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Motivation

This talk centers around the spectral theory of periodic and
almost-periodic operators , specifically the size of the spectrum.

There is a scheme due to A. Avila that one can use to prove very fine
measure estimates on spectra of periodic and limit-periodic discrete
Schrödinger operators , which in turn leads to the construction of
almost-periodic operators with very thin spectra.

Many steps of the scheme are essentially model-independent.

One step that is model-dependent is the careful construction of suitable
spectral gaps.

In some recent joint work on Dirac operators, we had to find a new way
to implement this aspect of the scheme, using some notions from group
theory, complex analysis, and inverse spectral theory.



A General Problem

Given:

I A class of linear self-adjoint operators L .

I An operator L ∈ L .

I A spectral parameter λ ∈ R.

How to perturb L within L and open a spectral gap around λ?

If L is some collection of periodic differential/difference operators in
dimension one, one wants to know how to produce hyperbolicity of
specific matrices.

This can be (and has been) achieved in suitable settings by
fine/delicate/hard/technical analysis.

Later on, we’ll discuss a soft approach via some helpful facts from group
theory, complex analysis, and inverse spectral theory.



Philosophy

We consider a family {A(t)}t∈T of SU(1, 1) matrices that depend on
analytically on a parameter t ∈ T , where T is a Banach space.

I Hyperbolicity can be achieved via noncommutation (to be described
later).

I Noncommutation at a single point t leads to noncommutation
everywhere outside a set with empty interior (identity principle).

I Commutation everywhere is a very strict statement. Depending on
the context, it may directly imply conclusions via direct calculations
or inverse spectral theory.



Dirac Operators

Dirac operator

Given ϕ : R→ C, the associated Dirac operator Λϕ (in the Zakharov–
Shabat gauge) is given by

Λϕ = −i
[
−1 0
0 1

]
︸ ︷︷ ︸

=:j

∂x +

[
0 ϕ(x)

ϕ(x) 0

]
︸ ︷︷ ︸

=:Φ(x)

.

Goal. Study the spectrum:

σ(Λ) = {z ∈ C : Λ− zI not invertible}.

Dirac operators arise in relativistic quantum mechanics.

The Zakharov–Shabat operators come from a Lax pair representation of
a nonlinear Schrödinger equation.



Transfer Matrices

The transfer matrices are given by

Az(x , x0, ϕ) =

[
U1(x) V1(x)
U2(x) V2(x)

]
,

where U and V solve

ΛϕU = zU, ΛϕV = zV , U(x0) =

[
1
0

]
, V (x0) =

[
0
1

]
.

Facts.

I det Az(x , x0, ϕ) ≡ 1

I d
dx [Aλ(x , x0, ϕ)∗jAλ(x , x0, ϕ)] = 0 for λ ∈ R. ( j =

[
−1

1

]
)

I Thus, Aλ(x , x0, ϕ)) ∈ SU(1, 1) for λ ∈ R.

I Az(x , x0, ϕ) analytic as a function of z and of ϕ.



Periodic Dirac Operators

If ϕ : R→ C is periodic of period T :

Monodromy matrices: Mz(x , ϕ) = Az(x + T , x , ϕ).

Discriminant: D(z , ϕ) = Tr(Mz(x , ϕ)).

The spectrum is purely a.c. and is given by a union of closed intervals
(bands):

σ(Λϕ) = {λ ∈ R : ΛϕU = λU has a polynomially bounded solution}

= {λ ∈ R : ΛϕU = λU has a bounded solution}

= {λ ∈ R : spr(Mλ(0, ϕ)) = 1}

= {λ ∈ R : D(λ, ϕ) ∈ [−2, 2]}

= {λ ∈ R : Mλ(0, ϕ) is conjugate to a rotation}

=:
⋃
n∈Z

[an, bn].



Floquet Discriminant

λ

D(λ)
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Limit-Periodic Functions

Recall, ϕ is (uniformly) limit-periodic if it is a uniform limit of continuous
periodic functions , e.g.

ϕ(x) =
∞∑

m=1

e
2πix
m! −m

m!

Denote the set of limit-periodic functions by

LP(R) = {ϕ ∈ C (R) : ϕ is periodic}
‖·‖∞

LP(R) is a complete metric space.

Not, however, a Banach space. E.g. eix + eiπx .

Spectral Theory of limit-periodic operators studied by many including
Moser, Avron, Simon, Chulaevskii, Molchanov, Pöschel, Pastur,
Tkachenko, Egorova, Peherstorfer, Volberg, Yuditskii, Bellissard,
Geronimo, Avila, Damanik, Gan, Krüger, Lukic, Yessen, Ong,
VandenBoom, G. Young, C. Wang, Gwaltney, Eichinger,. . .



Theorem

Theorem (Eichinger–F.–Gwaltney–Lukic, (2022))

For generic ϕ ∈ LP(R), σ(Λϕ) is an extended Cantor set of zero
Lebesgue measure.

For a dense subset ϕ ∈ LP(R), σ(Λϕ) has zero Hausdorff dimension as
well.

Benjamin Eichinger
(Johannes Kepler

University)

Ethan Gwaltney
(Rice)

Milivoje Lukic
(Rice)

The proof follows Avila’s scheme in the bulk, with some new approaches
to certain model-dependent steps.



Proof Ideas: Bird’s-Eye View
I The mapping ϕ 7→ σ(Λϕ) is 1-Lipschitz if the domain has the L∞

metric and the target has the Hausdorff metric.

That is: dist(σ(Λϕ), σ(Λψ)) ≤ ‖ϕ− ψ‖∞ , where

dist(F ,K ) = inf{ε > 0 : F ⊆ Bε(K ) and K ⊆ Bε(F )}

I So, the set of ϕ for which σ(Λϕ) has zero measure is always a Gδ.

Namely, the set of ϕ such that |(σ(Λϕ) ∩ [−M,M]| < δ is open for every
M, δ.

Lemma
Given ϕ ∈ C (R) T -periodic , M > 0 , and ε > 0.
There exist c0 = c0(ϕ,M, ε) > 0 and N0 = N0(ϕ,M, ε) ∈ N such that:

for every integer N ≥ N0 there exists ϕ̃ of period T̃ = NT such that

‖ϕ− ϕ̃‖∞ < ε and |σ(Λϕ̃) ∩ [−M,M]| < e−c0T̃



Lemma Implies Theorems

Lemma
Given ϕ ∈ C (R) T -periodic, M > 0, and ε > 0.
There exist c0 = c0(ϕ,M, ε) > 0 and N0 = N0(ϕ,M, ε) ∈ N such that:

for every integer N ≥ N0 there exists ϕ̃ of period T̃ = NT such that

‖ϕ− ϕ̃‖∞ < ε and |σ(Λϕ̃) ∩ [−M,M]| < e−c0T̃

I The zero-measure spectrum result is immediate (Baire Category)

I The zero-dimensional result follows from noting that one can
produce Tn-periodic ϕn → ϕ∞ in such a way that

[−Mn,Mn] ∩ σ(ϕΛn)

can be covered efficiently by small intervals.

I Singularity of spectral measures is immediate.

I Continuity of spectral measures follows from Gordon’s lemma.



Avila’s Scheme

Lemma
Given ϕ ∈ C (R) T -periodic, M > 0, and ε > 0.
There exist c0 = c0(ϕ,M, ε) > 0 and N0 = N0(ϕ,M, ε) ∈ N such that:

for every integer N ≥ N0 there exists ϕ̃ of period T̃ = NT such that

‖ϕ− ϕ̃‖∞ < ε and |σ(Λϕ̃) ∩ [−M,M]| < e−c0T̃

Let us describe the overall structure.

I Begin with ϕ periodic, M > 0, ε > 0.

I Produce a finite family of perturbations ϕ1, ϕ2, . . . , ϕ` that are close
to ϕ and whose resolvent sets cover [−M,M].

I Form ϕ̃ by concatenating each ϕj many times.

I For each λ ∈ [−M,M], transfer matrices grow on long intervals.

I This can be used to get lower bounds on the derivative of the
rotation number.

I Hence, upper bounds on measure of spectrum (in [−M,M]).



Avila’s Scheme

Lemma
Given ϕ ∈ C (R) T -periodic, M > 0, and ε > 0.
There exist c0 = c0(ϕ,M, ε) > 0 and N0 = N0(ϕ,M, ε) ∈ N such that:

for every integer N ≥ N0 there exists ϕ̃ of period T̃ = NT such that

‖ϕ− ϕ̃‖∞ < ε and |σ(Λϕ̃) ∩ [−M,M]| < e−c0T̃

Let us describe the overall structure.

I Begin with ϕ periodic, M > 0, ε > 0.

I Produce a finite family of perturbations ϕ1, ϕ2, . . . , ϕ` that are close
to ϕ and whose resolvent sets cover [−M,M].

I Form ϕ̃ by concatenating each ϕj many times.

I For each λ ∈ [−M,M], transfer matrices grow on long intervals.

I This can be used to get lower bounds on the derivative of the
rotation number.

I Hence, upper bounds on measure of spectrum (in [−M,M]).



Opening Spectral Gaps

There are two steps that depend on the particular structure of the model
in question: opening spectral gaps, and transferring bounds on solutions
to bounds on the rotation number/integrated density of states.

In this talk, I will focus on the first of these.

Recall that the spectrum of a T -periodic operator Λϕ was characterized
as those energies λ for which the monodromy matrix Aλ(T , 0, ϕ) is not
hyperbolic.

So, one wants to know how to perturb ϕ so as to make Aλ(T , 0, ϕ)
hyperbolic.

As phrased, this is problematic, because... ellipticity is open. Need to
pass to higher periods.



Hyperbolicity via Noncommutation

Recall that A ∈ SU(1, 1) \ {±I} is

I elliptic if |TrA| < 2

I parabolic if |TrA| = 2

I hyperbolic if |TrA| > 2

Let us write [A,B] = AB− BA for the commutator of A and B.

Lemma
If A,B ∈ SU(1, 1) are elliptic and [A,B] 6= 0, then the semigroup they
generate contains a hyperbolic matrix.

Proof Sketch.
It is well known that the closed subgroup generated by A and B contains
a hyperbolic element.

Approximate A−1 (resp. B−1) by positive powers of A (resp. B) to see
that the closed semigroup generated by A and B is the same as the
closed subgroup.

Hyperbolicity is an open condition.



Opening Spectral Gaps

Recall: The goal is to begin with ϕ periodic, λ ∈ σ(Λϕ) and push λ into
the resolvent set of a perturbed operator.

I Case 1. D(λ) ∈ (−2, 2).

I By the Lemma from previous slide, it suffices to find ϕ̃ near ϕ of the
same period for which

[Aλ(T , 0, ϕ),Aλ(T , 0, ϕ̃)] 6= 0

I Well, if you cannot do that , the commutator vanishes everywhere
by analyticity.

I Calculation: The centralizer of the set of Dirac monodromies of a
given fixed period T is {±I}. Contradiction.

I Having found the nearby ϕ̃ for which the monodromies don’t
commute , use the lemma to concatenate {ϕ, ϕ̃} so as to make the
resulting monodromy hyperbolic.

I Case 2. D(λ) ∈ {−2, 2}. Perturb ϕ a bit. You either push λ into
the resolvent set or you push yourself into Case 1.



Thank you!


