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This is about multi-parameter paraproducts, and their two weight
estimates. This also about embedding theorems of certain spaces
of holomorphic functions in the polydisc. It turns out those are
equivalent problem. It is about why Carleson quilt counterexample
does NOT hold for embeddings of Dirichlet spaces in the polydisc
while works for Hardy spaces in the polydisc.
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What are (multi)-parameter paraproducts and why they are needed.
Coifman—Meyer bilinear (bi)-parameter multipliers. Leibniz rules.
They are ubiquitous in PDE: local well-posedness of NS, KdV,
optimal smoothing in Schrédinger semi-group. Bi-parameter
Coifman—Meyer multipliers estimates were used by Kenig for
Kadamtsev—Petviashvili well-posedness.
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Geometric problems

We are given a collection of non-negative numbers {c;}cp(s)
enumerated by the family D of dyadic subintervals of unit interval
lo = [0,1]. We wish to find an assignment | — E;, | € D, of
measurable sets in such a way that

© sets E; are pairwise disjoint;
9 m(E/) = .

There is an obvious necessary condition:

VJeD(h) Y o <mJ). (1)
1€D(J)

A simple construction shows that (1) is not only necessary but also
sufficient.
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Geometric problem for dyadic intervals and dyadic cubes

d/i’)je«i,vi,a/ml | Eg | =Ly
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Geometric problem for dyadic rectangles

Now let us make the problem harder. We augment the collection
of sets in RY. It is very natural and useful to consider the
collection of dyadic rectangles DX =D x --- x D k times, k > 2.
It is much harder to prove that the condition

V. c D? Z Arx g < /L(U/X_jey/ X J) (2)
IxJes

for 1 without point masses is sufficient for the existence of the
assignment | X J — E;« 4, of measurable sets in such a way that
©Q sets £, are pairwise disjoint;

Q 1(Eixy) = ayxy.
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Combinatorial morass

ﬂ/%,i%/v\'\n@hi« -FlfL I"J —7 EI'RJ

However, several proofs exist, they are quite non-trivial, and
methods range from geometric ones, Barron—Pipher, to convex
analysis/functional analysis, Hanninen. Moreover, Hanninen proved

that dyadic rectangles can be replaced by arbitrary collection of
Borel sets.
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Hanninen

Moreover, Hanninen proved that dyadic rectangles can be replaced
by arbitrary collection of Borel sets.

(Carleson coefficients in the generality of a collection of Borel
sets). Let ji be a locally finite Borel measure on RY. Let . be a
countable collection of Borel sets. A family {as}sc.o» of
non-negative reals is Carleson (with the constant C = 1) if we have

> as < p(Q) (3)

5€.7,5CQ

for every union €2 of sets of the collection . .

Hanninen proved that the disjoint measurable assignment
S — Es exists iff {ag}sc o~ satisfies Carleson packing condition,

S S Z as < p(UsesS) (4)
Seo
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From geometry to weighted embedding

We indicate connections of the above “combinatorial” problems to

two-weight embedding theorems = two weight multi-parameter
paraproduct estimates.

1) 1 dimensional dyadic case: Let T be dyadic tree. We fix
bijection D(ly) — T, whose vertices we will still call /, and Iy is

the root of T.
Fix 1 on [0, 1]. It is one of our two weights. The second weight

lives on T and it is just a sequence of non-negative numbers
enumerated by vertices (=dyadic intervals): w :={w;}jcT.

The two-weighted problem is to find necessary and sufficient
conditions on (w, 1) to have

> w /fdu gc/lf%/u (5)

IeT 0
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Simply solved by Carleson 60's and Sawyer, 80's

There is an obvious necessary condition for (5) to hold: just plug
f=1,, J €D, to obtain in terms of (u, w):

VieD Y w-p(l)? < Culd). (6)
1€D(J)

We can now use the assignment mentioned above for

oy = 207 \We will get disjoint {E;}/ep.

Next step: One use that the dyadic maximal function with respect
to any p is bounded in L?(lp, it). This will finish the proof. The
fact that (6) is necessary and sufficient for the embedding (5) is
called Carleson—Sawyer theorem.

Carleson proved it in the 60's and used in his interpolation and
corona famous results. Sawyer's generalization appeared in the
80's. Both results are fundamental in the dyadic approach to
the theory of Calderon—Zygmund operators.
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Make life harder

Two (or multi) parameter paraproducts require a solution of a
much more involved two-weight problem. We fix a measure 1 on
[0,1]2, it is the first of two weights.

The second weight lives on T2 and it is just a sequence of
non-negative numbers enumerated by vertices (=dyadic

rectangles): w :={wjx }s jeT.
Find necessary and sufficient conditions on (w, 1) to have

> wse ([ mwrsc | fd (7)
[0,1]2
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Necessary condition. Carleson’s counter-example

Bi-tree T2 is a rooted graph with vertices being dyadic rectangles,
and the root being Iy x Iy = [0, 1]2. It is a much more complicated
graph than simple T, in particular, it has cycles. However, again
there are simple necessary condition for (12). We get one by
plugging f =1+, h,h €D.

But Carleson gave an example of weight w on T2 such that even
with ¢ = mp, Lebesgue measure on the plane, this necessary
condition is not sufficient. But there is a stronger necessary
condition.

It belongs to S.-Y. A. Chang.
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Carleson—Chang packing condition

Choose now f = luiillkx_jk. In other words choose a subset

S" € D(lp) x D(ly), consider Q = Ugrcs/R’, and choose f = 1q to
plug into (12). Then we immediately and trivially get the following
necessary for embedding (12) condition: VS’ C D(ly) x D(lp) put
(2 := Ugresr, and then

Vsuch Q, Y we-(u(R))* < Cu(Q). (8)
RCQ

Again, the assignment of disjoint Eg, R € D(ly) x D(l), is the
first step. And we know that assignment always exists.

But the second step breaks down: strong maximal (even dyadic
strong maximal) operator with respect to p is rarely bounded in
L2(w).

Question: But who said that one needs maximal operators to prove
embedding as above?
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This is what we know about embedding w.r.t to dyadic

rectangles, |

@ A.S.-Y. Chang proved that if 1 = my (or u = my) then
necessary condition (14) is sufficient and this holds for any w
on T2 (and correspondingly T¢).

@ For any i such that strong dyadic maximal function is
bounded in L2(y) (14) is sufficient and this holds for any w
on T2 (and correspondingly T¢ if we consider measure 1 on
[0,1]9).

e Moreover, if (14) is sufficient for the embedding (12) with
arbitrary w, then p is such that strong dyadic maximal
function is bounded in L?(u). This holds in any dimension d.

@ There exists w such that (14) does not hold, but the following
simplified version does hold:

Vhxh € D(lb)xD(h) Y wr-(u(R))> < Cu(h xh).
RChxh
(9)
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This is what we know about embedding w.r.t to dyadic

rectangles, Il

@ Such an example exists even with © = my (Carleson, Tao ).

@ There exists (w, i) such that (14) does hold, but the

following more complicated (but obviously necessary, plug
f = 1F into (12)) condition does not hold: VF C [0, 1]

VQ > wr- (W(RNF))* < Cu(F). (10)

@ The latter example has w having only values 1 and 0, and
moreover the support of w is a connected subgraph of T2.

@ In general the necessary and sufficient condition for
embedding (12) are unknown, and hardly can be found at all.

@ The case w =1 is interesting and has interesting applications
to complex analysis.
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This is what we know about embedding w.r.t to dyadic

rectangles, w = 1, lll

o For arbitrary y, given that w =1 (on T2 and/or T3), we can
give simple necessary and sufficient condition for the
embedding (12) to hold

@ We conjecture that the same answer holds for T9, d > 4, but
we cannot prove this.

@ Our answer for the case w =1 for T2 and T3 is
counterintuitive. Qur answer seems to contradict
Carleson’s example (but it it does not contradict it).

e Embedding (12) holds iff (for d = 2, the same answer holds
for d = 3, and this is the main result of the current talk):

Vh x 1 € D(l) x D(h) Y (u(R))* < Cop(h x ).
RChxUh
(11)

Of course constant C in (12) can be calculated by Cp in (13),
but it is a non-linear relationship.
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Weighted Poincaré inequality on Multi-trees

Consider any rooted directed graph I without directed cycles (but
possibly with cycles, like T9). It induces partial order < on
vertices, the root o is the maximal vertex.

Let [ satisfy the following. For every v € [

ft{u:v <u<o}=F(dist(v,0)),
where F is any finite function on Z. Let If(v) =} . o,<, f(v).

Theorem

Let 1w be any probability measure on graph. Inequality

[ [If — [-If du|* dp < C [ 2 holds with universal C for all f on
[ iff another inequality holds with a universal constant:

[ |12 dp < C [ f2.

So Poincaré inequality holds iff embedding holds.
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Statement of result

Embedding with w = 1 (not only)

2 2
3 .(/Xdeu) < c/{w 2dy (12)

1geT V!

holds if and only if

Vh x 1 € D(l) x D(l) Y (u(R))* < Cop(h x J1). (13)
RChxh

.

In particular, (13) implies (counter-intuitively) a much “stronger”
property: VS" C D(lp) x D(lp) put Q := Ug/css, and then

Vsuch Q, ) (u(R))* < Cu(Q). (14)
RCS2
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Two technical lemmas

First simple weighted estimate:

Lemma

Let (S,v) be a measure space and J be an operator with positive
kernel. Then for two positive functions f, g, we have

/(Jf)Zg < sup JJ*g/f2.

supp g

4
Lemma

Let T be dyadic tree, g,h >0 on T. Let Let
If(v) == >, <u<of(u), integration on T. Let g be superadditive.
Let |h < X\ onsuppg. Then

I*(gh)(v) < Ag(v) VveT.

.
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Potential theory on multi-trees. Potential, energy

Let 1« be measure on T9. Put

VE(v) = I(T* ) (v), E[p] = /wa du:/Td (" 11) .
Es :={ue T9:V*(u) <4},
VHW) =116 L0) ). Sl = [ Vidu= [ (0)?,

For d =1 trivially V§ < §. For d > 2 this is false in general. For
d =1, suplf <supg,,,¢If. For d > 2 this is false in general. So

d > 2 in general, supV# >> sup V¥ > sup V¥.
Td suppI*pu supp p

NO MAXIMUM PRINCIPLE IF d > 2.

d=1= supV“ = sup V¥ = Es[p] < d||p -
supp p

See Figures.
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Figures

4= L o = Seppf

o = Where we meadie ]I,E

I (s ) < Tf(m)
l\ => supTf <€ iv;riifeﬁ




Main tool: surrogate maximum principle

Let 1w be a measure on T2 then for any € € (0,1),
DEs[p] Se 002 ||pll' = Efu]® .

2) Moreover, Es[u] < CdeV log 5 E[u]

for any p such that ||u|| < E[y].

_4
Theorem

Let 1w be a measure on T3 then for any T € (0,1),

Es[u] < COY2||ul|Y > Efu] 2.
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Main Tool for main tool

Theorem (Majorization with small energy on bi-tree)

Let f >0 o0n T2 Letsuppf C {If <6} (eg. f=1gTI*u). Let
A > 100. Then there exists ¢ > 0 on T2 such that

© Iy > If on {If > 40\}, domain of majorization,
@ suppy C {6 < If <3)\}, support of majorant;

Q@ |5 %fﬁ f2, energy drops a lot.

Theorem (Majorization with small energy on 3-tree)

Let f >0 on T>. Letsuppf C {If <4} (eg f=1gT*u). Let
A > 100. Then there exists ¢ > 0 on T3 such that

© Iy > 1If on {If > 40\}, domain of majorization,
Q@ [:¢°S %fﬁ f2, energy drops a lot.

. . . 2
If to drop support requirement in the first theorem, then < %.
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Wrong but instructive proof by picture
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