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As the title suggests, what are Infinite Dimensional ODEs with Dis-
crete Convolution of Higher Dimension and how do they arise?

To put it simply, they can be generated by a nonlinear evolution
PDE (KdV, NLS, KG, etc) and spatially quasi-periodic solutions
(represented by spatially quasi-periodic Fourier series).

In what follows, we will give a more detailed introduction in the
generalized KdV framework.

Let’s start from the quasi-periodic Cauchy problem for gKdV.



The generalized KdV

On the real line R, consider the generalized KdV (gKdV for short)
equation

∂tu + ∂3
xu + up−1∂xu = 0, (1)

where ∂t and ∂x stand for the derivative w.r.t. to time and space
respectively, 2 ≤ p <∞ is a natural number.

I gKdV is a generalization of KdV (i.e., p = 2). It appears in
the study of waves on shallow water1, as well as other areas of
physics2. In addition, it is closely to the study of anharmonic
lattices3.

1D. J. Korteweg and G. de Vries. “On the change of form of long waves advancing in a rectangular canal, and
on a new type of long stationary waves”. In: Philos. Mag. (5) 39.240 (1895), pp. 422–443. issn: 1941-5982. doi:
10.1080/14786449508620739. url: https://mathscinet.ams.org/mathscinet-getitem?mr=3363408.

2George L. Lamb Jr. Elements of soliton theory. Pure and Applied Mathematics. John Wiley & Sons, Inc., New
York, 1980, pp. xiii+289. isbn: 0-471-04559-4. url: https://mathscinet.ams.org/mathscinet- getitem?mr=

591458.
3Masayoshi Tsutsumi, Toshio Mukasa, and Riichi Iino. “On the generalized Korteweg-deVries equation”. In:

Proceedings of the Japan Academy, Series A, Mathematical Sciences 46.9 (1970). doi: 10.3792/pja/1195520159.
url: https://doi.org/10.3792%2Fpja%2F1195520159.

http://dx.doi.org/10.1080/14786449508620739
https://mathscinet.ams.org/mathscinet-getitem?mr=3363408
https://mathscinet.ams.org/mathscinet-getitem?mr=591458
https://mathscinet.ams.org/mathscinet-getitem?mr=591458
http://dx.doi.org/10.3792/pja/1195520159
https://doi.org/10.3792%2Fpja%2F1195520159
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Quasi-periodic Initial Data

I Let 1 ≤ ν <∞ be a given finite natural number, (ω1, · · · , ων) =
ω ∈ Rν be a non-resonant frequency vector, that is, n · ω = 0
implies that n = 0 ∈ Zν , here n · ω is the Euclidean inner
product defined by letting n · ω =

∑ν
j=1 njωj .

I Consider the quasi-periodic initial data defined by the spatially
quasi-periodic Fourier series

u(0, x) =
∑

n∈Zν

c(n)e i(n·ω)x , (2)

where c(n) is the initial Fourier data.

I There is a simple example of quasi-periodic initial data. Let α
be irrational and u(0, x) = cos x + cosαx .

♦ For the sake of simplicity, we call (1)-(2) the quasi-periodic
Cauchy problem for gKdV.
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Spatially Quasi-periodic Solutions

What we are interested in is to study the existence and uniqueness of
spatially quasi-periodic solutions with the same frequency vector as
the initial data to the quasi-periodic Cauchy problem (1)-(2). Such
solutions are defined by the following spatially quasi-periodic Fourier
series

u(t, x) =
∑

n∈Zν

c(t, n)e i(n·ω)x , x ∈ R, (3)

where c(t, n) is unknown for any given n ∈ Zν on a suitable time
interval.

I It should be emphasized that such functions are non-periodic
w.r.t. the space (ν ≥ 2 and ω is rationally independent), and

I they don’t decay to zero w.r.t. the space (oscillation at infinity).
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Regarding the quasi-periodicity in space, Deift P. said:”With the
discovery of quasi-crystals, one can anticipate, in particular, that
interest in PDE problems on quasi-periodic backgrounds will
surely grow.”4

Figure: quasi-crystal (from wikipedia)

♦ Regarding PDE in the quasi-periodic setting, there are some
significant works, such as

4Percy Deift. “Some open problems in random matrix theory and the theory of integrable systems. II”. In: SIGMA
Symmetry Integrability Geom. Methods Appl. 13 (2017), Paper No. 016, 23. doi: 10.3842/SIGMA.2017.016. url:
https://mathscinet.ams.org/mathscinet-getitem?mr=3622647.

http://dx.doi.org/10.3842/SIGMA.2017.016
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♥ Iooss G.5 studied the steady Swift-Hohenberg (1 + ∆)2u−µu+u3 = 0,
where µ is a bifurcation parameter, u is a real function of (x , y) ∈ R2 and
quasi-periodic in all directions, i.e., its Fourier expansion with wave vectors
belonging to a quasi-lattice Γ (see the left Figure 2 below), spanned by
two concentric hexagonal with a rotation angle, in the real plane. This
implies that u has the Fourier expansion as follows

u(x , y) =
∑

(v1,v2)∈Γ

ûv1,v2e
i(v1x+v2y).

Figure: quasi-lattice Γ (from Iooss)

I This is the so-called quasi-
pattern, which was discovered
in nonlinear pattern-forming
systems in the Faraday wave
experiment.

I Mathematical existence of
quasi-patterns is one of the
outstanding problems in pattern
formation theory.

5Gérard Iooss. “Existence of quasipatterns in the superposition of two hexagonal patterns”. In: Nonlinearity 32.9
(2019), pp. 3163–3187. issn: 0951-7715. doi: 10.1088/1361-6544/ab230a. url: https://mathscinet.ams.org/
mathscinet-getitem?mr=3987802.

http://dx.doi.org/10.1088/1361-6544/ab230a
https://mathscinet.ams.org/mathscinet-getitem?mr=3987802
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♥ Wang W.-M.6 considered the NLS

i∂tU = −∆U − |U|2pU (4)

where N 3 p ≥ 1 is arbitrary, U = U(t, x) is a complex valued function
on R×Rd (d is an arbitrary dimension), and she studied the space quasi-
periodic standing wave solutions

U(t, x) = e−iEtu(x),

where E ∈ R, u is even and quasi-periodic in each xk , given by a quasi-
periodic cosine series

u(x) = u(x1, · · · , xd ) =
∑

j1,··· ,jd

û(j1, · · · , jd )
d∏

k=1

cos(jk · λk )xk .

NLS (4) is used to study Bose-Einstein condensation, and is usually called

the Gross-Pitaevskii equation, when seeking non-decaying solutions.

6W.-M. Wang. “Space quasi-periodic standing waves for nonlinear Schrödinger equations”. In: Comm. Math.
Phys. 378.2 (2020), pp. 783–806. issn: 0010-3616. doi: 10.1007/s00220-020-03798-x. url: https://mathscinet.
ams.org/mathscinet-getitem?mr=4134934.

http://dx.doi.org/10.1007/s00220-020-03798-x
https://mathscinet.ams.org/mathscinet-getitem?mr=4134934
https://mathscinet.ams.org/mathscinet-getitem?mr=4134934


KdV

In the case p = 2, gKdV (1) is
the classical KdV

∂tu + ∂3
xu + u∂xu = 0.

It’s a mathematical model of
waves on shallow water sur-
faces, which can be traced back
to the experiments by John S-
cott Russell. Figure: John Scott Russell

I Regarding the Cauchy problem, especially for those with some
periodicity structure, to the KdV equation, there are some sig-
nificant works on the periodic, quasi-periodic and almost peri-
odic initial data, which are associated with the so-called Deift
conjecture.
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Deift Conjecture

The Deift conjecture7 states that the solution to KdV with almost
periodic initial data has a unique global solution u(t, x) that is al-
most periodic in x for any t and almost periodic in t for any x .

7Percy Deift. “Some open problems in random matrix theory and the theory of integrable systems”. In: Integrable
systems and random matrices. Vol. 458. Contemp. Math. Amer. Math. Soc., Providence, RI, 2008, pp. 419–430. doi:
10.1090/conm/458/08951. url: https://mathscinet.ams.org/mathscinet-getitem?mr=2411922.

http://dx.doi.org/10.1090/conm/458/08951
https://mathscinet.ams.org/mathscinet-getitem?mr=2411922


Periodic Setting

I Lax P.D.8

I McKean H.P., Trubowitz E.9

I This is also a motivation of Deift conjecture.

8Peter D. Lax. “Periodic solutions of the KdV equation”. In: Comm. Pure Appl. Math. 28 (1975), pp. 141–
188. issn: 0010-3640. doi: 10 . 1002 / cpa . 3160280105. url: https : / / mathscinet . ams . org / mathscinet -

getitem?mr=369963.
9H. P. McKean and E. Trubowitz. “Hill’s operator and hyperelliptic function theory in the presence of infinitely

many branch points”. In: Comm. Pure Appl. Math. 29.2 (1976), pp. 143–226. issn: 0010-3640. doi: 10.1002/cpa.
3160290203. url: https://mathscinet.ams.org/mathscinet-getitem?mr=427731.

http://dx.doi.org/10.1002/cpa.3160280105
https://mathscinet.ams.org/mathscinet-getitem?mr=369963
https://mathscinet.ams.org/mathscinet-getitem?mr=369963
http://dx.doi.org/10.1002/cpa.3160290203
http://dx.doi.org/10.1002/cpa.3160290203
https://mathscinet.ams.org/mathscinet-getitem?mr=427731


Quasi-periodic Setting

I Tsugawa K.10: local result; poly. decay condition w.r.t. |n|;
Bourgain’s Fourier restriction method.

I Damanik D., Goldstein M.11-12: global result; exp. decay con-
dition w.r.t. |n|, Diophantine condition on the frequency vector
ω; combinatorial analysis method (local) + iso-spectral argu-
ment (global; Lax pair). (This means that they can iterate the
local result with a uniform length of time interval infinitely so
that the global result is achieved)

10Kotaro Tsugawa. “Local well-posedness of the KdV equation with quasi-periodic initial data”. In: SIAM J.
Math. Anal. 44.5 (2012), pp. 3412–3428. issn: 0036-1410. doi: 10.1137/110849973. url: https://mathscinet.
ams.org/mathscinet-getitem?mr=3023416.

11David Damanik and Michael Goldstein. “On the inverse spectral problem for the quasi-periodic Schrödinger
equation”. In: Publ. Math. Inst. Hautes Études Sci. 119 (2014), pp. 217–401. issn: 0073-8301. doi: 10.1007/s10240-
013-0058-x. url: https://mathscinet.ams.org/mathscinet-getitem?mr=3210179.

12David Damanik and Michael Goldstein. “On the existence and uniqueness of global solutions for the KdV
equation with quasi-periodic initial data”. In: J. Amer. Math. Soc. 29.3 (2016), pp. 825–856. issn: 0894-0347. doi:
10.1090/jams/837. url: https://mathscinet.ams.org/mathscinet-getitem?mr=3486173.

http://dx.doi.org/10.1137/110849973
https://mathscinet.ams.org/mathscinet-getitem?mr=3023416
https://mathscinet.ams.org/mathscinet-getitem?mr=3023416
http://dx.doi.org/10.1007/s10240-013-0058-x
http://dx.doi.org/10.1007/s10240-013-0058-x
https://mathscinet.ams.org/mathscinet-getitem?mr=3210179
http://dx.doi.org/10.1090/jams/837
https://mathscinet.ams.org/mathscinet-getitem?mr=3486173


Almost Periodic Setting

I Binder I., Damanik D., Goldstein M., Lukic, M.13: partially
solved this conjecture.

I Eichinger B., VandenBoom T. and Yuditskii P.14: a more gen-
eral existence result (in the study of KdV hierarchy).

13Ilia Binder et al. “Almost periodicity in time of solutions of the KdV equation”. In: Duke Math. J. 167.14
(2018), pp. 2633–2678. issn: 0012-7094. doi: 10.1215/00127094-2018-0015. url: https://mathscinet.ams.
org/mathscinet-getitem?mr=3859361.

14B. Eichinger, T. VandenBoom, and P. Yuditskii. “KdV hierarchy via abelian coverings and operator identities”.
In: Trans. Amer. Math. Soc. Ser. B 6 (2019), pp. 1–44. doi: 10.1090/btran/30. url: https://mathscinet.ams.
org/mathscinet-getitem?mr=3894927.

http://dx.doi.org/10.1215/00127094-2018-0015
https://mathscinet.ams.org/mathscinet-getitem?mr=3859361
https://mathscinet.ams.org/mathscinet-getitem?mr=3859361
http://dx.doi.org/10.1090/btran/30
https://mathscinet.ams.org/mathscinet-getitem?mr=3894927
https://mathscinet.ams.org/mathscinet-getitem?mr=3894927


KdV Hierarchy

Set

L = −∂2
x + u and P2n+1 =

n∑
`=0

(fn−`∂x − (1/2)fn−`,x ) L`,

where n ∈ N0, {f`}`∈N0 is recursively defined by letting f0 = 1 and

f`,x = −(1/4)f`−1,xxx + uf`−1,x + (1/2)ux f`−1, ` ∈ N.

Here (L,P2n+1) is called Lax pair15. The KdV hierarchy can be
represented by Lax pair, or rather,

∂tnu = [L,P2n+1](u) = −2fn+1,xu, n ∈ N. (5)

15Fritz Gesztesy and Helge Holden. Soliton equations and their algebro-geometric solutions. Vol. I. Vol. 79.
Cambridge Studies in Advanced Mathematics. (1 + 1)-dimensional continuous models. Cambridge University Press,
Cambridge, 2003, pp. xii+505. isbn: 0-521-75307-4. doi: 10.1017/CBO9780511546723. url: https://mathscinet.
ams.org/mathscinet-getitem?mr=1992536.

http://dx.doi.org/10.1017/CBO9780511546723
https://mathscinet.ams.org/mathscinet-getitem?mr=1992536
https://mathscinet.ams.org/mathscinet-getitem?mr=1992536


KdV Hierarchy

Eichinger B., VandenBoom T. and Yuditskii P.16 studied KdV hier-
archy (5) with almost periodic initial data

u(0, ·) = V (·). (6)

Under some conditions on V in terms of the spectral properties of
L, they proved that quasi-periodic Cauchy problem (5)-(6) admits
a global solutions u(tn, x) in the classical sense which is uniformly
almost periodic in time and space coordinates.

♦ The case of n = 1 is the existence result for KdV.

1614, Eichinger-VandenBoom-Yuditskii-2019-TAMS.
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A Possible Negative Answer to Deift Conjecture

I Damanik D., Lukic M., Volberg A., Yuditskii P.17: a program
which intends to show that this conjecture is not true in general
(by constructing smooth almost periodic initial data for which
the solution is not almost periodic in time).

17David Damanik et al. “The Deift Conjecture: A Program to Construct a Counterexample”. In: (Nov. 2021).
eprint: 2111.09345. url: https://arxiv.org/pdf/2111.09345.pdf.

2111.09345
https://arxiv.org/pdf/2111.09345.pdf


mKdV

The case p = 3 of gKdV is the modified KdV equation

∂tu + ∂3
xu + u2∂xu = 0.

There are many studies on mKdV in the usual Sobolev space Hs(R)
and periodic Sobolev space Hs(T), and the sharp results are H1/4(R)
and H1/2(T) respectively18.

I However, to the best of our knowledge, there is no research on
the quasi-periodicity in space for mKdV.

I These motivate us to study gKdV (1) with quasi-periodic initial
data (2), and our main result is the following theorem.

18J. Colliander et al. “Sharp global well-posedness for KdV and modified KdV on R and T”. In: J. Amer.
Math. Soc. 16.3 (2003), pp. 705–749. issn: 0894-0347. doi: 10.1090/S0894- 0347- 03- 00421- 1. url: https:

//mathscinet.ams.org/mathscinet-getitem?mr=1969209.

http://dx.doi.org/10.1090/S0894-0347-03-00421-1
https://mathscinet.ams.org/mathscinet-getitem?mr=1969209
https://mathscinet.ams.org/mathscinet-getitem?mr=1969209
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Theorem (arXiV: 2110.1126319 by Damanik-Li-X) If the initial
Fourier data is exponentially decaying, that is, there exist A > 0
and 0 < κ ≤ 1 such that

|c(n)| ≤ A
1

p−1 e−κ|n|, ∀n ∈ Zν ,

then the quasi-periodic Cauchy problem (1)-(2) has a unique spa-
tially quasi-periodic solution (3) on [0, t0)×R, where t0 is a positive
number and it depends on p,A, κ, ν and |ω|. What’s more, the
Fourier coefficient c(t, n) of solution retains the exponential decay
with a slightly worse constant, that is,

|c(t, n)| ≤ �e−
κ
2
|n|, ∀n ∈ Zν and ∀0 ≤ t < t0,

where � = 2(6κ−1)νA
1

p−1 .

19David Damanik, Yong Li, and Fei Xu. “Local Existence and Uniqueness of Spatially Quasi-periodic Solutions to the
Generalized KdV Equation”. In: (Oct. 2021). eprint: 2110.11263. url: https://arxiv.org/pdf/2110.11263.pdf.

2110.11263
https://arxiv.org/pdf/2110.11263.pdf


I The case p = 2 coincides with Damanik and Goldstein’s local
result20.

I Regarding the proof, we first reduce the quasi-periodic Cauchy
problem to a nonlinear system of infinite coupled ODEs in
the Fourier space. Due to the difficulty of discrete convolu-
tion of higher dimension, we apply a combinatorial analysis
method21-22 to obtain the local existence and uniqueness un-
der the exp. decay condition w.r.t |n|.

I Next we will introduce the skeleton of proof with some details.

2012, Damanik-Goldstein-2016-JAMS.
21M. Christ. “Power series solution of a nonlinear Schrödinger equation”. In: Mathematical aspects of nonlinear

dispersive equations. Vol. 163. Ann. of Math. Stud. Princeton Univ. Press, Princeton, NJ, 2007, pp. 131–155. url:
https://mathscinet.ams.org/mathscinet-getitem?mr=2333210.

2212, Damanik-Goldstein-2016-JAMS.

https://mathscinet.ams.org/mathscinet-getitem?mr=2333210
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Step 1: Infinite Dimensional ODEs with Discrete
Convolution of Higher Dimension

To reduce the nonlinear PDE problem with Fourier expansion to the
following nonlinear system of infinite coupled ODEs

d

dt
c(t, n)− i(n · ω)3c(t, n) +

in · ω
p

c∗p(t, n) = 0, ∀n ∈ Zν ,

with the discrete convolution of higher dimension c∗p(·, n), defined
by the following formula

c∗p(t, n) , c ∗ c · · · ∗ c︸ ︷︷ ︸
p

(t, n) :=
∑

n1,··· ,np∈Zν :
∑p

j=1 nj =n

p∏
j=1

c(t, nj ).

I This equation is a type of infinite dimensional ODEs with dis-
crete convolution of higher dimension, and it is impossible to
solve it directly. Here we use its integral form and define the
Picard sequence to approximate the solution.
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Step 2: Picard Iteration

Choosing the solution e i(n·ω)3tc(n) to the linear equation as the
initial guess c0(t, n), and defining ck (t, n) successively by letting

ck (t, n) = c0(t, n)− in · ω
p

∫ t

0
e i(n·ω)3(t−τ)c∗pk−1(τ, n)dτ, k ≥ 1.

I Notice that ck(t, n) − c0(t, n) can be viewed as a multi-linear
form of ck−1(t, n) for all k ≥ 1. Hence ck(t, n) − c0(t, n) is
indeed a multi-linear form of c , that is, ck(t, n) − c0(t, n) has
the continued product form c · c · · · c · c .

I Due to the difficulty of calculating the discrete convolution of
higher dimension, we cannot control the iteration process effec-
tively. By applying a combinatorial analysis method, we obtain
the local result.
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Step 3: Combinatorial Analysis

For all k ≥ 1, the Picard sequence ck (t, n) has the following com-
binatorial tree form

ck (t, n) =
∑
γ∈T(k)

∑
n(k)∈N(k,γ)

µ(n(k))=n

F(k,γ)(n(k))I(k,γ)(t, n(k))C(k,γ)(n(k)), (7)

where these abstract symbols T(k),N(k,γ),F(k,γ), I(k,γ) and C(k,γ)

are defined inductively.



With the help of the combinatorial form, along with the exponential
decay condition, and by induction, we can prove that the Picard se-
quence is exponentially decaying, with the decay rate κ/2, uniformly
in time.

Lemma
If 0 < t ≤ κ(p−1)ν+1

2p+16(p−1)ν+1A|ω| , then

|ck (t, n)| ≤ �e−
κ
2
|n|, ∀k ≥ 1,

where � , 2(6κ−1)νA
1

p−1 .

I Regarding the proof of this Lemma, many complicated esti-
mates should be made (due to the complicated combinatori-
al indices generated by the nonlinearity), and we omit them
here. If you are interested in them, you can find them in arXiv:
2110.1126323.

2318, Damanik-Li-Xu-2021-arXiv 2110.11263.
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Step 4: Cauchy Sequence, Existence and Uniqueness

By the exponential decay property of the Picard sequence, we can
prove that it is a Cauchy sequence with the following estimates.

Lemma
For 0 < t < min

{
κ(p−1)ν+1

2p+16(p−1)ν+1A|ω| ,
κ(p−1)ν+1

2(p−1)e�p−112(p−1)ν+1|ω|

}
, t0 > 0, and

all k ≥ 1, we have

|ck+F(t, n)− ck (t, n)|

≤
Θe−

κ
4 |n|+

1
p−1
{

2(p− 1)e�p−1(12κ−1)(p−1)ν+1|ω|t
}k+1

1− 2(p− 1)e�p−1(12κ−1)(p−1)ν+1|ω|t

uniformly for F.

I Furthermore, by some standard argument, we can obtain the
local existence result.

I In addition, the solution we construct is unique and is in the
classical sense (thanks to the exponential decay property).
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Summary

I We obtain the local existence and uniqueness of spatially quasi-periodic
solutions to the generalized KdV equation, under the exponential de-
cay condition. This result is a generalization of Damanik and Gold-
stein’s work24 in terms of the local result on KdV to gKdV.

I The solutions we consider are non-periodic w.r.t. space (compare
with the spatially periodic solutions) and don’t decay to zero w.r.t.
space (compare with fast decay at infinity case).

I The setting we are in is non-compact real line R . ”Generally speak-
ing, due to the non-compact setting, there are very few known results
on space quasi-periodic solutions to nonlinear PDEs.” This is from
Wang’s paper25.

2412, Damanik-Goldstein-2016-JAMS.
256, Wang-2020-CMP.
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Summary

I The main difficulty we encounter is the operation of higher di-
mensional discrete convolution (the complicated combinatorial
indices and estimates). The remaining global problem is much
more difficult and it may need the integrability of gKdV and
deep spectral analysis; compare Damanik and Goldstein’s pa-
per26.

I Our method works for arbitrary natural number p.

2612, Damanik-Goldstein-2016-JAMS.
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Thanks for your attention!

Fei Xu
(Jilin University)
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