Weighted estimates of Hardy operator and Poincaré inequality on multi-trees

based on works with N. Arcozzi, I. Holmes, P. Mozolyako, P. Zorin-Kranich
MSU and HCM Universität Bonn

Summer 2021

This is about multi-parameter paraproducts, and their two weight estimates. This also about embedding theorems of certain spaces of holomorphic functions in the polydisc. It turns out those are equivalent problem. It is about why Carleson quilt counterexample does NOT hold for embeddings of Dirichlet spaces in the polydisc while works for Hardy spaces in the polydisc.

What are (multi)-parameter paraproducts and why they are needed.
Coifman-Meyer bilinear (bi)-parameter multipliers. Leibniz rules. They are ubiquitous in PDE: local well-posedness of NS, KdV, optimal smoothing in Schródinger semi-group. Bi-parameter Coifman-Meyer multipliers estimates were used by Kenig for Kadamtsev-Petviashvili well-posedness.

Geometric problems

We are given a collection of non-negative numbers $\left\{\alpha_{l}\right\}_{l \in \mathcal{D}\left(I_{0}\right)}$ enumerated by the family \mathcal{D} of dyadic subintervals of unit interval $I_{0}=[0,1]$. We wish to find an assignment $I \rightarrow E_{I}, I \in \mathcal{D}$, of measurable sets in such a way that
(1) sets E_{I} are pairwise disjoint;
(2) $m\left(E_{l}\right)=\alpha_{l}$.

There is an obvious necessary condition:

$$
\begin{equation*}
\forall J \in \mathcal{D}\left(I_{0}\right) \quad \sum_{I \in \mathcal{D}(J)} \alpha_{I} \leq m(J) \tag{1}
\end{equation*}
$$

A simple construction shows that (1) is not only necessary but also sufficient.

Geometric problem for dyadic intervals and dyadic cubes

Geometric problem for dyadic rectangles

Now let us make the problem harder. We augment the collection of sets in \mathbb{R}^{d}. It is very natural and useful to consider the collection of dyadic rectangles $\mathcal{D}^{k}=\mathcal{D} \times \cdots \times \mathcal{D} k$ times, $k \geq 2$. It is much harder to prove that the condition

$$
\begin{equation*}
\forall \mathscr{S} \subset \mathcal{D}^{2} \quad \sum_{I \times J \in \mathscr{S}} \alpha_{I \times J} \leq \mu\left(\cup_{I \times J \in \mathscr{S}} I \times J\right) \tag{2}
\end{equation*}
$$

for μ without point masses is sufficient for the existence of the assignment $I \times J \rightarrow E_{I \times J}$, of measurable sets in such a way that
(1) sets $E_{l \times J}$ are pairwise disjoint;
(2) $\mu\left(E_{I \times J}\right)=\alpha_{I \times J}$.
assignment for $I_{x} J \rightarrow E_{I \times J}$ is more difficult.

However, several proofs exist, they are quite non-trivial, and methods range from geometric ones, Barron-Pipher, to convex analysis/functional analysis, Hänninen. Moreover, Hänninen proved that dyadic rectangles can be replaced by arbitrary collection of Bore sets.
There are

here.

Hänninen

Moreover, Hänninen proved that dyadic rectangles can be replaced by arbitrary collection of Borel sets.

Definition

(Carleson coefficients in the generality of a collection of Borel sets). Let μ be a locally finite Borel measure on \mathbb{R}^{d}. Let \mathscr{S} be a countable collection of Borel sets. A family $\left\{\alpha_{S}\right\}_{S \in \mathscr{S}}$ of non-negative reals is Carleson (with the constant $C=1$) if we have

$$
\begin{equation*}
\sum_{S \in \mathscr{S}, S \subset \Omega} \alpha_{S} \leq \mu(\Omega) \tag{3}
\end{equation*}
$$

for every union Ω of sets of the collection \mathscr{S}.
Hänninen proved that the disjoint measurable assignment $S \rightarrow E_{S}$ exists iff $\left\{\alpha_{S}\right\}_{s \in \mathscr{S}}$ satisfies Carleson packing condition,

$$
\begin{equation*}
\mathscr{S}^{\prime} \subset \mathscr{S} \quad \sum_{S \in \mathscr{S}^{\prime}} \alpha_{S} \leq \mu\left(\cup_{S \in \mathscr{S}^{\prime}} S\right) \tag{4}
\end{equation*}
$$

From geometry to weighted embedding

We indicate connections of the above "combinatorial" problems to two-weight embedding theorems = two weight multi-parameter paraproduct estimates.

1) 1 dimensional dyadic case: Let T be dyadic tree. We fix bijection $\mathcal{D}\left(I_{0}\right) \rightarrow T$, whose vertices we will still call I, and I_{0} is the root of T.
Fix μ on $[0,1]$. It is one of our two weights. The second weight lives on T and it is just a sequence of non-negative numbers enumerated by vertices (=dyadic intervals): $w:=\left\{w_{l}\right\}_{I \in T}$.
The two-weighted problem is to find necessary and sufficient conditions on (w, μ) to have

$$
\begin{equation*}
\sum_{I \in T} w_{I} \cdot\left(\int_{I} f d \mu\right)^{2} \leq C \int_{0}^{1} f^{2} d \mu \tag{5}
\end{equation*}
$$

Simply solved by Carleson 60's and Sawyer, 80's

There is an obvious necessary condition for (5) to hold: just plug $f=\mathbf{1}_{J}, J \in \mathcal{D}$, to obtain in terms of (μ, w) :

$$
\begin{equation*}
\forall J \in \mathcal{D} \quad \sum_{I \in \mathcal{D}(J)} w_{l} \cdot \mu(I)^{2} \leq C \mu(J) . \tag{6}
\end{equation*}
$$

We can now use the assignment mentioned above for $\alpha_{l}:=\frac{w_{1} \mu(I)^{2}}{C}$. We will get disjoint $\left\{E_{l}\right\}_{l \in \mathcal{D}}$.
Next step: One use that the dyadic maximal function with respect to any μ is bounded in $L^{2}\left(I_{0}, \mu\right)$. This will finish the proof. The fact that (6) is necessary and sufficient for the embedding (5) is called Carleson-Sawyer theorem.
Carleson proved it in the 60's and used in his interpolation and corona famous results. Sawyer's generalization appeared in the 80 's. Both results are fundamental in the dyadic approach to the theory of Calderón-Zygmund operators.

Make life harder

Two (or multi) parameter paraproducts require a solution of a much more involved two-weight problem. We fix a measure μ on $[0,1]^{2}$, it is the first of two weights.
The second weight lives on T^{2} and it is just a sequence of non-negative numbers enumerated by vertices (=dyadic rectangles): $w:=\left\{w_{I \times J}\right\}_{l, J \in T}$.
Find necessary and sufficient conditions on (w, μ) to have

$$
\begin{equation*}
\sum_{I, J \in T} w_{I \times J} \cdot\left(\int_{I \times J} f d \mu\right)^{2} \leq C \int_{[0,1]^{2}} f^{2} d \mu \tag{7}
\end{equation*}
$$

Necessary condition. Carleson's counter-example

Bi -tree T^{2} is a rooted graph with vertices being dyadic rectangles, and the root being $I_{0} \times I_{0}=[0,1]^{2}$. It is a much more complicated graph than simple T, in particular, it has cycles. However, again there are simple necessary condition for (12). We get one by plugging $f=\mathbf{1}_{l_{1} \times J_{1}}, I_{1}, J_{1} \in \mathcal{D}$.
But Carleson gave an example of weight w on T^{2} such that even with $\mu=m_{2}$, Lebesgue measure on the plane, this necessary condition is not sufficient. But there is a stronger necessary condition.
It belongs to S.-Y. A. Chang.

Carleson-Chang packing condition

Choose now $f=\mathbf{1}_{\cup_{k=1}^{\infty} I_{k} \times J_{k}}$. In other words choose a subset $S^{\prime} \subset \mathcal{D}\left(I_{0}\right) \times \mathcal{D}\left(I_{0}\right)$, consider $\Omega=\cup_{R^{\prime} \in S^{\prime}} R^{\prime}$, and choose $f=\mathbf{1}_{\Omega}$ to plug into (12). Then we immediately and trivially get the following necessary for embedding (12) condition: $\forall S^{\prime} \subset \mathcal{D}\left(I_{0}\right) \times \mathcal{D}\left(I_{0}\right)$ put $\Omega:=\cup_{R^{\prime} \in S^{\prime}}$, and then

$$
\begin{equation*}
\forall \text { such } \Omega, \quad \sum_{R \subset \Omega} w_{R} \cdot(\mu(R))^{2} \leq C \mu(\Omega) . \tag{8}
\end{equation*}
$$

Again, the assignment of disjoint $E_{R}, R \in \mathcal{D}\left(I_{0}\right) \times \mathcal{D}\left(I_{0}\right)$, is the first step. And we know that assignment always exists.
But the second step breaks down: strong maximal (even dyadic strong maximal) operator with respect to μ is rarely bounded in $L^{2}(\mu)$.
Question: But who said that one needs maximal operators to prove embedding as above?

This is what we know about embedding w.r.t to dyadic rectangles, I

- A. S.-Y. Chang proved that if $\mu=m_{2}$ (or $\mu=m_{d}$) then necessary condition (14) is sufficient and this holds for any w on T^{2} (and correspondingly T^{d}).
- For any μ such that strong dyadic maximal function is bounded in $L^{2}(\mu)(14)$ is sufficient and this holds for any w on T^{2} (and correspondingly T^{d} if we consider measure μ on $\left.[0,1]^{d}\right)$.
- Moreover, if (14) is sufficient for the embedding (12) with arbitrary w, then μ is such that strong dyadic maximal function is bounded in $L^{2}(\mu)$. This holds in any dimension d.
- There exists w such that (14) does not hold, but the following simplified version does hold:

$$
\begin{equation*}
\forall I_{1} \times J_{1} \in \mathcal{D}\left(I_{0}\right) \times \mathcal{D}\left(I_{0}\right) \quad \sum_{R \subset I_{1} \times J_{1}} w_{R} \cdot(\mu(R))^{2} \leq C \mu\left(I_{1} \times J_{1}\right) . \tag{9}
\end{equation*}
$$

This is what we know about embedding w.r.t to dyadic rectangles, II

- Such an example exists even with $\mu=m_{2}$ (Carleson, Tao).
- There exists (w, μ) such that (14) does hold, but the following more complicated (but obviously necessary, plug $f=\mathbf{1}_{F}$ into (12)) condition does not hold: $\forall F \subset[0,1]^{2}$

$$
\begin{equation*}
\forall \Omega \quad \sum_{R \subset \Omega} w_{R} \cdot(\mu(R \cap F))^{2} \leq C \mu(F) \tag{10}
\end{equation*}
$$

- The latter example has w having only values 1 and 0 , and moreover the support of w is a connected subgraph of T^{2}.
- In general the necessary and sufficient condition for embedding (12) are unknown, and hardly can be found at all.
- The case $w \equiv 1$ is interesting and has interesting applications to complex analysis.

This is what we know about embedding w.r.t to dyadic rectangles, $w \equiv 1$, III

- For arbitrary μ, given that $w \equiv 1$ (on T^{2} and/or T^{3}), we can give simple necessary and sufficient condition for the embedding (12) to hold
- We conjecture that the same answer holds for $T^{d}, d \geq 4$, but we cannot prove this.
- Our answer for the case $w \equiv 1$ for T^{2} and T^{3} is counterintuitive. Our answer seems to contradict Carleson's example (but it it does not contradict it).
- Embedding (12) holds iff (for $d=2$, the same answer holds for $d=3$, and this is the main result of the current talk):

$$
\begin{equation*}
\forall I_{1} \times J_{1} \in \mathcal{D}\left(I_{0}\right) \times \mathcal{D}\left(I_{0}\right) \quad \sum_{R \subset I_{1} \times J_{1}}(\mu(R))^{2} \leq C_{0} \mu\left(I_{1} \times J_{1}\right) \tag{11}
\end{equation*}
$$

Of course constant C in (12) can be calculated by C_{0} in (13), but it is a non-linear relationship.

Weighted Poincaré inequality on Multi-trees

Consider any rooted directed graph 「 without directed cycles (but possibly with cycles, like T^{d}). It induces partial order \leq on
vertices, the root o is the maximal vertex.
Let Γ satisfy the following. For every $v \in \Gamma$

$$
\sharp\{u: v \leq u \leq o\}=F(\operatorname{dist}(v, o)),
$$

where F is any finite function on \mathbb{Z}_{+}. Let $\mathbb{I} f(v):=\sum_{u: v \leq u \leq o} f(u)$.

Theorem

Let μ be any probability measure on graph. Inequality
$\int_{\Gamma}\left|\mathbb{I} f-\int_{\Gamma} \mathbb{I} f d \mu\right|^{2} d \mu \leq C \int_{\Gamma} f^{2}$ holds with universal C for all f on
Γ iff another inequality holds with a universal constant:
$\int_{\Gamma}|\mathbb{I} f|^{2} d \mu \leq \tilde{C} \int_{\Gamma} f^{2}$.
So Poincaré inequality holds iff embedding holds.

Statement of result

Theorem

Embedding with $w \equiv 1$ (not only)

$$
\begin{equation*}
\sum_{I, J \in T} \cdot\left(\int_{I \times J} f d \mu\right)^{2} \leq C \int_{[0,1]^{2}} f^{2} d \mu \tag{12}
\end{equation*}
$$

holds if and only if

$$
\begin{equation*}
\forall I_{1} \times J_{1} \in \mathcal{D}\left(I_{0}\right) \times \mathcal{D}\left(I_{0}\right) \quad \sum_{R \subset I_{1} \times J_{1}}(\mu(R))^{2} \leq C_{0} \mu\left(I_{1} \times J_{1}\right) . \tag{13}
\end{equation*}
$$

In particular, (13) implies (counter-intuitively) a much "stronger" property: $\forall S^{\prime} \subset \mathcal{D}\left(I_{0}\right) \times \mathcal{D}\left(I_{0}\right)$ put $\Omega:=\cup_{R^{\prime} \in S^{\prime}}$, and then

$$
\begin{equation*}
\forall \text { such } \Omega, \quad \sum_{R \subset \Omega}(\mu(R))^{2} \leq C \mu(\Omega) . \tag{14}
\end{equation*}
$$

Figure
Huge overlapping of dyadic |rectangles.

Two technical lemmas

First simple weighted estimate:

Lemma

Let (S, ν) be a measure space and J be an operator with positive kernel. Then for two positive functions f, g, we have

$$
\int(J f)^{2} g \leq \sup _{\operatorname{supp} g} J J^{*} g \int f^{2}
$$

Lemma

Let T be dyadic tree, $g, h \geq 0$ on T. Let Let If $(v):=\sum_{u: v \leq u \leq 0} f(u)$, integration on T. Let g be superadditive. Let $I h \leq \lambda$ on supp g. Then

$$
I^{*}(g h)(v) \leq \lambda g(v) \quad \forall v \in T
$$

Potential theory on multi-trees. Potential, energy

Let μ be measure on T^{d}. Put

$$
\begin{gathered}
\mathbb{V}^{\mu}(v)=\mathbb{I}\left(\mathbb{I}^{*} \mu\right)(v), \mathcal{E}[\mu]=\int_{T^{d}} \mathbb{V}^{\mu} d \mu=\int_{T^{d}}\left(\mathbb{I}^{*} \mu\right)^{2} . \\
E_{\delta}:=\left\{u \in T^{d}: \mathbb{V}^{\mu}(u) \leq \delta\right\} . \\
\mathbb{V}_{\delta}^{\mu}(v)=\mathbb{I}\left(\mathbf{1}_{E_{\delta}} \mathbb{I}^{*} \mu\right)(v), \mathcal{E}_{\delta}[\mu]=\int_{T^{d}} \mathbb{V}_{\delta}^{\mu} d \mu=\int_{E_{\delta}}\left(\mathbb{I}^{*} \mu\right)^{2} .
\end{gathered}
$$

For $d=1$ trivially $\mathbb{V}_{\delta}^{\mu} \leq \delta$. For $d \geq 2$ this is false in general. For $d=1, \sup \mathbb{I} f \leq \sup _{\text {supp } f} \mathbb{I} f$. For $d \geq 2$ this is false in general. So

$$
d \geq 2 \text { in general, } \sup _{T^{d}} \mathbb{V}^{\mu} \gg \sup _{\text {supp } \mathbb{I}^{*} \mu} \mathbb{V}^{\mu} \geq \sup _{\text {supp } \mu} \mathbb{V}^{\mu}
$$

NO MAXIMUM PRINCIPLE IF $d \geq 2$.

$$
d=1 \Rightarrow \sup _{T} \mathbb{V}^{\mu}=\sup _{\operatorname{supp} \mu} \mathbb{V}^{\mu} \Rightarrow \mathbb{E}_{\delta}[\mu] \leq \delta\|\mu\|
$$

See Figures.

Figures

Main tool: surrogate maximum principle

Theorem

Let μ be a measure on T^{2}, then for any $\varepsilon \in(0,1)$,

$$
\begin{gathered}
\text { 1) } \mathbb{E}_{\delta}[\mu] \lesssim_{\varepsilon} \delta^{1-\varepsilon}\|\mu\|^{1-\varepsilon} \mathbb{E}[\mu]^{\varepsilon} \\
\text { 2) Moreover, } \quad \mathbb{E}_{\delta}[\mu] \leq C \delta e^{\sqrt{\log \frac{1}{\delta}}} \mathbb{E}[\mu]
\end{gathered}
$$

for any μ such that $\|\mu\| \leq \mathbb{E}[\mu]$.

Theorem

Let μ be a measure on T^{3}, then for any $\tau \in(0,1)$,

$$
\mathbb{E}_{\delta}[\mu] \leq C \delta^{1 / 2}\|\mu\|^{1 / 2} \mathbb{E}[\mu]^{1 / 2}
$$

Main Tool for main tool

Theorem (Majorization with small energy on bi-tree)

Let $f \geq 0$ on T^{2}. Let supp $f \subset\{\mathbb{I f} \leq \delta\}$ (e.g. $f=\mathbf{1}_{E_{\delta}} \mathbb{I}^{*} \mu$). Let
$\lambda \geq 10 \delta$. Then there exists $\varphi \geq 0$ on T^{2} such that
(1) $\mathbb{I} \varphi \geq \mathbb{I} f$ on $\{\mathbb{I} f \geq 40 \lambda\}$, domain of majorization;
(2) $\operatorname{supp} \varphi \subset\{\delta<\mathbb{I} f \leq 3 \lambda\}$, support of majorant;
(3) $\int_{T^{2}} \varphi^{2} \lesssim \frac{\delta}{\lambda} \int_{T^{2}} f^{2}$, energy drops a lot.

Theorem (Majorization with small energy on 3-tree)

Let $f \geq 0$ on T^{3}. Let supp $f \subset\{\mathbb{I f} f \leq \delta\}$ (e.g. $f=\mathbf{1}_{E_{\delta}} \mathbb{I}^{*} \mu$). Let
$\lambda \geq 10 \delta$. Then there exists $\varphi \geq 0$ on T^{3} such that
(1) $\mathbb{I} \varphi \geq \mathbb{I} f$ on $\{\mathbb{I} f \geq 40 \lambda\}$, domain of majorization;
(2) $\int_{T^{3}} \varphi^{2} \lesssim \frac{\delta}{\lambda} \int_{T^{3}} f^{2}$, energy drops a lot.

If to drop support requirement in the first theorem, then $\lesssim \frac{\delta^{2}}{\lambda^{2}}$.

Wrong but instructive proof by picture

$$
\begin{aligned}
& (\text { II f })(6) \leq \delta \\
& 0=\operatorname{supp} f \\
& (\text { II f })(w) \geq \lambda \Rightarrow \\
& \#\left\|\geqslant \frac{\lambda}{\delta} \#\right\|
\end{aligned}
$$

\Rightarrow distribute
II $f(v) \geq 40 \lambda$ over

The mistake is: The pictures above will be built $\forall v$: If $(v) \geq 40 \lambda$.
The problem is they are not independent pictures.
The difficulty is to glue, to reconcile, the above constaction on all those pictures simultaneously.

Application to Carleson embedding on poly-discs.
Te a space of holomorphic functions on $\mathbb{D}^{2}, \mathbb{D}^{3}$,
\mathbb{D}^{d}, \ldots.

$$
\begin{aligned}
& \text { Ecg. } H=H^{2}\left(\mathbb{D}^{2}\right)= \\
& =\left\{f(z, \omega)=\sum_{n, m>0} a_{n m} z^{n} z^{m}: \sum\left|a_{n m}\right|^{2}<\infty\right\} \text {. } \\
& \text { Or J }=\operatorname{Din}_{n, n}^{n, m \geq 0}\left(\mathbb{D}^{2}\right)= \\
& =\left\{f(z, w):\left.\sum_{n, m \geqslant 0}^{s_{n}, s_{2}}(1+n)^{s}(1+m)^{s} \backslash a_{n m}\right|^{2}<\infty\right\} \text {. } \\
& s_{1}=s_{2}=1=\text { Dirichlet space. }
\end{aligned}
$$

Carlson measures for te are measures on $\mathbb{D}^{2}\left(\right.$ or $\left.\mathbb{D}^{3}, \ldots, \mathbb{D}^{d}\right)$ such that
id: $H \rightarrow L^{2}(\mu)$ is bounded.
That is $\exists C<\infty \quad \forall f \in \mathcal{H}$

$$
\int_{\mathbb{D}^{2}} \mid f\left\|^{2} d \mu(z, w) \leqslant C\right\| f \|_{\mathcal{L}}^{2} .
$$

Theorem μ is Carleson measure for Dirichlet space \Leftrightarrow natural $\nu=\nu(\mu)$ on T^{2} is embedding $(W \equiv 1, \nu)$ as before. \cdot

There is the same results for $0<s_{i} \leq 1$. But NoT for $s_{i}=0$.
Embedding measures for $H^{2}\left(\mathbb{D}^{2}\right)$ are

NOT described.
Conj: These are Chang-Carleson measures.
"Proof". First Chang-Carleson measures on \mathbb{D}^{2}. we saw them on T^{2}, now on \mathbb{C}_{+}^{2} Tents:
$\forall \Omega \subset \mathbb{R} \times \mathbb{R}$ open, tent $T(\Omega)$ is

$$
\{z=\left(z_{1}, z_{2}\right):(\underbrace{\left(x_{1}-y_{1}, x_{1}+y_{1}\right)}_{\text {interval }} \times(\underbrace{x_{2}-y_{2}, x_{2}+y_{2}}_{\text {interval }})
$$

but in \mathbb{R}^{4}
\mathcal{V} is Chang - Carleson \Leftarrow

$$
\begin{equation*}
\nu(T(\Omega)) \leq C|\Omega| \forall \text { open } \Omega \text {. } \tag{*}
\end{equation*}
$$

Def Involutions: $\left(z_{1}, z_{2}\right) \rightarrow\left(-\bar{z}_{1}, z_{2}\right)\left(\mathbb{C}_{+}^{2} \rightarrow \mathbb{C}_{+}^{2}\right.$
Def Property ग of $\begin{aligned} & \left(z_{1}, z_{2}\right) \rightarrow\left(z_{1},-\bar{z}_{2}\right) \\ & \text { measures }\end{aligned} \mathbb{C}_{+}^{2}$ is inv. inv. property if $v^{* 1}, v^{* 2} \in \mathcal{P}$ if $\gamma \in \mathcal{P}$.
$(*)$ is involution inv property.
Question (OPEN). Is
id: $H^{2}\left(\mathbb{C}_{+}^{2}\right) \rightarrow L^{2}\left(\mathbb{C}_{+}^{2}, \nu\right)$ inv. inv.?
Answer is YES if

$$
\begin{aligned}
& \Gamma_{\bar{\varphi}}: H^{2}\left(\mathbb{C}_{+}^{2}\right) \rightarrow H^{2}\left(\mathbb{C}_{-}^{2}\right) \Leftrightarrow \varphi \in B M O_{\text {Ch }} \\
& \Leftrightarrow\left|\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{2}} \varphi\left(z_{1}, z_{2}\right)\right| I_{m z_{1}}^{2} \text { In }_{2} z_{2} \text { dom }\left(z_{2}\right) d m_{2}\left(z_{2}\right)
\end{aligned}
$$

Satisfies ($*$) (三 is Chang-Fefferrarmeasure).
Explanation. If \Rightarrow were true, then

$$
\begin{aligned}
& \Gamma_{\bar{\varphi}}: H^{2}\left(\mathbb{C}_{+}^{2}\right) \longrightarrow H^{2}\left(\mathbb{T}_{+}^{2}, L^{2}(\nu)\right) \\
& \Leftrightarrow\left\|\frac{\partial}{\partial z_{1}} \frac{\partial}{\partial z_{2}} \varphi\left(z_{1}, z_{2}\right)\right\|_{L^{2}(v)}^{2} I_{m} z_{1} I_{m} z_{2} d m_{2}\left(z_{1}\right) d m_{2}\left(z_{2}\right)
\end{aligned}
$$

Satisfies (*). Here $\varphi \in H^{\infty}\left(L^{2}(\nu)\right)$.
Lemma ν : id: $H^{2}\left(\mathbb{C}_{+}^{2}\right) \rightarrow L^{2}(\nu)(1)$

$$
\phi(w, x):=\frac{\left(\operatorname{Im} w_{1}\right)^{1 / 2}}{x_{1}-\bar{w}_{1}} \cdot \frac{\left(\operatorname{Im} w_{2}\right)^{1 / 2}}{x_{2}-\bar{w}_{2}} .
$$

Denote $\varphi(x):=\Phi(\cdot, x): \mathbb{R} \times \mathbb{R} \rightarrow L^{2}\left(\mathbb{C}_{2}, v\right)$.
Then $(1) \Leftrightarrow \Gamma_{\bar{\varphi}}: H^{2}\left(\mathbb{C}_{+}^{2}\right) \rightarrow H^{2}-\left(\mathbb{C}_{+}^{2}, L^{2}(\nu)\right),(2)$
Proof. Easy computation.
Theorem/ Question, id: $H^{2}\left(\mathbb{C}_{+}^{2}\right) \rightarrow L^{2}(\nu)$ ld
$\Rightarrow \nu$ is inv. under involutions.

$$
\begin{aligned}
\Rightarrow & \int|f(z, \bar{w})|^{2} d \nu \leq C\|f\|_{H^{2}}^{2}\left(\mathbb{\sigma}_{+}^{2}\right) \\
& \int|f(\bar{z}, w)|^{2} d \nu \leq C\|f\|_{H^{2}\left(\mathbb{C}_{+}^{2}\right)} \\
& \int|f(\bar{z}, \bar{w})|^{2} d \nu \leq C\|f\|_{H^{2}}^{2}\left(\mathbb{C}_{+}^{2}\right) \\
\Rightarrow & \text { Bison }_{1,2}: L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{C}_{+}^{2}, \nu\right) \\
& \text { sherator }
\end{aligned}
$$

is a bounded operator
Chang
ν is Chang-Carleson measure.

Why Question $\Rightarrow \nu$ inv. under involutions

$$
\begin{aligned}
& \nu \longrightarrow \nu_{1}^{\nu}\left(w_{1}, w_{2}\right) \longrightarrow\left(-\bar{w}_{1}, w_{2}\right) \\
& \operatorname{Im} z_{1} \operatorname{Im} z_{2}| | \partial_{z_{1}} \partial_{z_{2}} \varphi_{1}^{*} \|_{L^{2}(v)}^{2}=\int_{\Delta^{2}} \frac{\operatorname{Im} z_{1} \operatorname{Im} z_{2}+\left.w_{1}\right|^{4}\left|z_{2}-\bar{w}_{2}\right|^{4}}{d v\left(w_{1} w_{2}\right)}
\end{aligned}
$$

Is it Carlson - Chang measure density?
Yes, be caus C-C is invariant under s $\left(x_{1}, x_{2}\right) \rightarrow\left(-x_{1}, x_{2}\right)$

$$
\left.\left(z_{1}, z_{2}\right) \overrightarrow{(}-\bar{z}_{1}, z_{2}\right)
$$

So to check C-C property is the same as to check it for

$$
\int_{\mathbb{D}^{2}} \frac{I_{m} w_{1} \operatorname{Im} v_{2} I_{m} z_{1} I_{m} z_{2} d \nu\left(w_{1}, w_{2}\right)}{\left|-\bar{z}_{1}+w\right|^{4}\left|z_{2}-\bar{w}_{2}\right|^{4}}
$$

But this is Carleson because this is the same as

$$
\int_{D^{2}} \frac{\operatorname{Im} z_{1} \operatorname{Im} z_{2} \frac{d v\left(w_{1}, w_{2}\right)}{\left|z_{1}-\bar{w}_{1}\right|^{4}\left|z_{2}-\bar{w}_{2}\right|^{4}} \equiv}{}
$$

$$
\left\|\partial_{z_{1}} \partial_{z_{2}} \varphi\left(z_{1,} z_{2}\right)\right\|_{L^{2}(v)}^{2} \operatorname{Im} z_{1} \operatorname{Im} z_{2}
$$

Hence to disprove Lacey - Ferguson: it would be enough to construct embedding measure $d v\left(w_{1}, w_{2}\right)$ for $H^{2}\left(D^{2}\right)$ s.t. it is not
Carleson. Chang measure.

