} are Steklov measures, i.e.,
dµj = wjdx,w

−1
j ∈ L∞(∆j). Then the spectrum of Je⃗i is purely

absolutely continuous for each i ∈ {1, 2}.

• The inverse spectral problem can be solved.

Theorem

If κ⃗, {∥µj∥},
∫
R x(dµ1/∥µ1∥ − dµ2/∥µ2∥), ⟨(Jκ⃗ − z)−1δO, δO⟩ are all

known, then Jκ⃗ is uniquely defined.

Remark. The procedure of recovering Jκ⃗ is “constructive”.
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• The methods of Complex Analysis (e.g., Riemann-Hilbert technique) are
applied to obtain strong results when the measures µ1 and µ2 are real
analytic. Define

Nc⃗ = {n⃗} : ni = ci|n⃗|+ o
(
n⃗
)
, i ∈ {1, 2}, | c⃗ | :=

2∑
i=1

ci = 1. (10)

Theorem

Suppose the measure µi, i ∈ {1, 2} is absolutely continuous with respect to
the Lebesgue measure on ∆i and the density µ′

i(x) := dµi(x)/dx extends
to a holomorphic and non-vanishing function in some neighborhood of ∆i.
Then the ray limits (10) of coefficients

{
an⃗,i, bn⃗,i

}
exist for any c⃗ ∈ (0, 1)2:

lim
Nc⃗

an⃗,i = Ac⃗,i and lim
Nc⃗

bn⃗,i = Bc⃗,i, i ∈ {1, 2}.

Remark. The numbers Ac⃗,i and Bc⃗,i can be obtained from a certain
vector-valued potential theory problem.
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Define

E(µ, ν) := −
∫

log |x− y|dµ(x)dν(y),

for any probability Borel measures ν, µ on ∆. Now, given c ∈ (0, 1), define

Mc :=
{
(ν1, ν2) : supp(νi) ⊆ ∆i, ∥ν1∥ = c, ∥ν2∥ = 1− c

}
. (11)

It is known, that there exists the unique pair of measures (ωc,1, ωc,2) ∈ Mc

(equilibrium measures) such that

I(ωc,1, ωc,2) ≤ I(ν1, ν2),

I(ν1, ν2) := 2E(ν1, ν1) + 2E(ν2, ν2) + E(ν1, ν2) + E(ν2, ν1),

for all pairs (ν1, ν2) ∈ Mc. Moreover, supp(ωc,1) = [α1, βc,1] =: ∆c,1 and
supp(ωc,2) = [αc,2, β2] =: ∆c,2.
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Let Rc, c ∈ (0, 1), be a 3-sheet Riemann surface realized as follows: cut a

copy of C along ∆c,1 ∪∆c,2, which henceforth is denoted by R
(0)
c , the

second copy of C is cut along ∆c,1 and is denoted by R
(1)
c , while the third

copy is cut along ∆c,2 and is denoted by R
(2)
c . These copies are then glued

to each other crosswise along the corresponding cuts.

α1 β1 α2 β2
R

(0)
c

R
(1)
c

R
(2)
c

Figure: Surface Rc when βc,1 = β1 and αc,2 = α2.
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Let Rc, c ∈ (0, 1), be as above and χc(z) be the conformal map of Rc

onto C such that

χc

(
z(0)

)
= z +O

(
z−1

)
, z → ∞. (12)

Then, the numbers Ac,1, Ac,2, Bc,1, Bc,2 are defined by

χc

(
z(i)

)
=: Bc,i +Ac,iz

−1 +O
(
z−2

)
, z → ∞, i ∈ {1, 2}. (13)

For analytic weights in Angelesco model, the asymptotics of

A
(j)
n⃗ , Pn⃗, Ln⃗, |n⃗| → ∞

is established off the spectrum and on the spectrum. This provides the
asymptotics of Green’s function of the Jacobi matrix.
We also compute all “right limits” that happen to be “periodic”.
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6. Nikishin system

A vector µ⃗ = (µ1, µ2) defines a Nikishin system if there exists a measure τ
such that

dµ2(x) = τ̂(x)dµ1(x) and ∆1 ∩∆τ = ∅, (14)

where τ̂(z) is the Markov function of τ , see (6), ∆1 := ch(suppµ1), and
∆τ := ch(supp τ) (here, ch(·) stands for the convex hull). Given two sets
E1 and E2, we write E1 < E2 if supE1 < inf E2. Suppose

∆τ < ∆1. (15)

The case when ∆τ > ∆1 can be handled similarly. The recurrence
coefficients {an⃗,1, an⃗,2}n⃗∈N2 , see (7)–(8), of Nikishin systems have a
definite sign pattern.
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Theorem

For all n⃗ ∈ N2 and j ∈ {1, 2} it holds that

sgn an⃗,j = (−1)j−1, n2 ≤ n1, and sgn an⃗,j = (−1)j , n2 ≥ n1 + 1.

That gives rise to Jacobi matrices on rooted trees that are symmetric with
respect to properly defined indefinite metric. In general, the Jacobi matrix
has unbounded coefficients and the theory is not developed. However, in
the recent paper

A. Aptekarev, V. Lysov, Multilevel interpolation of a Nikishin system and
boundedness of the Jacobi matrices on a binary tree, 2021

the Jacobi matrix for another type of interpolation is proved to be both
bounded and self-adjoint in indefinite metric.

Sergey Denisov, University of Wisconsin-Madison Jacobi matrices on trees and MOP 34 / 37



7. MOP of the second type and Jacobi matrices on finite
rooted tree

Consider, e.g., the Angelesco system (this construction can be further
generalized). We consider N⃗ = (N1, N2), Nj ≥ 1 and the corresponding
rectangle 0 ≤ nj ≤ Nj , j ∈ {1, 2}. Then, we build the finite binary tree
VN⃗ and consider the self-adjoint Jacobi matrix on it generated by the

recurrence (8) for {Pn⃗} and vector κ⃗ for the vertex N⃗ . The Hilbert space
is ℓ2(VN⃗ ).
Then, the spectrum of Jκ⃗,N⃗ can be associated with the roots of
polynomials.
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Denote
PΠ(O(p))(z) := κ1PN⃗+e⃗1

(z) + κ2PN⃗+e⃗2
(z)

and
Eκ⃗,N⃗ := EΠ(O(p)) ∪

⋃
Y ∈V

N⃗
: #ch(Y )=2

EΠ(Y ).

Theorem

If κ⃗ = e⃗j , j ∈ {1, 2}, then

σ(Jκ⃗,N⃗ ) = Eκ⃗,N⃗ .

The condition #ch(Y ) = 2 is equivalent to Π(Y ) ∈ N2. Hence, the set
Eκ⃗,N⃗ consists of EΠ(O(p)) and the zeroes of type II MOP that are “truly”
multiple orthogonal, i.e., they satisfy orthogonality conditions on both
intervals.
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The orthonormal basis of eigenfunctions can be found explicitly via
polynomials {Pn⃗} and its roots.

THANK YOU!
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