Contractions between Hardy and Bergman spaces

Aleksei Kulikov

NTNU

July 7th 2022

Aleksei Kulikov Contractions between Hardy and Bergman spaces

Definition

For a function f analytic in $\mathbb D$ and $0 we define its <math>H^p$ -norm as

$$||f||_{H^p}^p = \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta.$$

Definition

For a function f analytic in $\mathbb D$ and 0 1 we define its $A^p_\alpha\text{-norm}$ as

$$||f||_{\mathcal{A}^p_{lpha}}^{p} = \int_{\mathbb{D}} (lpha-1) |f(z)|^{p} (1-|z|^2)^{lpha} rac{dz}{\pi(1-|z|^2)^2}.$$

Constants are chosen so that for $f(z) \equiv 1$ we have ||f|| = 1.

As usual for Banach spaces of analytic functions, pointwise evaluations are continuous in A^p_α and H^p

 $|f(z)|^{p}(1-|z|^{2}) \leq ||f||_{H^{p}}^{p},$

$$|f(z)|^{p}(1-|z|^{2})^{\alpha} \leq ||f||_{A^{p}_{\alpha}}^{p}.$$

Moreover, for fixed function f these quantities tend to 0 uniformly as |z|
ightarrow 1.

Embeddings between Hardy and Bergman spaces

From the pointwise bounds via the Hölder's inequality we get the embeddings between the Bergman spaces

Theorem (Hardy, Littlewood, 1927)

If $0 and <math>1 < \alpha < \beta < \infty$ are such that $\frac{p}{\alpha} = \frac{q}{\beta} = r$ then A^p_{α} is a subset of A^q_{β} and this embeddings is continuous.

It turns out that the H^r -norm is the limit of A^p_{α} -norms

$$||f||_{H^r} = \lim_{\alpha \to 1} ||f||_{\mathcal{A}^{r\alpha}_{\alpha}}.$$

Passing to the limit in the above theorem, we get that H^r continuously embeds into $A_{\alpha}^{r\alpha}$ for all $\alpha > 1$, so it is natural to denote H^r by A_1^r .

It is important to note that this only proves the embedding and not the contractions between our spaces, since Hölder's inequality is never an equality here. Consider the embedding $H^p \to A^2_{2/p'}$, p < 2. For a function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ we have

$$||f||_{A_{2/p}^2}^2 = \sum_{n=0}^{\infty} \frac{|a_n|^2}{c_{2/p}(n)}, c_{2/p}(n) = \binom{n+2/p-1}{n}.$$

If $||f||_{A^2_{2/p}} \leq ||f||_{H^p}$ for all $f \in H^p$, then for all functions $f(z_1, \ldots, z_k) = \sum a_{n_1, \ldots, n_k} z_1^{n_1} \ldots z_k^{n_k}$ we get

$$\sum \frac{|a_{n_1,\ldots,n_k}|^2}{c_{2/p}(n_1)\ldots c_{2/p}(n_k)} \leq ||f||_{H^p(\mathbb{D}^k)}^2.$$

Passing to the limit, we get similar inequality for the functions of infinitely many variables. It is crucial that $c_{2/p}(0) = 1$.

Main results

Theorem

Let $G:[0,\infty) \to \mathbb{R}$ be an increasing function. The maximum value of $\int_{\mathbb{D}} G(|f(z)|^p(1-|z|^2)) \frac{dz}{\pi(1-|z|^2)^2}$

among the functions with $||f||_{H^p} = 1$ is attained for $f(z) \equiv 1$.

Theorem

Let $G:[0,\infty)\to \mathbb{R}$ be a convex function. The maximum value of

$$\int\limits_{\mathbb{D}} G(|f(z)|^p (1-|z|^2)^\alpha) \frac{dz}{\pi (1-|z|^2)^2}$$

among the functions with $||f||_{A^p_{\alpha}} = 1$ is attained for $f(z) \equiv 1$.

The measure $dm(z) = \frac{dz}{\pi(1-|z|^2)^2}$ is invariant with respect to the linear fractional transformations $h(z) = c \frac{z-w}{1-z\bar{w}}, w \in \mathbb{D}, |c| = 1$. With slight adjustments, the same is true for the Bergman spaces as well:

For a function $f \in A^p_{\alpha}$ the function

$$g(z)=f\left(crac{z-w}{1-zar w}
ight)rac{(1-|w|^2)^{lpha/
ho}}{(1-zar w)^{2lpha/
ho}}$$

has the same A^p_{α} -norm and the same distribution of the function $|f(z)|^p (1-|z|^2)^{\alpha}$ with respect to the measure *m*.

Let f be an analytic function in \mathbb{D} such that the function $u(z) = |f(z)|^p (1 - |z|^2)^{\alpha}$ is bounded and $u(z) \to 0, |z| \to 1$. Put $\mu(t) = m(A_t), A_t = \{z : u(z) > t\}$ and $t_0 = \max_{z \in \mathbb{D}} u(z)$.

Theorem

The function $g(t) = t^{1/\alpha}(\mu(t) + 1)$ is decreasing on $(0, t_0)$.

If $f(z) \equiv 1$ then $g(t) \equiv 1$ for 0 < t < 1.

Proof of the monotonicity theorem

The proof consists of four steps. We begin with computing the derivative of $\mu(t)$:

$$-\mu'(t) = \int_{u=t} |\nabla u|^{-1} \frac{|dz|}{\pi (1-|z|^2)^2}.$$

This is based on the fact that ∇u is orthogonal to the curve $\partial A_t = \{z : u(z) = t\}$ and it's pointing inside of A_t .

Next step is a Cauchy-Bunyakovsky-Schwarz inequality

$$\left(\int_{\partial A_t} \frac{|dz|}{\sqrt{\pi}(1-|z|^2)}\right)^2 \leq \left(\int_{\partial A_t} |\nabla u|^{-1} \frac{|dz|}{\pi(1-|z|^2)^2}\right) \left(\int_{\partial A_t} |\nabla u| |dz|\right)$$

Left-hand side is a square of the hyperbolic length, while the first term in the right-hand side is $-\mu'(t)$, so we have to understand the second one.

Let ν be an outward normal to ∂A_t . ∇u is parallel to it but it is pointing in the opposite direction. Thus, $|\nabla u| = -\nabla u \cdot \nu$. For $z \in \partial A_t$ we have u(z) = t, therefore

$$\frac{|\nabla u|}{t} = \frac{|\nabla u|}{u} = -\frac{\nabla u \cdot \nu}{u} = -(\nabla \log u) \cdot \nu.$$

From this we get by Green's theorem

$$\int_{\partial A_t} |\nabla u| |dz| = -t \int_{\partial A_t} (\nabla \log u) \cdot \nu |dz| = -t \int_{A_t} \Delta \log u(z) dx dy.$$

 $\Delta \log u(z) = p\Delta \log |f(z)| + \alpha \Delta \log(1 - |z|^2) = -4\alpha \frac{1}{(1 - |z|^2)^2}.$ Plugging this in we get

$$\int_{\partial A_t} |\nabla u| |dz| = 4\pi \alpha t \, m(A_t).$$

Combining everything, we arrive at

$$-\mu'(t) \geq \frac{\ell(\partial A_t)^2}{4\pi\alpha t \, m(A_t)}.$$

Our last ingredient is an isoperimetric inequality

$$\ell(\partial A_t)^2 \geq 4\pi m(A_t) + 4\pi m(A_t)^2.$$

Using it, we get

$$-\mu'(t) \geq \frac{1+m(A_t)}{\alpha t} = \frac{1+\mu(t)}{\alpha t}.$$

Recall our goal function $g(t)=t^{1/lpha}(\mu(t)+1).$ We have

$$g'(t) = t^{1/lpha}\left(rac{\mu(t)+1}{lpha t} + \mu'(t)
ight) \leq 0.$$

Thank you for your attention!