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100-th anniversary of Vladimir Aleksandrovich Marchenko

Spectral analysis of differential operators.
Spectral theory of random matrices.
Inverse scattering theory.

Homogenization theory.

Theory of nonlinear integrable equations.
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[V.A. Marchenko, L.A. Pastur, Distribution of eigenvalues in certain sets of random matrices, 1967. ]
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The shock-rarefaction KdV Problems

We discuss rigorous long-time asymptotics of IVP solutions
qt(xut) = 6(1(33715)%(%15) - qzxm(mat)a (.’E,t) €ERx R+7

q(z,0) = q(z) = cx, = — Foo.

Without loss of generality one can put ¢y = 0.
If c_ = —c?, where ¢ € R, we talk about the KdV shock problem. For c_ = ¢?
we deal with the KdV rarefaction problem.
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Methods: classical Inverse Scattering Transform and Nonlinear Steepest Descent.

Based on joint works with Gerald Teschl, Johanna Michor and Mateusz
Piorkowski.
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Rarefaction problem Shock problem

Initial profile
62 k
Large time
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Whitham's method: A. Gurevich, L. Pitaevskii (1973);
V. Novokshenov, R. Bikbaev, R. Sharipov (80-th).
Matching asymptotics: J. Leach, D. Needham (2009, 2014)
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KdV shock problem: Asymptotical solitons

- — transition
region

E. Khruslov (1976)

In the domain 4c?t > x > 4c¢*t — (2¢) "' IntM the solution has a form

—2¢2

+O(t /2t
cosh? {cx — 4¢3t + 1 lnth 1/2 4 bn} ( )

q(z,t) =

HM%

as t — 400, where the phases ¢,, are determined by the initial scattering
data.
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Well-posedness of IVP

Requirements of applicability of IST and NSD methods: initial data g(x)
should be chosen from a class there exists the unique classical solution of
the initial-value problem, satisfying

400
/ (1+2) (lg(—z,t) + A+ lq(z,t)]) dz < .
0
Existence of the classical solution:
o T. Kappeler (1986):
q € L1oc(R), z(g(x) + 62) e L1(Ro), qu(x) € Li(Ry), N >3.
e S. Grudsky, A. Rybkin (2020):

sup /max(—q(x),O)d:): < oo, zNg(z) e Li(Ry), N >5/2.
IT|=1J1

e T. Laurens (2022) (well posedness):
W(x) = citanhz + ¢, q(z) € W+ HY(R).

I. EGOROVA (ILTPE) shock-rarefaction KdV problems 07.07.2022



Well posedness by IST

Definition. Let mq,no € N. We say that f € L]0 if f(x) € C™(R) and for
n=0,1,...,ng satisfies

+o0 dm dm

mo - - — 2

[ (i) (o s+ [ o+ )

dz™

)dx<oo.

I.E., J. Michor, G. Teschl, 22’

Let g € L} for some mg > 3, and ng > mo + 3. Then there exists the unique
classical KdV solution g(x,t) such that for all t € R

n

/m (1+|x|[%-1) O @) + | 2 (=, 8) + )| ) dz < o0
@ Oxn Az ’ ’

for all 0 < n < ng —mg, and

m 0
[21-1) | £
/R(l + Jo| 517 ’aﬂ(””’t)
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Spectrum, Jost solutions, Wronskian

Spectrum of the underlying Schrodinger operator L(t) = —% + q(z,t):

2 2 2
—Ky —K7 —c 0

Equation L(t)¢ = A¢ has the Jost solutions ¢(k, z,t) and ¢1(k,x,t),

. —ikz _ : ikix _
IEI-POOQ o(k,x,t) = mgr_nooe o1(k,z,t) = 1.

Here k2 = X, k1 = v/A + c2. Continuous spectrum of L(t) is the set k; € R,

spectrum of multiplicity two - k£ € R.
Wronskian

W(k) = ¢1(/€,.’E, O)QSI(]C,.’E, 0) - d)/l(kvl'v 0)(b(k,.’ﬂ, O), keCt \ (0710)

has simple zeros at is¢;, and, possibly at ic.
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Right scattering data

@ If W(ic) = 0 then we deal with the resonance case (¢ = —1), otherwise with
a nonresonance one (£ = 1).

@ The solution ¢(isxj,x,t) € R is an eigenfunction of L(t). The value

-1
v = </R ¢2(i%j,x,0)dz> ;

is called the right normalizing constant.
@ Function

_ kR e y
x(k) = HGE Ti(k+0)T(k+0), ke]0,id]

@ The solution ¢(z,t) of the Cauchy problem can be uniquely restored from
the right scattering data of the initial profile

{x(k), k€[0,ic; R(k), keR; —s, v;>0,j=1,...,N}
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The right Marchenko equation

Transformation operator for the right Jost solution:

. o0 . B t
ok.t) = (14 [ Bay 0y glo.t) = - 2P0,
0 83}'
Time-dependent Marchenko equation:

.Mm%w+Fm+%w+/'B@a@F@+y+&wm:m
0

where F(z,t) = F\ (z,t) + Fr(x,t) + Fg(x,t) :

2 [0 al
Fy(at) == / (i) 2o dn,  Fy(a,t) = 2 A2e2uatsuit,
C

Jj=1

2 Heo NP
Fgr(z,t) = = Re / R(k)eBiF tH2ike gp.
0

™
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The right Marchenko equation

Transformation operator for the right Jost solution:

¢(k,$7t) = eik:w <]- +/ B(x,y,t)e2ikydy> s q((E,t) = 7W
0 b

Time-dependent Marchenko equation:
Bloy )+ Flat 9.0+ [ Blas,OF(a+y-+s,t)ds =0
0

where F(z,t) = F\ (z,t) + Fr(x,t) + Fg(x,t) :

2 [0 al
Fy(at) == / (i) 2o dn,  Fy(a,t) = 2 A2e2uatsuit,
C

Jj=1

2 Heo NP
Fgr(z,t) = = Re / R(k)eBiF tH2ike gp.
0

™

Let 0;; be the Kronecker symbol and let A(z,t) be a N x N matrix with elements

3
,7]268th

I{i+1€j

Al’j (33, t) = 51']' + e_(ﬁ’:—"_ﬁj)m.
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Reflectionless case

The Marchenko equation with kernel Fy(x,t),

Ba(x,y,t) + Fa(x + y,t) + / By(z,s,t)Fy(z +y+ s)ds =0,
0
has a unique solution By(z,y,t) such that

2
u(zx,t) = %ﬁjoﬂ —28(9— log det A(z, t).

For x > et, as t — +o0:
u(:c,t) = qSOl(xvt) + O(eic%)a

N 2
sol E QHJ-

5 .
v AR3t — Lloo Ji 5N o
=1 cosh? (njx 4kt — 5 log T D imji1108 pm
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Let ¢ € L7 (R), mg > 3, ng > 2, and let € > 0 be arbitrary small. Put

3
—5—¢
Gly,t) = Fy(y,t) + Fr(y,t), o=4t+ 22" "logt+¢, >0,
C

The following estimate is valid:

1 1
o1 (Cy T i

|G(z + y,t |+‘6 (+y,t)‘§0

¢

In Ly(R4) N C(R4) introduce operators
Fol(y) = / Fyz+y + s, 0)0(s)ds,  [G6)(y) = / Gla+y + 5, 8)¢(s)ds.

The Marchenko equation can be represented as:
¢+RGp=TRf+Rg, where
R = (]I+ ]:)_17 f() = _}?d(m + 'at)7 g() = _G(x + 'at)7 ¢() = B(l‘, '7t)a
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Asymptotics in the soliton region

I.E., J. Michor, G. Teschl, 22’

Let g(z,t) be the solution of KdV, with g € L2, mg > 3, ng > mg + 3. Then
the asymptotics of ¢(«,t) in the region

3
2

mog—45 — €
$Z402t+02— logt
C

is the following as ¢t — oo:

q(z,t) = ¢z, t) + o(;).

tm()*%*E

Previous results given by RHP:

“+o00
/ eleto)s (|q(m)| + |q(—z) + 02|) dx < 0o, x*q™ (x) € L1(R),0 < n < 8.
0

Then for x > (4¢® + ¢)t and t — oo:
q(z,t) = qs"l(a:, t) + O(e_c(a)t).
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Riemann-Hilbert problem approach

I.E., J. Michor, G. Teschl, 22’

Assume that ¢(x) € ﬁﬁfﬂ, mg > 4, ng > mg + 3 and there is no resonance at

—c2. Assume that © — oo, t — 0o such that
(z,t) € D := {x2402t+élogt, t>1, ,620}.
c

Then in the domain D we have

1
q(z,t) = qS(’l(m,t) + O(t_V)’ v =min{mg — 3,8+ 1} > 1.
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Vector RHP for steplike KdV

@ We study asymptotics in the regime z — oo, t — 00, 75; = { is slow varying.
@ We always assume that ¢(-,t) € £3.

@ RHP can be formulated via the left (in variable k1) and the right (in variable
k) scattering data, z and t are parameters.

@ We deal with a vector solution m(k) = (mq(k), ma(k)), k € C, of the jump
problem
my (k) =m_(k)v(k), keX.

@ |t satisfies the symmetry condition m1(k) = mo(—k), i.e.
0 1
m(—k) = m(k)(n, g1 = (1 O) 5

@ and the normalization condition: m(k) — (1, 1), k — oo.
@ ¢(z,t) is connected with m(k) = m(k, z,t) by formula

q(z,t) = klggc 2k? (my (k, z, t)ma(k, z,t) — 1).
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Vector RHP, symmetry requirements and uniqueness

k-plane / L kj E

" D5

@ The jump contour ¥ is symmetric with respect to the map k — —k;
@ The jump matrix is bounded on X and satisfies: detwv(k) =1 and
v(—k) = ov(k)oy, keX.

@ Function m(k) is holomorphic in C\ ¥, continuous up to the boundary
except at the node points of X (ends, self-intersections and points of
discontinuity of the jump matrix), where the fourth root singularities are
admissible.
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From initial to pre-limit RHP

Any transformations (conjugations, deformations) should respect the
properties above.

If (k) = m(k)D(k), for |k| > 1, then D(k) = d(k)~°%, where d(k) — 1
and d(—k) = d(k)~'. In particular,

q(z,t) = lim 2k? (i (k, x, t)me(k, z,t) — 1).

k—o0

The aim of transformations is to get m(k) satisfying a jump problem
m4 (k) =m_(k)v(k) and all properties above, and such that

15(k) = 0™ (k) Lo 51 (o)) = O), @ >0, p=1,

constant jump matrix v™°%(k) is exactly solvable.

where the model vector RHP m4 (k) = m™%(k)v™?(k) with piecewise

Uniqueness of the model problem solution?
Can we compare 1y (k)mz (k) with mi°4(k)m34(k) as k — co?
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Standard asymptotic analysis for vector RHP

Let M™°%(k) be an invertible matrix solution of model RHP,
Mo k) = M™% (k)™ (k), M™%4Yk) -1, k— .

Then
Mm°d(—k) = ole"d(k:)al, keC,

and
m™d(k) = (1, 1)M™(k).

In vicinities of the parametrix points we solve the local matrix RHP problems.
Solutions are symmetric, invertible, and satisfy

MP(R)M™Y )P =T+ 0(t"®), k€dBUIB*, a=1/21.
Introduce "the error vector”

MPa(k), ke (BUBY),

merr(k):m(k)(Mas(k))—l’ Mas(k;) = {MmOd(k) kGC\(BUB*)
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"Small norm” arguments

me" (k) possess symmetry and normalization conditions,
mi" (k) = m" (k)L +W(k)), KW (E)l| s < C pe [l ol

meT(k)=(1, 1)+ i /2 %ds + (1, —l)O(t_Qa)O(k_l).
ﬁl(k‘) _ merr(k)Mmod(k) _ mmod(k,)
+ %(1, —DM™4(E)(1+ Ok~ 1)1+ O0(t™)).
This allows us to conclude that

q(z,t) = q”wd(:r,t) +0(t™), t— oo
uniformly with respect to £ in a given region.

This scheme works only for some regions in rarefaction problem.
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Matrix model solution, existence, uniqueness

Proposition

Assume that m4(0) = (0,0). Then there is no invertible matrix solution
with admissible singularities.

For the KdV shock problem in the soliton and in the middle regions there
are arbitrary large pairs (x,t) such that m7°¢(0, z,t) = (0,0).

Thus, one has to admit a pole for the associated matrix solution. Such a
solution is not unique.

A suitable solution M™°4(k) should be such that the error vector does not
have pole at point 0!

The initial RHP does not have invertible matrix solutions iff ¢(0,z,t) = 0,
where ¢(0, z,t) is the right Jost solution.
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RHP for the KdV shock problem via right scattering data

Assume that q(-,t) € £3. Set ¥ = R} U [ic,0], ¥* = {k: —k € &}

In C*+\ (X U X*) introduce the vector function m(k) = (my(k), ma(k)) (x and ¢
- parameters):

_ | (T(k )1 (K, z, t)e™, p(k,z,t)e™) ke CF\(0,id,
m(k, 2,t) = { ko oy, keC\ [ic,0),

T(k,t) = W(k 7y is the right transmission coefficient.

m(k) = (1 1) 21116/;“’ q(y,t)dy (-1 1)+ 0 (,jz)

s (F)ma (k) = 226G (. 2, k1) = 1+ 22D (1 1 o1y),
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Statement of RHP

m(k) is the unique solution of the following RHP: to find a meromorphic away
from ¥ U ¥* function m(k) satisfying:

@ the jump condition m4 (k) = m_(k)v(k), where

_ 2 DNa—2td(k)
(Lol ~REe=e) -y ep,

R(k)e?t®(k) 1
B 1 0 )
v(k) = (X(k)e%‘b(k) 1) , k € [ic, 0],
o1(v(=k))oq, ke ¥x;

@ the symmetry and the normalizing conditions;
@ the pole conditions: Res;, mq (k) = limy_i, iﬁet'@(mﬂ')mg(mj),

@ For £ =1 vector m(k) is bounded as k — ic. For £ = —1:

m(k) = (C’l(x,t)(k —ie)"12, Cg(:z:,t)) (1+0(1)) C1Cs #0;
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Soliton region, q € L], £ =

Phase function: ®(k) = ®(k,z,t) = 4ik® + ikZ = 4ik® + 12ik¢.

T =4c%

e — A2
- J_I-4n]t

Ty iny

i
@im

ic

- Re®(ix;) =0

Factorization:

vlk) = (é _R(k)el_%q)(k)) <R(k)el?t<1><k>

Important identity for analytical continuation:

(i)HlR(l)H—O) + (—i)l+1R(l)(—0) — lim

(2017), 1287-1332.]
I. EGOROVA (ILTPE)
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—in;

. a

[ J. Lenells, The nonlinear steepest descent method for Riemann-Hilbert problems of low regularity, Indiana Univ. Math. J. 66:4
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Matrix model RHP for (4

) . ) 0 0
Resi,c ; M(k, j) = kh’ﬂj M(k, 5) (i%z(%t) 0) ;

) . (0 —iy2(x,t
Res_in, M(k,3) = _lim  M(k, ) (0 5 )>,
)

3 N 2
2 2 8KIt—2kjw Ky — Ky
Vi (@, t) = ~Z%e I PAU
J J P
1=j+1 J

M(oo,j) =1, M(=k,j) =o1M(k,j)o1.

14 12 (z,t) g (x,t) k—ik;
N 2k 2k k+ircj
M(k,j) = pj(e,t) ktirg g (a,t) )
TR Roimy L= =% —
2
ivj (=, t)
pj(z,t) = z

14 (2r5) " 1y2(a, t)

[ K. Grunert and G. Teschl, Long-time asymptotics for the Korteweg—de Vries equation via nonlinear steepest descent, Math.
Phys. Anal. Geom. 12 (2009), 287-324.]
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Region —c2/2 +e < ¢ < /3 —¢

Assumption:

/ e (|lg(—z) + 2| + |g(z)]) dz < 00, > 0.
0

Previously 7 > ¢. From meromorphic to holomorphic statement of RHP:

m(k)A;(K) (P(K)Q(K)™**, k €D,

K @ mi (k) = m(k)Ao(k) (P(K)Q(K)™*%, ke
. m(K) (POQ) ™, keCH\(2U;D)),
ic n,,ir1i(7‘k)a_:l7 ke C_,
¢ ip where N )
R _Tp ki _ (k=ic)
2 P(k) =i QK : (Hic) ,
i k—ik;j

_ 1 T 2 TR _ 1 0
Aj(k) = (0 “’il Ty Aek) = (7R(k)er®(k) 1>7

Q={k:0<imk<p},a3=(; Bl)

O
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"g" - function as Abel integral

RS M is associated with R(A) = /=A(A + ¢2) (A + a2).
® Q;(p) - Abel integrals of the 2nd kind: [, d€; 3 = 0.

i . o 3i .
a9y = m(1 +OAY))dA,  dQs = —5\6(1 +O(A1))dA.

A= )N — )
Q 40 =—
= ika + 4ik3t + O(k~1) = t®(k) + O(k ™).
@ Normalization implies ua(€) € (—a?,0). For any £ € (—c?/2,c?/3) there
exist unique a(&) € (0,c¢) such that w1 (§) = a(§). Function a(&) is
monotonous with a(—c?/2) = 0 and a(c?/3) = c.

X
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g - function on k plane

Conjugation: mM (k) = mi"i(k)elits(k)—t(k))os

k 2 2
c’—a k2 4 a2
k) =12 k? dk.
=12 [ (14655 ) i

0 g_(k)+g4(k)=0ask € [ic,ia) U [—ia, —ic];
o t(g_(k) —g4(k)) =Va+4Wt as k€ [ia, —iqa),
where iV = [ dQy; iW = [, dQs.

Properties:

Signature table for Im g:
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Model vector RHP

The following RHP has a unique solution: find a vector-valued function

m™d(k) = (m°d(k) m3°d(k)) holomorphic in the domain C \ [ic, —ic], which is
continuous up to the boundary except at points of the set

Ggmod := {ic,ia, —ia, —ic}, and satisfies the jump condition

mT4(k) = m™4 (k)vmd(k):

ioq, k € [ic,id],
V() = v (1, €) = { CAWIVasiA L e g, 0],
o™ (=Ko, k € [—ie, 0],

where _
s—in

fic 210g‘T(s) H;.Vzl S_HK; +log s
ia 2+ (2 +a?)[ 2 t

B2+ ) (s +a2) Vs 27
the symmetry m™4(—k) = m™9(k)oy, and normalization m™*9(c0) = (1 1)
conditions.
At any point £ € G™¢ the vector function m™9(k) can have at most a fourth
root singularity: m™4(k) = O((k — x)~Y%)), k — .
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Solution of model RHP

e RS X = X(¢) is associated with w(k) = v/(k2 + c2)(k2 + a2).

@ dw - Abel holomorphic differential, fa do=1 7= fb dw,
A(k) = fllz dw - Abel map on the upper sheet of X.

@ 03(z]| 1) - the Jacobi theta-function.

e Put v(k) =4/ ’]zzig where arg~(0) =0, and

a():93(2A(/€)—%—A|2T) _ Ve +4W+A
05 (2A(k) — % |2r) 27 '

The solution of model vector RHP is given by:

a(k)

(o)’ v(k)

(k) = (+(0)
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Computing asymptotics:

@ We observe that:
05 (:FT717A|27')

ax(0) = =5 (Er+1]27)

therefore for A = 1 (mod n) we have m7°¢(0) = (0,0). Thus, for z,¢ such
that

b

a2V +4W +A=72n+1)
there is no nonsingular matrix solution of model RHP.

@ Function
a(k)a(—k)

a?(o0)

S(k) =

)

does not have jumps, is even, and S(c0) = 1. It is a meromorphic (rational)
function of A. As a function of X it has one simple zero at point
Az, t) € [~a?,0] and simple pole at point A = —a?. Thus

k% — X\(w,t)
k% + a?

k% — Mz, t)
VIET @+ @)

S(k) = ;- mi e (k)ymg (k) =
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Computing asymptotics:

Point p(x,t) = (A(x,t),£) € M solves the Jacobi inversion problem:
p(z,t) Po
/ do =i(Vz + 4Wt)(mod 27i), / do = iA,

Po —a?

where di is a holomorphic differential on M normalized as [ do = 2i.
Thus, for any ¢ € (—c?/2,¢%/3) function

qud(xa t, 6) = _02 - CL2(£) - 2)‘(1’" ta 5))

is a periodic one gap solution to the KdV equation on the spectrum
[—c?, —a?] UR, associated with the initial Dirichlet divisor
bo = ()\(07 Oa g)v :l:)
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Asymptotics in the modulated elliptic wave region

I.E., M. Piorkowski, G. Teschl, 22’

Assume that the initial datum satisfies:

+o0
/ " (lg(@)| + lg(—2) + P)dw < 00, q € L],
0

Then for 2 — oo, t — oo such that § € I. = [—6¢% +¢,4c? — €] the
following asymptotics is valid:

x

d
" 12¢

q(l‘,t) =q z,t, ) + O(t_1)7

uniformly with respect to € I..
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Generalization: a finite gap background

Let p(x) be a one gap periodic potential. Initial data ¢(x):

/000(1 + |2™) (lq(2)] + lg(=2) = p(=2)|)dz < oc.

- - _— . -

—c2 —B? 0

Right scattering data {x(k), k € [ib,ic]; R(k), k € R }.
Reflectionless case, RHP: m (k) = m_(k)v(k),

w(k) = <X(k;)el2ﬂ><k> (1)) k€ lie,ib; v(—k) = oro(k)or.

@ This RHP coincides the RHP for the KdV solitonic gas.
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Thank you!
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