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Based on

Long-time asymptotics for the Toda shock problem: Non-overlapping
spectra, with I. Egorova and J. Michor, Zh. Mat. Fiz. Anal. Geom.
14, 406–451 (2018)

Long-time asymptotics for Toda shock waves in the modulation
region, with I. Egorova, J. Michor, and A. Pryimak, arXiv:2001.05184

Gerald Teschl (University of Vienna) Toda shock waves Linz, 2022 2 / 25

http://arxiv.org/abs/2001.05184


The Toda equation

Motion of a chain of particles coupled via nonlinear springs
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q(n, t)

with potential

V (r) = e−r + r − 1 =
r2

2
− r3

6
+ O(r4).

Applications: Used to model Langmuir oscillations in plasma physics, to
investigate conducting polymers, in quantum cohomology, etc. (several
monographs about the Toda equation).
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Flaschka’s variables

In Flaschka’s variables

a(n, t) =
1

2
e−(q(n + 1, t)− q(n, t))/2, b(n, t) = −1

2
q̇(n, t)

the Toda equation explicitly reads:

ȧ(n, t) = a(t)
(
b(n + 1, t)− b(n, t)

)
,

ḃ(n, t) = 2
(
a(n, t)2 − a(n − 1, t)2

)
.

Here ˙ = d
dt .
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Integrability: The isospectral problem

More specific, we consider the Cauchy problem for the Toda lattice
equation with initial data which is asymptotically constant

a(n, 0)→ 1

2
, b(n, 0)→ 0, as |n| → −∞.

Hence the corresponding operator L is a small perturbation of the
background operator

(L0y)(n) :=
1

2
y(n − 1) +

1

2
y(n + 1).

One can show that this asymptotic behavior is preserved by the time
evolution.
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Lax pairs and integrability

The Toda lattice admits the Lax representation: d
dtL = [L,P],

(L(t)y)(n) = a(n − 1, t)y(n − 1) + b(n, t)y(n) + a(n, t)y(n + 1),

(P(t)y)(n) = −a(n − 1, t)y(n − 1) + a(n, t)y(n + 1).

Spectrum is preserved: L(t) = U(t)L(0)U(−t).
Here U is the solution of U̇(t) = P(t)U(t), U(0) = I and is unitary
since P is skew-adjoint.

Infinitely many preserved quantities tr(L(t)n − Ln0), n ∈ N.
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The inverse scattering transform

The initial value problem for the Toda lattice can be solved via the inverse
scattering transform:

a(n, 0), b(n, 0) a(n, t), b(n, t)

6
scattering
theory

?

Riemann–Hilbert
problem

S(L(0)) S(L(t))-
time evolution

The long-time asymptotics can then be found via a nonlinear steepest
descent analysis (Manakov, Its, Deift & Zhao).
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Toda shock problem

Here we consider the Cauchy problem for the Toda lattice with steplike
initial data

a(n, 0)→ a, b(n, 0)→ b, as n→ −∞,

a(n, 0)→ 1

2
, b(n, 0)→ 0, as n→ +∞.

Note that now there are two different background operators.
The Toda shock problem is the case satisfying

2a + b < −1.

Note that the spectra of the two background operators, [b − 2a, b + 2a]
and [−1, 1] are nonoverlapping in this case. Hence this condition should be
thought of a a condition on the mutual location of the background spectra.
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Toda shock problem

Classical shock problem: a(n, 0) = 1
2 , b(n, 0) = sign(n)b, b > 1.

(Note that b < −1 would be the rarefaction problem.)

Numerically the situation looks as follows:

ncr,1 n'cr,1 n'cr,2 ncr,2

n

1

2

aHn,90L

ncr,1 n'cr,1 n'cr,2 ncr,2

n

-1

-2

-3

bHn,90L

Problem: Explain/prove this picture.
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History

Numerical investigations

B. L. Holian and G. K. Straub (1978).

B. L. Holian, H. Flaschka, and D. W. McLaughlin (1981).

Theoretical

S. Venakides, P. Deift, and R. Oba (1991)

A.M. Bloch, Y. Kodama (1991, 1992)

S. Kamvissis (1993)

A. Boutet de Monvel, I. Egorova, and E. Khruslov (1997)

I. Egorova, J. Michor, and G.T. (2018)

I. Egorova and J. Michor (2021)

Also mentioned in the list of open problems by P. Deift in SIGMA (2017).
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Elements of scattering theory

The operator L(t) has a continuous spectrum S,
S = [b − 2a, b + 2a] ∪ [−1, 1] and a finite discrete spectrum. The Jacobi
equation

a(n − 1, t)y(n − 1) + b(n, t)y(n) + a(n, t)y(n + 1) = λy(n)

has two Jost solutions

φ(z , n, t) ∼ zn, n→ +∞, ψ(z , n, t) ∼ ζ−n, n→ −∞.

Two associated Joukowsky transforms of the spectral parameter:

λ =
1

2

(
z + z−1

)
= b + a

(
ζ + ζ−1

)
, |z | ≤ 1, |ζ| ≤ 1.

−1 1 b − 2a b + 2a q1 q

Q
z(λ)
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Scattering data

Wronskian of the Jost solutions (z ∈ Q):

W (z) = a(n− 1, 0)(φ(z , n− 1, 0)ψ(z , n, 0)− φ(z , n, 0)ψ(z , n− 1, 0)).

A boundary point q̃ ∈ {q, q1} of the spectrum is called resonant if
W (q̃) = 0. Here

z([b − 2a, b + 2a]) = [q1, q].

Right scattering data (for the initial conditions t = 0):

{R(z), z ∈ T; χ(z), z ∈ [q1, q]; zj , γj > 0},

where

χ(z) = 2a
(z − z−1)(ζ(z)− ζ−1(z))

|W (z)|2
= −T (z)Tleft(z),

T (z) = T (z , 0) the right transmission coefficient, λj =
zj+z−1

j

2 an
eigenvalue and γj the corresponding norming constant.
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Initial RHP – Setup

In Q introduce the vector-function m(z) = m(z , n, t)

m(z) = (m1(z),m2(z)) =
(
T (z , t)ψ(n, z , t)zn, φ(z , n, t)z−n

)
.

The solution {a(n, t), b(n, t)} can be obtained from m via:

m1(0, n, t)

m1(0, n + 1, t)
= 2a(n, t),

lim
z→0

1

2z
(m1(z , n, t)m2(z , n, t)− 1) = b(n, t).

Set Q∗ = {z : z−1 ∈ Q} and extend m(z) to Q∗ by

m(z) = m(z−1)σ1, σ1 =

(
0 1
1 0

)
.
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Initial RHP – Jump contour

Below is a visualization of the jump contour Σ consisting of the unit circle
T and two intervals:

0

T

Q

Q∗
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Initial RHP

The vector m(z) is the unique solution of the following RHP: Find a
vector-valued function m which is meromorphic in Q∪Q∗ and continuous
up to Σ except at possibly the points q±1, q±1

1 . It has simple poles at z±1
j ,

j = 1, . . . ,N, and satisfies:

the jump condition: m+(z) = m−(z)v(z), where

v(z) =



(
0 −R(z)e−2tΦ(z)

R(z)e2tΦ(z) 1

)
, z ∈ T,(

1 0

χ(z)e2tΦ(z) 1

)
, z ∈ [q, q1],

σ1(v(z−1))−1σ1, z ∈ [q−1
1 , q−1];

where

Φ(z) := Φ(z , ξ) =
1

2

(
z − z−1

)
+ ξ log z , ξ :=

n

t
,

is the right phase function.
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Initial RHP

the residue conditions:

Resz=zjm(z) = lim
z→zj

m(z)

(
0 0

−zjγje2tΦ(zj ) 0

)
,

Resz=z−1
j
m(z) = lim

z→z−1
j

m(z)

(
0 z−1

j γje
2tΦ(zj )

0 0

)
;

the symmetry condition: m(z−1) = m(z)σ1.
the normalization condition: m1(0) ·m2(0) = 1 and m1(0) > 0.
the resonant/non-resonant condition:

. If χ(z) = C (z − q̃)1/2(1 + o(1)) at q̃ then m(z) has finite limits m(q̃)
as z → q̃, q̃ ∈ {q, q1}.

. If χ(z) = C
(z−q̃)1/2 (1 + o(1)) then

m(z) =

(
C1

(z − q̃)1/2
, C2

)
(1 + o(1)), C1C2 6= 0, or

m(z) = (C1,C2(z − q̃))(1 + o(1)), z → q̃, C1C2 6= 0.

At q̃−1 an analog of the above condition holds by symmetry.
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Vector RHP vs matrix RHP

Symmetry and normalization conditions:
We use conjugation/deformation techniques preserving the vector form of
the RH problem. To ensure uniqueness we impose the following
requirements: I. All contours should be symmetric with respect to the map
z 7→ z−1.
II. For transformations of the form m̃(z) = m(z)[d(z)]−σ3 , where
σ3 =

(
1 0
0 −1

)
, and d(z) is a sectionally analytical function, we require:

(1) the jump contour Σ̂ to be symmetric; (2) d(z−1) = d−1(z) for
z ∈ C \ Σ̂; (3) d(∞) > 0.

Advantage of the vector RHP

Easy to prove the uniqueness for both, the initial and the model
RHPs;

The matrix statement of the model RHP for the shock wave case
does not have invertible solutions in the class of matrices with
L2-singularities for certain sufficiently large n, t.
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Remarks

We work with a vector RHP in comparison to a more common matrix
RHP.

The symmetry condition is important for uniqueness!

The matrix problem fails to have a nonsingular solution at certain
critical parameters (n, t).

We investigate the problem on an appropriate Riemann surface.
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Nonlinear steepest decent

Basic tools:

Contour deformation (to move the pieces of the jump into regions of
the complex domain, where they decay)

Factorization of the jump matrix (Schur complements) to separate
decaying/growing pieces (non-commutativity of matrix multiplication
causes problems)

Conjugation to replace the phase function in case the matrices cannot
be properly factorized

Scalar problems can be solved (Sokhotski–Plemelj formulas)

Problems with constant jumps can be explicitly solved on the
Riemann surface

Gerald Teschl (University of Vienna) Toda shock waves Linz, 2022 19 / 25



The original phase function

The signature table for the original phase function does not allow for a
proper deformation of the RHP.

T∗
j TkT∗

k

ReΦ < 0
ReΦ < 0ReΦ > 0

T

qq1 z0

0

q−1
1q−1

z−1
0
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The g -function

The key transformation:

m(z) 7→ m(z)et(g(z)−Φ(z))σ3.
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g -function as an Abel integral

Consider the Riemann surface associated with the function

R(λ) =
√

(λ2 − 1)((λ− b)2 − 4a2).

Let Ω0 be the Abel differential of the second kind with second order poles
at ∞± and ω be the Abel differential of the third kind with logarithmic
poles at ∞±, both normalized as

∫
a Ω0 =

∫
a ω = 0. The function

g̃(λ, ξ) =

∫ λ

1
(Ω0 + ξω) =

∫ λ

1

(λ− µ1(ξ))(λ− µ2(ξ))

R(λ)
dλ,

approximates Φ(z , ξ) as λ→∞ up to a constant.
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g -function in the right modulation region

In modulation region with each ξ we associate the Riemann surface for
R(λ, ξ) =

√
(λ2 − 1)(λ− b + 2a)(λ− α(ξ)) and

g̃(λ, ξ) =

∫ λ

1
(Ω0(ξ) + ξω(ξ)) =

∫ λ

1

(λ− µ(ξ))(λ− α(ξ))dλ

R(λ, ξ)
.

The second zero α(ξ) = y+y−1

2 ∈ (b − 2a, b + 2a) is chosen such that it
lies at the branch point!

Reg < 0Reg > 0

T

qq1

0

q−1

y−1 y
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Remaining steps

Conjugate to replace Φ by g

Contour deformation and further conjugations to remove solvable
parts (keep singularities under control!)

Solve the resulting model problem (using theta functions on the
elliptic surface)

Solve the paramtrix problem (to control the difference between the
original and the model problem)
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The end

Dear Peter, thanks for being such a great colleague
and

many more happy years!
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