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Christoffel–Darboux kernel

Let µ be a probability measure on R with all finite moments,∫
|ξ|n dµ(ξ) <∞, ∀n ∈ N.

Assume that µ has infinite support (in sense of cardinality).

From the sequence of monomials {z j}∞j=0 in L2(R, dµ), the
Gram–Schmidt process gives orthonormal polynomials {pj(z)}∞j=0

The Christoffel–Darboux (CD) kernel is

Kn(z ,w) =
n−1∑
j=0

pj(z)pj(w).

Reproducing kernel for subspace span{1, z , . . . , zn−1} ⊂ L2(R, dµ)
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Universality limits

Universality limits of CD kernels are double scaling limits

lim
n→∞

1

τn
Kn

(
ξ +

z

τn
, ξ +

w

τn

)
for an appropriate sequence τn →∞ and z ,w ∈ C, ξ ∈ R.

They are called universality limits because the limit is often found to
be a standard kernel and not depend on exact measure we started
with: the most common phenomenon is bulk universality, associated
with sine kernel

sin(w − z)

w − z

Wigner 1955: local eigenvalue statistics of random matrices as a
model for local statistical behavior of resonances in scattering theory
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Bulk universality

lim
n→∞

Kn

(
ξ + z

fµ(ξ)Kn(ξ,ξ) , ξ + w
fµ(ξ)Kn(ξ,ξ)

)
Kn(ξ, ξ)

=
sin(π(w − z))

π(w − z)

Bulk universality was proved in several settings:

For Gaussian measure dµ = 1√
2π
e−

1
2 ξ

2

dξ follows from properties of

Hermite polynomials

Deift–Kriecherbauer–McLaughlin–Venakides–Zhou:
Riemann–Hilbert techniques for measures

dµ = e−Q(ξ)dξ

Q a polynomial of even degree

Lubinsky, with extensions by Totik, Findley, Simon, Mitkovski:
Stahl–Totik regular measures dµ with local Lebesgue point/local
Szegő conditions at ξ
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A local criterion for bulk universality

Theorem (Eichinger–Lukić–Simanek)

Let µ be a probability measure on R with infinite support and finite
moments, corresponding to a determinate moment problem. Let

m(z) =

∫
1

x − z
dµ(x), z ∈ C+.

Let ξ ∈ R and assume that for some 0 < α < π/2,

fµ(ξ) :=
1

π
lim
z→ξ

α≤arg(z−ξ)≤π−α

Imm(z) ∈ (0,∞)

Then uniformly on compact regions of (z ,w) ∈ C× C,

lim
n→∞

Kn

(
ξ + z

fµ(ξ)Kn(ξ,ξ) , ξ + w
fµ(ξ)Kn(ξ,ξ)

)
Kn(ξ, ξ)

=
sin(π(w − z))

π(w − z)
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Nontangential limits of m(z)

The nontangential limit

fµ(ξ) :=
1

π
lim
z→ξ

α≤arg(z−ξ)≤π−α

Imm(z)

exists for Lebesgue-a.e. ξ ∈ R
Pointwise, it exists at every Lebesgue point of the measure µ

This limit recovers the a.c. part of the measure:

dµ(ξ) = fµ(ξ)dξ + dµs(ξ)

The essential support for a.c. spectrum is the set

Σac(µ) = {ξ ∈ R | fµ(ξ) ∈ (0,∞)}

In particular, this solves a conjecture of Avila–Last–Simon:

Corollary

Bulk universality holds almost everywhere on Σac(µ).
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Local zero spacing

Denote by ξ
(n)
j (ξ) for j ∈ Z the zeros of pn counted from ξ, i.e.,

· · · < ξ
(n)
−2(ξ) < ξ

(n)
−1(ξ) < ξ ≤ ξ(n)

0 (ξ) < ξ
(n)
1 (ξ) < . . .

Freud–Levin theorem: The bulk universality limit

lim
n→∞

Kn

(
ξ + z

fµ(ξ)Kn(ξ,ξ) , ξ + w
fµ(ξ)Kn(ξ,ξ)

)
Kn(ξ, ξ)

=
sin(π(w − z))

π(w − z)

implies

lim
n→∞

fµ(ξ)Kn(ξ, ξ)(ξ
(n)
j+1(ξ)− ξ(n)

j (ξ)) = 1 ∀j ∈ Z.

Statements of this type are commonly described as “clock behavior”.
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Rescaling

Some of the cited prior literature is actually formulated at some
explicit polynomial scale τn = nα

If

lim
n→∞

1

τn
Kn

(
ξ +

z

τn
, ξ +

w

τn

)
converges to a sine kernel, evaluating at z = w = 0 gives

lim
n→∞

Kn(ξ, ξ)

τn
∈ (0,∞)

Conversely, if

lim
n→∞

Kn(ξ, ξ)

τn
∈ (0,∞)

one scale can be replaced by the other
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Growth rate of Kn(ξ, ξ)

For measures dµ = e−Q(ξ) dξ, Kn(ξ, ξ) ∼ nα, α ∈ (0, 1)

For compactly supported measures:

lim
n→∞

Kn(ξ, ξ)

n
=

fE(ξ)

fµ(ξ)

if µ is Stahl–Totik regular, fE denotes the density of the equilibrium
measure of the essential spectrum E = ess suppµ, fµ(ξ) > 0, log fµ
is integrable in a neighborhood of ξ, and ξ is a Lebesgue point of
both the measure µ and the function log fµ (Máté–Nevai–Totik for
E = [−2, 2], generalized by Totik)
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Second kind polynomials

Jacobi recursion: for some sequence of an > 0, bn ∈ R,

zpn(z) = anpn−1(z) + bn+1pn(z) + an+1pn+1(z)

with convention p−1(z) = 0

Second kind polynomials for µ are defined by

qn(z) =

∫
pn(z)− pn(ξ)

z − ξ
dµ(ξ)

for n = 0, 1, 2, . . . and q−1(z) = −1.

Matrix version of Christoffel–Darboux kernel defined by

Kn(z ,w) =

(∑n−1
j=0 pj(z)pj(w)

∑n−1
j=0 qj(z)pj(w)∑n−1

j=0 pj(z)qj(w)
∑n−1

j=0 qj(z)qj(w)

)
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Limits of m-function

If m : C+ → C+ has a normal limit at ξ, then

η = lim
y↓0

m(ξ + iy) ∈ C+ ∪ R ∪ {∞}.

For η ∈ C+ ∪ R ∪ {∞}, define

H̊η :=
1

1 + |η|2

(
1 −Re η

−Re η |η|2
)

η ∈ C+ ∪ R

H̊∞ :=

(
0 0
0 1

)
Denote also

j =

(
0 −1
1 0

)
and define

K̊η(z ,w) =

∫ 1

0

e−twH̊η j H̊ηe
tzjH̊η dt
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Bulk universality for matrix CD kernel

Theorem (Eichinger–Lukić–Simanek)

Denote τ(n) = trKn(ξ, ξ). The following are equivalent:

1 m has a normal limit at ξ,

lim
y↓0

m(ξ + iy) = η ∈ C+

2 For some 2× 2 matrix H,

lim
n→∞

1

τ(n)
Kn(ξ, ξ) = H

3 For some function K(z ,w), uniformly on compact subsets of
(z ,w) ∈ C× C,

lim
n→∞

1

τ(n)
Kn

(
ξ +

z

τ(n)
, ξ +

w

τ(n)

)
= K(z ,w).

Moreover, in this case, H = H̊η and K(z ,w) = K̊η(z ,w).
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Remark: connection to subordinacy theory

Recall

Kn(ξ, ξ) =

( ∑n−1
j=0 |pj(ξ)|2

∑n−1
j=0 qj(ξ)pj(ξ)∑n−1

j=0 pj(ξ)qj(ξ)
∑n−1

j=0 |qj(ξ)|2

)

By Cauchy–Schwarz,

lim
n→∞

1

trKn(ξ, ξ)
Kn(ξ, ξ) =

(
0 0
0 1

)
⇐⇒ lim

n→∞

∑n−1
j=0 pj(ξ)2∑n−1
j=0 qj(ξ)2

= 0

This recovers subordinacy result of Gilbert–Pearson, Kahn–Pearson:

lim
y↓0

m(ξ + iy) =∞ ⇐⇒ lim
n→∞

∑n−1
j=0 pj(ξ)2∑n−1
j=0 qj(ξ)2

= 0
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j-monotonic families of transfer matrices

Let A,B : [0,∞)→ C2×2 be locally integrable and

A(x) ≥ 0, B(x)∗ = B(x), tr(A(x)j) = tr(B(x)j) = 0

for Lebesgue-a.e. x .

Let T : [0,∞)× C→ C2×2 be the solution of the initial value
problem

j∂xT (x , z) = (−zA(x) + B(x))T (x , z), T (0, z) = I

Applications: transfer matrices of Schrödinger operators

LV = − d2

dx2 + V , Dirac operators, orthogonal polynomials on the real
line

With some effort: orthogonal polynomials on the unit circle

Assume the limit point condition

tr

∫ ∞
0

T (x , 0)∗A(x)T (x , 0)dx =∞
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Weyl disks and m-functions

CD formula implies j-monotonic property

T (x2, z)∗jT (x2, z)− T (x1, z)∗jT (x1, z)

i
≤ 0, z ∈ C+, 0 ≤ x1 ≤ x2

For any z ∈ C+, the Weyl disks are defined by

D(x , z) = {w ∈ Ĉ | T (x , z)w ∈ C+}

The Weyl disks are nested,

D(x2, z) ⊂ D(x1, z), z ∈ C+, 0 ≤ x1 ≤ x2

In the limit point case, Weyl function m : C+ → C+ is defined by

{m(z)} =
⋂
x≥0

D(x , z).
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Kernels and variation of parameters

Matrix CD kernel and CD formula given by

KL(z ,w) =

∫ L

0

T (x ,w)∗A(x)T (x , z) dx =
T (L,w)∗jT (L, z)− j

w − z

Scalar CD kernel defined by

KL(z ,w) =

(
1

0

)∗
KL(z ,w)

(
1

0

)
For U(L) ∈ SL(2,R), gauge transformation

{T (L, z)} 7→ {U(L)T (L, z)}

doesn’t affect the kernels because U(L)∗jU(L)− j = 0

M(L, z) = T (L, 0)−1T (L, z) solution of a canonical system with

H(x) = T (x , 0)∗A(x)T (x , 0)
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A local criterion for bulk universality

Theorem (Eichinger–Lukić–Simanek)

Let ξ ∈ R and assume that for some 0 < α < π/2,

fµ(ξ) :=
1

π
lim
z→ξ

α≤arg(z−ξ)≤π−α

Imm(z) ∈ (0,∞)

Then uniformly on compact regions of (z ,w) ∈ C× C,

lim
L→∞

KL

(
ξ + z

fµ(ξ)KL(ξ,ξ) , ξ + w
fµ(ξ)KL(ξ,ξ)

)
KL(ξ, ξ)

=
sin(π(w − z))

π(w − z)
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Bulk universality for matrix kernel

Theorem (Eichinger–Lukić–Simanek)

Denote τ(L) = trKL(ξ, ξ). The following are equivalent:

1 m has a normal limit at ξ,

lim
y↓0

m(ξ + iy) = η ∈ C+

2 For some 2× 2 matrix H,

lim
L→∞

1

τ(L)
KL(ξ, ξ) = H

3 For some function K(z ,w), uniformly on compact subsets of
(z ,w) ∈ C× C,

lim
L→∞

1

τ(L)
KL

(
ξ +

z

τ(L)
, ξ +

w

τ(L)

)
= K(z ,w).

Moreover, in this case, H = H̊η and K(z ,w) = K̊η(z ,w).
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de Branges homeomorphism

Canonical systems are initial value problems of the form

j∂xM(x , z) = −zH(x)M(x , z), M(0, z) = I

Reparametrize x to impose trH = 1 a.e..

de Branges: map H 7→ m is a bijection

The correspondences between H,m,M,K are homeomorphisms
(homeomorphisms between first three previously known, see
Eckhart–Kostenko–Teschl or Remling)
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Scaling operation

Consider a trace-parametrized canonical system

j∂tM(t, z) = −zH(t)M(t, z), M(0, z) = I

with Weyl function m(z) and kernel Kt(z ,w)

For r > 0, a scaling operation

mr (z) = m(z/r)

Hr (t) = H(rt)

Mr (t, z) = M(rt, z/r)

(Kr )t(z ,w) =
1

r
Krt(z/r ,w/r)

found by Kasahara for Krein strings; used by
Eckhardt–Kostenko–Teschl and Langer–Pruckner–Woracek for
canonical systems to investigate large energy asymptotics of
m-function

We use the scaling operation to “zoom in” towards ξ ∈ R
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Proofs of Theorems

Proof of Theorem 2:

Start from transfer matrices T (L, z) with Weyl function m(z)

Apply gauge transformation and trace-parametrize

M(t, z) = T (L, ξ)−1T (L, ξ + z)

Consider family of canonical systems corresponding to Weyl
functions

mr (z) =

{
m(ξ + z/r) r ∈ [1,∞)

η r =∞

Characterize continuity of this family in terms of H,m,M,K
Proof of Theorem 1:

In addition, use a translation trick and consider the family

m̃r (z) =

{
m(ξ + z/r)− Rem(ξ + i/r) r ∈ [1,∞)

ifµ(ξ) r =∞
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Translation trick

Action by a matrix A ∈ SL(2,R) on a canonical system,

mA(z) = A−1m(z), HA = A∗HA, MA = A−1MA, KA = A∗KA

Translations in the spectral parameter correspond to

A =

(
1 a
0 1

)
A
(

1
0

)
=
(

1
0

)
implies that(

1

0

)∗
(KA)L(0, 0)

(
1

0

)
=

(
1

0

)∗
KL(0, 0)

(
1

0

)
so the scalar CD kernel is unaffected by A, except for a change in
parametrization

KL(0, 0) is not a parameter (often not injective), but it is injective
for a constant coefficient canonical system with η ∈ C+ ∪ R
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Jacobi recursion (OPRL)

Modify Jacobi transfer matrices by a conjugation,

T (n, z) = j1

n∏
k=1

(
z−bk
ak

− 1
ak

ak 0

)
j1, j1 =

(
−1 0
0 1

)
Define

M(n, z) = T (n, 0)−1T (n, z)

and interpolate linearly,

M(x , z) = M(bxc, z) + (x − bxc)(M(bxc+ 1, z)−M(bxc, z))

This is the solution of a canonical system

j∂xM(x , z) = −zH(x)M(x , z), M(0, z) = I

with piecewise constant data

H(x) =

(
pn(0)2 qn(0)pn(0)

pn(0)qn(0) qn(0)2

)
, x ∈ [n, n + 1)

Linear interpolation works because jH is nilpotent
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Szegő recursion (OPUC)

Correspondence between measure µ on unit circle, Verblunsky
coefficients {αn}∞n=0, Caratheodory function F

Szegő recursion can be written in matrix form as

S(n, z) =
n−1∏
k=0

A(αk , z), A(αn, z) =
1√

1− |αn|2

(
z −αn

−αnz 1

)
Denote

J =

(
0 1
1 0

)
, C =

(
1 −i
1 i

)
Lemma: the functions

T (n, z) = e−inz/2C−1J S(n, e iz)J C

are a j-monotonic family of entire j-inner functions and obey
T (0, z) = I , detT (n, z) = 1, limit point case with

m(z) = iF (e iz).

Lemma is inspired by a substitution used by Damanik–Yuditskii to
relate comb domains



Thank you!
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