Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

A Tale of Three Coauthors: Comparison of Ising Models

Barry Simon

IBM Professor of Mathematics and Theoretical Physics, Emeritus
California Institute of Technology
Pasadena, CA, U.S.A.

Introduction

This year (2022) we celebrate Elliott Lieb's $90^{\text {th }}$ birthday.

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Introduction

This year (2022) we celebrate Elliott Lieb's $90^{t h}$ birthday. On Friday, Jan 14, I had a draft of a single authored paper intended for a Festschrift to be published for Lieb.

Introduction

This year (2022) we celebrate Elliott Lieb's $90^{t h}$ birthday. On Friday, Jan 14, I had a draft of a single authored paper intended for a Festschrift to be published for Lieb. Six days later, the paper had three coauthors who I hadn't met before Jan 14, 2022

Introduction

This year (2022) we celebrate Elliott Lieb's $90^{t h}$ birthday. On Friday, Jan 14, I had a draft of a single authored paper intended for a Festschrift to be published for Lieb. Six days later, the paper had three coauthors who I hadn't met before Jan 14, 2022 (indeed, even now, I've only met them on Zoom).

Introduction

This year (2022) we celebrate Elliott Lieb's $90^{t h}$ birthday. On Friday, Jan 14, I had a draft of a single authored paper intended for a Festschrift to be published for Lieb. Six days later, the paper had three coauthors who I hadn't met before Jan 14, 2022 (indeed, even now, I've only met them on Zoom). This talk will explain the interesting story, expose some underlying machinery and sketch the proof of a lovely inequality on certain finite sums.

Introduction

This year (2022) we celebrate Elliott Lieb's $90^{t h}$ birthday. On Friday, Jan 14, I had a draft of a single authored paper intended for a Festschrift to be published for Lieb. Six days later, the paper had three coauthors who I hadn't met before Jan 14, 2022 (indeed, even now, I've only met them on Zoom). This talk will explain the interesting story, expose some underlying machinery and sketch the proof of a lovely inequality on certain finite sums. It will include an improvement of 50 year old bounds of Griffiths comparing transition temperatures on generalized Ising models for different spins.

The Backstory

I am writing a book for Cambridge Press entitled Phase Transitions in the Theory of Lattice Gases.

Introduction
Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

The Backstory

I am writing a book for Cambridge Press entitled Phase Transitions in the Theory of Lattice Gases. It is in many ways the successor to my 1993 book The Statistical Mechanics of Lattice Gases, Vol. I, from Princeton University Press.

The Backstory

I am writing a book for Cambridge Press entitled Phase Transitions in the Theory of Lattice Gases. It is in many ways the successor to my 1993 book The Statistical Mechanics of Lattice Gases, Vol. I, from Princeton University Press. That earlier book was mainly framework and largely left out all the most fun and beautiful elements of the theory:

The Backstory

I am writing a book for Cambridge Press entitled Phase Transitions in the Theory of Lattice Gases. It is in many ways the successor to my 1993 book The Statistical Mechanics of Lattice Gases, Vol. I, from Princeton University Press. That earlier book was mainly framework and largely left out all the most fun and beautiful elements of the theory:Correlation Inequalities, Lee-Yang, Peierls' Argument, Berezinskii-Kosterlitz-Thouless transitions and Infrared Bounds

The Backstory

I am writing a book for Cambridge Press entitled Phase Transitions in the Theory of Lattice Gases. It is in many ways the successor to my 1993 book The Statistical Mechanics of Lattice Gases, Vol. I, from Princeton University Press. That earlier book was mainly framework and largely left out all the most fun and beautiful elements of the theory:Correlation Inequalities, Lee-Yang, Peierls' Argument, Berezinskii-Kosterlitz-Thouless transitions and Infrared Bounds which are the subjects of the new book.

The Backstory

I am writing a book for Cambridge Press entitled Phase Transitions in the Theory of Lattice Gases. It is in many ways the successor to my 1993 book The Statistical Mechanics of Lattice Gases, Vol. I, from Princeton University Press. That earlier book was mainly framework and largely left out all the most fun and beautiful elements of the theory:Correlation Inequalities, Lee-Yang, Peierls' Argument, Berezinskii-Kosterlitz-Thouless transitions and Infrared Bounds which are the subjects of the new book. But since I decided to use a different publisher, this is certainly NOT volume 2 of the earlier work.

The Backstory

I am writing a book for Cambridge Press entitled Phase Transitions in the Theory of Lattice Gases. It is in many ways the successor to my 1993 book The Statistical Mechanics of Lattice Gases, Vol. I, from Princeton University Press. That earlier book was mainly framework and largely left out all the most fun and beautiful elements of the theory:Correlation Inequalities, Lee-Yang, Peierls' Argument, Berezinskii-Kosterlitz-Thouless transitions and Infrared Bounds which are the subjects of the new book. But since I decided to use a different publisher, this is certainly NOT volume 2 of the earlier work.

The framework for much of the subject is to fix a finite set $\Lambda \subset \mathbb{Z}^{\nu}$,

The Backstory

I am writing a book for Cambridge Press entitled Phase Transitions in the Theory of Lattice Gases. It is in many ways the successor to my 1993 book The Statistical Mechanics of Lattice Gases, Vol. I, from Princeton University Press. That earlier book was mainly framework and largely left out all the most fun and beautiful elements of the theory:Correlation Inequalities, Lee-Yang, Peierls' Argument, Berezinskii-Kosterlitz-Thouless transitions and Infrared Bounds which are the subjects of the new book. But since I decided to use a different publisher, this is certainly NOT volume 2 of the earlier work.

The framework for much of the subject is to fix a finite set $\Lambda \subset \mathbb{Z}^{\nu}$, and an apriori EVEN probability measure, $d \mu$, on \mathbb{R}, certainly with all moments finite and typically of compact support.

The Backstory

One considers the configurations in Λ, i.e. points σ in \mathbb{R}^{Λ}, indicated by $\left\{\sigma_{j}\right\}_{j \in \Lambda}$

The Backstory

One considers the configurations in Λ, i.e. points σ in \mathbb{R}^{Λ}, indicated by $\left\{\sigma_{j}\right\}_{j \in \Lambda}$ and uncoupled measure with expectation

$$
\langle f\rangle_{\mu, 0}=\int f(\sigma) \prod_{j \in \Lambda} d \mu\left(\sigma_{j}\right)
$$

The Backstory

One considers the configurations in Λ, i.e. points σ in \mathbb{R}^{Λ}, indicated by $\left\{\sigma_{j}\right\}_{j \in \Lambda}$ and uncoupled measure with expectation

$$
\langle f\rangle_{\mu, 0}=\int f(\sigma) \prod_{j \in \Lambda} d \mu\left(\sigma_{j}\right)
$$

and one fixes a ferromagnetic Hamiltonian

$$
-H=\sum_{A \subset \Lambda} J(A) \sigma^{A}
$$

The Backstory

One considers the configurations in Λ, i.e. points σ in \mathbb{R}^{Λ}, indicated by $\left\{\sigma_{j}\right\}_{j \in \Lambda}$ and uncoupled measure with expectation

$$
\langle f\rangle_{\mu, 0}=\int f(\sigma) \prod_{j \in \Lambda} d \mu\left(\sigma_{j}\right)
$$

and one fixes a ferromagnetic Hamiltonian

$$
-H=\sum_{A \subset \Lambda} J(A) \sigma^{A} \quad \sigma^{A}=\prod_{j \in A} \sigma_{j}
$$

The Backstory

One considers the configurations in Λ, i.e. points σ in \mathbb{R}^{Λ}, indicated by $\left\{\sigma_{j}\right\}_{j \in \Lambda}$ and uncoupled measure with expectation

$$
\langle f\rangle_{\mu, 0}=\int f(\sigma) \prod_{j \in \Lambda} d \mu\left(\sigma_{j}\right)
$$

and one fixes a ferromagnetic Hamiltonian

$$
-H=\sum_{A \subset \Lambda} J(A) \sigma^{A} \quad \sigma^{A}=\prod_{j \in A} \sigma_{j}
$$

or more general over multiplicity functions, i.e. assignments of an integer, $n_{j} \geq 0$ with then $\sigma^{A}=\prod_{j \in A} \sigma_{j}^{n_{j}}$ (and a finite sum or else ℓ^{1} condition).

The Backstory

One considers the configurations in Λ, i.e. points σ in \mathbb{R}^{Λ}, indicated by $\left\{\sigma_{j}\right\}_{j \in \Lambda}$ and uncoupled measure with expectation

$$
\langle f\rangle_{\mu, 0}=\int f(\sigma) \prod_{j \in \Lambda} d \mu\left(\sigma_{j}\right)
$$

and one fixes a ferromagnetic Hamiltonian

$$
-H=\sum_{A \subset \Lambda} J(A) \sigma^{A} \quad \sigma^{A}=\prod_{j \in A} \sigma_{j}
$$

or more general over multiplicity functions, i.e. assignments of an integer, $n_{j} \geq 0$ with then $\sigma^{A}=\prod_{j \in A} \sigma_{j}^{n_{j}}$ (and a finite sum or else ℓ^{1} condition). One then considers, the Gibbs state

$$
\langle f\rangle_{\mu, \Lambda}=Z^{-1}\left\langle f e^{-H}\right\rangle_{\mu, 0} ; \quad Z=\left\langle e^{-H}\right\rangle_{\mu, 0}
$$

The Backstory

One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations.

The Backstory

One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations. The traditional case is the Ising model

The Backstory

One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations. The traditional case is the Ising model (aka spin $\frac{1}{2}$ Ising model) where $d \mu$ is a measure supported on ± 1 each point with weight $\frac{1}{2}$;

The Backstory

One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations. The traditional case is the Ising model (aka spin $\frac{1}{2}$ Ising model) where $d \mu$ is a measure supported on ± 1 each point with weight $\frac{1}{2}$; more generally, I'll refer to b_{T} with weights $\frac{1}{2}$ at $\pm T$ (b is for Bernoulli).

The Backstory

One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations. The traditional case is the Ising model (aka spin $\frac{1}{2}$ Ising model) where $d \mu$ is a measure supported on ± 1 each point with weight $\frac{1}{2}$; more generally, I'll refer to b_{T} with weights $\frac{1}{2}$ at $\pm T$ (b is for Bernoulli). While a lot of the literature is specific to the spin $\frac{1}{2}$ Ising model, there is considerable, mathematically interesting, literature on more general (even) apriori measures.

The Backstory

One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations. The traditional case is the Ising model (aka spin $\frac{1}{2}$ Ising model) where $d \mu$ is a measure supported on ± 1 each point with weight $\frac{1}{2}$; more generally, I'll refer to b_{T} with weights $\frac{1}{2}$ at $\pm T$ (b is for Bernoulli). While a lot of the literature is specific to the spin $\frac{1}{2}$ Ising model, there is considerable, mathematically interesting, literature on more general (even) apriori measures.

As I began to write about correlation inequalities, I wondered about a natural question. Say that an apriori measure, ν, on \mathbb{R} Ising dominates another measure μ if and only if for all $J(A) \geq 0$ and all B, one has that

The Backstory

One studies the infinite volume limit with translation invariant $J(A)$, typically by proving stuff about the finite volume expectations. The traditional case is the Ising model (aka spin $\frac{1}{2}$ Ising model) where $d \mu$ is a measure supported on ± 1 each point with weight $\frac{1}{2}$; more generally, I'll refer to b_{T} with weights $\frac{1}{2}$ at $\pm T$ (b is for Bernoulli). While a lot of the literature is specific to the spin $\frac{1}{2}$ Ising model, there is considerable, mathematically interesting, literature on more general (even) apriori measures.

As I began to write about correlation inequalities, I wondered about a natural question. Say that an apriori measure, ν, on \mathbb{R} Ising dominates another measure μ if and only if for all $J(A) \geq 0$ and all B, one has that

$$
\left\langle\sigma^{B}\right\rangle_{\mu, \Lambda} \leq\left\langle\sigma^{B}\right\rangle_{\nu, \Lambda}
$$

The Backstory

In particular for general μ compact support, does one have that μ Ising dominates $b_{T_{-}}$and is Ising dominated by $b_{T_{+}}$ for suitable $0<T_{-}<T_{+}<\infty$.

The Backstory

Ginibre

Wells' Framework
Wells* Big
Theorem
Examples
More on the
Conjecture
From One to

Three Authors

Proof of The
Inequality

In particular for general μ compact support, does one have that μ Ising dominates $b_{T_{-}}$and is Ising dominated by $b_{T_{+}}$ for suitable $0<T_{-}<T_{+}<\infty$. In particular, that would imply phase transitions occur for one apriori measure if and only if they do for all and inequalities on transition temperatures.

The Backstory

Ginibre

Wells' Framework

In particular for general μ compact support, does one have that μ Ising dominates $b_{T_{-}}$and is Ising dominated by $b_{T_{+}}$ for suitable $0<T_{-}<T_{+}<\infty$. In particular, that would imply phase transitions occur for one apriori measure if and only if they do for all and inequalities on transition temperatures. To be explicit, if μ Ising dominates $b_{T_{-}(\mu)}$, and if $T_{c}(\mu)$ is a transition temperature for some fixed ferromagnetic pair interaction, one easily sees that

The Backstory

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The
Inequality

In particular for general μ compact support, does one have that μ Ising dominates $b_{T_{-}}$and is Ising dominated by $b_{T_{+}}$ for suitable $0<T_{-}<T_{+}<\infty$. In particular, that would imply phase transitions occur for one apriori measure if and only if they do for all and inequalities on transition temperatures. To be explicit, if μ Ising dominates $b_{T_{-}(\mu)}$, and if $T_{c}(\mu)$ is a transition temperature for some fixed ferromagnetic pair interaction, one easily sees that

$$
T_{c}(\mu) \geq T_{-}(\mu)^{2} T_{c}(\text { classical Ising })
$$

The Backstory

For most even minor aspects of the subject of correlation inequalities there are several papers, sometimes as many as a dozen.

The Backstory

For most even minor aspects of the subject of correlation inequalities there are several papers, sometimes as many as a dozen. So I was surprised that I was unable to find a single published paper on the subject of what I just called Ising domination!

The Backstory

For most even minor aspects of the subject of correlation inequalities there are several papers, sometimes as many as a dozen. So I was surprised that I was unable to find a single published paper on the subject of what I just called Ising domination! Of course, it was unclear how to search for the subject in Google.

The Backstory

For most even minor aspects of the subject of correlation inequalities there are several papers, sometimes as many as a dozen. So I was surprised that I was unable to find a single published paper on the subject of what I just called Ising domination! Of course, it was unclear how to search for the subject in Google. Eventually, I did find one paper of van Beijeren and Sylvester that is unsatisfactory in that in their theory, the analog of what I call T_{-}is 0 if $0 \in \operatorname{supp}(\mu)$. And I did find an appendix of a paper on another subject but that gets ahead of my story.

The Backstory

> One of the pleasant things about writing a book on a subject that I once knew more about is that I get to rediscover things I've forgotten.

The Backstory

One of the pleasant things about writing a book on a subject that I once knew more about is that I get to rediscover things I've forgotten. With the question of Ising domination in the back of my mind, I found an interesting footnote in a 1980 paper of Aizenman and

The Backstory

One of the pleasant things about writing a book on a subject that I once knew more about is that I get to rediscover things I've forgotten. With the question of Ising domination in the back of my mind, I found an interesting footnote in a 1980 paper of Aizenman and er, B. Simon entitled A comparison of plane rotor and Ising models. The footnote said

The Backstory

One of the pleasant things about writing a book on a subject that I once knew more about is that I get to rediscover things I've forgotten. With the question of Ising domination in the back of my mind, I found an interesting footnote in a 1980 paper of Aizenman and er, B. Simon entitled A comparison of plane rotor and Ising models. The footnote said
then by results of Wells (D. Wells, Some moment inequalities for general spin Ising ferromagnets, Indiana Univ. preprint) $\left\langle s_{j} s_{k}\right\rangle_{\beta, 1} \leq 2\left\langle\sigma_{j}^{(1)} \sigma_{k}^{(1)}\right\rangle_{\beta, 2}$.

The Backstory

One of the pleasant things about writing a book on a subject that I once knew more about is that I get to rediscover things I've forgotten. With the question of Ising domination in the back of my mind, I found an interesting footnote in a 1980 paper of Aizenman and er, B. Simon entitled A comparison of plane rotor and Ising models. The footnote said
then by results of Wells (D. Wells, Some moment inequalities for general spin Ising ferromagnets, Indiana Univ. preprint) $\left\langle s_{j} s_{k}\right\rangle_{\beta, 1} \leq 2\left\langle\sigma_{j}^{(1)} \sigma_{k}^{(1)}\right\rangle_{\beta, 2}$.
The left hand side is an Ising expectation and the right with the apriori measure of the $2 D$ rotor with only couplings of the 1 components.

The Backstory

One of the pleasant things about writing a book on a subject that I once knew more about is that I get to rediscover things I've forgotten. With the question of Ising domination in the back of my mind, I found an interesting footnote in a 1980 paper of Aizenman and er, B. Simon entitled A comparison of plane rotor and Ising models. The footnote said
then by results of Wells (D. Wells, Some moment inequalities for general spin Ising ferromagnets, Indiana Univ. preprint) $\left\langle s_{j} s_{k}\right\rangle_{\beta, 1} \leq 2\left\langle\sigma_{j}^{(1)} \sigma_{k}^{(1)}\right\rangle_{\beta, 2}$.
The left hand side is an Ising expectation and the right with the apriori measure of the $2 D$ rotor with only couplings of the 1 components. So this was part of what seems to be an Ising domination result (the 2 indicates the Ising measure should really be $b_{1 / \sqrt{2}}$).

The Search for Wells

So I set about finding this preprint.

The Search for Wells

So I set about finding this preprint. Google didn't help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells' Indiana University PhD. thesis.

The Search for Wells

So I set about finding this preprint. Google didn't help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells' Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student.

The Search for Wells

So I set about finding this preprint. Google didn't help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells' Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student. Chuck replied and said he remembered that Wells had been Slim Sherman's student.

The Search for Wells

So I set about finding this preprint. Google didn't help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells' Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student. Chuck replied and said he remembered that Wells had been Slim Sherman's student. Sherman, the S of GKS and GHS was delightful character, long dead.

The Search for Wells

So I set about finding this preprint. Google didn't help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells' Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student. Chuck replied and said he remembered that Wells had been Slim Sherman's student. Sherman, the S of GKS and GHS was delightful character, long dead. So I wrote to Kevin Pilgrim, the chair at Indiana, who located a copy of Wells thesis for me on Proquest.

The Search for Wells

So I set about finding this preprint. Google didn't help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells' Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student. Chuck replied and said he remembered that Wells had been Slim Sherman's student. Sherman, the S of GKS and GHS was delightful character, long dead. So I wrote to Kevin Pilgrim, the chair at Indiana, who located a copy of Wells thesis for me on Proquest. But he had no luck on the preprint nor on locating Wells through Indiana University alumni records!

The Search for Wells

So I set about finding this preprint. Google didn't help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells' Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student. Chuck replied and said he remembered that Wells had been Slim Sherman's student. Sherman, the S of GKS and GHS was delightful character, long dead. So I wrote to Kevin Pilgrim, the chair at Indiana, who located a copy of Wells thesis for me on Proquest. But he had no luck on the preprint nor on locating Wells through Indiana University alumni records! While the thesis did not have anything directly about the above inequality, it did have a general framework on what I called the Ising domination problem,

The Search for Wells

So I set about finding this preprint. Google didn't help directly but did point me to a 1984 paper of Chuck Newman that mentioned Wells' Indiana University PhD. thesis. So I wrote to Michael asking if he knew anything about our footnote and cced Chuck (who had been a grad student with me at Princeton) because I conjectured Wells had been his student. Chuck replied and said he remembered that Wells had been Slim Sherman's student. Sherman, the S of GKS and GHS was delightful character, long dead. So I wrote to Kevin Pilgrim, the chair at Indiana, who located a copy of Wells thesis for me on Proquest. But he had no luck on the preprint nor on locating Wells through Indiana University alumni records! While the thesis did not have anything directly about the above inequality, it did have a general framework on what I called the Ising domination problem, lovely material that should have been published.

The Rest of the Talk

Ginibre

Weils' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to

Three Authors

Proof of The Inequality

Our first goal is to describe Wells' framework and what I regard as his most significant theorem. Since he extended a framework of Ginibre, I begin by reminding (telling) you of that.

The Rest of the Talk

Ginibre

Weils' Framework
Wells* Big
Theorem
Examples
More on the
Conjecture
From One to

Three Authors

Proof of The Inequality

Our first goal is to describe Wells' framework and what I regard as his most significant theorem. Since he extended a framework of Ginibre, I begin by reminding (telling) you of that. Then the notion I call Wells domination followed by his big theorem.

The Rest of the Talk

Our first goal is to describe Wells' framework and what I regard as his most significant theorem. Since he extended a framework of Ginibre, I begin by reminding (telling) you of that. Then the notion I call Wells domination followed by his big theorem. Then examples including comparing extremely anisotropic D-rotors and a conjecture related to comparing spin S Ising.

The Rest of the Talk

Our first goal is to describe Wells' framework and what I regard as his most significant theorem. Since he extended a framework of Ginibre, I begin by reminding (telling) you of that. Then the notion I call Wells domination followed by his big theorem. Then examples including comparing extremely anisotropic D-rotors and a conjecture related to comparing spin S Ising. Next, I'll tell the stories of proving the conjecture and locating Wells.

The Rest of the Talk

Our first goal is to describe Wells' framework and what I regard as his most significant theorem. Since he extended a framework of Ginibre, I begin by reminding (telling) you of that. Then the notion I call Wells domination followed by his big theorem. Then examples including comparing extremely anisotropic D-rotors and a conjecture related to comparing spin S Ising. Next, I'll tell the stories of proving the conjecture and locating Wells. Finally, I'll sketch the proof of the conjecture in as much detail as time allows.

Ginibre Systems

In a remarkable 1970 paper, Jean Ginibre

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Ginibre Systems

In a remarkable 1970 paper, Jean Ginibre (who alas passed away in March of 2020 at age 82) not only found a really simple proof of GKS inequalities but showed somewhat surprisingly that they held for all apriori measures.

Ginibre Systems

In a remarkable 1970 paper, Jean Ginibre (who alas passed away in March of 2020 at age 82) not only found a really simple proof of GKS inequalities but showed somewhat surprisingly that they held for all apriori measures. If you are new to Ising models and have time for only one result, this one might be what you should know.

Ginibre Systems

In a remarkable 1970 paper, Jean Ginibre (who alas passed away in March of 2020 at age 82) not only found a really simple proof of GKS inequalities but showed somewhat surprisingly that they held for all apriori measures. If you are new to Ising models and have time for only one result, this one might be what you should know.
A Ginibre system is a triple $\langle X, \mu, \mathcal{F}\rangle$ of a compact Hausdorff space, X, a probability measure, μ, on X (with expectations $\langle\cdot\rangle_{\mu}$) and a class of continuous real valued functions $\mathcal{F} \subset C(X)$ that obeys:

Ginibre Systems

In a remarkable 1970 paper, Jean Ginibre (who alas passed away in March of 2020 at age 82) not only found a really simple proof of GKS inequalities but showed somewhat surprisingly that they held for all apriori measures. If you are new to Ising models and have time for only one result, this one might be what you should know.
A Ginibre system is a triple $\langle X, \mu, \mathcal{F}\rangle$ of a compact Hausdorff space, X, a probability measure, μ, on X (with expectations $\langle\cdot\rangle_{\mu}$) and a class of continuous real valued functions $\mathcal{F} \subset C(X)$ that obeys:
$(G 1) \quad \forall_{f_{1}, \ldots f_{n} \in \mathcal{F}} \int_{X} f_{1}(x) \ldots f_{n}(x) d \mu(x) \geq 0$
(G2) $\forall_{f_{1}, \ldots f_{n} \in \mathcal{F}} \int_{X \times X} \prod_{j=1}^{n}\left(f_{j}(x) \pm f_{j}(y)\right) d \mu(x) d \mu(y) \geq 0$

Ginibre Systems

In a remarkable 1970 paper, Jean Ginibre (who alas passed away in March of 2020 at age 82) not only found a really simple proof of GKS inequalities but showed somewhat surprisingly that they held for all apriori measures. If you are new to Ising models and have time for only one result, this one might be what you should know.
A Ginibre system is a triple $\langle X, \mu, \mathcal{F}\rangle$ of a compact Hausdorff space, X, a probability measure, μ, on X (with expectations $\langle\cdot\rangle_{\mu}$) and a class of continuous real valued functions $\mathcal{F} \subset C(X)$ that obeys:
(G1) $\quad \forall_{f_{1}, \ldots f_{n} \in \mathcal{F}} \int_{X} f_{1}(x) \ldots f_{n}(x) d \mu(x) \geq 0$
(G2) $\forall_{f_{1}, \ldots f_{n} \in \mathcal{F}} \int_{X \times X} \prod_{j=1}^{n}\left(f_{j}(x) \pm f_{j}(y)\right) d \mu(x) d \mu(y) \geq 0$
for all 2^{n} choices of the plus and minus sign.

Ginibre Systems

When it is clear which measure is intended, we will drop the μ from $\langle\cdot\rangle_{\mu}$.

Ginibre Systems

When it is clear which measure is intended, we will drop the μ from $\langle\cdot\rangle_{\mu}$. We have restricted to compact Hausdorff spaces and so bounded functions for simplicity. But since all the arguments are essentially algebraic, all results extend to the case where X is only locally compact so long as all $f \in \mathcal{F}$ obey $\int|f(x)|^{m} d \mu(x)<\infty$ for all m since that condition assures that all integrals are convergent.

Ginibre Systems

When it is clear which measure is intended, we will drop the μ from $\langle\cdot\rangle_{\mu}$. We have restricted to compact Hausdorff spaces and so bounded functions for simplicity. But since all the arguments are essentially algebraic, all results extend to the case where X is only locally compact so long as all $f \in \mathcal{F}$ obey $\int|f(x)|^{m} d \mu(x)<\infty$ for all m since that condition assures that all integrals are convergent.
Note that

$$
\begin{gathered}
(G 2) \Rightarrow 2\langle f\rangle_{\mu}=\int_{X}(f(x)+f(y)) d \mu(x) d \mu(y) \geq 0 \\
\int_{X \times X}(f(x)-f(y))(g(x)-g(y)) d \mu(x) d \mu(y)
\end{gathered}
$$

Ginibre Systems

When it is clear which measure is intended, we will drop the μ from $\langle\cdot\rangle_{\mu}$. We have restricted to compact Hausdorff spaces and so bounded functions for simplicity. But since all the arguments are essentially algebraic, all results extend to the case where X is only locally compact so long as all $f \in \mathcal{F}$ obey $\int|f(x)|^{m} d \mu(x)<\infty$ for all m since that condition assures that all integrals are convergent.
Note that

$$
\begin{aligned}
(G 2) \Rightarrow 2\langle f\rangle_{\mu} & =\int_{X}(f(x)+f(y)) d \mu(x) d \mu(y) \geq 0 \\
\int_{X \times X}(f(x) & -f(y))(g(x)-g(y)) d \mu(x) d \mu(y) \\
& =2\left[\langle f g\rangle_{\mu}-\langle f\rangle_{\mu}\langle g\rangle_{\mu}\right] \geq 0
\end{aligned}
$$

Ginibre Systems

When it is clear which measure is intended, we will drop the μ from $\langle\cdot\rangle_{\mu}$. We have restricted to compact Hausdorff spaces and so bounded functions for simplicity. But since all the arguments are essentially algebraic, all results extend to the case where X is only locally compact so long as all $f \in \mathcal{F}$ obey $\int|f(x)|^{m} d \mu(x)<\infty$ for all m since that condition assures that all integrals are convergent.
Note that

$$
\begin{aligned}
(G 2) \Rightarrow 2\langle f\rangle_{\mu} & =\int_{X}(f(x)+f(y)) d \mu(x) d \mu(y) \geq 0 \\
\int_{X \times X}(f(x) & -f(y))(g(x)-g(y)) d \mu(x) d \mu(y) \\
& =2\left[\langle f g\rangle_{\mu}-\langle f\rangle_{\mu}\langle g\rangle_{\mu}\right] \geq 0
\end{aligned}
$$

We will see shortly that $(G 2) \Rightarrow(G 1)$

Extending Ginibre Systems

What makes the notion so powerful is that there are three theorems for getting new Ginibre systems from old ones.

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Extending Ginibre Systems

What makes the notion so powerful is that there are three theorems for getting new Ginibre systems from old ones.

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to

Three Authors

Proof of The
Inequality

Given a family of functions, $\mathcal{F} \subset C(X)$, we define the Ginibre cone, $\mathcal{C}(\mathcal{F})$, as the set of linear combinations with non-negative coefficients of products of functions from \mathcal{F}.

Extending Ginibre Systems

What makes the notion so powerful is that there are three theorems for getting new Ginibre systems from old ones.

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to

Three Authors

Proof of The
Inequality

Given a family of functions, $\mathcal{F} \subset C(X)$, we define the Ginibre cone, $\mathcal{C}(\mathcal{F})$, as the set of linear combinations with non-negative coefficients of products of functions from \mathcal{F}. Ginibre Theorem 1 If a triple $\langle X, \mu, \mathcal{F}\rangle$ obeys ($G 2$), so does $\langle X, \mu, \mathcal{C}(\mathcal{F})\rangle$.

Extending Ginibre Systems

What makes the notion so powerful is that there are three theorems for getting new Ginibre systems from old ones.

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The
Inequality Given a family of functions, $\mathcal{F} \subset C(X)$, we define the Ginibre cone, $\mathcal{C}(\mathcal{F})$, as the set of linear combinations with non-negative coefficients of products of functions from \mathcal{F}. Ginibre Theorem 1 If a triple $\langle X, \mu, \mathcal{F}\rangle$ obeys ($G 2$), so does $\langle X, \mu, \mathcal{C}(\mathcal{F})\rangle$.
It is trivial that $(G 2)$ holds for sums and positive multiples of functions for which it holds,

Extending Ginibre Systems

What makes the notion so powerful is that there are three theorems for getting new Ginibre systems from old ones.

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The Inequality Given a family of functions, $\mathcal{F} \subset C(X)$, we define the Ginibre cone, $\mathcal{C}(\mathcal{F})$, as the set of linear combinations with non-negative coefficients of products of functions from \mathcal{F}.
Ginibre Theorem 1 If a triple $\langle X, \mu, \mathcal{F}\rangle$ obeys $(G 2)$, so does $\langle X, \mu, \mathcal{C}(\mathcal{F})\rangle$.
It is trivial that $(G 2)$ holds for sums and positive multiples of functions for which it holds, so it suffices to prove it holds for products. By induction, we need only handle products of two functions. We note that

$$
f g \pm f^{\prime} g^{\prime}=\frac{1}{2}\left(f+f^{\prime}\right)\left(g \pm g^{\prime}\right)+\frac{1}{2}\left(f-f^{\prime}\right)\left(g \mp g^{\prime}\right)
$$

Extending Ginibre Systems

What makes the notion so powerful is that there are three theorems for getting new Ginibre systems from old ones.

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to
Three Authors
Proof of The Inequality

Given a family of functions, $\mathcal{F} \subset C(X)$, we define the Ginibre cone, $\mathcal{C}(\mathcal{F})$, as the set of linear combinations with non-negative coefficients of products of functions from \mathcal{F}.
Ginibre Theorem 1 If a triple $\langle X, \mu, \mathcal{F}\rangle$ obeys $(G 2)$, so does $\langle X, \mu, \mathcal{C}(\mathcal{F})\rangle$.
It is trivial that (G2) holds for sums and positive multiples of functions for which it holds, so it suffices to prove it holds for products. By induction, we need only handle products of two functions. We note that

$$
f g \pm f^{\prime} g^{\prime}=\frac{1}{2}\left(f+f^{\prime}\right)\left(g \pm g^{\prime}\right)+\frac{1}{2}\left(f-f^{\prime}\right)\left(g \mp g^{\prime}\right)
$$

which allows us to prove $(G 2)$ for a single product when we have it for individual functions (and shows $(\mathrm{G} 2) \Rightarrow(\mathrm{G} 1)$).

Extending Ginibre Systems

The following is trivial
Ginibre Theorem 2 Let $\left\{\left\langle X_{j}, \mu_{j}, \mathcal{F}_{j}\right\rangle\right\}_{j=1}^{n}$ be a family of Ginibre systems. Then $\left\langle\times_{j=1}^{n} X_{j}, \otimes_{j=1}^{n} \mu_{j}, \bigcup_{j=1}^{n} \mathcal{F}_{j}\right\rangle$ is also a Ginibre system.

Extending Ginibre Systems

The following is trivial
Ginibre Theorem 2 Let $\left\{\left\langle X_{j}, \mu_{j}, \mathcal{F}_{j}\right\rangle\right\}_{j=1}^{n}$ be a family of Ginibre systems. Then $\left\langle\times_{j=1}^{n} X_{j}, \otimes_{j=1}^{n} \mu_{j}, \bigcup_{j=1}^{n} \mathcal{F}_{j}\right\rangle$ is also a Ginibre system.

And to add interactions, we use

Extending Ginibre Systems

The following is trivial
Ginibre Theorem 2 Let $\left\{\left\langle X_{j}, \mu_{j}, \mathcal{F}_{j}\right\rangle\right\}_{j=1}^{n}$ be a family of Ginibre systems. Then $\left\langle\times_{j=1}^{n} X_{j}, \otimes_{j=1}^{n} \mu_{j}, \bigcup_{j=1}^{n} \mathcal{F}_{j}\right\rangle$ is also a Ginibre system.
And to add interactions, we use
Ginibre Theorem 3 Let $\langle X, \mu, \mathcal{F}\rangle$ be Ginibre system. Let $-H \in \mathcal{F}$ and define a new measure, μ_{H} by

$$
\langle f\rangle_{\mu_{H}}=\frac{\left\langle f e^{-H}\right\rangle_{\mu}}{\left\langle e^{-H}\right\rangle_{\mu}}
$$

Then $\left\langle X, \mu_{H}, \mathcal{F}\right\rangle$ is a Ginibre system.

Extending Ginibre Systems

The following is trivial
Ginibre Theorem 2 Let $\left\{\left\langle X_{j}, \mu_{j}, \mathcal{F}_{j}\right\rangle\right\}_{j=1}^{n}$ be a family of Ginibre systems. Then $\left\langle\times_{j=1}^{n} X_{j}, \otimes_{j=1}^{n} \mu_{j}, \bigcup_{j=1}^{n} \mathcal{F}_{j}\right\rangle$ is also a Ginibre system.
And to add interactions, we use
Ginibre Theorem 3 Let $\langle X, \mu, \mathcal{F}\rangle$ be Ginibre system. Let
$-H \in \mathcal{F}$ and define a new measure, μ_{H} by

$$
\langle f\rangle_{\mu_{H}}=\frac{\left\langle f e^{-H}\right\rangle_{\mu}}{\left\langle e^{-H}\right\rangle_{\mu}}
$$

Then $\left\langle X, \mu_{H}, \mathcal{F}\right\rangle$ is a Ginibre system.
The proof is easy.

Extending Ginibre Systems

The following is trivial
Ginibre Theorem 2 Let $\left\{\left\langle X_{j}, \mu_{j}, \mathcal{F}_{j}\right\rangle\right\}_{j=1}^{n}$ be a family of Ginibre systems. Then $\left\langle\times_{j=1}^{n} X_{j}, \otimes_{j=1}^{n} \mu_{j}, \bigcup_{j=1}^{n} \mathcal{F}_{j}\right\rangle$ is also a Ginibre system.
And to add interactions, we use
Ginibre Theorem 3 Let $\langle X, \mu, \mathcal{F}\rangle$ be Ginibre system. Let $-H \in \mathcal{F}$ and define a new measure, μ_{H} by

$$
\langle f\rangle_{\mu_{H}}=\frac{\left\langle f e^{-H}\right\rangle_{\mu}}{\left\langle e^{-H}\right\rangle_{\mu}}
$$

Then $\left\langle X, \mu_{H}, \mathcal{F}\right\rangle$ is a Ginibre system.
The proof is easy. The normalization is irrelevant and we expand the exponential $\exp (-H(x)-H(y))$.

Classical Ising System

Ginibre Theorem 4 Let X be \mathbb{R} or a compact subset of the form $[-A, A]$ and let $d \mu$ be a probability measure which is invariant under $x \mapsto-x$ and so that (only non-trivial in case X is not compact) $\int x^{2 n} d \mu(x)<\infty$ for all n. Let \mathcal{F} contain the single function, $f(x)=x$. Then $\langle X, \mu, \mathcal{F}\rangle$ is a Ginibre system.

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture
From One to

Three Authors

Proof of The Inequality

Classical Ising System

Ginibre Theorem 4 Let X be \mathbb{R} or a compact subset of the form $[-A, A]$ and let $d \mu$ be a probability measure which is invariant under $x \mapsto-x$ and so that (only non-trivial in case X is not compact) $\int x^{2 n} d \mu(x)<\infty$ for all n. Let \mathcal{F} contain the single function, $f(x)=x$. Then $\langle X, \mu, \mathcal{F}\rangle$ is a Ginibre system.

The proof is easy! (G2) says that for all non-negative integers, k and m, one has that

$$
\int_{X \times X}(x+y)^{k}(x-y)^{m} d \mu(x) d \mu(y) \geq 0
$$

Classical Ising System

Ginibre Theorem 4 Let X be \mathbb{R} or a compact subset of the form $[-A, A]$ and let $d \mu$ be a probability measure which is invariant under $x \mapsto-x$ and so that (only non-trivial in case X is not compact) $\int x^{2 n} d \mu(x)<\infty$ for all n. Let \mathcal{F} contain the single function, $f(x)=x$. Then $\langle X, \mu, \mathcal{F}\rangle$ is a Ginibre system.

The proof is easy! (G2) says that for all non-negative integers, k and m, one has that

$$
\int_{X \times X}(x+y)^{k}(x-y)^{m} d \mu(x) d \mu(y) \geq 0
$$

Interchanging x and y implies the integral is zero if m is odd

Classical Ising System

Ginibre Theorem 4 Let X be \mathbb{R} or a compact subset of the form $[-A, A]$ and let $d \mu$ be a probability measure which is invariant under $x \mapsto-x$ and so that (only non-trivial in case X is not compact) $\int x^{2 n} d \mu(x)<\infty$ for all n. Let \mathcal{F} contain the single function, $f(x)=x$. Then $\langle X, \mu, \mathcal{F}\rangle$ is a Ginibre system.

The proof is easy! (G2) says that for all non-negative integers, k and m, one has that

$$
\int_{X \times X}(x+y)^{k}(x-y)^{m} d \mu(x) d \mu(y) \geq 0
$$

Interchanging x and y implies the integral is zero if m is odd and $x \mapsto-x$ symmetry implies the integral is zero if $m+k$ is odd.

Classical Ising System

Ginibre Theorem 4 Let X be \mathbb{R} or a compact subset of the form $[-A, A]$ and let $d \mu$ be a probability measure which is invariant under $x \mapsto-x$ and so that (only non-trivial in case X is not compact) $\int x^{2 n} d \mu(x)<\infty$ for all n. Let \mathcal{F} contain the single function, $f(x)=x$. Then $\langle X, \mu, \mathcal{F}\rangle$ is a Ginibre system.

The proof is easy! (G2) says that for all non-negative integers, k and m, one has that

$$
\int_{X \times X}(x+y)^{k}(x-y)^{m} d \mu(x) d \mu(y) \geq 0
$$

Interchanging x and y implies the integral is zero if m is odd and $x \mapsto-x$ symmetry implies the integral is zero if $m+k$ is odd. Thus the only possible non-zero integrals are when m and k are even in which case the integrand is positive!

Classical Ising System

A little thought shows that for Hamiltonians of the form

$$
-H=\sum_{A \subset \Lambda} J(A) \sigma^{A}
$$

Classical Ising System

A little thought shows that for Hamiltonians of the form

$$
-H=\sum_{A \subset \Lambda} J(A) \sigma^{A} \quad \sigma^{A}=\prod_{j \in A} \sigma_{j}
$$

with ANY (!!!) even apriori measure, one has positive expectations and positive correlations of the σ^{A}.

Final Ginibre Thoughts

I'd be remiss if I left the subject Ginibre's wonderful paper without mentioning two other examples he gives of Ginibre systems that are not relevant to Wells although one will appear later.

Final Ginibre Thoughts

I'd be remiss if I left the subject Ginibre's wonderful paper without mentioning two other examples he gives of Ginibre systems that are not relevant to Wells although one will appear later.

The first is to note that he proves that if $d \mu$ is a product of rotation invariant measures on circles, the set of functions $\cos \left(\sum_{j=1}^{n} m_{j} \theta_{j}\right)$ is a Ginibre system.

Final Ginibre Thoughts

I'd be remiss if I left the subject Ginibre's wonderful paper without mentioning two other examples he gives of Ginibre systems that are not relevant to Wells although one will appear later.

The first is to note that he proves that if $d \mu$ is a product of rotation invariant measures on circles, the set of functions $\cos \left(\sum_{j=1}^{n} m_{j} \theta_{j}\right)$ is a Ginibre system. This and some extensions are essentially half the correlation inequalities for plane rotors.

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to
Three Authors
Proof of The
Inequality

Final Ginibre Thoughts

The second is related to an 1882 paper of Chebyshev (which I don't think Ginibre knew about when he wrote this paper) which contained what is probably the earliest correlation inequality:

Final Ginibre Thoughts

The second is related to an 1882 paper of Chebyshev (which I don't think Ginibre knew about when he wrote this paper) which contained what is probably the earliest correlation inequality: Chebyshev proved that if f, g are two monotone functions on $[0,1]$, then

Final Ginibre Thoughts

The second is related to an 1882 paper of Chebyshev (which I don't think Ginibre knew about when he wrote this paper) which contained what is probably the earliest correlation inequality: Chebyshev proved that if f, g are two monotone functions on $[0,1]$, then

$$
\int_{0}^{1} f(x) g(x) d x \geq \int_{0}^{1} f(x) d x \int_{0}^{1} g(x) d x
$$

Final Ginibre Thoughts

The second is related to an 1882 paper of Chebyshev (which I don't think Ginibre knew about when he wrote this paper) which contained what is probably the earliest correlation inequality: Chebyshev proved that if f, g are two monotone functions on $[0,1]$, then

$$
\int_{0}^{1} f(x) g(x) d x \geq \int_{0}^{1} f(x) d x \int_{0}^{1} g(x) d x
$$

Ginibre proved that for any (not necessarily even) positive probability measure on \mathbb{R}, the set \mathcal{F} of all positive monotone functions is a Ginibre family.

Final Ginibre Thoughts

The second is related to an 1882 paper of Chebyshev (which I don't think Ginibre knew about when he wrote this paper) which contained what is probably the earliest correlation inequality: Chebyshev proved that if f, g are two monotone functions on $[0,1]$, then

$$
\int_{0}^{1} f(x) g(x) d x \geq \int_{0}^{1} f(x) d x \int_{0}^{1} g(x) d x
$$

Ginibre proved that for any (not necessarily even) positive probability measure on \mathbb{R}, the set \mathcal{F} of all positive monotone functions is a Ginibre family. The proof is again very easy.

Final Ginibre Thoughts

The second is related to an 1882 paper of Chebyshev (which I don't think Ginibre knew about when he wrote this paper) which contained what is probably the earliest correlation inequality: Chebyshev proved that if f, g are two monotone functions on $[0,1]$, then

$$
\int_{0}^{1} f(x) g(x) d x \geq \int_{0}^{1} f(x) d x \int_{0}^{1} g(x) d x
$$

Ginibre proved that for any (not necessarily even) positive probability measure on \mathbb{R}, the set \mathcal{F} of all positive monotone functions is a Ginibre family. The proof is again very easy. This is a sort of poor man's FKG inequalities.

Basic Definition

There is a simple extension of Ginibre's method in Wells' thesis that allows comparison of measures.

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Basic Definition

There is a simple extension of Ginibre's method in Wells' thesis that allows comparison of measures. Given two probability measures, μ and ν on a locally compact space, X, we say that μ Wells dominates ν, written $\mu \triangleright \nu$ or $\nu \triangleleft \mu$ with respect to a class of continuous functions \mathcal{F} (with all moments of all $f \in \mathcal{F}$ finite with respect to both measures; not needed if X is compact)

Basic Definition

There is a simple extension of Ginibre's method in Wells' thesis that allows comparison of measures. Given two probability measures, μ and ν on a locally compact space, X, we say that μ Wells dominates ν, written $\mu \triangleright \nu$ or $\nu \triangleleft \mu$ with respect to a class of continuous functions \mathcal{F} (with all moments of all $f \in \mathcal{F}$ finite with respect to both measures; not needed if X is compact) if for all n and all $f_{1}, f_{2}, \ldots, f_{n}$ and all 2^{n} choices of \pm, we have that

$$
\iint\left(f_{1}(x) \pm f_{1}(y)\right) \ldots\left(f_{n}(x) \pm f_{n}(y)\right) d \mu(x) d \nu(y) \geq 0
$$

Basic Definition

We will be most interested in case $X=\mathbb{R}, \mu$ and ν are both even measures with all moments finite and \mathcal{F} has the single function $f(x)=x$ in which case the condition takes the form

Basic Definition

We will be most interested in case $X=\mathbb{R}, \mu$ and ν are both even measures with all moments finite and \mathcal{F} has the single function $f(x)=x$ in which case the condition takes the form

$$
\int_{\mathbb{R}} \int_{\mathbb{R}}(x+y)^{n}(x-y)^{m} d \mu(x) d \nu(y) \geq 0
$$

for all non-negative integers, n and m in which case we use the symbol \triangleleft without being explicit about \mathcal{F}.

Basic Definition

We will be most interested in case $X=\mathbb{R}, \mu$ and ν are both even measures with all moments finite and \mathcal{F} has the single function $f(x)=x$ in which case the condition takes the form

$$
\int_{\mathbb{R}} \int_{\mathbb{R}}(x+y)^{n}(x-y)^{m} d \mu(x) d \nu(y) \geq 0
$$

for all non-negative integers, n and m in which case we use the symbol \triangleleft without being explicit about \mathcal{F}. Since the measures are even, one need only check this when $n+m$ is even. It is trivial if both are even, so we only need worry about the case that both are odd.

Basic Definition

We will be most interested in case $X=\mathbb{R}, \mu$ and ν are both even measures with all moments finite and \mathcal{F} has the single function $f(x)=x$ in which case the condition takes the form

$$
\int_{\mathbb{R}} \int_{\mathbb{R}}(x+y)^{n}(x-y)^{m} d \mu(x) d \nu(y) \geq 0
$$

for all non-negative integers, n and m in which case we use the symbol \triangleleft without being explicit about \mathcal{F}. Since the measures are even, one need only check this when $n+m$ is even. It is trivial if both are even, so we only need worry about the case that both are odd. Since the measures are different, we don't have the exchange symmetry that makes the integral vanish if both are odd but symmetry under $y \mapsto-y$ implies invariance under interchange of m and n, so we need only check for $m \geq n$. We'll see examples later.

Extending Ginibre's machine

Extending the Ginibre machine is effortless. It is easy to prove that

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Extending Ginibre's machine

Extending the Ginibre machine is effortless. It is easy to prove that
Theorem (a) If $\mu \triangleleft \nu$ for a set of functions \mathcal{F}, the same is true for the Ginibre cone $\mathcal{C}(\mathcal{F})$.

Extending Ginibre's machine

Extending the Ginibre machine is effortless. It is easy to prove that
Theorem (a) If $\mu \triangleleft \nu$ for a set of functions \mathcal{F}, the same is true for the Ginibre cone $\mathcal{C}(\mathcal{F})$.
(b) If for $j=1, \ldots, n, \mu_{j} \triangleleft \nu_{j}$ for probability measures on spaces X_{j} with respect to sets of functions \mathcal{F}_{j} on X_{j}, then for the measures on $\times_{j=1}^{n} X_{j}$ and the set of functions $\bigcup_{j=1}^{n} \mathcal{F}_{j}$, one has that $\otimes_{j=1}^{n} \mu_{j} \triangleleft \otimes_{j=1}^{n} \nu_{j}$.

Extending Ginibre's machine

Extending the Ginibre machine is effortless. It is easy to prove that
Theorem (a) If $\mu \triangleleft \nu$ for a set of functions \mathcal{F}, the same is true for the Ginibre cone $\mathcal{C}(\mathcal{F})$.
(b) If for $j=1, \ldots, n, \mu_{j} \triangleleft \nu_{j}$ for probability measures on spaces X_{j} with respect to sets of functions \mathcal{F}_{j} on X_{j}, then for the measures on $\times_{j=1}^{n} X_{j}$ and the set of functions $\bigcup_{j=1}^{n} \mathcal{F}_{j}$, one has that $\otimes_{j=1}^{n} \mu_{j} \triangleleft \otimes_{j=1}^{n} \nu_{j}$.
(c) If $\mu \triangleleft \nu$ for probability measures on a space X with respect to a set of functions \mathcal{F} on X, if $-H \in \mathcal{F}$ and if μ_{H}, ν_{H} are Gibbs measures, then $\mu_{H} \triangleleft \nu_{H}$ for \mathcal{F}.

Extending Ginibre's machine

Extending the Ginibre machine is effortless. It is easy to prove that
Theorem (a) If $\mu \triangleleft \nu$ for a set of functions \mathcal{F}, the same is true for the Ginibre cone $\mathcal{C}(\mathcal{F})$.
(b) If for $j=1, \ldots, n, \mu_{j} \triangleleft \nu_{j}$ for probability measures on spaces X_{j} with respect to sets of functions \mathcal{F}_{j} on X_{j}, then for the measures on $\times_{j=1}^{n} X_{j}$ and the set of functions $\bigcup_{j=1}^{n} \mathcal{F}_{j}$, one has that $\otimes_{j=1}^{n} \mu_{j} \triangleleft \otimes_{j=1}^{n} \nu_{j}$.
(c) If $\mu \triangleleft \nu$ for probability measures on a space X with respect to a set of functions \mathcal{F} on X, if $-H \in \mathcal{F}$ and if μ_{H}, ν_{H} are Gibbs measures, then $\mu_{H} \triangleleft \nu_{H}$ for \mathcal{F}. (d) If $\mu \triangleleft \nu$ with respect to a set of functions \mathcal{F}, then for every $f \in \mathcal{F}$, we have that

$$
\int f(x) d \mu(x) \leq \int f(x) d \nu(x)
$$

Wells Domination implies Ising Domination

This immediately implies that

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Wells Domination implies Ising Domination

This immediately implies that
Corollary If for $j=1, \ldots, n, \mu_{j} \triangleleft \nu_{j}$ for probability measures on spaces X_{j} with respect to sets of functions \mathcal{F}_{j} on X_{j},

Wells Domination implies Ising Domination

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

This immediately implies that
Corollary If for $j=1, \ldots, n, \mu_{j} \triangleleft \nu_{j}$ for probability measures on spaces X_{j} with respect to sets of functions \mathcal{F}_{j} on X_{j}, then if $-H \in \mathcal{C}\left(\cup_{j=1}^{n} \mathcal{F}_{j}\right)$ and if μ_{H}, ν_{H} are formed from the underlying product measures $\otimes_{j=1}^{n} \mu_{j}$ and $\otimes_{j=1}^{n} \nu_{j}$, then for all $F \in \mathcal{C}\left(\cup_{j=1}^{n} \mathcal{F}_{j}\right)$,

Wells Domination implies Ising Domination

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to

Three Authors

Proof of The Inequality

This immediately implies that
Corollary If for $j=1, \ldots, n, \mu_{j} \triangleleft \nu_{j}$ for probability measures on spaces X_{j} with respect to sets of functions \mathcal{F}_{j} on X_{j}, then if $-H \in \mathcal{C}\left(\cup_{j=1}^{n} \mathcal{F}_{j}\right)$ and if μ_{H}, ν_{H} are formed from the underlying product measures $\otimes_{j=1}^{n} \mu_{j}$ and $\otimes_{j=1}^{n} \nu_{j}$, then for all $F \in \mathcal{C}\left(\cup_{j=1}^{n} \mathcal{F}_{j}\right)$, one has that $\int f(x) d \mu_{H}(x) \leq \int f(x) d \nu_{H}(x)$.

Wells Domination implies Ising Domination

This immediately implies that
Corollary If for $j=1, \ldots, n, \mu_{j} \triangleleft \nu_{j}$ for probability measures on spaces X_{j} with respect to sets of functions \mathcal{F}_{j} on X_{j}, then if $-H \in \mathcal{C}\left(\cup_{j=1}^{n} \mathcal{F}_{j}\right)$ and if μ_{H}, ν_{H} are formed from the underlying product measures $\otimes_{j=1}^{n} \mu_{j}$ and $\otimes_{j=1}^{n} \nu_{j}$, then for all $F \in \mathcal{C}\left(\cup_{j=1}^{n} \mathcal{F}_{j}\right)$, one has that $\int f(x) d \mu_{H}(x) \leq \int f(x) d \nu_{H}(x)$. In particular, if each $X_{j}=\mathbb{R}$, (so implicitly F_{j} is the single function σ_{j}) and if H has the general Ising form, then for all $A \subset 2^{\{1, \ldots, n\}}$ one has that

$$
\left\langle\sigma^{A}\right\rangle_{\mu_{H}} \leq\left\langle\sigma^{A}\right\rangle_{\nu_{H}}
$$

Almost a Partial Order

Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite.

Almost a Partial Order

Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric.

Almost a Partial Order

Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \triangleleft \nu$ and $\nu \triangleleft \mu$ if and only if μ and ν have the same moments.

Almost a Partial Order

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to

Three Authors

Proof of The
Inequality

Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \triangleleft \nu$ and $\nu \triangleleft \mu$ if and only if μ and ν have the same moments. Thus it is antisymmetric among the measures of compact support or among measures obeying $\int e^{A x^{2}} d \mu(x)<\infty$ for some $A>0$

Almost a Partial Order

Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \triangleleft \nu$ and $\nu \triangleleft \mu$ if and only if μ and ν have the same moments. Thus it is antisymmetric among the measures of compact support or among measures obeying $\int e^{A x^{2}} d \mu(x)<\infty$ for some $A>0$ but not among all measures with finite moments because of the possibilities of measures non-unique for the moment problem.

Almost a Partial Order

Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \triangleleft \nu$ and $\nu \triangleleft \mu$ if and only if μ and ν have the same moments. Thus it is antisymmetric among the measures of compact support or among measures obeying $\int e^{A x^{2}} d \mu(x)<\infty$ for some $A>0$ but not among all measures with finite moments because of the possibilities of measures non-unique for the moment problem. But I do not know the following

Almost a Partial Order

Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \triangleleft \nu$ and $\nu \triangleleft \mu$ if and only if μ and ν have the same moments. Thus it is antisymmetric among the measures of compact support or among measures obeying $\int e^{A x^{2}} d \mu(x)<\infty$ for some $A>0$ but not among all measures with finite moments because of the possibilities of measures non-unique for the moment problem. But I do not know the following
Question 1 Is Wells relation transitive among all even measures on \mathbb{R} ? How about among all measures on a general topological space if \mathcal{F} is rich enough?

Almost a Partial Order

Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \triangleleft \nu$ and $\nu \triangleleft \mu$ if and only if μ and ν have the same moments. Thus it is antisymmetric among the measures of compact support or among measures obeying $\int e^{A x^{2}} d \mu(x)<\infty$ for some $A>0$ but not among all measures with finite moments because of the possibilities of measures non-unique for the moment problem. But I do not know the following
Question 1 Is Wells relation transitive among all even measures on \mathbb{R} ? How about among all measures on a general topological space if \mathcal{F} is rich enough?
Since Ising domination is trivially transitive,

Almost a Partial Order

Of course, \triangleleft is a binary relation and it is tempting to think of it as a partial order on measures on \mathbb{R} with all moments finite. Indeed, it is certainly reflexive. It is almost antisymmetric. It is easy to see that $\mu \triangleleft \nu$ and $\nu \triangleleft \mu$ if and only if μ and ν have the same moments. Thus it is antisymmetric among the measures of compact support or among measures obeying $\int e^{A x^{2}} d \mu(x)<\infty$ for some $A>0$ but not among all measures with finite moments because of the possibilities of measures non-unique for the moment problem. But I do not know the following
Question 1 Is Wells relation transitive among all even measures on \mathbb{R} ? How about among all measures on a general topological space if \mathcal{F} is rich enough?
Since Ising domination is trivially transitive, for applications, this lack isn't so important.

Statement of the Theorem

We say an even probability measure is non-trivial if and only if it is not a unit mass at 0 .

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Statement of the Theorem

We say an even probability measure is non-trivial if and only if it is not a unit mass at 0 . The following theorem says that any non-trivial measure of compact support is Ising dominated by a scaling of any other such measure and gives quantitative optimal bounds when one of the measures is the Bernoulli measure.

Statement of the Theorem

We say an even probability measure is non-trivial if and only if it is not a unit mass at 0 . The following theorem says that any non-trivial measure of compact support is Ising dominated by a scaling of any other such measure and gives quantitative optimal bounds when one of the measures is the Bernoulli measure.

Big Theorem Let $d \mu$ be an even probability measure on \mathbb{R} with compact support that is not a point mass at 0 .

Statement of the Theorem

We say an even probability measure is non-trivial if and only if it is not a unit mass at 0 . The following theorem says that any non-trivial measure of compact support is Ising dominated by a scaling of any other such measure and gives quantitative optimal bounds when one of the measures is the Bernoulli measure.
Big Theorem Let $d \mu$ be an even probability measure on \mathbb{R} with compact support that is not a point mass at 0 . Then there are two strictly positive numbers $T_{-}(\mu)$ and $T_{+}(\mu)$ so that $\mu \triangleleft b_{S}$ if and only if $S \geq T_{+}$and $b_{S} \triangleleft \mu$ if and only if $S \leq T_{-}$. Moreover

Statement of the Theorem

We say an even probability measure is non-trivial if and only if it is not a unit mass at 0 . The following theorem says that any non-trivial measure of compact support is Ising dominated by a scaling of any other such measure and gives quantitative optimal bounds when one of the measures is the Bernoulli measure.
Big Theorem Let $d \mu$ be an even probability measure on \mathbb{R} with compact support that is not a point mass at 0 . Then there are two strictly positive numbers $T_{-}(\mu)$ and $T_{+}(\mu)$ so that $\mu \triangleleft b_{S}$ if and only if $S \geq T_{+}$and $b_{S} \triangleleft \mu$ if and only if $S \leq T_{-}$. Moreover

$$
T_{+}=\sup \{s \mid s \in \operatorname{supp}(\mu)\}
$$

Statement of the Theorem

We say an even probability measure is non-trivial if and only if it is not a unit mass at 0 . The following theorem says that any non-trivial measure of compact support is Ising dominated by a scaling of any other such measure and gives quantitative optimal bounds when one of the measures is the Bernoulli measure.
Big Theorem Let $d \mu$ be an even probability measure on \mathbb{R} with compact support that is not a point mass at 0 . Then there are two strictly positive numbers $T_{-}(\mu)$ and $T_{+}(\mu)$ so that $\mu \triangleleft b_{S}$ if and only if $S \geq T_{+}$and $b_{S} \triangleleft \mu$ if and only if $S \leq T_{-}$. Moreover

$$
T_{+}=\sup \{s \mid s \in \operatorname{supp}(\mu)\}
$$

and

$$
S \leq T_{-} \Longleftrightarrow \forall_{n \in \mathbb{N}} \int_{\mathbb{R}}\left(x^{2}-S^{2}\right)^{n} d \mu(x) \geq 0
$$

What is T_{-}

The proof is not hard but given time constraints, I refer you to the preprint I'll discuss below or to my book when it appears

What is T_{-}

The proof is not hard but given time constraints, I refer you to the preprint I'll discuss below or to my book when it appears (or Wells thesis on Proquest).

What is T_{-}

The proof is not hard but given time constraints, I refer you to the preprint I'll discuss below or to my book when it appears (or Wells thesis on Proquest).

One consequence of the theorem is

$$
T_{-} \leq\left(\int_{\mathbb{R}} x^{2} d \mu(x)\right)^{1 / 2}
$$

It is an interesting question when one has equality.

What is T_{-}

The proof is not hard but given time constraints, I refer you to the preprint I'll discuss below or to my book when it appears (or Wells thesis on Proquest).

One consequence of the theorem is

$$
T_{-} \leq\left(\int_{\mathbb{R}} x^{2} d \mu(x)\right)^{1 / 2}
$$

It is an interesting question when one has equality. Before leaving this theorem, I should mention I happened to look at a 1981 paper of Bricmont, Lebowitz and Pfister that includes in an appendix a proof (with attribution to Wells) of Wells result about the existence of $T_{-}>0$.

Three Spin Values

For $0 \leq \lambda \leq 1$, consider the probability measure supported by the three points $\{0, \pm 1\}$ given by

$$
d \mu_{\lambda}=\frac{\lambda}{2}\left(\delta_{1}+\delta_{-1}\right)+(1-\lambda) \delta_{0}
$$

Three Spin Values

For $0 \leq \lambda \leq 1$, consider the probability measure supported by the three points $\{0, \pm 1\}$ given by

$$
d \mu_{\lambda}=\frac{\lambda}{2}\left(\delta_{1}+\delta_{-1}\right)+(1-\lambda) \delta_{0}
$$

For $\lambda=2 / 3$, which is equal weights this called (normalized) spin 1. For general λ

Three Spin Values

For $0 \leq \lambda \leq 1$, consider the probability measure supported by the three points $\{0, \pm 1\}$ given by

$$
d \mu_{\lambda}=\frac{\lambda}{2}\left(\delta_{1}+\delta_{-1}\right)+(1-\lambda) \delta_{0}
$$

For $\lambda=2 / 3$, which is equal weights this called (normalized) spin 1. For general λ

$$
\left\langle\left(x^{2}-T^{2}\right)^{2 m+1}\right\rangle_{\lambda}=\left(1-T^{2}\right)^{2 m+1} \lambda-(1-\lambda) T^{2(2 m+1)}
$$

Three Spin Values

For $0 \leq \lambda \leq 1$, consider the probability measure supported by the three points $\{0, \pm 1\}$ given by

$$
d \mu_{\lambda}=\frac{\lambda}{2}\left(\delta_{1}+\delta_{-1}\right)+(1-\lambda) \delta_{0}
$$

For $\lambda=2 / 3$, which is equal weights this called (normalized) spin 1. For general λ

$$
\begin{gathered}
\left\langle\left(x^{2}-T^{2}\right)^{2 m+1}\right\rangle_{\lambda}=\left(1-T^{2}\right)^{2 m+1} \lambda-(1-\lambda) T^{2(2 m+1)} \\
\geq 0 \Longleftrightarrow\left[\frac{1-T^{2}}{T^{2}}\right]^{2 m+1} \geq \frac{1-\lambda}{\lambda}
\end{gathered}
$$

Three Spin Values

For $0 \leq \lambda \leq 1$, consider the probability measure supported by the three points $\{0, \pm 1\}$ given by

$$
d \mu_{\lambda}=\frac{\lambda}{2}\left(\delta_{1}+\delta_{-1}\right)+(1-\lambda) \delta_{0}
$$

For $\lambda=2 / 3$, which is equal weights this called (normalized) spin 1. For general λ

$$
\begin{aligned}
&\left\langle\left(x^{2}-T^{2}\right)^{2 m+1}\right\rangle_{\lambda}=\left(1-T^{2}\right)^{2 m+1} \lambda-(1-\lambda) T^{2(2 m+1)} \\
& \geq 0 \Longleftrightarrow\left[\frac{1-T^{2}}{T^{2}}\right]^{2 m+1} \geq \frac{1-\lambda}{\lambda} \\
& \Longleftrightarrow \frac{1-T^{2}}{T^{2}} \geq\left(\frac{1-\lambda}{\lambda}\right)^{1 / 2 m+1}
\end{aligned}
$$

Three Spin Values

If $\lambda \leq \frac{1}{2}$, then $(1-\lambda) / \lambda \geq 1$ and the maximum on the right side of the last formula occurs for $m=0$

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Three Spin Values

If $\lambda \leq \frac{1}{2}$, then $(1-\lambda) / \lambda \geq 1$ and the maximum on the right side of the last formula occurs for $m=0$ while, if $\lambda \geq \frac{1}{2}$, then $(1-\lambda) / \lambda \leq 1$ and we get the maximum as $m \rightarrow \infty$.

Three Spin Values

If $\lambda \leq \frac{1}{2}$, then $(1-\lambda) / \lambda \geq 1$ and the maximum on the right side of the last formula occurs for $m=0$ while, if $\lambda \geq \frac{1}{2}$, then $(1-\lambda) / \lambda \leq 1$ and we get the maximum as $m \rightarrow \infty$. Thus, we find that

$$
T_{-}(\lambda)= \begin{cases}\sqrt{\lambda}, & \text { if } \lambda \leq \frac{1}{2} \\ \sqrt{\frac{1}{2}}, & \text { if } \lambda \geq \frac{1}{2}\end{cases}
$$

Three Spin Values

If $\lambda \leq \frac{1}{2}$, then $(1-\lambda) / \lambda \geq 1$ and the maximum on the right side of the last formula occurs for $m=0$ while, if $\lambda \geq \frac{1}{2}$, then $(1-\lambda) / \lambda \leq 1$ and we get the maximum as $m \rightarrow \infty$. Thus, we find that

$$
T_{-}(\lambda)= \begin{cases}\sqrt{\lambda}, & \text { if } \lambda \leq \frac{1}{2} \\ \sqrt{\frac{1}{2}}, & \text { if } \lambda \geq \frac{1}{2}\end{cases}
$$

So we see there are cases where $T_{-}=\left\langle x^{2}\right\rangle^{1 / 2}=\sqrt{\lambda}$ and other cases where the inequality is strict.

Three Spin Values

If $\lambda \leq \frac{1}{2}$, then $(1-\lambda) / \lambda \geq 1$ and the maximum on the right side of the last formula occurs for $m=0$ while, if $\lambda \geq \frac{1}{2}$, then $(1-\lambda) / \lambda \leq 1$ and we get the maximum as $m \rightarrow \infty$. Thus, we find that

$$
T_{-}(\lambda)= \begin{cases}\sqrt{\lambda}, & \text { if } \lambda \leq \frac{1}{2} \\ \sqrt{\frac{1}{2}}, & \text { if } \lambda \geq \frac{1}{2}\end{cases}
$$

So we see there are cases where $T_{-}=\left\langle x^{2}\right\rangle^{1 / 2}=\sqrt{\lambda}$ and other cases where the inequality is strict. Note also that at $\lambda=\frac{1}{2}$, the integral $\left\langle\left(x^{2}-T_{-}^{2}\right)^{2 m+1}\right\rangle_{\lambda}$ vanishes for all n, a sign that the distribution of $x^{2}-T_{-}^{2}$ is symmetric about 0 .

Spin S

For each value of $S=\frac{1}{2}, 1, \frac{3}{2}, \ldots$, consider the measure $d \tilde{\mu}_{S}$ which takes $2 S+1$ values equally spaced between -1 and 1 , each with weight $1 /(2 S+1)$.

Spin S

For each value of $S=\frac{1}{2}, 1, \frac{3}{2}, \ldots$, consider the measure $d \tilde{\mu}_{S}$ which takes $2 S+1$ values equally spaced between -1 and 1 , each with weight $1 /(2 S+1)$. This is a scaled version of what is called spin S Ising.

Spin S

For each value of $S=\frac{1}{2}, 1, \frac{3}{2}, \ldots$, consider the measure $d \tilde{\mu}_{S}$ which takes $2 S+1$ values equally spaced between -1 and 1 , each with weight $1 /(2 S+1)$. This is a scaled version of what is called spin S Ising. We have just seen that for $S=1\left(\lambda=\frac{2}{3}\right.$ in the above example $)$, one has that $T_{-}=\sqrt{\frac{1}{2}}<\sqrt{\frac{2}{3}}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S=1}(x)\right)^{1 / 2}$

Spin S

For each value of $S=\frac{1}{2}, 1, \frac{3}{2}, \ldots$, consider the measure $d \tilde{\mu}_{S}$ which takes $2 S+1$ values equally spaced between -1 and 1 , each with weight $1 /(2 S+1)$. This is a scaled version of what is called spin S Ising. We have just seen that for $S=1\left(\lambda=\frac{2}{3}\right.$ in the above example $)$, one has that $T_{-}=\sqrt{\frac{1}{2}}<\sqrt{\frac{2}{3}}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S=1}(x)\right)^{1 / 2}$
So $T_{-} \neq\left(\left\langle x^{2}\right\rangle_{\mu}\right)^{1 / 2}$ for spin 1

Spin S

For each value of $S=\frac{1}{2}, 1, \frac{3}{2}, \ldots$, consider the measure $d \tilde{\mu}_{S}$ which takes $2 S+1$ values equally spaced between -1 and 1 , each with weight $1 /(2 S+1)$. This is a scaled version of what is called spin S Ising. We have just seen that for $S=1\left(\lambda=\frac{2}{3}\right.$ in the above example $)$, one has that $T_{-}=\sqrt{\frac{1}{2}}<\sqrt{\frac{2}{3}}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S=1}(x)\right)^{1 / 2}$
So $T_{-} \neq\left(\left\langle x^{2}\right\rangle_{\mu}\right)^{1 / 2}$ for spin 1 but I quickly determined that one should expect equality in all other cases.

Spin S

For each value of $S=\frac{1}{2}, 1, \frac{3}{2}, \ldots$, consider the measure $d \tilde{\mu}_{S}$ which takes $2 S+1$ values equally spaced between -1 and 1 , each with weight $1 /(2 S+1)$. This is a scaled version of what is called spin S Ising. We have just seen that for $S=1\left(\lambda=\frac{2}{3}\right.$ in the above example $)$, one has that $T_{-}=\sqrt{\frac{1}{2}}<\sqrt{\frac{2}{3}}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S=1}(x)\right)^{1 / 2}$
So $T_{-} \neq\left(\left\langle x^{2}\right\rangle_{\mu}\right)^{1 / 2}$ for spin 1 but I quickly determined that one should expect equality in all other cases. I did spin $\frac{3}{2}$ by hand and used Mathematica to compute $\left\langle\left(x^{2}-a_{S}\right)^{2 n+1}\right\rangle_{S}$ where $a_{S}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S}(x)\right)$ for $S=2, \frac{5}{2}, 3$ and $m=1,2, \ldots, 10$ and for $S=20$ and $m=1, \ldots, 5$

Spin S

For each value of $S=\frac{1}{2}, 1, \frac{3}{2}, \ldots$, consider the measure $d \tilde{\mu}_{S}$ which takes $2 S+1$ values equally spaced between -1 and 1 , each with weight $1 /(2 S+1)$. This is a scaled version of what is called spin S Ising. We have just seen that for $S=1\left(\lambda=\frac{2}{3}\right.$ in the above example $)$, one has that $T_{-}=\sqrt{\frac{1}{2}}<\sqrt{\frac{2}{3}}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S=1}(x)\right)^{1 / 2}$
So $T_{-} \neq\left(\left\langle x^{2}\right\rangle_{\mu}\right)^{1 / 2}$ for spin 1 but I quickly determined that one should expect equality in all other cases. I did spin $\frac{3}{2}$ by hand and used Mathematica to compute $\left\langle\left(x^{2}-a_{S}\right)^{2 n+1}\right\rangle_{S}$ where $a_{S}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S}(x)\right)$ for $S=2, \frac{5}{2}, 3$ and $m=1,2, \ldots, 10$ and for $S=20$ and $m=1, \ldots, 5$ and found them all positive which leads to a natural conjecture

Spin S

Conjecture For $S=\frac{3}{2}, 2, \frac{5}{2}, 3, \ldots$ one has that

$$
\left\langle\left(x^{2}-a_{S}\right)^{2 n+1}\right\rangle_{S} \geq 0
$$

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Spin S

Conjecture For $S=\frac{3}{2}, 2, \frac{5}{2}, 3, \ldots$ one has that

$$
\left\langle\left(x^{2}-a_{S}\right)^{2 n+1}\right\rangle_{S} \geq 0
$$

Shortly l'll say a lot more about this

Spin S

Conjecture For $S=\frac{3}{2}, 2, \frac{5}{2}, 3, \ldots$ one has that

$$
\left\langle\left(x^{2}-a_{S}\right)^{2 n+1}\right\rangle_{S} \geq 0
$$

Shortly I'll say a lot more about this (including that it is a now a Theorem).

Totally Anisotropic D-vector model

I turn next to what for a time I thought was my only new result on this subject.

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Totally Anisotropic D-vector model

I turn next to what for a time I thought was my only new result on this subject. It involves the interesting measure

$$
d \mu_{D}(x)=\left[\frac{\Gamma\left(\frac{D}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{D-1}{2}\right)}\right]\left(1-x^{2}\right)^{\frac{1}{2}(D-3)} \chi_{[-1,1]}(x) d x
$$

Totally Anisotropic D-vector model

I turn next to what for a time I thought was my only new result on this subject. It involves the interesting measure

$$
d \mu_{D}(x)=\left[\frac{\Gamma\left(\frac{D}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{D-1}{2}\right)}\right]\left(1-x^{2}\right)^{\frac{1}{2}(D-3)} \chi_{[-1,1]}(x) d x
$$

This is the distribution of x_{1} is one looks at a D-component unit vector distributed with the rotation invariant measure on \mathbb{S}^{D-1}.

Totally Anisotropic D-vector model

I turn next to what for a time I thought was my only new result on this subject. It involves the interesting measure

$$
d \mu_{D}(x)=\left[\frac{\Gamma\left(\frac{D}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{D-1}{2}\right)}\right]\left(1-x^{2}\right)^{\frac{1}{2}(D-3)} \chi_{[-1,1]}(x) d x
$$

This is the distribution of x_{1} is one looks at a D-component unit vector distributed with the rotation invariant measure on \mathbb{S}^{D-1}. Since with respect to this measure all x_{j} have the same distribution and $\sum_{j=1}^{D} x_{j}^{2}=1$, we clearly have that

Totally Anisotropic D-vector model

I turn next to what for a time I thought was my only new result on this subject. It involves the interesting measure

$$
d \mu_{D}(x)=\left[\frac{\Gamma\left(\frac{D}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{D-1}{2}\right)}\right]\left(1-x^{2}\right)^{\frac{1}{2}(D-3)} \chi_{[-1,1]}(x) d x
$$

This is the distribution of x_{1} is one looks at a D-component unit vector distributed with the rotation invariant measure on \mathbb{S}^{D-1}. Since with respect to this measure all x_{j} have the same distribution and $\sum_{j=1}^{D} x_{j}^{2}=1$, we clearly have that

$$
\left\langle x^{2}\right\rangle_{D}=1 / D
$$

Totally Anisotropic D-vector model

> After some experimentation with Mathematica, I have proven that

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Totally Anisotropic D-vector model

After some experimentation with Mathematica, I have proven that
Theorem $T_{-}\left(\mu_{D}\right)$ is given by the second moment,

Totally Anisotropic D-vector model

After some experimentation with Mathematica, I have proven that
Theorem $T_{-}\left(\mu_{D}\right)$ is given by the second moment, i.e. $T_{-}\left(\mu_{D}\right)^{2}=1 / D$

Totally Anisotropic D-vector model

After some experimentation with Mathematica, I have proven that
Theorem $T_{-}\left(\mu_{D}\right)$ is given by the second moment, i.e.
$T_{-}\left(\mu_{D}\right)^{2}=1 / D$
The result for $D=2$ is especially easy because $\left\langle\left(x^{2}-1 / 2\right)^{2 m+1}\right\rangle_{D=2}=0$

Totally Anisotropic D-vector model

After some experimentation with Mathematica, I have proven that

Introduction

Theorem $T_{-}\left(\mu_{D}\right)$ is given by the second moment, i.e.
$T_{-}\left(\mu_{D}\right)^{2}=1 / D$
The result for $D=2$ is especially easy because $\left\langle\left(x^{2}-1 / 2\right)^{2 m+1}\right\rangle_{D=2}=0$ since it is equivalent to $\left\langle\left(2 x^{2}-1\right)^{2 m+1}\right\rangle_{D=2}=\left\langle\left(x_{1}^{2}-x_{2}^{2}\right)^{2 m+1}\right\rangle_{\text {rotor }}=0$ by $x_{1} \leftrightarrow x_{2}$.

Totally Anisotropic D-vector model

After some experimentation with Mathematica, I have proven that

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The
Inequality

Theorem $T_{-}\left(\mu_{D}\right)$ is given by the second moment, i.e.
$T_{-}\left(\mu_{D}\right)^{2}=1 / D$
The result for $D=2$ is especially easy because $\left\langle\left(x^{2}-1 / 2\right)^{2 m+1}\right\rangle_{D=2}=0$ since it is equivalent to $\left\langle\left(2 x^{2}-1\right)^{2 m+1}\right\rangle_{D=2}=\left\langle\left(x_{1}^{2}-x_{2}^{2}\right)^{2 m+1}\right\rangle_{\text {rotor }}=0$ by $x_{1} \leftrightarrow x_{2}$. I note that this result for $D=2$ is precisely the result that Aizenman and I say is in Wells mystery preprint. I now know that he did not consider $D \geq 3$.

Improving an Old Result of Griffiths

As explained earlier, because Wells domination implies Ising domination, one has that for pair interactions

$$
T_{c}(S) \geq T_{-}(S)^{2} T_{c}\left(\frac{1}{2}\right)
$$

Improving an Old Result of Griffiths

As explained earlier, because Wells domination implies Ising domination, one has that for pair interactions

$$
T_{c}(S) \geq T_{-}(S)^{2} T_{c}\left(\frac{1}{2}\right)
$$

As it turns out there is a result of this genre in the literature.

Improving an Old Result of Griffiths

As explained earlier, because Wells domination implies Ising domination, one has that for pair interactions

$$
T_{c}(S) \geq T_{-}(S)^{2} T_{c}\left(\frac{1}{2}\right)
$$

As it turns out there is a result of this genre in the literature. In 1969 Griffiths wrote a famous paper on obtaining spin S Ising spins by ferromagnetically coupling $2 S$ spin $\frac{1}{2}$ spins together which lead to GKS and Lee Yang for spin S Ising systems.

Improving an Old Result of Griffiths

As explained earlier, because Wells domination implies Ising domination, one has that for pair interactions

$$
T_{c}(S) \geq T_{-}(S)^{2} T_{c}\left(\frac{1}{2}\right)
$$

As it turns out there is a result of this genre in the literature. In 1969 Griffiths wrote a famous paper on obtaining spin S Ising spins by ferromagnetically coupling $2 S$ spin $\frac{1}{2}$ spins together which lead to GKS and Lee Yang for spin S Ising systems. This is usually presented in terms of an elegant coupling discussed in the first part of the paper.

Improving an Old Result of Griffiths

As explained earlier, because Wells domination implies Ising domination, one has that for pair interactions

$$
T_{c}(S) \geq T_{-}(S)^{2} T_{c}\left(\frac{1}{2}\right)
$$

As it turns out there is a result of this genre in the literature. In 1969 Griffiths wrote a famous paper on obtaining spin S Ising spins by ferromagnetically coupling $2 S$ spin $\frac{1}{2}$ spins together which lead to GKS and Lee Yang for spin S Ising systems. This is usually presented in terms of an elegant coupling discussed in the first part of the paper. Less attention is paid to the second part where he shows instead there is such a coupling in which S of the spin $\frac{1}{2}$ spins are frozen together

Improving an Old Result of Griffiths

As explained earlier, because Wells domination implies Ising domination, one has that for pair interactions

$$
T_{c}(S) \geq T_{-}(S)^{2} T_{c}\left(\frac{1}{2}\right)
$$

As it turns out there is a result of this genre in the literature. In 1969 Griffiths wrote a famous paper on obtaining spin S Ising spins by ferromagnetically coupling $2 S$ spin $\frac{1}{2}$ spins together which lead to GKS and Lee Yang for spin S Ising systems. This is usually presented in terms of an elegant coupling discussed in the first part of the paper. Less attention is paid to the second part where he shows instead there is such a coupling in which S of the spin $\frac{1}{2}$ spins are frozen together (for S half an odd integer, its $S+\frac{1}{2}$)

Improving an Old Result of Griffiths

As explained earlier, because Wells domination implies Ising domination, one has that for pair interactions

$$
T_{c}(S) \geq T_{-}(S)^{2} T_{c}\left(\frac{1}{2}\right)
$$

As it turns out there is a result of this genre in the literature. In 1969 Griffiths wrote a famous paper on obtaining spin S Ising spins by ferromagnetically coupling $2 S$ spin $\frac{1}{2}$ spins together which lead to GKS and Lee Yang for spin S Ising systems. This is usually presented in terms of an elegant coupling discussed in the first part of the paper. Less attention is paid to the second part where he shows instead there is such a coupling in which S of the spin $\frac{1}{2}$ spins are frozen together (for S half an odd integer, its $S+\frac{1}{2}$) which he notes implies

$$
T_{c}(S) \geq \frac{1}{4} T_{c}\left(\frac{1}{2}\right)
$$

Improving an Old Result of Griffiths

The quantity $a_{S}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S}(x)\right)$

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Improving an Old Result of Griffiths

The quantity $a_{S}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S}(x)\right)=\frac{1}{3}+\frac{1}{3 S}$.

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Improving an Old Result of Griffiths

The quantity $a_{S}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S}(x)\right)=\frac{1}{3}+\frac{1}{3 S}$. If one proves that this is T_{-}^{2} for $S \neq 1$, one has for such S that

$$
T_{c}(S) \geq\left(\frac{1}{3}+\frac{1}{3 S}\right) T_{c}\left(\frac{1}{2}\right)
$$

Improving an Old Result of Griffiths

The quantity $a_{S}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S}(x)\right)=\frac{1}{3}+\frac{1}{3 S}$. If one proves that this is T_{-}^{2} for $S \neq 1$, one has for such S that

$$
T_{c}(S) \geq\left(\frac{1}{3}+\frac{1}{3 S}\right) T_{c}\left(\frac{1}{2}\right)
$$

while for $S=1$ where we know that one has that $T_{-}^{2}=\frac{1}{2}$

$$
T_{c}(1) \geq \frac{1}{2} T_{c}\left(\frac{1}{2}\right)
$$

Improving an Old Result of Griffiths

The quantity $a_{S}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S}(x)\right)=\frac{1}{3}+\frac{1}{3 S}$. If one proves that this is T_{-}^{2} for $S \neq 1$, one has for such S that

$$
T_{c}(S) \geq\left(\frac{1}{3}+\frac{1}{3 S}\right) T_{c}\left(\frac{1}{2}\right)
$$

while for $S=1$ where we know that one has that $T_{-}^{2}=\frac{1}{2}$

$$
T_{c}(1) \geq \frac{1}{2} T_{c}\left(\frac{1}{2}\right)
$$

Not only is this an improvement of Griffiths by more than $\frac{4}{3}$

Improving an Old Result of Griffiths

The quantity $a_{S}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S}(x)\right)=\frac{1}{3}+\frac{1}{3 S}$. If one proves that this is T_{-}^{2} for $S \neq 1$, one has for such S that

$$
T_{c}(S) \geq\left(\frac{1}{3}+\frac{1}{3 S}\right) T_{c}\left(\frac{1}{2}\right)
$$

while for $S=1$ where we know that one has that $T_{-}^{2}=\frac{1}{2}$

$$
T_{c}(1) \geq \frac{1}{2} T_{c}\left(\frac{1}{2}\right)
$$

Not only is this an improvement of Griffiths by more than $\frac{4}{3}$ but in the result for $S \neq 1$, the improved constant is optimal!!

Improving an Old Result of Griffiths

The quantity $a_{S}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S}(x)\right)=\frac{1}{3}+\frac{1}{3 S}$. If one proves that this is T_{-}^{2} for $S \neq 1$, one has for such S that

$$
T_{c}(S) \geq\left(\frac{1}{3}+\frac{1}{3 S}\right) T_{c}\left(\frac{1}{2}\right)
$$

while for $S=1$ where we know that one has that $T_{-}^{2}=\frac{1}{2}$

$$
T_{c}(1) \geq \frac{1}{2} T_{c}\left(\frac{1}{2}\right)
$$

Not only is this an improvement of Griffiths by more than $\frac{4}{3}$ but in the result for $S \neq 1$, the improved constant is optimal!! For one has equality if T_{c} is replaced by its mean field values

Improving an Old Result of Griffiths

The quantity $a_{S}=\left(\int_{\mathbb{R}} x^{2} d \tilde{\mu}_{S}(x)\right)=\frac{1}{3}+\frac{1}{3 S}$. If one proves that this is T_{-}^{2} for $S \neq 1$, one has for such S that

$$
T_{c}(S) \geq\left(\frac{1}{3}+\frac{1}{3 S}\right) T_{c}\left(\frac{1}{2}\right)
$$

while for $S=1$ where we know that one has that $T_{-}^{2}=\frac{1}{2}$

$$
T_{c}(1) \geq \frac{1}{2} T_{c}\left(\frac{1}{2}\right)
$$

Not only is this an improvement of Griffiths by more than $\frac{4}{3}$ but in the result for $S \neq 1$, the improved constant is optimal!! For one has equality if T_{c} is replaced by its mean field values and as noted by Dyson, Lieb and Simon, mean field theory is exact in the nearest neighbor infinite dimension limit.

The Precise Conjecture

By rescaling so the maximum spin value is S, the conjecture is the assertion that for $m=1,2, \ldots$ and $S=\frac{3}{2}, 2, \frac{5}{2}, 3, \ldots$

The Precise Conjecture

By rescaling so the maximum spin value is S, the conjecture is the assertion that for $m=1,2, \ldots$ and $S=\frac{3}{2}, 2, \frac{5}{2}, 3, \ldots$

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

The Precise Conjecture

By rescaling so the maximum spin value is S, the conjecture is the assertion that for $m=1,2, \ldots$ and $S=\frac{3}{2}, 2, \frac{5}{2}, 3, \ldots$

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

For S an integer, this is the usual kind of sum.

The Precise Conjecture

By rescaling so the maximum spin value is S, the conjecture is the assertion that for $m=1,2, \ldots$ and $S=\frac{3}{2}, 2, \frac{5}{2}, 3, \ldots$

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

For S an integer, this is the usual kind of sum. For $2 S$ an odd integer, j takes the $2 S+1$ values
$-S,-S+1, \ldots, S-1, S$, i.e. $2 j$ is an odd integer.

The Precise Conjecture

By rescaling so the maximum spin value is S, the conjecture is the assertion that for $m=1,2, \ldots$ and $S=\frac{3}{2}, 2, \frac{5}{2}, 3, \ldots$

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

For S an integer, this is the usual kind of sum. For $2 S$ an odd integer, j takes the $2 S+1$ values
$-S,-S+1, \ldots, S-1, S$, i.e. $2 j$ is an odd integer. Note, the constant $S(S+1)$ is such that the sum is zero if $m=0$

The Precise Conjecture

By rescaling so the maximum spin value is S, the conjecture is the assertion that for $m=1,2, \ldots$ and $S=\frac{3}{2}, 2, \frac{5}{2}, 3, \ldots$

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

For S an integer, this is the usual kind of sum. For $2 S$ an odd integer, j takes the $2 S+1$ values
$-S,-S+1, \ldots, S-1, S$, i.e. $2 j$ is an odd integer. Note, the constant $S(S+1)$ is such that the sum is zero if $m=0$

I found this conjecture fascinating and worked on it with no progress for about 7 months.

The Precise Conjecture

By rescaling so the maximum spin value is S, the conjecture is the assertion that for $m=1,2, \ldots$ and $S=\frac{3}{2}, 2, \frac{5}{2}, 3, \ldots$

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

For S an integer, this is the usual kind of sum. For $2 S$ an odd integer, j takes the $2 S+1$ values
$-S,-S+1, \ldots, S-1, S$, i.e. $2 j$ is an odd integer. Note, the constant $S(S+1)$ is such that the sum is zero if $m=0$

I found this conjecture fascinating and worked on it with no progress for about 7 months. I even got 3 coauthors to think about it with no luck.

A One Authored Draft

Given that Lieb has a celebrated paper on comparing Heisenberg models

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The Inequality

A One Authored Draft

> Given that Lieb has a celebrated paper on comparing Heisenberg models (admittedly classical vs. quantum and pressures, not correlations)

A One Authored Draft

Given that Lieb has a celebrated paper on comparing Heisenberg models (admittedly classical vs. quantum and pressures, not correlations) and that I didn't want to bury in a long book this material which had already been buried for 45 years,

A One Authored Draft

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The
Inequality

Given that Lieb has a celebrated paper on comparing Heisenberg models (admittedly classical vs. quantum and pressures, not correlations) and that I didn't want to bury in a long book this material which had already been buried for 45 years, it seemed natural to use this for an article when I was asked to contribute to a Festschrift for Elliott's $90^{t h}$ birthday.

A One Authored Draft

Given that Lieb has a celebrated paper on comparing Heisenberg models (admittedly classical vs. quantum and pressures, not correlations) and that I didn't want to bury in a long book this material which had already been buried for 45 years, it seemed natural to use this for an article when I was asked to contribute to a Festschrift for Elliott's $90^{\text {th }}$ birthday. The paper was due on Jan 31, 2022 and on Friday, Jan 14, I had a first draft of the paper.

A One Authored Draft

Given that Lieb has a celebrated paper on comparing Heisenberg models (admittedly classical vs. quantum and pressures, not correlations) and that I didn't want to bury in a long book this material which had already been buried for 45 years, it seemed natural to use this for an article when I was asked to contribute to a Festschrift for Elliott's $90^{t h}$ birthday. The paper was due on Jan 31, 2022 and on Friday, Jan 14, I had a first draft of the paper.

It seemed a shame not to make one more push to prove the conjecture so I did the obvious thing.

Desperate Measures

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

Desperate Measures

Desperate situations call for desperate measures.

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The Inequality

Desperate Measures

Desperate situations call for desperate measures.
At 11 AM on Friday, Jan 14, I sent an email entitled " A challenge" stating the conjectured inequality (and with the draft to explain its significance) to

Desperate Measures

Desperate situations call for desperate measures.
At 11 AM on Friday, Jan 14, I sent an email entitled " A challenge" stating the conjectured inequality (and with the draft to explain its significance) to Terry Tao.

Desperate Measures

Desperate situations call for desperate measures.
At 11 AM on Friday, Jan 14, I sent an email entitled " A challenge" stating the conjectured inequality (and with the draft to explain its significance) to Terry Tao. When I logged on after Shabbat the next evening I had an email dated Saturday at $1: 30 \mathrm{PM}$ with a proof of the conjecture!!!

Desperate Measures

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The
Inequality

Desperate situations call for desperate measures.
At 11 AM on Friday, Jan 14, I sent an email entitled " A challenge" stating the conjectured inequality (and with the draft to explain its significance) to Terry Tao. When I logged on after Shabbat the next evening I had an email dated Saturday at $1: 30 \mathrm{PM}$ with a proof of the conjecture!!! But the scenario isn't quite as you image it.

Desperate Measures

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

Desperate situations call for desperate measures.
At 11 AM on Friday, Jan 14, I sent an email entitled "A challenge" stating the conjectured inequality (and with the draft to explain its significance) to Terry Tao. When I logged on after Shabbat the next evening I had an email dated Saturday at $1: 30 \mathrm{PM}$ with a proof of the conjecture!!! But the scenario isn't quite as you image it. At 1:30 PM on Friday, Terry had emailed me back: "I have a postdoc who works on some other inequalities vaguely of this type, I will forward this problem to him and see if he is interested."

Desperate Measures

Desperate situations call for desperate measures.
At 11 AM on Friday, Jan 14, I sent an email entitled "A challenge" stating the conjectured inequality (and with the draft to explain its significance) to Terry Tao. When I logged on after Shabbat the next evening I had an email dated Saturday at $1: 30 \mathrm{PM}$ with a proof of the conjecture!!! But the scenario isn't quite as you image it. At 1:30 PM on Friday, Terry had emailed me back: "I have a postdoc who works on some other inequalities vaguely of this type, I will forward this problem to him and see if he is interested." and it was the postdoc, José Madrid, who sent the proof.

Desperate Measures

Desperate situations call for desperate measures.
At 11 AM on Friday, Jan 14, I sent an email entitled " A challenge" stating the conjectured inequality (and with the draft to explain its significance) to Terry Tao. When I logged on after Shabbat the next evening I had an email dated Saturday at $1: 30 \mathrm{PM}$ with a proof of the conjecture!!! But the scenario isn't quite as you image it. At 1:30 PM on Friday, Terry had emailed me back: "I have a postdoc who works on some other inequalities vaguely of this type, I will forward this problem to him and see if he is interested." and it was the postdoc, José Madrid, who sent the proof.

His note had one wonderful idea (using Karamata's inequality) and 5 dense pages of calculation to implement it.

Desperate Measures

José and I Zoomed several times, first for me to offer him a coauthorship (Terry had suggested an appendix)

Desperate Measures

José and I Zoomed several times, first for me to offer him a coauthorship (Terry had suggested an appendix) and to discuss simplifying the implementation.

Desperate Measures

José and I Zoomed several times, first for me to offer him a coauthorship (Terry had suggested an appendix) and to discuss simplifying the implementation. We discovered a criteria for majorization that led to a three line proof.

Desperate Measures

José and I Zoomed several times, first for me to offer him a coauthorship (Terry had suggested an appendix) and to discuss simplifying the implementation. We discovered a criteria for majorization that led to a three line proof. OK, a proof with three long lines.

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The
Inequality

Desperate Measures

José and I Zoomed several times, first for me to offer him a coauthorship (Terry had suggested an appendix) and to discuss simplifying the implementation. We discovered a criteria for majorization that led to a three line proof. OK, a proof with three long lines. We then discovered that the proof was only really simple in case S was half an odd integer.

Desperate Measures

José and I Zoomed several times, first for me to offer him a coauthorship (Terry had suggested an appendix) and to discuss simplifying the implementation. We discovered a criteria for majorization that led to a three line proof. OK, a proof with three long lines. We then discovered that the proof was only really simple in case S was half an odd integer. As I hope to have time to explain, the integer case is harder

Desperate Measures

José and I Zoomed several times, first for me to offer him a coauthorship (Terry had suggested an appendix) and to discuss simplifying the implementation. We discovered a criteria for majorization that led to a three line proof. OK, a proof with three long lines. We then discovered that the proof was only really simple in case S was half an odd integer. As I hope to have time to explain, the integer case is harder but we found a proof in that case that was only a little longer.

Desperate Measures

José and I Zoomed several times, first for me to offer him a coauthorship (Terry had suggested an appendix) and to discuss simplifying the implementation. We discovered a criteria for majorization that led to a three line proof. OK, a proof with three long lines. We then discovered that the proof was only really simple in case S was half an odd integer. As I hope to have time to explain, the integer case is harder but we found a proof in that case that was only a little longer.

José also suggested it would be good to try again to locate Daniel Wells.

The Search for Daniel Wells

I wasn't starting at ground zero.

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The Inequality

The Search for Daniel Wells

I wasn't starting at ground zero. While I got nothing from Indiana University,

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The Inequality

The Search for Daniel Wells

I wasn't starting at ground zero. While I got nothing from Indiana University, I talked about this material during the conference in honor of my $75^{\text {th }}$ birthday

The Search for Daniel Wells

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The
Inequality

I wasn't starting at ground zero. While I got nothing from Indiana University, I talked about this material during the conference in honor of my $75^{\text {th }}$ birthday and Leonard Schulman, a computer scientist at Caltech (and son of a student of Arthur Wightman), heard my talk and did some Google searching.

The Search for Daniel Wells

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

I wasn't starting at ground zero. While I got nothing from Indiana University, I talked about this material during the conference in honor of my $75^{\text {th }}$ birthday and Leonard Schulman, a computer scientist at Caltech (and son of a student of Arthur Wightman), heard my talk and did some Google searching. He found a short story available via Kindle on Amazon whose About the Author read

The Search for Daniel Wells

Daniel R Wells was born in Sterling, Illinois on March 15, 1945. He attended the local parochial schools and graduated from high school in 1963.

The Search for Daniel Wells

Daniel R Wells was born in Sterling, Illinois on March 15, 1945. He attended the local parochial schools and graduated from high school in 1963. In October of that year he enlisted in the United States Navy and served for four years. After the Navy, he started college in 1968, studying mathematics, eventually earning a PhD from Indiana University in 1977.

The Search for Daniel Wells

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

Daniel R Wells was born in Sterling, Illinois on March 15, 1945. He attended the local parochial schools and graduated from high school in 1963. In October of that year he enlisted in the United States Navy and served for four years. After the Navy, he started college in 1968, studying mathematics, eventually earning a PhD from Indiana University in 1977. He taught mathematics for two years at Texas A\&M and then returned to school at the University of Illinois to study computer science.

The Search for Daniel Wells

Daniel R Wells was born in Sterling, Illinois on March 15, 1945. He attended the local parochial schools and graduated from high school in 1963. In October of that year he enlisted in the United States Navy and served for four years. After the Navy, he started college in 1968, studying mathematics, eventually earning a PhD from Indiana University in 1977. He taught mathematics for two years at Texas A\&M and then returned to school at the University of Illinois to study computer science. He achieved a PhD in 1982 and worked for various companies as a software engineer until he retired in 2004.

The Search for Daniel Wells

I wasn't clever enough to pull on the right threads of this fabric.

The Search for Daniel Wells

I wasn't clever enough to pull on the right threads of this fabric. Since I had friends at Texas A\&M, I consulted them to see if they could find any record.

The Search for Daniel Wells

I wasn't clever enough to pull on the right threads of this fabric. Since I had friends at Texas A\&M, I consulted them to see if they could find any record. Nope.

The Search for Daniel Wells

I wasn't clever enough to pull on the right threads of this fabric. Since I had friends at Texas A\&M, I consulted them to see if they could find any record. Nope. I tried to leave a "review" of his book saying I wanted to contact the author about his thesis

The Search for Daniel Wells

I wasn't clever enough to pull on the right threads of this fabric. Since I had friends at Texas A\&M, I consulted them to see if they could find any record. Nope. I tried to leave a "review" of his book saying I wanted to contact the author about his thesis but Amazon said it wasn't a review and wouldn't post it.

The Search for Daniel Wells

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

I wasn't clever enough to pull on the right threads of this fabric. Since I had friends at Texas A\&M, I consulted them to see if they could find any record. Nope. I tried to leave a "review" of his book saying I wanted to contact the author about his thesis but Amazon said it wasn't a review and wouldn't post it. I bought his Kindle book hoping it might provide more information but it didn't.

The Search for Daniel Wells

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The
Inequality

I wasn't clever enough to pull on the right threads of this fabric. Since I had friends at Texas A\&M, I consulted them to see if they could find any record. Nope. I tried to leave a "review" of his book saying I wanted to contact the author about his thesis but Amazon said it wasn't a review and wouldn't post it. I bought his Kindle book hoping it might provide more information but it didn't. What I should have done is contact U of I computer science

The Search for Daniel Wells

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The
Inequality

I wasn't clever enough to pull on the right threads of this fabric. Since I had friends at Texas A\&M, I consulted them to see if they could find any record. Nope. I tried to leave a "review" of his book saying I wanted to contact the author about his thesis but Amazon said it wasn't a review and wouldn't post it. I bought his Kindle book hoping it might provide more information but it didn't. What I should have done is contact U of I computer science where he got his second PhD .

The Search for Daniel Wells

I wasn't clever enough to pull on the right threads of this fabric. Since I had friends at Texas A\&M, I consulted them to see if they could find any record. Nope. I tried to leave a "review" of his book saying I wanted to contact the author about his thesis but Amazon said it wasn't a review and wouldn't post it. I bought his Kindle book hoping it might provide more information but it didn't. What I should have done is contact U of I computer science where he got his second PhD . and where he has continued to do some teaching.

The Search for Daniel Wells

Spurred by José, I posted a message on Facebook where I have a group of friends mainly mathematicians and theoretical physicists.

The Search for Daniel Wells

Spurred by José, I posted a message on Facebook where I have a group of friends mainly mathematicians and theoretical physicists. The message gave some background and asked if anyone had any idea how to follow up.

The Search for Daniel Wells

> Spurred by José, I posted a message on Facebook where I have a group of friends mainly mathematicians and theoretical physicists. The message gave some background and asked if anyone had any idea how to follow up. A math grad student at Penn State told me he regarded himself as an internet sleuth.

The Search for Daniel Wells

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The
Inequality

Spurred by José, I posted a message on Facebook where I have a group of friends mainly mathematicians and theoretical physicists. The message gave some background and asked if anyone had any idea how to follow up. A math grad student at Penn State told me he regarded himself as an internet sleuth. The next morning I had a link in a private message to a Find a Person internet site with the right name, the right age who lived in the town where the Amazon profile said Wells was born.

The Search for Daniel Wells

 have a group of friends mainly mathematicians and theoretical physicists. The message gave some background and asked if anyone had any idea how to follow up. A math grad student at Penn State told me he regarded himself as an internet sleuth. The next morning I had a link in a private message to a Find a Person internet site with the right name, the right age who lived in the town where the Amazon profile said Wells was born. Shortly after that, he sent me what he though might be Wells' email address.
The Search for Daniel Wells

Spurred by José, I posted a message on Facebook where I have a group of friends mainly mathematicians and theoretical physicists. The message gave some background and asked if anyone had any idea how to follow up. A math grad student at Penn State told me he regarded himself as an internet sleuth. The next morning I had a link in a private message to a Find a Person internet site with the right name, the right age who lived in the town where the Amazon profile said Wells was born. Shortly after that, he sent me what he though might be Wells' email address. I contacted the email address asking if the recipient was a Daniel Wells who got a math PhD in Indiana

The Search for Daniel Wells

Spurred by José, I posted a message on Facebook where I have a group of friends mainly mathematicians and theoretical physicists. The message gave some background and asked if anyone had any idea how to follow up. A math grad student at Penn State told me he regarded himself as an internet sleuth. The next morning I had a link in a private message to a Find a Person internet site with the right name, the right age who lived in the town where the Amazon profile said Wells was born. Shortly after that, he sent me what he though might be Wells' email address. I contacted the email address asking if the recipient was a Daniel Wells who got a math PhD in Indiana then sent him the current draft and asked him to be a coauthor

The Search for Daniel Wells

Spurred by José, I posted a message on Facebook where I have a group of friends mainly mathematicians and theoretical physicists. The message gave some background and asked if anyone had any idea how to follow up. A math grad student at Penn State told me he regarded himself as an internet sleuth. The next morning I had a link in a private message to a Find a Person internet site with the right name, the right age who lived in the town where the Amazon profile said Wells was born. Shortly after that, he sent me what he though might be Wells' email address. I contacted the email address asking if the recipient was a Daniel Wells who got a math PhD in Indiana then sent him the current draft and asked him to be a coauthor - after all, 2.5 out of 6 sections were from his thesis.

The Search for Daniel Wells

Spurred by José, I posted a message on Facebook where I have a group of friends mainly mathematicians and theoretical physicists. The message gave some background and asked if anyone had any idea how to follow up. A math grad student at Penn State told me he regarded himself as an internet sleuth. The next morning I had a link in a private message to a Find a Person internet site with the right name, the right age who lived in the town where the Amazon profile said Wells was born. Shortly after that, he sent me what he though might be Wells' email address. I contacted the email address asking if the recipient was a Daniel Wells who got a math PhD in Indiana then sent him the current draft and asked him to be a coauthor - after all, 2.5 out of 6 sections were from his thesis. He agreed, so in less than a week, I picked up two coauthors.

The Search for Daniel Wells

The next week, Jose and I zoomed with Daniel and I got some more background.

The Search for Daniel Wells

The next week, Jose and I zoomed with Daniel and I got some more background. Wells had gone to Texas A\&M for a postdoc,

The Search for Daniel Wells

The next week, Jose and I zoomed with Daniel and I got some more background. Wells had gone to Texas A\&M for a postdoc, written up his thesis with the addition of the rotor-Ising comparison theorem

The Search for Daniel Wells

The next week, Jose and I zoomed with Daniel and I got some more background. Wells had gone to Texas A\&M for a postdoc, written up his thesis with the addition of the rotor-Ising comparison theorem and sent the preprint that Aizenman and I referred to off to a journal where it should have been accepted.

The Search for Daniel Wells

The next week, Jose and I zoomed with Daniel and I got some more background. Wells had gone to Texas A\&M for a postdoc, written up his thesis with the addition of the rotor-Ising comparison theorem and sent the preprint that Aizenman and I referred to off to a journal where it should have been accepted. But it was rejected.

The Search for Daniel Wells

The next week, José and I zoomed with Daniel and I got some more background. Wells had gone to Texas A\&M for a postdoc, written up his thesis with the addition of the rotor-Ising comparison theorem and sent the preprint that Aizenman and I referred to off to a journal where it should have been accepted. But it was rejected.

At this point, his thesis advisor should have stepped in and explained the facts of life:

The Search for Daniel Wells

The next week, José and I zoomed with Daniel and I got some more background. Wells had gone to Texas A\&M for a postdoc, written up his thesis with the addition of the rotor-Ising comparison theorem and sent the preprint that Aizenman and I referred to off to a journal where it should have been accepted. But it was rejected.

At this point, his thesis advisor should have stepped in and explained the facts of life: just as there are bad papers, there are bad referees

The Search for Daniel Wells

The next week, Jose and I zoomed with Daniel and I got some more background. Wells had gone to Texas A\&M for a postdoc, written up his thesis with the addition of the rotor-Ising comparison theorem and sent the preprint that Aizenman and I referred to off to a journal where it should have been accepted. But it was rejected.

At this point, his thesis advisor should have stepped in and explained the facts of life: just as there are bad papers, there are bad referees and one should send the paper off to another journal.

The Search for Daniel Wells

The next week, José and I zoomed with Daniel and I got some more background. Wells had gone to Texas A\&M for a postdoc, written up his thesis with the addition of the rotor-Ising comparison theorem and sent the preprint that Aizenman and I referred to off to a journal where it should have been accepted. But it was rejected.

At this point, his thesis advisor should have stepped in and explained the facts of life: just as there are bad papers, there are bad referees and one should send the paper off to another journal. But alas, Slim Sherman, his advisor, had passed away shortly before he took his oral exam

The Search for Daniel Wells

The next week, José and I zoomed with Daniel and I got some more background. Wells had gone to Texas A\&M for a postdoc, written up his thesis with the addition of the rotor-Ising comparison theorem and sent the preprint that Aizenman and I referred to off to a journal where it should have been accepted. But it was rejected.

At this point, his thesis advisor should have stepped in and explained the facts of life: just as there are bad papers, there are bad referees and one should send the paper off to another journal. But alas, Slim Sherman, his advisor, had passed away shortly before he took his oral exam and wasn't there to advise him.

The Search for Daniel Wells

The next week, José and I zoomed with Daniel and I got some more background. Wells had gone to Texas A\&M for a postdoc, written up his thesis with the addition of the rotor-Ising comparison theorem and sent the preprint that Aizenman and I referred to off to a journal where it should have been accepted. But it was rejected.

At this point, his thesis advisor should have stepped in and explained the facts of life: just as there are bad papers, there are bad referees and one should send the paper off to another journal. But alas, Slim Sherman, his advisor, had passed away shortly before he took his oral exam and wasn't there to advise him. Wells was so discouraged, he totally left mathematics

The Search for Daniel Wells

The next week, José and I zoomed with Daniel and I got some more background. Wells had gone to Texas A\&M for a postdoc, written up his thesis with the addition of the rotor-Ising comparison theorem and sent the preprint that Aizenman and I referred to off to a journal where it should have been accepted. But it was rejected.

At this point, his thesis advisor should have stepped in and explained the facts of life: just as there are bad papers, there are bad referees and one should send the paper off to another journal. But alas, Slim Sherman, his advisor, had passed away shortly before he took his oral exam and wasn't there to advise him. Wells was so discouraged, he totally left mathematics even though he'd written a very good thesis.

The Search for Daniel Wells

The next week, Jose and I zoomed with Daniel and I got some more background. Wells had gone to Texas A\&M for a postdoc, written up his thesis with the addition of the rotor-Ising comparison theorem and sent the preprint that Aizenman and I referred to off to a journal where it should have been accepted. But it was rejected.

At this point, his thesis advisor should have stepped in and explained the facts of life: just as there are bad papers, there are bad referees and one should send the paper off to another journal. But alas, Slim Sherman, his advisor, had passed away shortly before he took his oral exam and wasn't there to advise him. Wells was so discouraged, he totally left mathematics even though he'd written a very good thesis. Sometimes the system doesn't work.

Majorization

Introduction

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

Majorization

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

In the time remaining, I want to explain the idea of the proof of the above inequality (for $S \geq \frac{3}{2}$) at least in the simpler case when $2 S$ is odd.

Majorization

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to

Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

In the time remaining, I want to explain the idea of the proof of the above inequality (for $S \geq \frac{3}{2}$) at least in the simpler case when $2 S$ is odd. In this case the proof extends to the general situation where $j \mapsto 3 j^{2}$ is replaced by any even convex function, $S(S+1)$ the constant needed for the sum to vanish when $m=0$, and $w \mapsto w^{2 m+1}$ by any continuous odd function which is convex on $[0, \infty)$.

Majorization

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The Inequality

In the time remaining, I want to explain the idea of the proof of the above inequality (for $S \geq \frac{3}{2}$) at least in the simpler case when $2 S$ is odd. In this case the proof extends to the general situation where $j \mapsto 3 j^{2}$ is replaced by any even convex function, $S(S+1)$ the constant needed for the sum to vanish when $m=0$, and $w \mapsto w^{2 m+1}$ by any continuous odd function which is convex on $[0, \infty)$. On the other hand, our proof for S integral doesn't work if j^{2} is replaced by $|j|^{p}$ with $1<p<\frac{3}{2}$.

Majorization

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The Inequality

In the time remaining, I want to explain the idea of the proof of the above inequality (for $S \geq \frac{3}{2}$) at least in the simpler case when $2 S$ is odd. In this case the proof extends to the general situation where $j \mapsto 3 j^{2}$ is replaced by any even convex function, $S(S+1)$ the constant needed for the sum to vanish when $m=0$, and $w \mapsto w^{2 m+1}$ by any continuous odd function which is convex on $[0, \infty)$. On the other hand, our proof for S integral doesn't work if j^{2} is replaced by $|j|^{p}$ with $1<p<\frac{3}{2}$.
The key mathematical tool is the theory of majorization.

Majorization

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

In the time remaining, I want to explain the idea of the proof of the above inequality (for $S \geq \frac{3}{2}$) at least in the simpler case when $2 S$ is odd. In this case the proof extends to the general situation where $j \mapsto 3 j^{2}$ is replaced by any even convex function, $S(S+1)$ the constant needed for the sum to vanish when $m=0$, and $w \mapsto w^{2 m+1}$ by any continuous odd function which is convex on $[0, \infty)$. On the other hand, our proof for S integral doesn't work if j^{2} is replaced by $|j|^{p}$ with $1<p<\frac{3}{2}$.
The key mathematical tool is the theory of majorization. I suspect my coauthors hadn't seen this theory but I didn't have this excuse.

Majorization

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

In the time remaining, I want to explain the idea of the proof of the above inequality (for $S \geq \frac{3}{2}$) at least in the simpler case when $2 S$ is odd. In this case the proof extends to the general situation where $j \mapsto 3 j^{2}$ is replaced by any even convex function, $S(S+1)$ the constant needed for the sum to vanish when $m=0$, and $w \mapsto w^{2 m+1}$ by any continuous odd function which is convex on $[0, \infty)$. On the other hand, our proof for S integral doesn't work if j^{2} is replaced by $|j|^{p}$ with $1<p<\frac{3}{2}$.
The key mathematical tool is the theory of majorization. I suspect my coauthors hadn't seen this theory but I didn't have this excuse. My convexity book has a whole chapter on it!

Majorization

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ (the set with $x_{1} \geq x_{2} \geq \ldots x_{n} \geq 0$),

Majorization

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ (the set with $x_{1} \geq x_{2} \geq \ldots x_{n} \geq 0$), we say that \mathbf{x} majorizes \mathbf{y}, written $\mathbf{x} \succ \mathbf{y}$ or $\mathbf{y} \prec \mathbf{x}$ if an only if

Majorization

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ (the set with $x_{1} \geq x_{2} \geq \ldots x_{n} \geq 0$), we say that \mathbf{x} majorizes \mathbf{y}, written $\mathbf{x} \succ \mathbf{y}$ or $\mathbf{y} \prec \mathbf{x}$ if an only if

$$
\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j} ; \quad S_{k}(\mathbf{x}) \equiv \sum_{j=1}^{k} x_{j} \geq \sum_{j=1}^{k} y_{j}, k=1, \ldots, n-1
$$

Majorization

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ (the set with $x_{1} \geq x_{2} \geq \ldots x_{n} \geq 0$), we say that \mathbf{x} majorizes \mathbf{y}, written $\mathbf{x} \succ \mathbf{y}$ or $\mathbf{y} \prec \mathbf{x}$ if an only if
$\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j} ; \quad S_{k}(\mathbf{x}) \equiv \sum_{j=1}^{k} x_{j} \geq \sum_{j=1}^{k} y_{j}, k=1, \ldots, n-1$
which defines $S_{k}(\mathbf{x})$.

Majorization

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Introduction

Ginibre

Wells' Framework
Wells' Big

Theorem

Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ (the set with $x_{1} \geq x_{2} \geq \ldots x_{n} \geq 0$), we say that \mathbf{x} majorizes \mathbf{y}, written $\mathbf{x} \succ \mathbf{y}$ or $\mathbf{y} \prec \mathbf{x}$ if an only if

$$
\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j} ; \quad S_{k}(\mathbf{x}) \equiv \sum_{j=1}^{k} x_{j} \geq \sum_{j=1}^{k} y_{j}, k=1, \ldots, n-1
$$

which defines $S_{k}(\mathbf{x})$.
The key fact is that $\mathbf{y} \prec \mathbf{x}$

Majorization

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Introduction

Ginibre

Wells' Framework
Wells' Big

Theorem

Examples
More on the
Conjecture
From One to

Three Authors

Proof of The Inequality

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ (the set with $x_{1} \geq x_{2} \geq \ldots x_{n} \geq 0$), we say that \mathbf{x} majorizes \mathbf{y}, written $\mathbf{x} \succ \mathbf{y}$ or $\mathbf{y} \prec \mathbf{x}$ if an only if

$$
\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j} ; \quad S_{k}(\mathbf{x}) \equiv \sum_{j=1}^{k} x_{j} \geq \sum_{j=1}^{k} y_{j}, k=1, \ldots, n-1
$$

which defines $S_{k}(\mathbf{x})$.
The key fact is that $\mathbf{y} \prec \mathbf{x}$ iff y is in the convex hull in \mathbb{R}^{n} of the (at most) n ! points obtained from x by permuting the coordinates

Majorization

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to

Three Authors

Proof of The Inequality

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ (the set with $x_{1} \geq x_{2} \geq \ldots x_{n} \geq 0$), we say that \mathbf{x} majorizes \mathbf{y}, written $\mathbf{x} \succ \mathbf{y}$ or $\mathbf{y} \prec \mathbf{x}$ if an only if
$\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j} ; \quad S_{k}(\mathbf{x}) \equiv \sum_{j=1}^{k} x_{j} \geq \sum_{j=1}^{k} y_{j}, k=1, \ldots, n-1$
which defines $S_{k}(\mathbf{x})$.
The key fact is that $\mathbf{y} \prec \mathbf{x}$ iff y is in the convex hull in \mathbb{R}^{n} of the (at most) n ! points obtained from x by permuting the coordinates proven by slicing \mathbb{R}^{n} with specific hyperplanes.

Karamata's Inequality

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

Theorem (Karamata's Inequality) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ with $\mathbf{x} \succ \mathbf{y}$ and let φ be an arbitrary continuous convex function on $\left[0, x_{1}\right]$. Then

Karamata's Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

Theorem (Karamata's Inequality) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ with $\mathbf{x} \succ \mathbf{y}$ and let φ be an arbitrary continuous convex function on $\left[0, x_{1}\right]$. Then

$$
\sum_{j=1}^{n} \varphi\left(x_{j}\right) \geq \sum_{j=1}^{n} \varphi\left(y_{j}\right)
$$

Karamata's Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to

Three Authors

Proof of The Inequality

Theorem (Karamata's Inequality) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ with $\mathbf{x} \succ \mathbf{y}$ and let φ be an arbitrary continuous convex function on $\left[0, x_{1}\right]$. Then

$$
\sum_{j=1}^{n} \varphi\left(x_{j}\right) \geq \sum_{j=1}^{n} \varphi\left(y_{j}\right)
$$

Even though this is widely referred to as Karamata's inequality after Karamata's 1932 paper, it or theorems that imply it appear in a 1923 paper of Schur and a 1929 paper of Hardy-Littlewood-Pólya.

Karamata's Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
That said, we note that HLP doesn't have a proof which may not have appeared until their 1934 book and that Karamata proved a converse, namely, if $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ and the inequality holds for all convex φ, then $\mathbf{x} \succ \mathbf{y}$.
More on the Conjecture

Karamata's Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Ginibre

That said, we note that HLP doesn't have a proof which may not have appeared until their 1934 book and that Karamata proved a converse, namely, if $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ and the inequality holds for all convex φ, then $\mathbf{x} \succ \mathbf{y}$.

The proof of Karamata's theorem is simple.

Karamata's Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

That said, we note that HLP doesn't have a proof which may not have appeared until their 1934 book and that Karamata proved a converse, namely, if $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ and the inequality holds for all convex φ, then $\mathbf{x} \succ \mathbf{y}$.

The proof of Karamata's theorem is simple. One proves the convex hull result and then one notes the function $\mathbf{w} \mapsto \sum_{j=1}^{n} \varphi\left(w_{j}\right)$ is convex and permutation symmetric.

Strategy of the Proof

Introduction

Ginibre

Wells' Framework

Wells' Big

Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

The strategy of the proof when $2 S$ is odd is straight-forward.

Strategy of the Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

The strategy of the proof when $2 S$ is odd is straight-forward. In that case, $j=0$ doesn't occur, so we can sum only over $j \geq 0$.

Strategy of the Proof

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

The strategy of the proof when $2 S$ is odd is straight-forward. In that case, $j=0$ doesn't occur, so we can sum only over $j \geq 0$. Let x be the non-negative values among the $3 j^{2}-S(S+1)$ and y absolute values of the negative ones, each written in decreasing order.

Strategy of the Proof

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

The strategy of the proof when $2 S$ is odd is straight-forward. In that case, $j=0$ doesn't occur, so we can sum only over $j \geq 0$. Let x be the non-negative values among the $3 j^{2}-S(S+1)$ and y absolute values of the negative ones, each written in decreasing order. Prove there are more y 's than x 's and pad the x 's with extra zeros if need be.

Strategy of the Proof

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

The strategy of the proof when $2 S$ is odd is straight-forward. In that case, $j=0$ doesn't occur, so we can sum only over $j \geq 0$. Let x be the non-negative values among the $3 j^{2}-S(S+1)$ and y absolute values of the negative ones, each written in decreasing order. Prove there are more y 's than x 's and pad the x 's with extra zeros if need be. That one has equality when $m=0$ implies that $\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j}$.

Strategy of the Proof

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

The strategy of the proof when $2 S$ is odd is straight-forward. In that case, $j=0$ doesn't occur, so we can sum only over $j \geq 0$. Let x be the non-negative values among the $3 j^{2}-S(S+1)$ and y absolute values of the negative ones, each written in decreasing order. Prove there are more y 's than x 's and pad the x 's with extra zeros if need be. That one has equality when $m=0$ implies that $\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j}$. Prove that $\mathbf{x} \succ \mathbf{y}$.

Strategy of the Proof

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Introduction

Ginibre
Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to
Three Authors
Proof of The Inequality

The strategy of the proof when $2 S$ is odd is straight-forward. In that case, $j=0$ doesn't occur, so we can sum only over $j \geq 0$. Let x be the non-negative values among the $3 j^{2}-S(S+1)$ and y absolute values of the negative ones, each written in decreasing order. Prove there are more y 's than x 's and pad the x 's with extra zeros if need be. That one has equality when $m=0$ implies that $\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j}$. Prove that $\mathbf{x} \succ \mathbf{y}$. Then, that $w \mapsto w^{2 m+1}$ is convex and odd

Strategy of the Proof

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to
Three Authors
Proof of The Inequality

The strategy of the proof when $2 S$ is odd is straight-forward. In that case, $j=0$ doesn't occur, so we can sum only over $j \geq 0$. Let x be the non-negative values among the $3 j^{2}-S(S+1)$ and y absolute values of the negative ones, each written in decreasing order. Prove there are more y 's than x 's and pad the x 's with extra zeros if need be. That one has equality when $m=0$ implies that $\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j}$. Prove that $\mathbf{x} \succ \mathbf{y}$. Then, that $w \mapsto w^{2 m+1}$ is convex and odd and Karamata's inequality implies the boxed equation.

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

The proof that $\mathbf{x} \succ \mathbf{y}$ relies on a new criteria for majorization that we found:

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

The proof that $\mathbf{x} \succ \mathbf{y}$ relies on a new criteria for majorization that we found:

Lemma Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ with $\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j}$

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

The proof that $\mathbf{x} \succ \mathbf{y}$ relies on a new criteria for majorization that we found:

Lemma Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ with $\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j}$ and that for some $\ell \in 2, \ldots, n-1$,

$$
j<\ell \Rightarrow x_{j}>y_{j} \quad j \geq \ell \Rightarrow x_{j} \leq y_{j}
$$

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

The proof that $\mathbf{x} \succ \mathbf{y}$ relies on a new criteria for majorization that we found:

Lemma Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ with $\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j}$ and that for some $\ell \in 2, \ldots, n-1$,

$$
j<\ell \Rightarrow x_{j}>y_{j} \quad j \geq \ell \Rightarrow x_{j} \leq y_{j}
$$

Then $\mathbf{x} \succ \mathbf{y}$.

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big

Theorem

Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

The proof that $\mathbf{x} \succ \mathbf{y}$ relies on a new criteria for majorization that we found:

Lemma Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ with $\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j}$ and that for some $\ell \in 2, \ldots, n-1$,

$$
j<\ell \Rightarrow x_{j}>y_{j} \quad j \geq \ell \Rightarrow x_{j} \leq y_{j}
$$

Then $\mathbf{x} \succ \mathbf{y}$.
Proof If $k<\ell$, it is immediate that $\sum_{j=1}^{k} x_{j} \geq \sum_{j=1}^{k} y_{j}$

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

The proof that $\mathbf{x} \succ \mathbf{y}$ relies on a new criteria for majorization that we found:

Lemma Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ with $\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j}$ and that for some $\ell \in 2, \ldots, n-1$,

$$
j<\ell \Rightarrow x_{j}>y_{j} \quad j \geq \ell \Rightarrow x_{j} \leq y_{j}
$$

Then $\mathbf{x} \succ \mathbf{y}$.
Proof If $k<\ell$, it is immediate that $\sum_{j=1}^{k} x_{j} \geq \sum_{j=1}^{k} y_{j}$ and similarly, it is immediate that if $k \geq \ell$, then $\sum_{j=k}^{n} x_{j} \leq \sum_{j=k}^{n} y_{j}$.

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

The proof that $\mathbf{x} \succ \mathbf{y}$ relies on a new criteria for majorization that we found:

Lemma Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{R}_{+, \geq}^{n}$ with $\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j}$ and that for some $\ell \in 2, \ldots, n-1$,

$$
j<\ell \Rightarrow x_{j}>y_{j} \quad j \geq \ell \Rightarrow x_{j} \leq y_{j}
$$

Then $\mathbf{x} \succ \mathbf{y}$.
Proof If $k<\ell$, it is immediate that $\sum_{j=1}^{k} x_{j} \geq \sum_{j=1}^{k} y_{j}$ and similarly, it is immediate that if $k \geq \ell$, then
$\sum_{j=k}^{n} x_{j} \leq \sum_{j=k}^{n} y_{j}$. Subtracting this from $\sum_{j=1}^{n} x_{j}=\sum_{j=1}^{n} y_{j}$, we see that also for $k \geq \ell$, one has that $\sum_{j=1}^{k} x_{j} \geq \sum_{j=1}^{k} y_{j}$.

The Proof

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

Thus the key to proving the inequality in our case is showing that

The Proof

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

Thus the key to proving the inequality in our case is showing that $x_{j+1}-y_{j+1} \leq x_{j}-y_{j}$

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Thus the key to proving the inequality in our case is showing that $x_{j+1}-y_{j+1} \leq x_{j}-y_{j}$ since this shows that once $x_{j}-y_{j} \leq 0$, that is true for larger j

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Thus the key to proving the inequality in our case is showing that $x_{j+1}-y_{j+1} \leq x_{j}-y_{j}$ since this shows that once $x_{j}-y_{j} \leq 0$, that is true for larger j proving the single sign change required for the Lemma.

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Thus the key to proving the inequality in our case is showing that $x_{j+1}-y_{j+1} \leq x_{j}-y_{j}$ since this shows that once $x_{j}-y_{j} \leq 0$, that is true for larger j proving the single sign change required for the Lemma. What we need is thus equivalent to $y_{j}-y_{j+1} \leq x_{j}-x_{j+1}$.

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Thus the key to proving the inequality in our case is showing that $x_{j+1}-y_{j+1} \leq x_{j}-y_{j}$ since this shows that once $x_{j}-y_{j} \leq 0$, that is true for larger j proving the single sign change required for the Lemma. What we need is thus equivalent to $y_{j}-y_{j+1} \leq x_{j}-x_{j+1}$. This in turn is saying for the function $\psi(x)=3\left(x+\frac{1}{2}\right)^{2}$ that

The Proof

Introduction

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

Thus the key to proving the inequality in our case is showing that $x_{j+1}-y_{j+1} \leq x_{j}-y_{j}$ since this shows that once $x_{j}-y_{j} \leq 0$, that is true for larger j proving the single sign change required for the Lemma. What we need is thus equivalent to $y_{j}-y_{j+1} \leq x_{j}-x_{j+1}$. This in turn is saying for the function $\psi(x)=3\left(x+\frac{1}{2}\right)^{2}$ that

$$
m<p \Rightarrow \psi(m+1)-\psi(m) \leq \psi(p+1)-\psi(p)
$$

The Proof

Introduction

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

Thus the key to proving the inequality in our case is showing that $x_{j+1}-y_{j+1} \leq x_{j}-y_{j}$ since this shows that once $x_{j}-y_{j} \leq 0$, that is true for larger j proving the single sign change required for the Lemma. What we need is thus equivalent to $y_{j}-y_{j+1} \leq x_{j}-x_{j+1}$. This in turn is saying for the function $\psi(x)=3\left(x+\frac{1}{2}\right)^{2}$ that

$$
m<p \Rightarrow \psi(m+1)-\psi(m) \leq \psi(p+1)-\psi(p)
$$

which is true by convexity of ψ.

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

For S integral, one can't just take positive j 's since $j=0$ occurs once and other j values twice.

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

For S integral, one can't just take positive j 's since $j=0$ occurs once and other j values twice. One can still define x and y.

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

For S integral, one can't just take positive j 's since $j=0$ occurs once and other j values twice. One can still define x and y. For example if $n=7$,

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

For S integral, one can't just take positive j 's since $j=0$ occurs once and other j values twice. One can still define x and y. For example if $n=7$,

$$
\begin{aligned}
& \mathbf{x}=22,22,11,11,2,2,0 \\
& \mathbf{y}=14,13,13,10,10,5,5
\end{aligned}
$$

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the Conjecture

From One to Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

For S integral, one can't just take positive j 's since $j=0$ occurs once and other j values twice. One can still define x and y. For example if $n=7$,

$$
\begin{aligned}
& \mathbf{x}=22,22,11,11,2,2,0 \\
& \mathbf{y}=14,13,13,10,10,5,5
\end{aligned}
$$

If you have sharp eyes, you'll notice that $x-y$ has three sign shifts, not one so the lemma doesn't work.

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to

Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

For S integral, one can't just take positive j 's since $j=0$ occurs once and other j values twice. One can still define x and y. For example if $n=7$,

$$
\begin{aligned}
& \mathbf{x}=22,22,11,11,2,2,0 \\
& \mathbf{y}=14,13,13,10,10,5,5
\end{aligned}
$$

If you have sharp eyes, you'll notice that $x-y$ has three sign shifts, not one so the lemma doesn't work. Nevertheless, using $22+22 \geq 14+13+13$ allows one to prove that $\mathbf{x} \succ \mathbf{y}$

The Proof

Introduction

Ginibre

Wells' Framework
Wells' Big
Theorem
Examples
More on the
Conjecture
From One to

Three Authors

Proof of The Inequality

$$
\sum_{j=-S}^{S}\left(3 j^{2}-S(S+1)\right)^{2 m+1} \geq 0
$$

For S integral, one can't just take positive j 's since $j=0$ occurs once and other j values twice. One can still define x and y. For example if $n=7$,

$$
\begin{aligned}
& \mathbf{x}=22,22,11,11,2,2,0 \\
& \mathbf{y}=14,13,13,10,10,5,5
\end{aligned}
$$

If you have sharp eyes, you'll notice that $x-y$ has three sign shifts, not one so the lemma doesn't work. Nevertheless, using $22+22 \geq 14+13+13$ allows one to prove that $\mathbf{x} \succ \mathbf{y}$ and a similar trick works for all integral S.

