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This is about multi-parameter paraproducts, and their two weight
estimates. This also about embedding theorems of certain spaces
of holomorphic functions in the polydisc. It turns out those are
equivalent problem. It is about why Carleson quilt counterexample
does NOT hold for embeddings of Dirichlet spaces in the polydisc
while works for Hardy spaces in the polydisc.
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What are (multi)-parameter paraproducts and why they are needed.
Coifman–Meyer bilinear (bi)-parameter multipliers. Leibniz rules.
They are ubiquitous in PDE: local well-posedness of NS, KdV,
optimal smoothing in Schródinger semi-group. Bi-parameter
Coifman–Meyer multipliers estimates were used by Kenig for
Kadamtsev–Petviashvili well-posedness.
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Geometric problems

We are given a collection of non-negative numbers {↵I}I2D(I0)

enumerated by the family D of dyadic subintervals of unit interval
I0 = [0, 1]. We wish to find an assignment I ! EI , I 2 D, of
measurable sets in such a way that

1 sets EI are pairwise disjoint;

2 m(EI ) = ↵I .

There is an obvious necessary condition:

8J 2 D(I0)
X

I2D(J)

↵I  m(J) . (1)

A simple construction shows that (1) is not only necessary but also
su�cient.
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Geometric problem for dyadic intervals and dyadic cubes
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Geometric problem for dyadic rectangles

Now let us make the problem harder. We augment the collection
of sets in Rd . It is very natural and useful to consider the
collection of dyadic rectangles Dk = D ⇥ · · ·⇥D k times, k � 2.
It is much harder to prove that the condition

8S ⇢ D2
X

I⇥J2S

↵I⇥J  µ([I⇥J2S I ⇥ J) (2)

for µ without point masses is su�cient for the existence of the
assignment I ⇥ J ! EI⇥J , of measurable sets in such a way that

1 sets EI⇥J are pairwise disjoint;

2 µ(EI⇥J) = ↵I⇥J .
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Combinatorial morass

However, several proofs exist, they are quite non-trivial, and
methods range from geometric ones, Barron–Pipher, to convex
analysis/functional analysis, Hänninen. Moreover, Hänninen proved
that dyadic rectangles can be replaced by arbitrary collection of
Borel sets.
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Hänninen

Moreover, Hänninen proved that dyadic rectangles can be replaced
by arbitrary collection of Borel sets.

Definition

(Carleson coe�cients in the generality of a collection of Borel
sets). Let µ be a locally finite Borel measure on Rd . Let S be a
countable collection of Borel sets. A family {↵S}S2S of
non-negative reals is Carleson (with the constant C = 1) if we have

X

S2S ,S⇢⌦

↵S  µ(⌦) (3)

for every union ⌦ of sets of the collection S .

Hänninen proved that the disjoint measurable assignment

S ! ES exists i↵ {↵S}s2S satisfies Carleson packing condition,

S 0 ⇢ S
X

S2S 0

↵S  µ([S2S 0S) (4)
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From geometry to weighted embedding

We indicate connections of the above “combinatorial” problems to

two-weight embedding theorems = two weight multi-parameter

paraproduct estimates.

1) 1 dimensional dyadic case: Let T be dyadic tree. We fix
bijection D(I0) ! T , whose vertices we will still call I , and I0 is
the root of T .
Fix µ on [0, 1]. It is one of our two weights. The second weight
lives on T and it is just a sequence of non-negative numbers
enumerated by vertices (=dyadic intervals): w := {wI}I2T .
The two-weighted problem is to find necessary and su�cient

conditions on (w , µ) to have

X

I2T
wI · (

Z

I
fdµ)2  C

Z
1

0

f 2dµ (5)

Alexander Volberg



Simply solved by Carleson 60’s and Sawyer, 80’s

There is an obvious necessary condition for (5) to hold: just plug
f = 1J , J 2 D, to obtain in terms of (µ,w):

8J 2 D
X

I2D(J)

wI · µ(I )2  Cµ(J) . (6)

We can now use the assignment mentioned above for

↵I :=
wIµ(I )2

C . We will get disjoint {EI}I2D.
Next step: One use that the dyadic maximal function with respect
to any µ is bounded in L2(I0, µ). This will finish the proof. The
fact that (6) is necessary and su�cient for the embedding (5) is
called Carleson–Sawyer theorem.
Carleson proved it in the 60’s and used in his interpolation and
corona famous results. Sawyer’s generalization appeared in the
80’s. Both results are fundamental in the dyadic approach to

the theory of Calderón–Zygmund operators.
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Make life harder

Two (or multi) parameter paraproducts require a solution of a
much more involved two-weight problem. We fix a measure µ on
[0, 1]2, it is the first of two weights.
The second weight lives on T 2 and it is just a sequence of
non-negative numbers enumerated by vertices (=dyadic
rectangles): w := {wI⇥J}I ,J2T .
Find necessary and su�cient conditions on (w , µ) to have

X

I ,J2T
wI⇥J · (

Z

I⇥J
fdµ)2  C

Z

[0,1]2
f 2dµ (7)
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Necessary condition. Carleson’s counter-example

Bi-tree T 2 is a rooted graph with vertices being dyadic rectangles,
and the root being I0 ⇥ I0 = [0, 1]2. It is a much more complicated
graph than simple T , in particular, it has cycles. However, again
there are simple necessary condition for (12). We get one by
plugging f = 1I1⇥J1 , I1, J1 2 D.

But Carleson gave an example of weight w on T 2 such that even
with µ = m2, Lebesgue measure on the plane, this necessary
condition is not su�cient. But there is a stronger necessary
condition.
It belongs to S.-Y. A. Chang.
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Carleson–Chang packing condition

Choose now f = 1[1
k=1

Ik⇥Jk . In other words choose a subset
S 0 ⇢ D(I0)⇥D(I0), consider ⌦ = [R02S 0R 0, and choose f = 1⌦ to
plug into (12). Then we immediately and trivially get the following
necessary for embedding (12) condition: 8S 0 ⇢ D(I0)⇥D(I0) put
⌦ := [R02S 0 , and then

8 such ⌦,
X

R⇢⌦

wR · (µ(R))2  Cµ(⌦) . (8)

Again, the assignment of disjoint ER ,R 2 D(I0)⇥D(I0), is the
first step. And we know that assignment always exists.
But the second step breaks down: strong maximal (even dyadic
strong maximal) operator with respect to µ is rarely bounded in
L2(µ).
Question: But who said that one needs maximal operators to prove
embedding as above?

Alexander Volberg



This is what we know about embedding w.r.t to dyadic

rectangles, I

A. S.-Y. Chang proved that if µ = m2 (or µ = md) then
necessary condition (14) is su�cient and this holds for any w
on T 2 (and correspondingly T d).
For any µ such that strong dyadic maximal function is
bounded in L2(µ) (14) is su�cient and this holds for any w
on T 2 (and correspondingly T d if we consider measure µ on
[0, 1]d).
Moreover, if (14) is su�cient for the embedding (12) with
arbitrary w , then µ is such that strong dyadic maximal
function is bounded in L2(µ). This holds in any dimension d .
There exists w such that (14) does not hold, but the following
simplified version does hold:

8I1⇥J1 2 D(I0)⇥D(I0)
X

R⇢I1⇥J1

wR · (µ(R))2  Cµ(I1⇥J1) .

(9)
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This is what we know about embedding w.r.t to dyadic

rectangles, II

Such an example exists even with µ = m2 (Carleson, Tao ).

There exists (w , µ) such that (14) does hold, but the
following more complicated (but obviously necessary, plug
f = 1F into (12)) condition does not hold: 8F ⇢ [0, 1]2

8⌦
X

R⇢⌦

wR · (µ(R \ F ))2  Cµ(F ) . (10)

The latter example has w having only values 1 and 0, and
moreover the support of w is a connected subgraph of T 2.

In general the necessary and su�cient condition for
embedding (12) are unknown, and hardly can be found at all.

The case w ⌘ 1 is interesting and has interesting applications
to complex analysis.
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This is what we know about embedding w.r.t to dyadic

rectangles, w ⌘ 1, III

For arbitrary µ, given that w ⌘ 1 (on T 2 and/or T 3), we can
give simple necessary and su�cient condition for the
embedding (12) to hold
We conjecture that the same answer holds for T d , d � 4, but
we cannot prove this.
Our answer for the case w ⌘ 1 for T 2 and T 3 is
counterintuitive. Our answer seems to contradict

Carleson’s example (but it it does not contradict it).
Embedding (12) holds i↵ (for d = 2, the same answer holds
for d = 3, and this is the main result of the current talk):

8I1 ⇥ J1 2 D(I0)⇥D(I0)
X

R⇢I1⇥J1

(µ(R))2  C0µ(I1 ⇥ J1) .

(11)
Of course constant C in (12) can be calculated by C0 in (13),
but it is a non-linear relationship.
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Weighted Poincaré inequality on Multi-trees

Consider any rooted directed graph � without directed cycles (but
possibly with cycles, like T d). It induces partial order  on
vertices, the root o is the maximal vertex.
Let � satisfy the following. For every v 2 �

]{u : v  u  o} = F (dist(v , o)) ,

where F is any finite function on Z+. Let If (v) :=
P

u:vuo f (u).

Theorem

Let µ be any probability measure on graph. InequalityR
�
|If �

R
�
If dµ|2 dµ  C

R
�
f 2 holds with universal C for all f on

� i↵ another inequality holds with a universal constant:R
�
|If |2 dµ  C̃

R
�
f 2.

So Poincaré inequality holds i↵ embedding holds.
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Statement of result

Theorem

Embedding with w ⌘ 1 (not only)

X

I ,J2T
·(
Z

I⇥J
fdµ)2  C

Z

[0,1]2
f 2dµ (12)

holds if and only if

8I1 ⇥ J1 2 D(I0)⇥D(I0)
X

R⇢I1⇥J1

(µ(R))2  C0µ(I1 ⇥ J1) . (13)

In particular, (13) implies (counter-intuitively) a much “stronger”
property: 8S 0 ⇢ D(I0)⇥D(I0) put ⌦ := [R02S 0 , and then

8 such ⌦,
X

R⇢⌦

(µ(R))2  Cµ(⌦) . (14)
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Two technical lemmas

First simple weighted estimate:

Lemma

Let (S , ⌫) be a measure space and J be an operator with positive
kernel. Then for two positive functions f , g , we have

Z
(Jf )2g  sup

supp g
JJ⇤g

Z
f 2 .

Lemma

Let T be dyadic tree, g , h � 0 on T . Let Let
If (v) :=

P
u:vuo f (u), integration on T . Let g be superadditive.

Let Ih  � on supp g . Then

I ⇤(gh)(v)  �g(v) 8v 2 T .
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Potential theory on multi-trees. Potential, energy

Let µ be measure on T d . Put

Vµ(v) = I
�
I⇤µ

�
(v), E [µ] =

Z

Td
Vµ dµ =

Z

Td

�
I⇤µ

�2
.

E� := {u 2 T d : Vµ(u)  �} .

Vµ
� (v) = I

�
1E�

I⇤µ
�
(v), E�[µ] =

Z

Td
Vµ
� dµ =

Z

E�

�
I⇤µ

�2
.

For d = 1 trivially Vµ
�  �. For d � 2 this is false in general. For

d = 1, sup If  supsupp f If . For d � 2 this is false in general. So

d � 2 in general, sup
Td

Vµ >> sup
supp I⇤µ

Vµ � sup
suppµ

Vµ .

NO MAXIMUM PRINCIPLE IF d � 2.

d = 1 ) sup
T

Vµ = sup
suppµ

Vµ ) E�[µ]  �kµk .

See Figures.
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Main tool: surrogate maximum principle

Theorem

Let µ be a measure on T 2, then for any " 2 (0, 1),

1)E�[µ] ." �
1�"kµk1�" E[µ]" .

2)Moreover, E�[µ]  C�e

q
log

1

� E[µ]

for any µ such that kµk  E[µ].

Theorem

Let µ be a measure on T 3, then for any ⌧ 2 (0, 1),

E�[µ]  C�1/2kµk1/2 E[µ]1/2 .
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Main Tool for main tool

Theorem (Majorization with small energy on bi-tree)

Let f � 0 on T 2. Let supp f ⇢ {If  �} (e.g. f = 1E�
I⇤µ). Let

� � 10�. Then there exists ' � 0 on T 2 such that

1 I' � If on {If � 40�}, domain of majorization;

2 supp' ⇢ {� < If  3�}, support of majorant;

3

R
T 2 '2 . �

�

R
T 2 f 2, energy drops a lot.

Theorem (Majorization with small energy on 3-tree)

Let f � 0 on T 3. Let supp f ⇢ {If  �} (e.g. f = 1E�
I⇤µ). Let

� � 10�. Then there exists ' � 0 on T 3 such that

1 I' � If on {If � 40�}, domain of majorization;

2

R
T 3 '2 . �

�

R
T 3 f 2, energy drops a lot.

If to drop support requirement in the first theorem, then . �2

�2 .
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Wrong but instructive proof by picture
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The mistake is in the pictures above
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Application to Carleson embedding
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V is Chang Carleton 7
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