Long time asymptotics of Toda shock waves

Gerald Teschl

Faculty of Mathematics
 University of Vienna
 A-1090 Vienna

Gerald.Teschl@univie.ac.at
http://www.mat.univie.ac.at/~gerald/
Complex Analysis, Spectral Theory and Approximation meet in Linz, July 2022

universität
 wien

FШF
Der Wissenschaftsfonds.

Based on

- Long-time asymptotics for the Toda shock problem: Non-overlapping spectra, with I. Egorova and J. Michor, Zh. Mat. Fiz. Anal. Geom. 14, 406-451 (2018)
- Long-time asymptotics for Toda shock waves in the modulation region, with I. Egorova, J. Michor, and A. Pryimak, arXiv:2001.05184

The Toda equation

Motion of a chain of particles coupled via nonlinear springs

with potential

$$
V(r)=\mathrm{e}^{-r}+r-1=\frac{r^{2}}{2}-\frac{r^{3}}{6}+O\left(r^{4}\right)
$$

Applications: Used to model Langmuir oscillations in plasma physics, to investigate conducting polymers, in quantum cohomology, etc. (several monographs about the Toda equation).

Flaschka's variables

In Flaschka's variables

$$
a(n, t)=\frac{1}{2} \mathrm{e}^{-(q(n+1, t)-q(n, t)) / 2}, \quad b(n, t)=-\frac{1}{2} \dot{q}(n, t)
$$

the Toda equation explicitly reads:

$$
\begin{aligned}
& \dot{a}(n, t)=a(t)(b(n+1, t)-b(n, t)) \\
& \dot{b}(n, t)=2\left(a(n, t)^{2}-a(n-1, t)^{2}\right)
\end{aligned}
$$

Here $=\frac{d}{d t}$.

Integrability: The isospectral problem

More specific, we consider the Cauchy problem for the Toda lattice equation with initial data which is asymptotically constant

$$
a(n, 0) \rightarrow \frac{1}{2}, \quad b(n, 0) \rightarrow 0, \quad \text { as }|n| \rightarrow-\infty
$$

Hence the corresponding operator L is a small perturbation of the background operator

$$
\left(L_{0} y\right)(n):=\frac{1}{2} y(n-1)+\frac{1}{2} y(n+1)
$$

One can show that this asymptotic behavior is preserved by the time evolution.

Lax pairs and integrability

- The Toda lattice admits the Lax representation: $\frac{d}{d t} L=[L, P]$,

$$
\begin{aligned}
(L(t) y)(n) & =a(n-1, t) y(n-1)+b(n, t) y(n)+a(n, t) y(n+1) \\
(P(t) y)(n) & =-a(n-1, t) y(n-1)+a(n, t) y(n+1)
\end{aligned}
$$

- Spectrum is preserved: $L(t)=U(t) L(0) U(-t)$. Here U is the solution of $\dot{U}(t)=P(t) U(t), U(0)=\mathbb{I}$ and is unitary since P is skew-adjoint.
- Infinitely many preserved quantities $\operatorname{tr}\left(L(t)^{n}-L_{0}^{n}\right), n \in \mathbb{N}$.

The inverse scattering transform

The initial value problem for the Toda lattice can be solved via the inverse scattering transform:

$$
\mathcal{S}(L(0)) \xrightarrow{\text { time evolution }} \mathcal{S}(L(t))
$$

$$
a(n, 0), b(n, 0)
$$

Riemann-Hilbert problem

The long-time asymptotics can then be found via a nonlinear steepest descent analysis (Manakov, Its, Deift \& Zhao).

Toda shock problem

Here we consider the Cauchy problem for the Toda lattice with steplike initial data

$$
\begin{aligned}
& a(n, 0) \rightarrow a, \quad b(n, 0) \rightarrow b, \quad \text { as } n \rightarrow-\infty \\
& a(n, 0) \rightarrow \frac{1}{2}, \quad b(n, 0) \rightarrow 0, \quad \text { as } n \rightarrow+\infty
\end{aligned}
$$

Note that now there are two different background operators. The Toda shock problem is the case satisfying

$$
2 a+b<-1 .
$$

Note that the spectra of the two background operators, $[b-2 a, b+2 a]$ and $[-1,1]$ are nonoverlapping in this case. Hence this condition should be thought of a a condition on the mutual location of the background spectra.

Toda shock problem

Classical shock problem: $a(n, 0)=\frac{1}{2}, b(n, 0)=\operatorname{sign}(n) b, b>1$. (Note that $b<-1$ would be the rarefaction problem.)

Numerically the situation looks as follows:

Problem: Explain/prove this picture.

History

Numerical investigations

- B. L. Holian and G. K. Straub (1978).
- B. L. Holian, H. Flaschka, and D. W. McLaughlin (1981).

Theoretical

- S. Venakides, P. Deift, and R. Oba (1991)
- A.M. Bloch, Y. Kodama $(1991,1992)$
- S. Kamvissis (1993)
- A. Boutet de Monvel, I. Egorova, and E. Khruslov (1997)
- I. Egorova, J. Michor, and G.T. (2018)
- I. Egorova and J. Michor (2021)

Also mentioned in the list of open problems by P. Deift in SIGMA (2017).

Elements of scattering theory

The operator $L(t)$ has a continuous spectrum \mathfrak{S}, $\mathfrak{S}=[b-2 a, b+2 a] \cup[-1,1]$ and a finite discrete spectrum. The Jacobi equation

$$
a(n-1, t) y(n-1)+b(n, t) y(n)+a(n, t) y(n+1)=\lambda y(n)
$$

has two Jost solutions

$$
\phi(z, n, t) \sim z^{n}, \quad n \rightarrow+\infty, \quad \psi(z, n, t) \sim \zeta^{-n}, \quad n \rightarrow-\infty .
$$

Two associated Joukowsky transforms of the spectral parameter:

$$
\lambda=\frac{1}{2}\left(z+z^{-1}\right)=b+a\left(\zeta+\zeta^{-1}\right),|z| \leq 1,|\zeta| \leq 1
$$

Scattering data

- Wronskian of the Jost solutions $(z \in \mathcal{Q})$:
$W(z)=a(n-1,0)(\phi(z, n-1,0) \psi(z, n, 0)-\phi(z, n, 0) \psi(z, n-1,0))$.
A boundary point $\tilde{q} \in\left\{q, q_{1}\right\}$ of the spectrum is called resonant if $W(\tilde{q})=0$. Here

$$
z([b-2 a, b+2 a])=\left[q_{1}, q\right] .
$$

- Right scattering data (for the initial conditions $t=0$):

$$
\left\{R(z), \quad z \in \mathbb{T} ; \quad \chi(z), \quad z \in\left[q_{1}, q\right] ; \quad z_{j}, \gamma_{j}>0\right\}
$$

where

$$
\chi(z)=2 a \frac{\left(z-z^{-1}\right)\left(\zeta(z)-\zeta^{-1}(z)\right)}{|W(z)|^{2}}=-\overline{T(z)} T_{\text {left }}(z)
$$

$T(z)=T(z, 0)$ the right transmission coefficient, $\lambda_{j}=\frac{z_{j}+z_{j}^{-1}}{2}$ an eigenvalue and γ_{j} the corresponding norming constant.

Initial RHP - Setup

In \mathcal{Q} introduce the vector-function $m(z)=m(z, n, t)$

$$
m(z)=\left(m_{1}(z), m_{2}(z)\right)=\left(T(z, t) \psi(n, z, t) z^{n}, \phi(z, n, t) z^{-n}\right) .
$$

The solution $\{a(n, t), b(n, t)\}$ can be obtained from m via:

$$
\begin{aligned}
& \frac{m_{1}(0, n, t)}{m_{1}(0, n+1, t)}=2 a(n, t) \\
& \lim _{z \rightarrow 0} \frac{1}{2 z}\left(m_{1}(z, n, t) m_{2}(z, n, t)-1\right)=b(n, t) .
\end{aligned}
$$

Set $\mathcal{Q}^{*}=\left\{z: z^{-1} \in \mathcal{Q}\right\}$ and extend $m(z)$ to \mathcal{Q}^{*} by

$$
m(z)=m\left(z^{-1}\right) \sigma_{1}, \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Initial RHP - Jump contour

Below is a visualization of the jump contour Σ consisting of the unit circle \mathbb{T} and two intervals:

Initial RHP

universität wien

The vector $m(z)$ is the unique solution of the following RHP: Find a vector-valued function m which is meromorphic in $\mathcal{Q} \cup \mathcal{Q}^{*}$ and continuous up to Σ except at possibly the points $q^{ \pm 1}, q_{1}^{ \pm 1}$. It has simple poles at $z_{j}^{ \pm 1}$, $j=1, \ldots, N$, and satisfies:

- the jump condition: $m_{+}(z)=m_{-}(z) v(z)$, where

$$
v(z)= \begin{cases}\left(\begin{array}{cc}
0 & -\overline{R(z)} \mathrm{e}^{-2 t \Phi(z)} \\
R(z) \mathrm{e}^{2 t \Phi(z)} & 1
\end{array}\right), & z \in \mathbb{T}, \\
\left(\begin{array}{cc}
1 & 0 \\
\chi(z) \mathrm{e}^{2 t \Phi(z)} & 1
\end{array}\right), & z \in\left[q, q_{1}\right] \\
\sigma_{1}\left(v\left(z^{-1}\right)\right)^{-1} \sigma_{1}, & z \in\left[q_{1}^{-1}, q^{-1}\right]\end{cases}
$$

where

$$
\Phi(z):=\Phi(z, \xi)=\frac{1}{2}\left(z-z^{-1}\right)+\xi \log z, \quad \xi:=\frac{n}{t}
$$

is the right phase function.

Initial RHP

- the residue conditions:

$$
\begin{aligned}
\operatorname{Res}_{z=z_{j}} m(z) & =\lim _{z \rightarrow z_{j}} m(z)\left(\begin{array}{cc}
0 & 0 \\
-z_{j} \gamma_{j} \mathrm{e}^{2 t \Phi\left(z_{j}\right)} & 0
\end{array}\right) \\
\operatorname{Res}_{z=z_{j}^{-1}} m(z) & =\lim _{z \rightarrow z_{j}^{-1}} m(z)\left(\begin{array}{cc}
0 & z_{j}^{-1} \gamma_{j} \mathrm{e}^{2 t \Phi\left(z_{j}\right)} \\
0 & 0
\end{array}\right) ;
\end{aligned}
$$

- the symmetry condition: $m\left(z^{-1}\right)=m(z) \sigma_{1}$.
- the normalization condition: $m_{1}(0) \cdot m_{2}(0)=1$ and $m_{1}(0)>0$.
- the resonant/non-resonant condition:
(0) If $\chi(z)=C(z-\tilde{q})^{1 / 2}(1+o(1))$ at \tilde{q} then $m(z)$ has finite limits $m(\tilde{q})$ as $z \rightarrow \tilde{q}, \tilde{q} \in\left\{q, q_{1}\right\}$.
- If $\chi(z)=\frac{C}{(z-\tilde{q})^{1 / 2}}(1+o(1))$ then

$$
\begin{aligned}
& m(z)=\left(\frac{C_{1}}{(z-\tilde{q})^{1 / 2}}, C_{2}\right)(1+o(1)), \quad C_{1} C_{2} \neq 0, \text { or } \\
& m(z)=\left(C_{1}, C_{2}(z-\tilde{q})\right)(1+o(1)), \quad z \rightarrow \tilde{q}, \quad C_{1} C_{2} \neq 0 .
\end{aligned}
$$

At \tilde{q}^{-1} an analog of the above condition holds by symmetry.

Vector RHP vs matrix RHP

Symmetry and normalization conditions:
We use conjugation/deformation techniques preserving the vector form of the RH problem. To ensure uniqueness we impose the following requirements: I. All contours should be symmetric with respect to the map $z \mapsto z^{-1}$.
II. For transformations of the form $\tilde{m}(z)=m(z)[d(z)]^{-\sigma_{3}}$, where $\sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, and $d(z)$ is a sectionally analytical function, we require:
(1) the jump contour $\hat{\Sigma}$ to be symmetric; (2) $d\left(z^{-1}\right)=d^{-1}(z)$ for $z \in \mathbb{C} \backslash \hat{\Sigma}$;
(3) $d(\infty)>0$.

Advantage of the vector RHP

- Easy to prove the uniqueness for both, the initial and the model RHPs;
- The matrix statement of the model RHP for the shock wave case does not have invertible solutions in the class of matrices with L^{2}-singularities for certain sufficiently large n, t.

Remarks

- We work with a vector RHP in comparison to a more common matrix RHP.
- The symmetry condition is important for uniqueness!
- The matrix problem fails to have a nonsingular solution at certain critical parameters (n, t).
- We investigate the problem on an appropriate Riemann surface.

Nonlinear steepest decent

Basic tools:

- Contour deformation (to move the pieces of the jump into regions of the complex domain, where they decay)
- Factorization of the jump matrix (Schur complements) to separate decaying/growing pieces (non-commutativity of matrix multiplication causes problems)
- Conjugation to replace the phase function in case the matrices cannot be properly factorized
- Scalar problems can be solved (Sokhotski-Plemelj formulas)
- Problems with constant jumps can be explicitly solved on the Riemann surface

The original phase function

The signature table for the original phase function does not allow for a proper deformation of the RHP.

The g-function

The key transformation:

$$
m(z) \mapsto m(z) \mathrm{e}^{t(g(z)-\Phi(z)) \sigma_{3}}
$$

g-function as an Abel integral

Consider the Riemann surface associated with the function

$$
\mathcal{R}(\lambda)=\sqrt{\left(\lambda^{2}-1\right)\left((\lambda-b)^{2}-4 a^{2}\right)}
$$

Let Ω_{0} be the Abel differential of the second kind with second order poles at $\infty_{ \pm}$and ω be the Abel differential of the third kind with logarithmic poles at $\infty_{ \pm}$, both normalized as $\int_{\mathfrak{a}} \Omega_{0}=\int_{\mathfrak{a}} \omega=0$. The function

$$
\tilde{g}(\lambda, \xi)=\int_{1}^{\lambda}\left(\Omega_{0}+\xi \omega\right)=\int_{1}^{\lambda} \frac{\left(\lambda-\mu_{1}(\xi)\right)\left(\lambda-\mu_{2}(\xi)\right)}{\mathcal{R}(\lambda)} d \lambda
$$

approximates $\Phi(z, \xi)$ as $\lambda \rightarrow \infty$ up to a constant.

g-function in the right modulation region

In modulation region with each ξ we associate the Riemann surface for $\mathcal{R}(\lambda, \xi)=\sqrt{\left(\lambda^{2}-1\right)(\lambda-b+2 a)(\lambda-\alpha(\xi))}$ and

$$
\tilde{g}(\lambda, \xi)=\int_{1}^{\lambda}\left(\Omega_{0}(\xi)+\xi \omega(\xi)\right)=\int_{1}^{\lambda} \frac{(\lambda-\mu(\xi))(\lambda-\alpha(\xi)) d \lambda}{\mathcal{R}(\lambda, \xi)}
$$

The second zero $\alpha(\xi)=\frac{y+y^{-1}}{2} \in(b-2 a, b+2 a)$ is chosen such that it lies at the branch point!

Remaining steps

- Conjugate to replace Φ by g
- Contour deformation and further conjugations to remove solvable parts (keep singularities under control!)
- Solve the resulting model problem (using theta functions on the elliptic surface)
- Solve the paramtrix problem (to control the difference between the original and the model problem)

Dear Peter, thanks for being such a great colleague and
 many more happy years!

