# An approach to universality using Weyl *m*-functions

Milivoje Lukić

joint work with Benjamin Eichinger and Brian Simanek

arXiv:2108.01629

| Bulk universality |            | The natural general setting | About the proofs | OPUC |
|-------------------|------------|-----------------------------|------------------|------|
| 0000000           |            |                             |                  |      |
| Christoff         | el–Darhoux | kernel                      |                  |      |

 $\bullet\,$  Let  $\mu$  be a probability measure on  $\mathbb R$  with all finite moments,

$$\int |\xi|^n \, d\mu(\xi) < \infty, \qquad \forall n \in \mathbb{N}.$$

Assume that  $\mu$  has infinite support (in sense of cardinality).

- From the sequence of monomials {z<sup>j</sup>}<sub>j=0</sub><sup>∞</sup> in L<sup>2</sup>(ℝ, dμ), the Gram–Schmidt process gives orthonormal polynomials {p<sub>i</sub>(z)}<sub>i=0</sub><sup>∞</sup>
- The Christoffel-Darboux (CD) kernel is

$$K_n(z,w) = \sum_{j=0}^{n-1} p_j(z) \overline{p_j(w)}.$$

Reproducing kernel for subspace  $\operatorname{span}\{1, z, \dots, z^{n-1}\} \subset L^2(\mathbb{R}, d\mu)$ 

| Bulk universality | Matrix kernel | The natural general setting | About the proofs | <b>0PUC</b><br>000 |
|-------------------|---------------|-----------------------------|------------------|--------------------|
| Universality      | limits        |                             |                  |                    |

• Universality limits of CD kernels are double scaling limits

$$\lim_{n\to\infty}\frac{1}{\tau_n}K_n\left(\xi+\frac{z}{\tau_n},\xi+\frac{w}{\tau_n}\right)$$

for an appropriate sequence  $\tau_n \to \infty$  and  $z, w \in \mathbb{C}, \xi \in \mathbb{R}$ .

• They are called universality limits because the limit is often found to be a standard kernel and not depend on exact measure we started with: the most common phenomenon is bulk universality, associated with sine kernel

$$\frac{\sin(\overline{w}-z)}{\overline{w}-z}$$

 Wigner 1955: local eigenvalue statistics of random matrices as a model for local statistical behavior of resonances in scattering theory

| Bulk universality<br>○○●○○○○○ | Matrix kernel | The natural general setting | About the proofs | <b>OPUC</b><br>000 |
|-------------------------------|---------------|-----------------------------|------------------|--------------------|
| Bulk unive                    | rsality       |                             |                  |                    |

$$\lim_{n\to\infty}\frac{K_n\left(\xi+\frac{z}{f_{\mu}(\xi)K_n(\xi,\xi)},\xi+\frac{w}{f_{\mu}(\xi)K_n(\xi,\xi)}\right)}{K_n(\xi,\xi)}=\frac{\sin(\pi(\overline{w}-z))}{\pi(\overline{w}-z)}$$

Bulk universality was proved in several settings:

- For Gaussian measure  $d\mu = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\xi^2}\,d\xi$  follows from properties of Hermite polynomials
- Deift-Kriecherbauer-McLaughlin-Venakides-Zhou: Riemann-Hilbert techniques for measures

$$d\mu = e^{-Q(\xi)}d\xi$$

Q a polynomial of even degree

• Lubinsky, with extensions by Totik, Findley, Simon, Mitkovski: Stahl–Totik regular measures  $d\mu$  with local Lebesgue point/local Szegő conditions at  $\xi$ 

| Bulk universality | The natural general setting | About the proofs | OPUC |
|-------------------|-----------------------------|------------------|------|
| 0000000           |                             |                  |      |
|                   |                             |                  |      |

# A local criterion for bulk universality

#### Theorem (Eichinger–Lukić–Simanek)

Let  $\mu$  be a probability measure on  $\mathbb{R}$  with infinite support and finite moments, corresponding to a determinate moment problem. Let

$$m(z) = \int \frac{1}{x-z} d\mu(x), \qquad z \in \mathbb{C}_+.$$

Let  $\xi \in \mathbb{R}$  and assume that for some  $0 < \alpha < \pi/2$ ,

$$f_\mu(\xi) := rac{1}{\pi} \lim_{\substack{z o \xi \ lpha \leq lpha \operatorname{\mathsf{rg}}(z-\xi) \leq \pi-lpha}} \operatorname{Im} m(z) \in (0,\infty)$$

Then uniformly on compact regions of  $(z, w) \in \mathbb{C} \times \mathbb{C}$ ,

$$\lim_{n\to\infty}\frac{K_n\left(\xi+\frac{z}{f_\mu(\xi)K_n(\xi,\xi)},\xi+\frac{w}{f_\mu(\xi)K_n(\xi,\xi)}\right)}{K_n(\xi,\xi)}=\frac{\sin(\pi(\overline{w}-z))}{\pi(\overline{w}-z)}$$

| Bulk universality | The natural general setting | About the proofs | OPUC |
|-------------------|-----------------------------|------------------|------|
| 0000000           |                             |                  |      |
| NI                | <br><b>c</b> ( )            |                  |      |

### Nontangential limits of m(z)

• The nontangential limit

$$f_\mu(\xi) := rac{1}{\pi} \lim_{\substack{z o \xi \ lpha \leq lpha ext{rg}(z-\xi) \leq \pi-lpha}} \operatorname{Im} m(z)$$

exists for Lebesgue-a.e.  $\xi \in \mathbb{R}$ 

- $\bullet\,$  Pointwise, it exists at every Lebesgue point of the measure  $\mu$
- This limit recovers the a.c. part of the measure:

$$d\mu(\xi) = f_{\mu}(\xi)d\xi + d\mu_{\rm s}(\xi)$$

• The essential support for a.c. spectrum is the set

$$\Sigma_{\mathrm{ac}}(\mu) = \{\xi \in \mathbb{R} \mid f_{\mu}(\xi) \in (0,\infty)\}$$

In particular, this solves a conjecture of Avila-Last-Simon:

#### **Corollary**

Bulk universality holds almost everywhere on  $\Sigma_{\rm ac}(\mu)$ .

| Bulk universality |           | The natural general setting | About the proofs | OPUC |
|-------------------|-----------|-----------------------------|------------------|------|
| 00000000          |           |                             |                  |      |
| • •               | •         |                             |                  |      |
| Local zer         | o spacing |                             |                  |      |
|                   |           |                             |                  |      |

• Denote by  $\xi_j^{(n)}(\xi)$  for  $j \in \mathbb{Z}$  the zeros of  $p_n$  counted from  $\xi$ , i.e.,

$$\cdots < \xi_{-2}^{(n)}(\xi) < \xi_{-1}^{(n)}(\xi) < \xi \le \xi_0^{(n)}(\xi) < \xi_1^{(n)}(\xi) < \dots$$

• Freud-Levin theorem: The bulk universality limit

$$\lim_{n\to\infty}\frac{K_n\left(\xi+\frac{z}{f_\mu(\xi)K_n(\xi,\xi)},\xi+\frac{w}{f_\mu(\xi)K_n(\xi,\xi)}\right)}{K_n(\xi,\xi)}=\frac{\sin(\pi(\overline{w}-z))}{\pi(\overline{w}-z)}$$

implies

$$\lim_{n\to\infty}f_{\mu}(\xi)\mathcal{K}_n(\xi,\xi)(\xi_{j+1}^{(n)}(\xi)-\xi_{j}^{(n)}(\xi))=1\qquad\forall j\in\mathbb{Z}.$$

Statements of this type are commonly described as "clock behavior".

| Bulk universality<br>○○○○○○●○ | Matrix kernel | The natural general setting | About the proofs | <b>0PUC</b><br>000 |
|-------------------------------|---------------|-----------------------------|------------------|--------------------|
| Rescaling                     |               |                             |                  |                    |

• Some of the cited prior literature is actually formulated at some explicit polynomial scale  $\tau_n = n^{\alpha}$ 

$$\lim_{n\to\infty}\frac{1}{\tau_n}K_n\left(\xi+\frac{z}{\tau_n},\xi+\frac{w}{\tau_n}\right)$$

converges to a sine kernel, evaluating at z = w = 0 gives

$$\lim_{n\to\infty}\frac{K_n(\xi,\xi)}{\tau_n}\in(0,\infty)$$

• Conversely, if

• If

$$\lim_{n\to\infty}\frac{K_n(\xi,\xi)}{\tau_n}\in(0,\infty)$$

one scale can be replaced by the other

| Bulk universality | The natural general setting | About the proofs | OPUC |
|-------------------|-----------------------------|------------------|------|
| 0000000           |                             |                  |      |
| Currentle         | (c, c)                      |                  |      |

• For measures  $d\mu = e^{-Q(\xi)} d\xi$ ,  $K_n(\xi,\xi) \sim n^{lpha}$ ,  $lpha \in (0,1)$ 

• For compactly supported measures:

 $n(\varsigma, \varsigma)$ 

$$\lim_{n\to\infty}\frac{K_n(\xi,\xi)}{n}=\frac{f_{\mathsf{E}}(\xi)}{f_{\mu}(\xi)}$$

if  $\mu$  is Stahl–Totik regular,  $f_E$  denotes the density of the equilibrium measure of the essential spectrum  $E = \text{ess supp } \mu$ ,  $f_{\mu}(\xi) > 0$ , log  $f_{\mu}$  is integrable in a neighborhood of  $\xi$ , and  $\xi$  is a Lebesgue point of both the measure  $\mu$  and the function log  $f_{\mu}$  (Máté–Nevai–Totik for E = [-2, 2], generalized by Totik)

| Bulk universality | Matrix kernel | The natural general setting | About the proofs | OPUC |
|-------------------|---------------|-----------------------------|------------------|------|
|                   | 0000          |                             |                  |      |
| Second k          | ind nolyno    | mials                       |                  |      |

• Jacobi recursion: for some sequence of  $a_n > 0$ ,  $b_n \in \mathbb{R}$ ,

$$zp_n(z) = a_n p_{n-1}(z) + b_{n+1}p_n(z) + a_{n+1}p_{n+1}(z)$$

with convention  $p_{-1}(z) = 0$ 

• Second kind polynomials for  $\mu$  are defined by

$$q_n(z) = \int \frac{p_n(z) - p_n(\xi)}{z - \xi} d\mu(\xi)$$

for n = 0, 1, 2, ... and  $q_{-1}(z) = -1$ .

• Matrix version of Christoffel-Darboux kernel defined by

$$\mathcal{K}_n(z,w) = \begin{pmatrix} \sum_{j=0}^{n-1} p_j(z) \overline{p_j(w)} & \sum_{j=0}^{n-1} q_j(z) \overline{p_j(w)} \\ \sum_{j=0}^{n-1} p_j(z) \overline{q_j(w)} & \sum_{j=0}^{n-1} q_j(z) \overline{q_j(w)} \end{pmatrix}$$

| Bulk universality | Matrix kernel                         | The natural general setting | About the proofs | OPUC |
|-------------------|---------------------------------------|-----------------------------|------------------|------|
|                   | 0000                                  |                             |                  |      |
| 1                 | · · · · · · · · · · · · · · · · · · · |                             |                  |      |
| limits of         | <i>m</i> -function                    |                             |                  |      |

• If  $m:\mathbb{C}_+ o \mathbb{C}_+$  has a normal limit at  $\xi$ , then

$$\eta = \lim_{y \downarrow 0} m(\xi + iy) \in \mathbb{C}_+ \cup \mathbb{R} \cup \{\infty\}.$$

• For  $\eta \in \mathbb{C}_+ \cup \mathbb{R} \cup \{\infty\}$ , define

$$\begin{split} \mathring{H}_{\eta} &:= \frac{1}{1 + |\eta|^2} \begin{pmatrix} 1 & -\operatorname{Re} \eta \\ -\operatorname{Re} \eta & |\eta|^2 \end{pmatrix} \quad \eta \in \mathbb{C}_+ \cup \mathbb{R} \\ \mathring{H}_{\infty} &:= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{split}$$

Denote also

$$j = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

and define

$$\mathring{\mathcal{K}}_{\eta}(z,w) = \int_{0}^{1} e^{-t\overline{w}\hat{\mathcal{H}}_{\eta}j}\mathring{\mathcal{H}}_{\eta}e^{tzj\hat{\mathcal{H}}_{\eta}} dt$$

 Bulk universality
 Matrix kernel
 The natural general setting
 About the proofs
 OPUC

 00000000
 0000
 00000
 0000
 0000
 0000
 0000

### Bulk universality for matrix CD kernel

#### Theorem (Eichinger–Lukić–Simanek)

Denote  $\tau(n) = \operatorname{tr} \mathcal{K}_n(\xi, \xi)$ . The following are equivalent:

m has a normal limit at ξ,

$$\lim_{y \downarrow 0} m(\xi + iy) = \eta \in \overline{\mathbb{C}_+}$$

2 For some  $2 \times 2$  matrix H,

$$\lim_{n\to\infty}\frac{1}{\tau(n)}\mathcal{K}_n(\xi,\xi)=H$$

For some function K(z, w), uniformly on compact subsets of (z, w) ∈ C × C,

$$\lim_{n\to\infty}\frac{1}{\tau(n)}\mathcal{K}_n\left(\xi+\frac{z}{\tau(n)},\xi+\frac{w}{\tau(n)}\right)=\mathcal{K}(z,w)$$

Moreover, in this case,  $H = \mathring{H}_{\eta}$  and  $\mathcal{K}(z, w) = \mathring{\mathcal{K}}_{\eta}(z, w)$ .

| Bulk universality   | Matrix kernel | The natural general setting | About the proofs | OPUC |
|---------------------|---------------|-----------------------------|------------------|------|
|                     | 0000          |                             |                  |      |
|                     |               |                             |                  |      |
| Remark <sup>1</sup> | connectior    | n to subordinacy            | , theory         |      |

Recall

$$\mathcal{K}_{n}(\xi,\xi) = \begin{pmatrix} \sum_{j=0}^{n-1} |p_{j}(\xi)|^{2} & \sum_{j=0}^{n-1} q_{j}(\xi) \overline{p_{j}(\xi)} \\ \sum_{j=0}^{n-1} p_{j}(\xi) \overline{q_{j}(\xi)} & \sum_{j=0}^{n-1} |q_{j}(\xi)|^{2} \end{pmatrix}$$

• By Cauchy–Schwarz,

$$\lim_{n \to \infty} \frac{1}{\operatorname{tr} \mathcal{K}_n(\xi, \xi)} \mathcal{K}_n(\xi, \xi) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad \Longleftrightarrow \quad \lim_{n \to \infty} \frac{\sum_{j=0}^{n-1} p_j(\xi)^2}{\sum_{j=0}^{n-1} q_j(\xi)^2} = 0$$

• This recovers subordinacy result of Gilbert-Pearson, Kahn-Pearson:

$$\lim_{y \downarrow 0} m(\xi + iy) = \infty \qquad \Longleftrightarrow \qquad \lim_{n \to \infty} \frac{\sum_{j=0}^{n-1} p_j(\xi)^2}{\sum_{j=0}^{n-1} q_j(\xi)^2} = 0$$

| Bulk universality | Matrix kernel | The natural general setting | About the proofs | OPUC |
|-------------------|---------------|-----------------------------|------------------|------|
|                   |               | 00000                       |                  |      |
| imonoto           | nie familie   | of transfor ma              | tricos           |      |
| /-111011010       |               | s of transfer ma            | lurices          |      |

• Let  $A,B:[0,\infty) 
ightarrow \mathbb{C}^{2 imes 2}$  be locally integrable and

 $A(x) \ge 0,$   $B(x)^* = B(x),$   $\operatorname{tr}(A(x)j) = \operatorname{tr}(B(x)j) = 0$ 

for Lebesgue-a.e. x.

• Let  $\mathcal{T}:[0,\infty)\times\mathbb{C}\to\mathbb{C}^{2\times 2}$  be the solution of the initial value problem

$$j\partial_x T(x,z) = (-zA(x) + B(x))T(x,z), \quad T(0,z) = I$$

- Applications: transfer matrices of Schrödinger operators  $L_V = -\frac{d^2}{dx^2} + V$ , Dirac operators, orthogonal polynomials on the real line
- With some effort: orthogonal polynomials on the unit circle
- Assume the limit point condition

$$\operatorname{tr}\int_0^\infty T(x,0)^*A(x)T(x,0)dx = \infty$$

| Bulk universality | Matrix kernel      | The natural general setting<br>○●○○○ | About the proofs | <b>OPUC</b><br>000 |
|-------------------|--------------------|--------------------------------------|------------------|--------------------|
| Weyl disks        | and <i>m</i> -fund | ctions                               |                  |                    |

• CD formula implies *j*-monotonic property

$$\frac{T(x_2, z)^* j T(x_2, z) - T(x_1, z)^* j T(x_1, z)}{i} \le 0, \qquad z \in \mathbb{C}_+, \quad 0 \le x_1 \le x_2$$

• For any  $z \in \mathbb{C}_+$ , the Weyl disks are defined by

$$D(x,z) = \{w \in \hat{\mathbb{C}} \mid T(x,z)w \in \overline{\mathbb{C}_+}\}$$

The Weyl disks are nested,

$$D(x_2,z)\subset D(x_1,z), \qquad z\in\mathbb{C}_+, \quad 0\leq x_1\leq x_2$$

ullet In the limit point case, Weyl function  $m:\mathbb{C}_+ o\mathbb{C}_+$  is defined by

$$\{m(z)\}=\bigcap_{x\geq 0}D(x,z).$$

| Bulk universality | Matrix kernel | The natural general setting | About the proofs | OPUC |
|-------------------|---------------|-----------------------------|------------------|------|
|                   |               | 00000                       |                  |      |
|                   |               |                             |                  |      |

### Kernels and variation of parameters

• Matrix CD kernel and CD formula given by

$$\mathcal{K}_L(z,w) = \int_0^L T(x,w)^* A(x) T(x,z) \, dx = \frac{T(L,w)^* j T(L,z) - j}{\overline{w} - z}$$

• Scalar CD kernel defined by

$$\mathcal{K}_L(z,w) = {\binom{1}{0}}^* \mathcal{K}_L(z,w) {\binom{1}{0}}$$

• For  $U(L) \in \mathrm{SL}(2,\mathbb{R})$ , gauge transformation

$$\{T(L,z)\}\mapsto\{U(L)T(L,z)\}$$

doesn't affect the kernels because  $U(L)^* j U(L) - j = 0$ 

•  $M(L,z) = T(L,0)^{-1}T(L,z)$  solution of a canonical system with

$$H(x) = T(x,0)^*A(x)T(x,0)$$

Bulk universality

Matrix kernel

The natural general setting ○○○●○ About the proofs

0PUC

# A local criterion for bulk universality

### Theorem (Eichinger–Lukić–Simanek)

Let  $\xi \in \mathbb{R}$  and assume that for some  $0 < \alpha < \pi/2$ ,

$$f_\mu(\xi) := rac{1}{\pi} \lim_{\substack{z o \xi \ lpha \leq {\sf arg}(z-\xi) \leq \pi-lpha}} {
m Im} \ {\it m}(z) \in (0,\infty)$$

Then uniformly on compact regions of  $(z, w) \in \mathbb{C} \times \mathbb{C}$ ,

$$\lim_{L\to\infty}\frac{K_L\left(\xi+\frac{z}{f_{\mu}(\xi)K_L(\xi,\xi)},\xi+\frac{w}{f_{\mu}(\xi)K_L(\xi,\xi)}\right)}{K_L(\xi,\xi)}=\frac{\sin(\pi(\overline{w}-z))}{\pi(\overline{w}-z)}$$

| Bulk universality | The natural general setting | About the proofs | OPUC |
|-------------------|-----------------------------|------------------|------|
|                   | 00000                       |                  |      |
|                   |                             |                  |      |

### Bulk universality for matrix kernel

#### Theorem (Eichinger–Lukić–Simanek)

Denote  $\tau(L) = \operatorname{tr} \mathcal{K}_L(\xi, \xi)$ . The following are equivalent:

m has a normal limit at ξ,

$$\lim_{y \downarrow 0} m(\xi + iy) = \eta \in \overline{\mathbb{C}_+}$$

2 For some  $2 \times 2$  matrix H,

$$\lim_{L\to\infty}\frac{1}{\tau(L)}\mathcal{K}_L(\xi,\xi)=H$$

For some function K(z, w), uniformly on compact subsets of (z, w) ∈ C × C,

$$\lim_{L\to\infty}\frac{1}{\tau(L)}\mathcal{K}_L\left(\xi+\frac{z}{\tau(L)},\xi+\frac{w}{\tau(L)}\right)=\mathcal{K}(z,w)$$

Moreover, in this case,  $H = \mathring{H}_{\eta}$  and  $\mathcal{K}(z, w) = \mathring{\mathcal{K}}_{\eta}(z, w)$ .

| Bulk universality | Matrix kernel   | The natural general setting | About the proofs<br>●○○○ | <b>0PUC</b><br>000 |
|-------------------|-----------------|-----------------------------|--------------------------|--------------------|
| de Dueneres       | have a superior |                             |                          |                    |

# de Branges homeomorphism

• Canonical systems are initial value problems of the form

$$j\partial_x M(x,z) = -zH(x)M(x,z), \qquad M(0,z) = I$$

- Reparametrize x to impose tr H = 1 a.e..
- de Branges: map  $H \mapsto m$  is a bijection
- The correspondences between *H*, *m*, *M*, *K* are homeomorphisms (homeomorphisms between first three previously known, see Eckhart-Kostenko-Teschl or Remling)

| Bulk universality | Matrix kernel | The natural general setting | About the proofs | OPUC |
|-------------------|---------------|-----------------------------|------------------|------|
|                   |               |                             | 0000             |      |
| Scaling o         | noration      |                             |                  |      |

• Consider a trace-parametrized canonical system

$$j\partial_t M(t,z) = -zH(t)M(t,z), \qquad M(0,z) = I$$

with Weyl function m(z) and kernel  $\mathcal{K}_t(z, w)$ 

• For r > 0, a scaling operation

$$m_r(z) = m(z/r)$$

$$H_r(t) = H(rt)$$

$$M_r(t, z) = M(rt, z/r)$$

$$(\mathcal{K}_r)_t(z, w) = \frac{1}{r} \mathcal{K}_{rt}(z/r, w/r)$$

found by Kasahara for Krein strings; used by Eckhardt–Kostenko–Teschl and Langer–Pruckner–Woracek for canonical systems to investigate large energy asymptotics of *m*-function

• We use the scaling operation to "zoom in" towards  $\xi \in \mathbb{R}$ 

| Bulk universality |            | The natural general setting | About the proofs | OPUC |
|-------------------|------------|-----------------------------|------------------|------|
|                   |            |                             | 0000             |      |
|                   |            |                             |                  |      |
| Proots of         | i Theorems |                             |                  |      |
|                   |            |                             |                  |      |

Proof of Theorem 2:

- Start from transfer matrices T(L, z) with Weyl function m(z)
- Apply gauge transformation and trace-parametrize

$$M(t,z) = T(L,\xi)^{-1}T(L,\xi+z)$$

• Consider family of canonical systems corresponding to Weyl functions

$$m_r(z) = \begin{cases} m(\xi + z/r) & r \in [1,\infty) \\ \eta & r = \infty \end{cases}$$

• Characterize continuity of this family in terms of  $H, m, M, \mathcal{K}$ Proof of Theorem 1:

• In addition, use a translation trick and consider the family

$$\tilde{m}_r(z) = \begin{cases} m(\xi + z/r) - \operatorname{Re} m(\xi + i/r) & r \in [1, \infty) \\ if_\mu(\xi) & r = \infty \end{cases}$$

| Bulk universality |           | The natural general setting | About the proofs | OPUC |
|-------------------|-----------|-----------------------------|------------------|------|
|                   |           |                             | 0000             |      |
| Tranalat:         | on trial  |                             |                  |      |
|                   | OTT TELCK |                             |                  |      |

• Action by a matrix  $A \in \mathrm{SL}(2,\mathbb{R})$  on a canonical system,

$$m_A(z) = A^{-1}m(z), \quad H_A = A^*HA, \quad M_A = A^{-1}MA, \quad \mathcal{K}_A = A^*\mathcal{K}A$$

• Translations in the spectral parameter correspond to

$$A = egin{pmatrix} 1 & a \ 0 & 1 \end{pmatrix}$$

 $A \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$  implies that

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}^* (\mathcal{K}_{\mathcal{A}})_L(0,0) \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}^* \mathcal{K}_L(0,0) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

so the scalar CD kernel is unaffected by A, except for a change in parametrization

 K<sub>L</sub>(0,0) is not a parameter (often not injective), but it is injective for a constant coefficient canonical system with η ∈ C<sub>+</sub> ∪ ℝ



# Jacobi recursion (OPRL)

• Modify Jacobi transfer matrices by a conjugation,

$$T(n,z) = j_1 \prod_{k=1}^{n} \begin{pmatrix} \frac{z-b_k}{a_k} & -\frac{1}{a_k} \\ a_k & 0 \end{pmatrix} j_1, \qquad j_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Define

$$M(n,z) = T(n,0)^{-1}T(n,z)$$

and interpolate linearly,

$$M(x,z) = M(\lfloor x \rfloor, z) + (x - \lfloor x \rfloor)(M(\lfloor x \rfloor + 1, z) - M(\lfloor x \rfloor, z))$$

• This is the solution of a canonical system

$$j\partial_x M(x,z) = -zH(x)M(x,z), \qquad M(0,z) = I$$

with piecewise constant data

$$H(x) = \begin{pmatrix} p_n(0)^2 & q_n(0)p_n(0) \\ p_n(0)q_n(0) & q_n(0)^2 \end{pmatrix}, \qquad x \in [n, n+1)$$

• Linear interpolation works because *jH* is nilpotent



# Szegő recursion (OPUC)

- Correspondence between measure μ on unit circle, Verblunsky coefficients {α<sub>n</sub>}<sup>∞</sup><sub>n=0</sub>, Caratheodory function F
- Szegő recursion can be written in matrix form as

$$S(n,z) = \prod_{k=0}^{n-1} A(\alpha_k, z), \quad A(\alpha_n, z) = \frac{1}{\sqrt{1-|\alpha_n|^2}} \begin{pmatrix} z & -\overline{\alpha_n} \\ -\alpha_n z & 1 \end{pmatrix}$$

Denote

$$\mathcal{J} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \mathcal{C} = \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$$

Lemma: the functions

$$T(n,z) = e^{-inz/2} \mathcal{C}^{-1} \mathcal{J}S(n,e^{iz}) \mathcal{J}\mathcal{C}$$

are a *j*-monotonic family of entire *j*-inner functions and obey T(0,z) = I, det T(n,z) = 1, limit point case with

$$m(z)=iF(e^{iz}).$$

 Lemma is inspired by a substitution used by Damanik–Yuditskii to relate comb domains

# Thank you!