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Topics Discussed
Topics Discussed:

e General three-coefficient Sturm—Liouville operators generated by
7= r(x)"~(d/dx)p(x)(d/dx) + q(x)], x € (a, b), and their self-adjoint
L2((a, b); rdx)-realizations, T.

e The traditional 2 x 2 matrix-valued M-functions associated with separated
boundary conditions (if any) at the endpoints a and b.

e The connection of M to the Green’s function in the separated b.c. case.
e M for general b.c.'s and its Nevanlinna—Herglotz property.
e The precise connection between the family of spectral projections ET(\),

A € R, in L2((a, b); rdx) and the 2 x 2 matrix-valued spectral measure Q
in the Nevanlinna—Herglotz representation of M for general b.c.'s.
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Basic Facts and Self-Adjoint L2-Realizations of S—-L Operators

Basic Facts and Self-Adjoint [?-Realizations

Hypothesis 1. (To be assumed throughout this talk.)

Let —o0o < a < b < co. Suppose that p, g, r are Lebesgue measurable on (a, b)

with p=*,q,r € L}, ((a, b); dx) and real-valued a.e. on (a, b) with r > 0 and

p >0 a.e. on (a,b).

Introduce the differential expression 7

o= 2= (pF) + af) € Lhel(a, b)), £ €D((a,b))
where
D((a, b)) = {f € ACioc((a, b)) | fIM! € ACinc((a, b))},

and
It = pf’

is the first quasi-derivative of . The Wronskian of f and g is defined as usual
by

W(f,g)(x) = f(x)gM(x) — Fl(x)g(x), x & (a,b), f.g €D((a,b)).
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Basic Facts and Self-Adjoint L2-Realizations of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

Then W(f, g) is locally absolutely continuous on (a, b) and its derivative is

W(f,g) (x) = [g(x)(7F)(x) = F(x)(7&)(x)] r(x), x € (a,b).

If z € C, then the Wronskian of two solutions uj(z, -) € ©((a, b)), j € {1,2}, of
(r —z)u=0on (a, b) is constant. Moreover, W(ul()\ ), u2(A, ) # 0 if and
only if u1(, ) and wa(\, -) are linearly independent.

Definition 2.

The differential expression 7 is said to be regular on (a, b) if —co < a< b < oo
(i.e., a and b are finite) and p~1, q,r, s € L1((a, b); dx); otherwise, T is said to be
singular on (a, b).

If 7 is regular on (a, b), then for all f € D((a, b)), f,7f € L?((a, b); rdx) (i.e., for
all f € dom( T,.x)) the following limits exist and are finite:

f(a) = Iii‘n f(x), fll](a) = Iiin f[ll(x),

f(b) := lim £(x), fl(b) == lim f(x).
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Basic Facts and Self-Adjoint L2-Realizations of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

Maximal, T ., preminimal, T ,,,, and minimal T,,;,, operators are then defined
in a standard manner,

Tmaxf = 7f,
f € dom(Tmax) = {g € L*((a,b); rdx)| g € D((a, b)), 7g € L*((a, b); rdx)}.
:/_minf = Tf)

f € dom (i’min) = {g € dom( Tpnax) | & has compact support in (a, b)}

.
* *
7-min = 7-min = Tmax s 7-min = Tmax~

(Here S denotes the operator closure of S.) The existence of principal and
nonprincipal solutions is closely connected to oscillation theory for 7 — .

Definition 3.

Let A € R. The differential expression 7 — X is called oscillatory at a (resp., b) if
some solution of (7 — A)u = 0 has infinitely many zeros accumulating at a (resp.,
b); otherwise, 7 — X is called nonoscillatory at a (resp., b).
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Basic Facts and Self-Adjoint L2-Realizations of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

Theorem 4 (Eckhardt-G-Nichols-Teschl 2013).

Let A € R be fixed. If 7 — X is nonoscillatory at b, then there exists a real-valued
solution up(A, -) of (7 — A\)u = 0 satisfying the following properties (i/)—(ii) in
which Up(A, -) denotes an arbitrary real-valued solution of (7 — A)u = 0 linearly
independent of up(A, ).

(1) up(A, ) and p(A, -) satisfy the limiting relation

Ub(Av X)
lim —
xtb Up(A, x)

(i) up(X, -) and Tp(A, -) satisfy

b b
/ dx [p(x)| " s(X, x)* < 00 and / dx [p(x)| ~Lup(A, x) 72 = o0,

The analogous result holds if 7 — A is nonoscillatory at a.

up(A, ) is called a principal solution (it is unique up to normalization, and the
“smallest” solution), Up(A, ) are called nonprincipal solutions of (7 — A)u = 0.
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Basic Facts and Self-Adjoint L2-Realizations of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

Theorem 5 (Eckhardt-G-Nichols-Teschl 2013).
Suppose there exist \;, A\p € R such that 7 — A, is nonoscillatory at a and 7 — Ap

is nonoscillatory at b. Then T ,;, and hence any self-adjoint extension of the
minimal operator T, is lower semibounded.

In particular, if 7 is regular on (a, b), then T ,,;, and hence every self-adjoint
extension of T, is bounded from below.

Definition 6.

The operator .Tmi,, is said to be bounded from below at a if there exists
c € (a,b) and A, € R such that

(U, Tminu) LZ((a,b);rdx) 2 )\a(u, U)L2((a,b);r dX)7

u € dom (Tm,-n) such that u =0 on (c, b).

Analogously one introduces the notion that T ,;, is said to be bounded from
below at b.
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Basic Facts and Self-Adjoint L2-Realizations of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

The celebrated Weyl alternative then can be stated as follows:

Theorem 7 (Weyl’'s Alternative).

Assume Hypothesis 1. Then the following alternative holds: Either,

(i) for every z € C, all solutions v of (7 — z)i) = 0 are in L2((a, b); rdx) near b
(resp., near a),

or,

(if) for every z € C, there exists at least one solution v of (7 — z)¢ = 0 which is
not in L2((a, b); rdx) near b (resp., near a). In this case, for each z € C\R, there
exists precisely one solution v, (resp., 1,) of (7 — z)1) = 0 (up to constant
multiples) which lies in L2((a, b); rdx) near b (resp., near a).
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Basic Facts and Self-Adjoin of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

This yields the limit circle/limit point classification of 7 at an interval endpoint
and links self-adjointness of T, (resp., Tmax) and the limit point property of T
at both endpoints as follows.
Definition 8.

Assume Hypothesis 1.

In case (/) in Theorem 7, 7 is said to be in the limit circle case at b (resp., at a).
(Frequently, 7 is then called quasi-regular at b (resp., a).)

In case (ii) in Theorem 7, 7 is said to be in the limit point case at b (resp., at a).

If 7 is in the limit circle case at a and b then 7 is also called quasi-regular on
(a, b).
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Basic Facts and Self-Adjoint L2-Realizations of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

Theorem 9 (see, e.g., Eckhardt-G-Nichols-Teschl 2013).

If T, is bounded from below at a, then there exists a € R such that for all
A < a, T — A is nonoscillatory at a. An analogous result holds at the endpoint b.

Assuming T, is lower semibounded and in the limit circle case at a, and given
principal and nonprincipal solutions u,(Ao, - ) and U;(Ag, - ) of (7 — Xo)u =0,
one introduces generalized boundary values for functions g € dom(T,,.«) as
follows:

B0) iy i EWE@EO0)

~ — i
g(a) ;?3 /U\a()\(h X)’ xla Ua(>\0, X) ’

and similarly at the endpoint b (see, G-Nichols-Littlejohn 2020).
Note. When 7 is regular at a, then the following boundary values re-emerge,

g(a)=g(a), g'(a)=g"(a) = lim p(x)g’(x).
Hence g’(a) in (%) represents the natural analog of the (quasi) difference quotient

at x = a.
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Basic Facts and Self-Adjoint L2-Realizations of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

If 7 is in the limit circle case at a and b, then
Tminf = 7F,
f € dom(T o) = {g € dom(T,n) | 8(a) = &'(a) = 0 = E(b) = &'(b)}.
and the Friedrichs (resp., Dirichlet) extension Tr of T, is given by
Tef =7f, fedom(TF) = {g € dom( max)’g ) =0=2g(b)}.
Actually, at this point ALL self-adjoint extensions can be described as follows:

Theorem 10.

Assume Hypothesis 1 and that 7 is in the limit circle case at a and b. In
addition, assume that v; € dom( Tmax), j = 1,2, are real-valued solutions Vi,
Jj=1,2, of (1 — A)u =0 with X\ € R, such that W(vy, v2) = 1. For

gE€ dom( Tmax) we introduce the generalized boundary values

gi(a) = —W(w,g)(a), &i(b) = —W(v2,g)(b),
8(a) = W(wv,g)(a),  &(b) = W(w,g)(b).

Then the following items (/)—(iv) hold:

v
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Basic Facts and Self-Adjoint L2-Realizations of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

Theorem 10 (contd.).

(1) Ta.B is a self-adjoint extension of T, if and only if there exist 2 X 2 matrices
A and B (with complex-valued entries) satisfying

1 0

El(a)) (El(b)> }
AlZ =B(2 .
(gz(a) &(b)

(i) All self-adjoint extensions T, 5 of T, with separated boundary conditions are
of the form

rank(A B)=2, AJA*=BJB*, J= (0 _1> ,
with T4 g given by

Tagf=71f, fedom(Tag)= {g € dom( T nax)

T,sf =7f, ~,0€[0,m),
f € dom(T,s) = {g € dom(Tnax)| sin(7)&2(a) + cos(7)g1(a ) =0:
sin(6)g2(b) + cos(d)g1(b) = 0}.
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Basic Facts and Self-Adjoint L2-Realizations of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

Theorem 10 (contd.).

(iii) All self-adjoint extensions T, g of T, with coupled boundary conditions are
of the type

T%Rf:Tf,

fe dOm(TLp,R) = {g E dom(TmaX)

gi(b)\ _ i gi(a)
&) -+=(&3) }
where ¢ € [0,27), and R is a real 2 x 2 matrix with det(R) =1 (i.e.,

R € SL(2,R)).

(iv) Every self-adjoint extension of T, is either of type (ii) (i.e., separated ) or of
type (iii) (i.e., coupled).

v
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Basic Facts and Self-Adjoint L2-Realizations of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

In the lower semibounded case this can be rewritten as follows:

Assume Hypothesis 1 and that 7 is in the limit circle case at a and b. In
addition, assume that T, = Aol for some \g € R, and denote by u,(\g, - ) and
Us(Mo, ) (resp., up(Mo, - ) and Up(No, -)) principal and nonprincipal solutions of
Tu = Xgu at a (resp., b), satisfying

W(ﬁa(Am ')7 Ua(>\07 . )) = W(ﬁb(Am : ), Ub()‘Oa )) =1

Then the following items (i)—(iii) hold:
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Basic Facts and Self-Adjoint L ations of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

Theorem 11 (contd.).
(1) Introducing v; € dom(Tp,.x), j = 1,2, via

n(x) = Us(Xo, x), for x near a, vo(x) = us(Ao, x), for x near a,
Up(No, x), for x near b, up(No, x), for x near b,

one obtains for all g € dom( T pax),
B(5) = ~W(2,£)(a) = (2) = ~W(wso. ).&)(a) = lim £

) N &%)
E(b) = ~W(v2,£)(6) = &1(6) = =W (us(do, -),£)(b) = lim ===,

£'(2) = W, )(a) = B() = (@00, ). )(a) — lim ELI =B Lox)

_ . _ - g(x) = E(B)ib( 20, %)
g'(b) = W(v1,8)(6) = &(b) = W(@(\o, ), 8)(b) = iy = S EEE=,

In particular, the limits on the right-hand sides above exist.

- _________________________________________________/
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Basic Facts and Self-Adjoint L2-Realizations of S—-L Operators

Basic Facts and Self-Adjoint [2-Realizations (contd.)

Theorem 11 (contd.).

(i) All self-adjoint extensions T 5 of T, with separated boundary conditions are
of the form

T,sf =7f, ~,0€[0,7),
f € dom(T,5) = {g € dom(Tpnax) | sin(v)g’(a) + cos(v)g(a) = 0;
sin(9)g’(b) + cos()g(b) = 0}.
Moreover, (T, s) is simple.

(iii) All self-adjoint extensions T, z of T, with coupled boundary conditions are
of the type

T%Rf = 7'f-7

f edom(T,r)= {g € dom( T ax)

where ¢ € [0,27), and R € SL(2,R).

o

Note. For simplicity only, from now on we assume the lower semibounded case.
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-Functions and Separated Boundary Conditions

Classical M-Function Theory

Throughout the following we assume Hypothesis 1 and fix a € [0, 7).

Associated with the differential expression 7 we consider the self-adjoint operator
T, s in L?((a, b); rdx) corresponding to separated boundary conditions (if any)
indexed by v, ¢ € [0,7), and the usual fundamental system of solutions
da(z, -, x0) and 0,(z, -, x0), z € C, of Tu = zu, with respect to a fixed reference
point xp € (a, b), satisfying the initial conditions

ba(z, X0, %0) = —Hg](z,xo,xo) = —sin(a),

oM(z, x0,%0) = 0a(z, X0, x0) = cos(a), a €[0,7), z€ C, x € (a, b).

Again we note that for any fixed x, xg € (a, b), ¢u(z,x,x0) and 0,(z, x, xp) are
entire with respect to z and that

W(0u(z, -, x0), 0a(z, -, x0))(x) =1, zeC, x5 € (a,b).
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-Functions and Separated Boundary Conditions

Classical M-Function Theory (contd.)

Particularly important solutions of 7u = zu are the Weyl-Titchmarsh solutions

1f><r,b(za . aXO) or 1ib(x.bﬁ5(z7 . 7XO) at b (reSP-' @5(1,3(27 : :XO) or ybzx,a,q/(za : -,XO) at a)
of Tu = zu, uniquely characterized as follows:

(i) If 7 is in the limit point case at b (resp., a), one introduces 1, »(z, -, x0)
(resp., Yo 2(z, -, x0)) via the requirement

ool 26) € (T )i 1), {resp (2, 50) € L2((ar 0] 1)
sin(a) '), (2, %0, %0) + cos(a)tha, b(2, X0, %0) = 1
(resp., sm(a)/z/;a’a(z,xo,xo) + cos(@)tq 2(z, %0, %0) = 1), z € C\R.

The crucial condition is the L?-property at b (resp., a), which uniquely determines
Ya.b(z, -, x0) (resp., ¥q (2, -, x0)) up to constant (possibly, z-dependent)
multiples by the limit point case hypothesis of 7 at a and b. In particular, for
a, B €[0,),
1/)a,b(2, : aXO) = Cb(Z, «, ﬁ7 XO)IZ/)/'EJ)(Z', : aXO)
(resp-, wa,a(z', : -,XO) = Ca(Z»OC>67X0)1/Jﬁ7a(Z7 : 7X0))
for some coefficients Cp(z, o, B, x0) € C, (resp., Ca(z, @, 5,x0) € C).
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-Functions and Separated Boundary Conditions

Classical M-Function Theory (contd.)

(i) If 7 is in the limit circle case at b (resp., a), one introduces 9, p 5(z, -, X0)

(resp., Ya,2~(z, -, x0)) by requiring that

Yabs(z, -, x0) (resp., 1o a~(z, -, X0)) satisfies the (separated) boundary condition
at b (resp., a) of the form, sin(6)/zf/;(’y_’b75(z, b, xo) + cos(é)&a_b75(z., b,x0) =0
(resp_, Sin(f}/)l;(/ubﬁ(za a, XO) + Cos(ry)@a,b,"/(zs a, XO) = 0)7

sin(a)z/)g,]b’a(z,xo,xo) + cos(@)q b,s(2, X0, x0) = 1

(resp., sin(a)w{[y{]aﬁ(z,xo,xo) + cos(@)Va,a~(2, %0, %) =1), z€ C\R.

Notational convention. To minimize the case distinctions to be made in the

following, we will adopt the notation of case (ii) and should the limit point case
of 7 be present at b or a we simply ignore the extra J- or y-dependence.
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-Functions and Separated Boundary Conditions

Classical M-Function Theory (contd.)

In either case (i) or (ii), the normalizations employed show that ¥ 5 s(z, -, x0)
Gay

are of the type

/l/}(y b7§(Z,X7X0) = ea(Z7X7X0) + m” b,5(27X0)¢a(27X7X0)7 ze (C\R7 X € (37 b)?
ra,y ra,y

for some coefficients m_ 4 5(z, x0), z € C\R, the Weyl-Titchmarsh m-functions
‘a,y

associated with 7, a, 7,4, and xp, which contains (half-line) spectral information,

m, b, s(z,x0) = cos(oz)w b.s(Z: X0, %0) = sin(a)y_ b,5(z,%0,%), z€C\R.
a7y a,y a,y

One recalls the fundamental identities

b
m,,b,‘ Z1,Xp) — M ,b,& Z2, X0
/f(X)dX/l/Ja.b,(s(Zl,X7X0)¢u,b,5(22>X-,Xo): — 0(1 z) Za O( )
X0 1 — 22

)

X0 My a~(21,X) — M 22, X0
/ r(X)dX wa,a,'\/(zla X, XO)ch,a,'y(z% X, XO) =—-— a”Y( : ) 04737’7( - )a
a

Z1 — 22
71,20 € C\R, z # 2,
and concludes
m ps(z,x0) = m_ b(;(z x0), z€C\R.

ay
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-Functions and Separated Boundary Conditions

Classical M-Function Theory (contd.)

Choosing z; = z, zp = Z one infers
b
I « )
/ r(x)dx |z/1a‘b75(z,x,x0)|2 = w >0, ze€C\R,
X0 ) Im(z)

o0 | ,
/ r(x)dx |1/)u7a,,(z,x,x0)|2 = —W >0, ze€C\R.

In addition, since m Wb 0( ,Xo) are known to be analytic on C\R, one obtains that
+m b(;( ,Xp) are Nevanlmna Herglotz functions.

The Green s function G, 5(z, x, x) ze€ p(T,s), x,x" € (a,b), of T, s then reads

Gy (2, x,x') = W(thobs(z, - Xo),Ua +(z, -, x0))

" VYa,a~(2, %, X0)Va,p,s(2, X', x0), a<x
Ya, b(;(z X, X0)Va,a~(2, %', x0), a<x

with
W(q/)cx,bﬁ(zv 'aXO)aq/)u,a,'y(Zv -,Xo)) = mu'.,a;'y(zvxo) - m(%b’(;(Z,Xo), PAAS (C\]R
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-Functions and Separated Boundary Conditions

Classical M-Function Theory (contd.)
Thus (given z € C\R, x € (a, b), f € L?((a, b); rdx)), for separated bc’s,

(Tys— zl)_lf)(x) = / r(x)dx" G, 5(z, x, x")f(x").

For each x € R, the diagonal Green’s function of T, ;, denoted by g, s5(z, x),
has the Nevanlinna—Herglotz property,

gy.5(.x)=Gys5(-.x,x), x€(a,b), isa Nevanlinna—Herglotz function.

Given m_ 15(z,x0), introduce the 2 x 2 matrix-valued Weyl-Titchmarsh fct.
any

Ma,'y,ﬁ(za XO) = (Ma.'y,é,f,é’(za XO))E,Z’:I,Z

1 1 Ma,a,~(2,X0)+Ma,b,5(2,%0)

_ M a,~(2,X0)—Ma,b,5(2,%0) 2 Ma,a,~(2,%0)—Ma,b,5(2,%0)
1 Ma,a,~(2,%0)+Ma b,5(2,%0) Maa,~(2,%0)Ma b,s(2,%0) » ZE€ C\R’

2 Mo, a,~(2,%0)—Ma,b,5(2,%0) Me a,~(2,%0)—Ma,b,5(2,X0)

and notes that
detca(Mor (2. %)) = ~1/4, M 5(2.30)" = Mo (2. %0), 2 € C\R.

By inspection, M, - 5(z,x0) is a 2 x 2 matrix-valued Nevanlinna—Herglotz fct.
since —mq.a+(+,x0) and my ps( -, Xo) are scalar Nevanlinna—Herglotz fcts.
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-Functions and Separated Boundary Conditions

Classical M-Function Theory (contd.)

Turning to the connection between M, ., 5(z, xo) and the Green's function
G,s(z, -, -) of Ty, still in the separated b.c. case, we introduce

(MG, 5) (2, %0, X') = p(x1)Dsy Gy 5(2, x1, X')|

(0576,.5) (2, %, %0) = P(2) s, Gy 5(2, %, %2) | .

(81161 G, 5) (2. 30, x0) = P(x1)8s, P(32)Dsy G (2. 31, 2)|
= (0 G, 5)(z,%0, %), etc.

Then M, - s5(z,x0) can be rewritten as

X1=X0 ’

X1=X0,X2=Xo

Ma.61.1(2,%0) = ([ cos(er) + sin(a)@{ll] [ cos(ar) + sin(a)agl]} Gy.5)(2, X0, %0),
M{y,'y,é,l,Q(Z»XO) = Mw,a,,(s,z,l(Z’Xo)
= (1/2)({ [ cos(a) + sin(a)d"] [ = sin(a) + cos(a) L]
+ [ —sin(a) + cos(a)agl]] [ cos(ar) + sin(a)ﬁg]] }Gy5)(z,%0 £ 0, % F0),
Ma .622(2,%0) = ([ = sin(a) + cos(a)@{ll] [ —sin(a) + cos(a)agll] Gy.5)(2, %0, X0),
z € C\R.
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-Functions and Separated Boundary Conditions

Classical M-Function Theory (contd.)

Thus, G, 5(z,x0,%0) and appropriate first quasi-derivatives of G, 5(z, -, -) at xo
uniquely determine M, ., 5(z,xo) in a straightforward fashion.

In the particular case @ = 0, one obtains the remarkably simple formula

Gy.5(2,%0.%0) 271 ([M+0"] 6,.5) (2,020, F0)
MO,A/,K;(Za XO) = 5
271 ([ol 48] 6, 5 ) (z.0£0,%7F0) (816, 5) (z.%0.%)
z e C\R.

Note. (i) Above, one can of course replace z € C\R by z € p(T, ).

(ii) It is possible to take the limit x | a (resp., xo 1 b) as long as 7 is in the limit
circle case at a (resp., b).

This summarizes the traditional approach to 2 x 2 Weyl-Titchmarsh theory
which focuses on separated boundary conditions at a and b (if any).

How about coupled boundary conditions at a and b? E.g., the periodic case?
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-Functions and General (e.g., Coupled) Boundary Conditions

General M-Function Theory

Let Ta g be a fixed self-adjoint extension of T, with (separated or coupled)
boundary conditions encoded in the 2 x 2 matrices A, B € C?>*?, and abbreviate
the associated Green's function of T4 g by Gag(z, -, ), z€ C\o(Tan).

Inspired by the explicit form of Mo, 5(-,Xo) in terms of the Green's function
G, 5(,x0,x0) and some of its first quasi-derivatives, we now introduce the
general M-function in exactly the same manner,

Mo, a.8(2, x0)

Ga5(2,%0,%0) 271 ([0 +0"] Ga.g) (2, x0+0,x0—

“ ([0M+0] Ga.g) (z,x0+0,20—0) (00l Ga 6 ) (2.%0,%)
Ga.5(2:%0,%) 271 ([0 8] Ga.5 ) (2.%0—0,%0-+0)

T ([0 Gas)zo00010) (61816 ) (200) ’

ze€Cy, xo € (a,b).

Eventually, we will (indicate how to) prove the Nevanlinna—Herglotz property of
Mo.a,8( ", x0).

Note. To simplify matters we restrict ourselves to the simplest case a = 0 only.
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-Functions and General (e.g., Coupled) Boundary Conditions

General M-Function Theory (contd.)

Here we employed the abbreviations

(8{1] GA,B)(Z, xo =0, F0)= LTS p(x)0xGa B(z. x, x’)| x=xode »

X,=X0¥6

<3£1] Gag)(z,% £0,% F0) = “ES P(x")0x Ga,p(z.x,x")

x=xpte 5
X/:XQ:FE
(8:[[1]a£1] GA,B) (Zﬂ, X0, XO) = P(X)ax p(XI)aX’ GA,B(zﬂ X, X/) ‘X:X/zxo

= (MM Ga 8) (2, %0, %0),
and note the explicit formula (for z € p(Tag), x,x’,x0 € (a, b))
Gag(z,x,x") = Gap(z,x0,x0)00(z, x, x0)00(z, X', X0)
+ [(018 Ga ) (2, x0. x0)] (2, X, x0)d0(2, X', x0)
[(8[ ]GA 8)(z, % £0,x F0)+ ( b )} 0o(z, x, x0)do(z, X', x0)
+ [(0116a.8) (2,5 £ 0,5 7 0) + (§) ] do(z. %, x0)00(z, X', 50)

+ 0, a<x<x'<b,
[60(z,x x0)<z$o(z x' x0)—o(z,x xo)90(z x' ><o)]7 a<x'<x<b.
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-Functions and General (e.g., Coupled) Boundary Conditions

General M-Function Theory (contd.)

Assume Hypothesis 1, that T,,, is bounded from below, and let z € C,. Then,
for each fixed xo € (a,b), Mo.a5(-,x0), is a 2 x 2 Nevanlinna—Herglotz matrix
with strictly positive imaginary part,

|m(M07A,B(Z,X0)) > 0, zEc (C+.

Sketch of Proof. (I will have to pull your leg badly, very sorry !!!1) Introduce the
graph Hilbert space! H2((a, b)) associated with T,,., as follows,

HZ((a, b)) = dom(Tpax)
= {g € L*((a, b); rdx) | g, g™ € ACiuc((a, b)); Tg € L?((a, b); rdx) }
with associated graph norm
1122 (a.6)) = | Trmax FlZ2(arbyira) T 11 E2qasyranys F € dOm(Toman),
and scalar product

(fvg)Hf_((a,b)) = (Tmaxf7 Tmaxg)L2((a,b);rdx) + (fvg)L2((a,b);rdx)7 fvg € dom(TmaX)~

1We chose the notation H2((a, b)) since in the special case p=r =1, g =0, 79 = —d?/dx?,
HZ ((a, b)) coincides with the standard Sobolev space H?((a, b)) = W22((a, b)).
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-Functions and General (e.g., Coupled) Boundary Conditions

General M-Function Theory (contd.)

We also introduce the scale of Hilbert spaces corresponding to the self-adjoint
operator T4 g, assuming, for simplicity only, that T4 g > 0. Hence, one obtains
the chain of strict inclusions,

Ho(Tas) S H2((a, b)) S Ho(Tas) =H =H" =Ho(Tas)"
C H2((a,b))* S Ho(Tas)* = H-2(Tas),

with
| Mata(rae)y <N rzap)s < ey <N Tr2ab) < - laa(Tae)-
At this point we introduce the map

HZ((a, b)) — C?,
MM . ( u(xo) > ’ xo € (a, b),

a1 (x0)

and record its properties in the following.
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-Functions and General (e.g., Coupled) Boundary Conditions

General M-Function Theory (contd.)

Assume Hypothesis 1 and that T4 g > 0. Then

M € B(H3((a, b)), C?)

and
C? — H2((a, b))*
M. I e B(C?, H?((a, b))*
0 <C1> > C10x, — C2P0y s " € B(C, Hr((a,))),
(%}
where

Ox(U) = H2((a,b))* (Ox0> U) H2 ((a,b)) = U(X0),
PO, (1) = 12 ((a,b)) (POl Uz (o)) = —ul(x0),  u € H2((a, b)).
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-Functions and General (e.g., Coupled) Boundary Conditions

General M-Function Theory (contd.)

Using mapping properties of resolvents of m in connection with the chain of
Hilbert spaces Hs(Tag). s € R, more precisely, using the special cases,

(ﬂ,/s + 7)_1: L%((a, b); rdx) = Ho(Tag) — Ha(Tag) is an isomorphism,

(m + /N)_l: Ho(Tag) =H_2(Tag) — L?*((a, b); rdx) is an isomorphism,
(m + I~)72: Ho(Tag) =H_2(Tag) = Ha2(Tag) is an isomorphism,

with I~appropriate inclusion maps, one introduces

Im(Ga g(z. xo. AMIm(Ga 5(z, %0,
NA,B(Z7XO):< m(Ca.8(2,%0, %)) 2 Im(Ca.6(2. 0. 0)) )» zec Cy,

6{1]Im(GA,B(z, X0, Xo)) 6{1]a£1]|m(GA,B(Z, X0, Xo))

and computes as follows:
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-Functions and General (e.g., Coupled) Boundary Conditions

General M-Function Theory (contd.)

(¢, Nag(z,x0)¢)c2
a Im(Gag(z.x0, %))  AMIm(Gas(z,x0. %)) a
B ( <62> 7 (a?]'m(GA,B(ZaXoaXO)) 3£1]5£1]|m(GAﬁ,B(ZaXoaXO))> <C2> )cz
= (e.@) [ (Tas —20) = (Tas —21) rie)

= im(2) (e, T (Tas —20) " (Tas ~21) "Tic)

C2

= lm(Z)((ﬁ,E - ?T) 71Fj‘<0c, (m N El)ilr;’c) L2((a,b); rdx)

= 'm(z)H(m _ET)ilr;UCHiZ((a,b);rdx) > 0.
Thus,
|m(/\/’0’A’B(Z,X0)) =271 [NA’B(Z,X()) + NA,B(Z,X())T} >0, zeC,.

Finally, proving strict inequality is elementary and hence omitted here. [J
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Connecting and the Spectral Projections

Connecting My ag(-,x) and E  (-)

Since My 4 5(-,%0) is a 2 x 2 matrix-valued Nevanlinna—Herglotz function, it
permits the representation,

1 A
Mo,a,6(z,x0) = Co,a,8(x0) + /R onA,B()\-,Xo)()\_Z - 1+>\2)’ ze C\R,

where

|dQ0,4,8(\, x0)|l

C = G * = Re(M, ]
0,4,8(x0) = Co,a,8(x0) e(Mo,a.8(i,x0)), A T

The Stieltjes inversion formula for the 2 x 2 nonnegative matrix-valued measure
dQ0,4.8(-,Xo) then reads

Ao+0
QO.A.B(()\L A2]7 Xo) = 71'71 ||m I|m / dA |m(M0‘A_B(>\ =+ I-E, Xo)),
o 610 €]0 A48 o

)\1,)\2 € R, A < )\2,

and hence we are now after the connection between Qg 4 (-, x0) and E7, ().
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Connecting and the Spectral Projections

Connecting My as(-,x) and E  (-) (contd.)

Theorem 14.

Assume Hypothesis 1 and T,,;, is bounded from below. In addition, suppose that
f,g € C§°((a, b)), F e C(R), xo € (a,b), and A1, X2 € R, A\; < Aa. Then,

(f, F(Ta.8)ET, 5 (A1, A2])&) 2((a,b);rd)
= (f(+, ), Me My, 5580(- ’XO))LZ(R;dQO.A,B( - %))

= [ B0 T das(h ) B ) N,
(A1:79]
where we introduced the notation (generalized Fourier coefficients)
N b
ho (A, x0) = / r(x)dx 0o(X, x, x0)h(x),
a

b
ho2(\, x0) = / r(x)dx do( A, x, x0)h(x),

~ ~ ~ T
ho()\,X()) = (hO,l()\7XO)7 ho’g()\,X())) 9 A€ R, he C{,’o((a, b))
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Connecting and the Spectral Projections

Connecting My as(-,x) and E  (-) (contd.)

Here Mg represents the maximally defined operator of multiplication by the
dQf 4 g( -, x0)-measurable function G in the Hilbert space L*(R; d$2 4 5(",X0)),

(Mgh)(A) = G(A)h()) = (G(A)EI(A) GNM(N) " for dQY 4 5(+,x0)-ae A ER,
h S dom(l\/IG) {Z(\ € LQ(R on A, B XO ’ Gk S L2(R dQOA B( 0))},

and
dQt = dQ11 4+ dQs 0

denotes the trace measure of a 2 X 2 matrix-valued nonnegative measure
dQ = (dQ€=(/)Z,Z’:1,2 on R.

The proof of Theorem 14 involves, Stone’s formula relating the family of spectral
projections E7( - ) with nontangential boundary values of the resolvent (T — z/)~!
the explicit structure of the Green's function Ga g(z, -, - ), z € C\o(Tag), the
Stieltjes inversion formula, and essentially every other trick in the book on
(matrix-valued) Nevanlinna—Herglotz functions. Here is a sketch of the proof:
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Connecting and the Spectral Projections

Connecting My as(-,x) and E  (-) (contd.)

The points of departure are Stone’s formula and the explicit expression for the

Green's function Ga g(z,x,x"), z € p(Tag), x,x" € (a,b), of Tap in terms of
éo(z,x,x0) and bo(z, x, x0),

(f? F( TA:B)ETA,B(()\]J >‘2])g)L2((a,b);rdx)

o 1 A2+0 ) .
- [s'f(; lalfg 27i A+6 A F()‘)[(f’ (Tas = (A+ie)l) g) L2((a,b);rdx)
(f,(Tag— (A= iE)l)_lg)B((a,b);rdx)]
A2+6 R
= lim lim =— F( X" f '
W0 207 fy s O A)/ / B x)

X { {GA_’B(/\ + ig, X0, x0)00(X + ig, X, x0)00 (A + ig, X", x0)
+ (3&1]8@ Ga,g) (A + ie, X0, x0)Po(A + i, x, x0)po (A + i, x', xo)
+ (8£1] Gag)(A+ie, xo £0,x0 F 0)fo (A + ie, x, x0)Po(X + ie, X', x0)
+ (0{1] Gag)(A+ie, xo £0,x0 F 0)o(A + ie, x,%0)b0( A + ig, X', x0)
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Connecting and the Spectral Projections

Connecting My as(-,x) and E  (-) (contd.)

— U terms with \ 4 ie replaced by A — ie H

+ ‘terms entire in z taken at A\ + /e minus them taken at \ — /e ‘}

Freely interchanging the dx and dx’ integrals with the limits and the d\ integral
(since all integration domains are finite and all integrands are continuous) and
introducing the notation

do(z, x,x0) = <90(Z’X’XO)> , x€(ab), zeC,

d)O(Z)XvXO)
Y Ga g(z, X0, X oM g 2% %+ 0,% T 0
Mo.a (2, %) = " ,8(2, %0, x0) (05 [1];\7,?1)]( 0 0 F0)
(01" Gag)(z,% £0,x F0) (07705" Ga g ) (2, X0, Xo0)

z € C\R, x € (a, b),

then yield
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Connecting and the Spectral Projections

Connecting My as(-,x) and E  (-) (contd.)

(f F(TA B)ETA B(()\l’)\2]) ) ((a,b);rdx)

b ) Ao+6
:/ r(x)dxf(x)/ r(x/)dxlg(xl)limlimi, dXAF())

510 €0 277 [y, 45
X [CDO()\ + ie, X, xo)Tl\Z()?A‘B()\ +ig,x0)Po(\ + ie, X', x0)
— do(X —ig, x,x0) T Mo.as(A — i, x0)Po (X — is,x’,xo)}.
With = abbreviating d/dz, one obtains

Do(A £ ie, x, x0) i Do(A, x,%0) £ is&JO(A,X,Xo) + 0(£?),

with O(£2) being uniform with respect to (), x) as long as A and x vary in
compact subsets of R x (a, b) (recall that f, g have compact support right now!).
We also note that for some C (A1, A2, €0, x0) € (0, 00),
€|/\/I07A_’Bj7g/(/\ + 1'6,X0)| < C(/\l,/\z,é‘o,Xo), A€ [)\1,)\2] 0<e<eo, ¢, V= 1,2,
€|Re(M07A7B’[7g/()\ + I'€,X0))| TO 0(1), A E R, f, V= 1,2,

€

Thus, one arrives at
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Connecting and the Spectral Projections

Connecting My as(-,x) and E  (-) (contd.)

(F F(Ta8)Er, o (01, A2D)8) o 5y / F(x)dx F( x)/ "' g(x')

1 Ao+6
X limlim — / dAF(\)®o(A, x, x0) T Im(Mo a5 (N + ic, x0))Po(A, X', x0)
sloelom [y 45

Ao+0
x lim f/ F(\)®o(\, x, x0) T dQ0.4.8(), x0) Po(N, X', x0)
610 A +6 :

_ /( ]%(MO)T d90.4.5(\ x0) Bo(X x0) F(V).
A1,A\2

Here we interchanged the dx, dx’ and dQo a (-, xo) integrals once more, and
employed the generalized Fourier coefficient

. b
Fo(\ %) :/ F(x)dx Do(A, x, 0)h(x), A ER, he C((a,b).
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Connecting and the Spectral Projections

Connecting My as(-,x) and E  (-) (contd.)

One removes the compact support restrictions on f and g in a standard manner:
Introduce the unitary map

L2((a, b); rdx) — L2(R; dQ a5(+,x0))
~ ~ ~ T
h— ho(-,x0) = (hoa(+,x0), ho2(-, %))
- o1 (- x0) ST r(x)dx Bo( -, x, x0)h(x)
ho(-,XO): ~ = s-lim s
hoa(-.x0)) <2918 \ [ r(x)ds do( -, x, x0) h(x)
where s-lim refers to the L2(R; dQ0 4 5( -, x0))-limit. The associated inverse
operator is then given by

Foage(x): {

Fonplx) {52([&; dQ0.a8(-,x0)) = L*((a, b); rdx)

hl—>ho,

ho(-)=  slim /M(eo( %) do(A, -550)) 900 4 5N x0) AA),

pid—oo,pato0 J

where s-lim now refers to the L2((a, b); rdx)-limit.
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Connecting and the Spectral Projections

Connecting My as(-,x) and E  (-) (contd.)

Thus, with dQf , (-, x0) = dQo,a81,1(, %) + dQ0.4822(-,x) representing
the trace measure of dQo.4.8(-,x0), and with M denoting the operator of
multiplication by the function F € C(R) in L2(R; dQ 4 5(-,x0)), one obtains the
following result.

Assume Hypothesis 1 and T,,;, is bounded from below. In addition, let F € C(R),
and xo € (a, b). Then, the “diagonalization,”

Foas(x0)F(Tas)Foas(x) =Mk,

holds in L?(R; dQ0 4 5(,x0)). Moreover,

o(TaB) = supp (dQ,48(+,x0)) = supp (d2 4 (X))

Note. (/) While we focused on the case av = 0 for simplicity, the general case
a € [0,7) is handled in the same manner.

(ii) Again, boundedness from below of T, is convenient, but not essential.
(Krein-type resolvent formulas exist independently of boundedness from below.)
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Connecting and the Spectral Projections

Based on:

e J. Eckhardt, F.G., R. Nichols, and G. Teschl, Weyl-Titchmarsh theory for
Sturm—Liouville operators with distributional potentials, Opuscula Math. 33,
467-563 (2013).

e F.G., L. L. Littlejohn, and R. Nichols, On self-adjoint boundary conditions
for singular Sturm—Liouville operators bounded from below, J. Diff. Eq. 269,
6448-6491 (2020).

e F.G. and R. Nichols, Sturm—-Liouville M-functions in terms of Green'’s
functions, preprint, 2022.

e F.G., R. Nichols, and M. Zinchenko, Sturm—-Liouville Operators, Their
Spectral Theory, and Some Applications, book in preparation.

Thank you!
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