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Christoffel-Darboux kernel

@ Let u be a probability measure on R with all finite moments,

/|§|"du(£)<00, Vn € N.

Assume that p has infinite support (in sense of cardinality).

@ From the sequence of monomials {zf}j'io in L2(R, dpu), the
Gram-Schmidt process gives orthonormal polynomials {p;(z)}22,

@ The Christoffel-Darboux (CD) kernel is

(z,w) = ij

Reproducing kernel for subspace span{l,z,...,z" 1} C L3(R,du)
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Universality limits

@ Universality limits of CD kernels are double scaling limits

lim LK, (g +Z ey W)
Tn T

n—oo T, n

for an appropriate sequence 7, — oo and z,w € C,£ € R.

@ They are called universality limits because the limit is often found to
be a standard kernel and not depend on exact measure we started
with: the most common phenomenon is bulk universality, associated
with sine kernel

sin(w — z)
w—-2z

@ Wigner 1955: local eigenvalue statistics of random matrices as a
model for local statistical behavior of resonances in scattering theory
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Bulk umversallty

Ka <5+ ful€ LGS I fu GLAG 5)) sin(n(w — z))

z
n—o0 Kn(f7£) F(W—Z)

Bulk universality was proved in several settings:

@ For Gaussian measure dyu = ﬁe’%fz d¢ follows from properties of

Hermite polynomials

@ Deift—Kriecherbauer—McLaughlin—Venakides—Zhou:
Riemann—Hilbert techniques for measures

du = e e

Q@ a polynomial of even degree

@ Lubinsky, with extensions by Totik, Findley, Simon, Mitkovski:
Stahl-Totik regular measures dyu with local Lebesgue point/local
Szegd conditions at &
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A local criterion for bulk universality

Theorem (Eichinger—Luki¢-Simanek)

Let . be a probability measure on R with infinite support and finite
moments, corresponding to a determinate moment problem. Let

X

1
() = / Tdux),  zeC.
Let £ € R and assume that for some 0 < a < /2,

1
f, = — li I
() - Z|_r:15 m m(z) € (0, c0)
a<arg(z—¢)<m—a

Then uniformly on compact regions of (z,w) € C x C,

K (6 + ries S T TerED) _ sina(w—2))

lim =

n—o0 K,,(&f) W(W—Z)
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Nontangential limits of m(z)

(&) == 1 lim Im m(z)

a<arg(z—§)<m—a

exists for Lebesgue-a.e. £ € R
@ Pointwise, it exists at every Lebesgue point of the measure
@ This limit recovers the a.c. part of the measure:

du(€) = £u.(§)dE + dps(§)

@ The essential support for a.c. spectrum is the set

Tac(p) = {€ € R| £,(&) € (0,00)}

In particular, this solves a conjecture of Avila—Last-Simon:

Bulk universality holds almost everywhere on X ,.(u).
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Local zero spacing

@ Denote by 5}")(5) for j € Z the zeros of p, counted from &, i.e.,

<€) <€) < e < (e) < €M) <

@ Freud-Levin theorem: The bulk universality limit

i K, (f + f,l,(f)én(éé)’g"‘ &(E)fz(fé)) _ Sin(w(Wf Z))

n—o0 Kn(gaf) 7T(W - Z)

implies

lim £()K(E ENEO) - 7)) =1 Vie.

Statements of this type are commonly described as “clock behavior”.
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Rescaling

@ Some of the cited prior literature is actually formulated at some
explicit polynomial scale 7, = n®
o If
.1 z w
lim —K, (é + 26 )
T, T,

n—oo Tn n n

converges to a sine kernel, evaluating at z = w = 0 gives

nim @ € (0,00)

o Conversely, if

lim Kal&:€) € (0,00)

n—o00 Tn

one scale can be replaced by the other
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Growth rate of K,(¢, &)

o For measures du = e~ Q) d¢, K, (€,€) ~ n®, a € (0,1)
@ For compactly supported measures:

K68 ()

n— o0 n f#(f)

if p is Stahl-Totik regular, f¢ denotes the density of the equilibrium
measure of the essential spectrum E = esssupp 1, ,(£) > 0, logf,
is integrable in a neighborhood of £, and £ is a Lebesgue point of
both the measure 1 and the function log f,, (Maté-Nevai-Totik for
E = [-2,2], generalized by Totik)
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Second kind polynomials

@ Jacobi recursion: for some sequence of a, > 0, b, € R,

an(Z) = anpn—l(z) + bn+1pn(z) + 3n+1Pn+1(Z)

with convention p_1(z) =0

@ Second kind polynomials for u are defined by

o Pn(z) — Pn(f)
antz) = [ P2 gy
forn=0,1,2,... and g_1(z) = —1.
@ Matrix version of Christoffel-Darboux kernel defined by
an:_"i pi(2)p;(w) Z,-";é qi(2)p;(w)
>0 Pi(2)gi(w) X4 qi(2)gi(w)

Kn(z,w) = (
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Limits of m-function

o If m:C4 — C, has a normal limit at £, then

nzlii’r(}m(f—i-iy)E(CJr URU {o0}.
y

@ Forn e Cy URU {co}, define

. 1 1 Ren)
H, = —— cCLUR
T 14 (— Ren  |n? =

. ({00
e (6 3)

@ Denote also

and define

. (0 -1
J=\1 o

1 ° . o .°
K, (z,w) = / e tWHiiH, et dt
0
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Bulk universality for matrlx CD kernel

Theorem (Eichinger—Luki¢—Simanek)
Denote 7(n) = tr K,(§,€). The following are equivalent:
@ m has a normal limit at &,

limm(¢+iy) =neCy
y40
@ For some 2 X 2 matrix H,

lim ——Ka(£,€) =

e 7(n)

@ For some function K(z, w), uniformly on compact subsets of
(z,w) e CxC,

lim —— K <g+ (),§+ (n)):IC(z,W).

e 7(a) "

Moreover, in this case, H = H, and K(z, w) = K, (z, w).




Remark: connection to subordinacy theory

@ Recall

DY (3] D S (T (3)
’C"(f’g)‘<z,-":&pj(£>qj(§) S |q,(§)|2>

@ By Cauchy-Schwarz,

1 e [0 o SO
A K€, ©) ”(5’5)_<0 1> = o B¢

@ This recovers subordinacy result of Gilbert—Pearson, Kahn—Pearson:

. . ) Zjniolpj(g)z
igme i =oe = i S T
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Jj-monotonic families of transfer matrices

o Let A B: [0,00) — C?*2 be locally integrable and

A(x) > 0, B(x)* = B(x), tr(A(x)j) = tr(B(x)j) =0

for Lebesgue-a.e. x.

@ Let T :[0,00) x C — C2*2 be the solution of the initial value
problem

JOxT(x,2) = (—zA(x) + B(x))T(x,z), T(0,z)=1

@ Applications: transfer matrices of Schrodinger operators
2 . .
Ly = f% + V/, Dirac operators, orthogonal polynomials on the real
line
@ With some effort: orthogonal polynomials on the unit circle

@ Assume the limit point condition

tr /00 T(x,0)*A(x) T(x,0)dx = oo



The natural general setting
(o] lele]e]

Weyl disks and m-functions

@ CD formula implies j-monotonic property

T(x2,2)*jT(x2,2) — T(x1,2)*jT(x1, 2)

i

<0, zeCy, 0<x1<x
@ For any z € C, the Weyl disks are defined by
D(x,z) ={we C| T(x,z)w e C;}
The Weyl disks are nested,
D(x2,z) C D(x1, 2), zeCy, 0<x3<x

@ In the limit point case, Weyl function m : C; — C, is defined by

{m(2)} = ﬂ D(x, z).

x>0
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Kernels and variation of parameters

@ Matrix CD kernel and CD formula given by

T(L, W):jT(L,Z) -

w—Zz

Ki(z,w) = /o T(x,w)*A(x)T(x,z) dx =

@ Scalar CD kernel defined by

st~ () )

e For U(L) € SL(2,R), gauge transformation
{T(L,2)} = {U(L)T(L, 2)}

doesn't affect the kernels because U(L)*jU(L) —j =0
e M(L,z) = T(L,0)~1T(L,z) solution of a canonical system with

H(x) = T(x,0)*A(x) T(x,0)
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A local criterion for bulk universality

Theorem (Eichinger—Luki¢—Simanek)

Let £ € R and assume that for some 0 < a < /2,

= lim Im m(z) € (0, )
i z—¢&
a<arg(z—¢)<m—a

Then uniformly on compact regions of (z,w) € C x C,

i K, <€+ il KL(E Z)? & T )%L(g,g)) _ sin(ﬂ(w_ z))

L—o0 Ki(&,€) (W — z)
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Bulk umversallty for matrix kernel

Theorem (Eichinger—Luki¢—Simanek)
Denote 7(L) = tr K1 (&,&). The following are equivalent:
@ m has a normal limit at &,

limm(¢+iy) =neCy
y40
@ For some 2 X 2 matrix H,

1
Jim m’CL(&f) =H

@ For some function K(z, w), uniformly on compact subsets of
(z,w) e CxC,

e (64 i€+ 2ty ) = Kl

Moreover, in this case, H = H, and K(z, w) = K, (z, w).
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de Branges homeomorphism

@ Canonical systems are initial value problems of the form
JOM(x,z) = —zH(x)M(x, z), M(0,z) =1

@ Reparametrize x to impose tr H =1 a.e..
@ de Branges: map H — m is a bijection

@ The correspondences between H, m, M, KC are homeomorphisms
(homeomorphisms between first three previously known, see
Eckhart—Kostenko—Teschl or Remling)
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Scaling operation

@ Consider a trace-parametrized canonical system
JOM(t,z) = —zH(t)M(t, z), M(0,z) =1

with Weyl function m(z) and kernel KC;(z, w)
@ For r > 0, a scaling operation

M,(t,z) = M(rt,z/r)
(€.}, w) = Kl /1)

found by Kasahara for Krein strings; used by
Eckhardt—Kostenko—Teschl and Langer—Pruckner—Woracek for
canonical systems to investigate large energy asymptotics of
m-function

@ We use the scaling operation to “zoom in” towards £ € R
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Proof of Theorem 2:
@ Start from transfer matrices T(L, z) with Weyl function m(z)

@ Apply gauge transformation and trace-parametrize
M(t,z) = T(L,E) T T(LE +2)

o Consider family of canonical systems corresponding to Weyl
functions

mr(2) = {m(f tz/r)  refLe)
N r=o0
@ Characterize continuity of this family in terms of H, m, M, C
Proof of Theorem 1:

@ In addition, use a translation trick and consider the family

n(2) = m(+z/r)—Rem(§+i/r) r€[l,00)
’ it (§) r=oo
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Translation trick

@ Action by a matrix A € SL(2,R) on a canonical system,
ma(z) = A7'm(z), Ha=A"HA, Ma=A"MA Ka=AKA

@ Translations in the spectral parameter correspond to

1 a
2~ 9)
A(é) = ((1)) implies that

(0 () - () xeon()

so the scalar CD kernel is unaffected by A, except for a change in
parametrization

@ K;(0,0) is not a parameter (often not injective), but it is injective
for a constant coefficient canonical system with n € C; UR



Jacobi recursion (OPRL)

@ Modify Jacobi transfer matrices by a conjugation,
(B2 L. . (-1 0
waafl(3 de 4G

M(n,z) = T(n,0)""T(n, 2)
and interpolate linearly,

M(x,z) = M([x], 2) + (x = [x))(M([x] +1,2) = M([x], 2))

@ Define

@ This is the solution of a canonical system
JOM(x,z) = —zH(x)M(x, z), M(0,z) =1

with piecewise constant data

_ pa(0)? n(0)pn(0)
H(x) = <Pn(0)qn(0) 4n(0)? ) , x € [n,n+1)

@ Linear interpolation works because jH is nilpotent
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Correspondence between measure 1 on unit circle, Verblunsky
coefficients {a,}52,, Caratheodory function F
Szegb recursion can be written in matrix form as

n—1
1 z —a,
S(n,z) = I | Alak, z), Alap,z) = ——— ( ">
s /1 _ lan2 \—nz 1

(2. et )

Lemma: the functions

T(n,z) = e ™/2C175(n, e?)JC

Denote

are a j-monotonic family of entire j-inner functions and obey
T(0,z) =1/, det T(n,z) =1, limit point case with

m(z) = iF(e”).

Lemma is inspired by a substitution used by Damanik—Yuditskii to
relate comb domains



Thank you!
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