Contractions between Hardy and Bergman spaces

Aleksei Kulikov

NTNU
July 7th 2022

Hardy and Bergman spaces

Definition

For a function f analytic in \mathbb{D} and $0<p<\infty$ we define its H^{p}-norm as

$$
\|f\|_{H^{p}}^{p}=\lim _{r \rightarrow 1} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta
$$

Definition

For a function f analytic in \mathbb{D} and $0<p<\infty, \alpha>1$ we define its A_{α}^{p}-norm as

$$
\|f\|_{A_{\alpha}^{p}}^{p}=\int_{\mathbb{D}}(\alpha-1)|f(z)|^{p}\left(1-|z|^{2}\right)^{\alpha} \frac{d z}{\pi\left(1-|z|^{2}\right)^{2}}
$$

Constants are chosen so that for $f(z) \equiv 1$ we have $\|f\|=1$.

Pointwise bounds

As usual for Banach spaces of analytic functions, pointwise evaluations are continuous in A_{α}^{p} and H^{p}

$$
\begin{aligned}
& |f(z)|^{p}\left(1-|z|^{2}\right) \leq\|f\|_{H^{p}}^{p} \\
& |f(z)|^{p}\left(1-|z|^{2}\right)^{\alpha} \leq\|f\|_{A_{\alpha}^{p}}^{p} .
\end{aligned}
$$

Moreover, for fixed function f these quantities tend to 0 uniformly as $|z| \rightarrow 1$.

Embeddings between Hardy and Bergman spaces

From the pointwise bounds via the Hölder's inequality we get the embeddings between the Bergman spaces

Theorem (Hardy, Littlewood, 1927)

If $0<p<q<\infty$ and $1<\alpha<\beta<\infty$ are such that $\frac{p}{\alpha}=\frac{q}{\beta}=r$ then A_{α}^{p} is a subset of A_{β}^{q} and this embeddings is continuous.

It turns out that the H^{r}-norm is the limit of A_{α}^{p}-norms

$$
\|f\|_{H^{r}}=\lim _{\alpha \rightarrow 1}\|f\|_{A_{\alpha}^{r \alpha}}
$$

Passing to the limit in the above theorem, we get that H^{r} continuously embeds into $A_{\alpha}^{r \alpha}$ for all $\alpha>1$, so it is natural to denote H^{r} by A_{1}^{r}.
It is important to note that this only proves the embedding and not the contractions between our spaces, since Hölder's inequality is never an equality here.

Coefficient estimates

Consider the embedding $H^{p} \rightarrow A_{2 / p}^{2}, p<2$. For a function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ we have

$$
\|f\|_{A_{2 / p}^{2}}^{2}=\sum_{n=0}^{\infty} \frac{\left|a_{n}\right|^{2}}{c_{2 / p}(n)}, c_{2 / p}(n)=\binom{n+2 / p-1}{n} .
$$

If $\|f\|_{A_{2 / p}^{2}} \leq\|f\|_{H^{p}}$ for all $f \in H^{p}$, then for all functions $f\left(z_{1}, \ldots, z_{k}\right)=\sum a_{n_{1}, \ldots, n_{k}} z_{1}^{n_{1}} \ldots z_{k}^{n_{k}}$ we get

$$
\sum \frac{\left|a_{n_{1}, \ldots, n_{k}}\right|^{2}}{c_{2 / p}\left(n_{1}\right) \ldots c_{2 / p}\left(n_{k}\right)} \leq\|f\|_{H^{p}\left(\mathbb{D}^{k}\right)}^{2}
$$

Passing to the limit, we get similar inequality for the functions of infinitely many variables. It is crucial that $c_{2 / p}(0)=1$.

Main results

Theorem

Let $G:[0, \infty) \rightarrow \mathbb{R}$ be an increasing function. The maximum value of

$$
\int_{\mathbb{D}} G\left(|f(z)|^{p}\left(1-|z|^{2}\right)\right) \frac{d z}{\pi\left(1-|z|^{2}\right)^{2}}
$$

among the functions with $\|f\|_{H^{p}}=1$ is attained for $f(z) \equiv 1$.

Theorem

Let $G:[0, \infty) \rightarrow \mathbb{R}$ be a convex function. The maximum value of

$$
\int_{\mathbb{D}} G\left(|f(z)|^{p}\left(1-|z|^{2}\right)^{\alpha}\right) \frac{d z}{\pi\left(1-|z|^{2}\right)^{2}}
$$

among the functions with $\|f\|_{A_{\alpha}^{p}}=1$ is attained for $f(z) \equiv 1$.

Möbius invariance

The measure $d m(z)=\frac{d z}{\pi\left(1-|z|^{2}\right)^{2}}$ is invariant with respect to the linear fractional transformations $h(z)=c \frac{z-w}{1-z \bar{w}}, w \in \mathbb{D},|c|=1$. With slight adjustments, the same is true for the Bergman spaces as well:
For a function $f \in A_{\alpha}^{p}$ the function

$$
g(z)=f\left(c \frac{z-w}{1-z \bar{w}}\right) \frac{\left(1-|w|^{2}\right)^{\alpha / p}}{(1-z \bar{w})^{2 \alpha / p}}
$$

has the same A_{α}^{p}-norm and the same distribution of the function $|f(z)|^{p}\left(1-|z|^{2}\right)^{\alpha}$ with respect to the measure m.

True main result

Let f be an analytic function in \mathbb{D} such that the function $u(z)=|f(z)|^{p}\left(1-|z|^{2}\right)^{\alpha}$ is bounded and $u(z) \rightarrow 0,|z| \rightarrow 1$. Put $\mu(t)=m\left(A_{t}\right), A_{t}=\{z: u(z)>t\}$ and $t_{0}=\max _{z \in \mathbb{D}} u(z)$.

Theorem

The function $g(t)=t^{1 / \alpha}(\mu(t)+1)$ is decreasing on $\left(0, t_{0}\right)$.
If $f(z) \equiv 1$ then $g(t) \equiv 1$ for $0<t<1$.

Proof of the monotonicity theorem

The proof consists of four steps. We begin with computing the derivative of $\mu(t)$:

$$
-\mu^{\prime}(t)=\int_{u=t}|\nabla u|^{-1} \frac{|d z|}{\pi\left(1-|z|^{2}\right)^{2}}
$$

This is based on the fact that ∇u is orthogonal to the curve $\partial A_{t}=\{z: u(z)=t\}$ and it's pointing inside of A_{t}.

Next step is a Cauchy-Bunyakovsky-Schwarz inequality

$$
\left(\int_{\partial A_{t}} \frac{|d z|}{\sqrt{\pi}\left(1-|z|^{2}\right)}\right)^{2} \leq\left(\int_{\partial A_{t}}|\nabla u|^{-1} \frac{|d z|}{\pi\left(1-|z|^{2}\right)^{2}}\right)\left(\int_{\partial A_{t}}|\nabla u||d z|\right) .
$$

Left-hand side is a square of the hyperbolic length, while the first term in the right-hand side is $-\mu^{\prime}(t)$, so we have to understand the second one.

Let ν be an outward normal to $\partial A_{t} . \nabla u$ is parallel to it but it is pointing in the opposite direction. Thus, $|\nabla u|=-\nabla u \cdot \nu$.
For $z \in \partial A_{t}$ we have $u(z)=t$, therefore

$$
\frac{|\nabla u|}{t}=\frac{|\nabla u|}{u}=-\frac{\nabla u \cdot \nu}{u}=-(\nabla \log u) \cdot \nu .
$$

From this we get by Green's theorem
$\int_{\partial A_{t}}|\nabla u||d z|=-t \int_{\partial A_{t}}(\nabla \log u) \cdot \nu|d z|=-t \int_{A_{t}} \Delta \log u(z) d x d y$.
$\Delta \log u(z)=p \Delta \log |f(z)|+\alpha \Delta \log \left(1-|z|^{2}\right)=-4 \alpha \frac{1}{\left(1-|z|^{2}\right)^{2}}$.
Plugging this in we get

$$
\int_{\partial A_{t}}|\nabla u||d z|=4 \pi \alpha t m\left(A_{t}\right)
$$

Combining everything, we arrive at

$$
-\mu^{\prime}(t) \geq \frac{\ell\left(\partial A_{t}\right)^{2}}{4 \pi \alpha t m\left(A_{t}\right)}
$$

Our last ingredient is an isoperimetric inequality

$$
\ell\left(\partial A_{t}\right)^{2} \geq 4 \pi m\left(A_{t}\right)+4 \pi m\left(A_{t}\right)^{2} .
$$

Using it, we get

$$
-\mu^{\prime}(t) \geq \frac{1+m\left(A_{t}\right)}{\alpha t}=\frac{1+\mu(t)}{\alpha t}
$$

Recall our goal function $g(t)=t^{1 / \alpha}(\mu(t)+1)$. We have

$$
g^{\prime}(t)=t^{1 / \alpha}\left(\frac{\mu(t)+1}{\alpha t}+\mu^{\prime}(t)\right) \leq 0
$$

Thank you for your attention!

