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Introduction

Widom factors

Let K ⊂C be a compact set with Cap(K ) > 0. Let w be a weight function
(non-negative and upper semicontinuous on K and positive on a non-polar
subset of K ) on K , and let ‖ · ‖K denote the sup-norm on K .

Then the n-th (weighted) Chebyshev polynomial with respect to w is the
minimizer of ‖wPn‖K over all monic polynomials Pn of degree n and we
denote it by T (K)

n,w . Let

tn(K ,w) := ‖wT (K)
n,w ‖K . (1.1)

We define the n-th Widom factor for the sup norm with respect to weight
w on K by

W∞,n(K ,w) := tn(K ,w)
Cap(K )n . (1.2)
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Introduction

Widom factors

For a finite (positive) Borel measure µ with supp(µ) = K , the n-th monic
orthogonal polynomial for µ is the minimizer of ‖Pn‖L2(µ) over all monic
polynomials of degree n and we denote it by Pn(·; µ). We define the n-th
Widom factor for µ by

W2,n(µ) :=
‖Pn(·; µ)‖L2(µ)

Cap(K )n . (1.3)
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Introduction

Universal lower bound

Let µ be a finite (positive) Borel measure with supp(µ) = K where K is a
compact non-polar subset of C. Let us consider the Lebesgue
decomposition of µ with respect to equilibrium measure µK of K :

dµ = f dµK + dµs .

We define exponential relative entropy for µ by

S(µ) := exp
[∫

log f (x)d µK (x)
]
. (1.4)

It was shown in [A. 19] that, for all n ∈ N, the universal lower bound

[W2,n(µ)]2 ≥ S(µ) (1.5)

holds.
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Introduction

Widom’s results

Let w be a weight function on a compact non-polar subset K of C. We
define S(w) := exp[

∫
log w(x)d µK (x)] .

Let Γ = ∪p
k=1Ek be a system (mutually exterior) of C 2+ Jordan curves

(homemorphic image of the unit circle) and arcs (homemorphic image of
[−1,1]). Here, each component has a parametrization γ such that γ ′ does
not vanish and each coordinate of γ ′′ satisfies a Lipschitz condition.

Theorem (Widom, 1969)
Let Γ = ∪p

k=1Ek be a system of C 2+ Jordan curves. Let w be a weight
function such that S(w) > 0. Then the limit points of W∞,n(Γ,w) is a
finite union of closed subintervals of [S(w),S(w)exp{∑p−1

j=1 gΓ(zj)}] where
zj ’s are critical points of gΓ counting multiplicity.
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Widom’s theory

Widom’s results

Theorem (Widom, 1969)
Let Γ = ∪p

k=1Ek be a system of C 2+ Jordan curves and arcs. Let w be a
weight function such that S(w) > 0. Then
limsupn→∞ W∞,n(Γ,w)≤ 2S(w)exp{∑p−1

j=1 gΓ(zj)}.

Widom also conjectured that once Γ includes an arc, this is the correct
upper bound and the corresponding lower bound for liminf should be
2S(w). He even verified this conjecture when Γ is union of finitely many
intervals.

Nonetheless, his conjecture was proven to be wrong.
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Widom’s theory

On this Conjecture

Theorem (Totik-Yuditskii, 2015)
Let Γ = ∪p

k=1Ek be a system of C 2+ Jordan curves and arcs which includes
at least one curve. Let w be a weight function such that S(w) > 0. Then
there is a C(Γ) < 2 such that
limsupn→∞ W∞,n(Γ,w)≤ C(Γ)S(w)exp{∑p−1

j=1 gΓ(zj)}.

-Totik and Yuditskii also mentioned the following result. Let w ≡ 1, Γ be a
subarc on the unit circle of central angle 2α. Then S(w) = 1 and
limn→∞ W∞,n(Γ,w) = 2cos2(α/4). (Thiran-Detaille (1991)). Thus the
lower bound conjecture was also wrong since the limit is smaller than 2.
The proof of the above Theorem by Totik and Yuditskii improves the upper
bound given in Widom’s paper if the system includes a Jordan curve.
We discuss an improved upper bound if Γ is an arbitrary C 2+ Jordan arc.
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Widom’s theory

Widom factors on a Jordan arc

Let Γ be a C 2+ Jordan arc.
We call two sides of Γ positive and negative sides.
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Widom’s theory

Orthogonal polynomials on a Jordan arc

If n± are the two normals at z ∈ Γ then

g ′±(z) := ∂ gΓ(z)
∂ n±

. (2.1)

Both g ′± are continuous and positive except for the endpoints. Let

ωΓ(z) := 1
2π

(g ′+(z) + g ′−(z)). (2.2)

Then

dµΓ = ωΓ ds (2.3)

where ds is the arc-length measure on Γ.
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Widom’s theory

Orthogonal polynomials on a Jordan arc

A finite (positive) Borel measure µ of the form dµ = fdµΓ is in the Szegő
class Sz(Γ) if

S(µ) = S(f ) = exp
[∫

log fdµΓ

]
> 0. (2.4)

Note that dµΓ,ds ∈ Sz(Γ).
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Widom’s theory

Orthogonal polynomials on a Jordan arc
Widom proved that if µ ∈ Sz(Γ) then [W2,n(µ)]2 has a limit and we have

ν(µ) := lim
n→∞

[W2,n(µ)]2 = 2πRµ (∞)Cap(Γ)

where Rµ is an analytic function determined by µ in C\Γ.

Theorem

[A. 2022] The quantity ν(µΓ) satisfies

1 < ν(µΓ)≤ 2. (2.5)

The equality

ν(µΓ) = 2 (2.6)

holds if and only if g ′+(z) = g ′−(z) for all z ∈ Γ0 where Γ0 is the interior of
Γ.

Gökalp Alpan (UU) Extremal polynomials 11 / 22



Widom’s theory

Orthogonal polynomials on a Jordan arc
Widom proved that if µ ∈ Sz(Γ) then [W2,n(µ)]2 has a limit and we have

ν(µ) := lim
n→∞

[W2,n(µ)]2 = 2πRµ (∞)Cap(Γ)

where Rµ is an analytic function determined by µ in C\Γ.

Theorem

[A. 2022] The quantity ν(µΓ) satisfies

1 < ν(µΓ)≤ 2. (2.5)

The equality

ν(µΓ) = 2 (2.6)

holds if and only if g ′+(z) = g ′−(z) for all z ∈ Γ0 where Γ0 is the interior of
Γ.
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Widom’s theory

Orthogonal polynomials on a Jordan arc
As a corollary of the above result, we obtain a result which can be
considered a generalization of the Szegő theorem on an interval:
Corollary

[A. 2022] Let µ ∈ Sz(Γ). Then

1 < lim
n→∞

[W2,n(µΓ)]2 = lim
n→∞

[W2,n(µ)]2
S(µ) ≤ 2. (2.7)

The equality

lim
n→∞

[W2,n(µ)]2
S(µ) = 2 (2.8)

holds if and only if

g ′+(z) = g ′−(z) for all z ∈ Γ0. (2.9)
Gökalp Alpan (UU) Extremal polynomials 12 / 22



Widom’s theory

Weighted Chebyshev polynomials on a Jordan arc

Let ρ be a weight function on Γ. Widom’s result concerning the upper
bound of Widom factors for the sup-norm is as follows:
limsupn→∞ W∞,n(Γ,ρ)≤ 2S(ρ).
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Widom’s theory

The following result gives an improved upper bound:

Theorem

[A. 2022] Let ρ be a weight on Γ and S(ρ) > 0. Then

limsup
n→∞

W∞,n(Γ,ρ)≤
√

2ν(µΓ)S(ρ). (2.10)

If there is a z ∈ Γ0 such that g ′+(z) 6= g ′−(z) then
limsupn→∞ W∞,n(Γ,ρ) < 2S(ρ).
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Widom’s theory

Weighted Chebyshev polynomials on a Jordan arc

We obtain also a weaker result which looks more useful to construct sets
with improved upper bounds. We still assume Γ is C 2+ below.

Theorem

[A. 2022] Let µ ∈ Sz(Γ) and ρ be a weight with S(ρ) > 0. If the interior
Γ0 of Γ is not analytic then

(i) limn→∞

[W2,n(µ)]2

S(µ) < 2.
(ii) limsupn→∞ W∞,n(Γ,ρ) < 2S(ρ).
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Widom factors on the real line

Classical Chebyshev polynomials

Let Tn,Un,Vn,Wn be the classical monic Chebyshev polynomials of the
first, second, third and fourth kinds respectively on K = [−1,1]. Then they
are the weighted Chebyshev polynomials for the weights
w(x) = 1,w(x) =

√
1−x2,w(x) =

√
1 + x ,w(x) =

√
1−x , respectively.

It is also well known that they are the orthogonal polynomials associated
with measures 1

π

dx√
1−x2 , 1

π

√
1−x2 dx , 1

π

√
1+x√
1−x dx , 1

π

√
1−x√
1+x dx on [−1,1].

Since dµ[−1,1](x) = 1
π

dx√
1−x2 , these four measures can be written as

dµK , (1−x2)dµK (x), (1 + x)dµK (x), (1−x)dµK (x).

Hence in all four cases, they are of the form w2dµK .
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Gökalp Alpan (UU) Extremal polynomials 16 / 22



Widom factors on the real line

Parreau-Widom sets

Let K ⊂ R be a compact set that is regular with respect to the Dirichlet
problem and let {cj}j denote the set of critical points of gK . Then K is
called a Parreau-Widom set if PW(K ) := ∑j gK (cj) < ∞. The set of critical
points of a regular set is countable and a Parreau-Widom set has positive
Lebesgue measure.
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Widom factors on the real line

Widom factors for the sup-norm

Theorem (Schiefermayr 08, Totik 11, Christiansen-Simon-Zinchenko 17,20)
Let K ⊂ R be a compact set with Cap(K ) > 0 and w ≡ 1. Then

(i) For all n ∈ N, we have

W∞,n(K ,w)≥ 2. (3.1)

Equality is satisfied in (3.1) if and only if there is a polynomial Pn of
degree n such that K = {z ∈ C : Pn(z) ∈ [−1,1]}.

(ii) If, in addition K is a Parreau-Widom set then for all n,

W∞,n(K ,w)≤ 2ePW(K). (3.2)

Equality is satisfied in (3.2) if and only if K is an interval.
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Widom factors on the real line

Widom factors for the sup-norm

Theorem (Schiefermayr-Zinchenko 21)

Let K be a compact non-polar subset of [−1,1] and w(x) =
√

1−x2.
Then

(i) For each n ∈ N

W∞,n(K ,w)≥ 2Cap(K ). (3.3)

Equality is attained in (3.3) if and only if there exists a polynomial Sn
of degree n such that K = {z ∈ C : (1− z2)S2

n (z) ∈ [0,1]}.
(ii) In addition, let us assume that K is a Parreau-Widom set. Then

W∞,n(K ,w)≤ 2Cap(K )e(1/2)gK (1)+(1/2)gK (−1)+PW(K). (3.4)

Equality is attained in (3.4) if and only if K = [−1,1].
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Widom factors on the real line

Widom factors for the sup-norm

Theorem (A. 22)
Let K be a compact non-polar subset of [−1,1] and w(x) =

√
1 + x.

Then
(i) For each n ∈ N

W∞,n(K ,w)≥ 2
√

Cap(K ). (3.5)

Equality is attained in (3.5) if and only if there exists a polynomial Sn
of degree n such that K = {z ∈ C : (1 + z)S2

n (z) ∈ [0,1]}.
(ii) In addition, let us assume that K is a Parreau-Widom set. Then

W∞,n(K ,w)≤ 2
√

Cap(K )e(1/2)gK (−1)+PW(K). (3.6)

Equality is attained in (3.6) if and only if K = [−1,b] for some
b ∈ (−1,1].
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Widom factors on the real line

Widom factors for the sup-norm

Theorem (A. 22)
Let K be a compact non-polar subset of [−1,1] and w(x) =

√
1−x.

Then
(i) For each n ∈ N

W∞,n(K ,w)≥ 2
√

Cap(K ). (3.7)

Equality is attained in (3.7) if and only if there exists a polynomial Sn
of degree n such that K = {z ∈ C : (1− z)S2

n (z) ∈ [0,1]}.
(ii) In addition, let us assume that K is a Parreau-Widom set. Then

W∞,n(K ,w)≤ 2
√

Cap(K )e(1/2)gK (1)+PW(K). (3.8)

Equality is attained in (3.8) if and only if K = [a,1] for some
a ∈ [−1,1).
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Thank you for your attention.
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