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Complex Analysis, Spectral Theory and Approximation
Linz, July 5, 2022



Jacobi matrices and orthogonal polynomials Orthogonal rational functions C regularity GMP Matrices Simon’s Conjecture

Jacobi matrices and orthogonal polynomials

Let µ be a compactly supported nontrivial probability measure. Define
{pn}∞n=0 to be the orthonormal polynomials formed by applying
Gram-Schmidt in L2(µ) to {zn}∞n=0.

For supp(µ) ⊂ R, the orthonormal polynomials {pn}∞n=0 satisfy a three
term recurrence relation:

xpn(x) = an+1pn+1(x) + bn+1pn(x) + anpn−1(x), n ≥ 1

xp0(x) = a1p1(x) + b1p0(x)

for {an, bn}∞n=1 ∈ (0,∞)× R bounded sequences.

The operator of multiplication by x , Tx,dµ has a tridagonal matrix
representation in the basis {pn}∞n=0:

J =


b1 a1
a1 b2 a2

a2
. . .

. . .

. . .


called a bounded Jacobi matrix.
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Universal bounds

Let E = ess supµ be the essential support of µ and GE(·,∞) be the Green
function for C \ E at ∞.

We have the universal inequality

lim inf
n→∞

|pn(z)|1/n ≥ eGE(z,∞)

for z away from the convex hull of E.

We have another universal inequality in terms of the coefficients of the
Jacobi matrix

lim sup
n→∞

(
n∏
`=1

a`

)1/n

≤ cap(σess(J))

The latter inequality can be related back to the pn by the identity
pn(z) = 1∏n

`=1
a`
zn + l .o.t.
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Stahl-Totik Regularity

Equality in
lim

n→∞
|pn(z)|1/n = eGE(z,∞) (1)

is called Stahl-Totik regularity for the measure µ.

A Jacobi matrix is said to be regular for a set E if σess(J) = E and we have

lim
n→∞

(
n∏
`=1

a`

)1/n

= cap(σess(J)). (2)

It was first studied for the case E = [−2, 2] by Ullman 1972.

(1)⇐⇒ (2).
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Orthogonal rational functions

In our setting, we start with a nontrivial probability measure µ supported
on R, and a finite sequence C = (c1, . . . , cg+1) with ck ∈ R \ supp(µ). We
denote E = ess sup(µ).

Our sequence of orthonormal functions come from orthonormalizing the
sequence {rn}∞n=0, where r0 = 1 and for n = j(g + 1) + k, where
1 ≤ k ≤ g + 1

rn(z) =

{
1

(ck−z)j+1

z j+1

Call the sequence {τn}∞n=0.

Orthogonal polynomials are exactly the case supp(µ) ⊂ R, C = (∞), and
g = 0.
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Universal inequality for τn

We define

GE(z ,C) =

{
1

g+1

∑g+1
k=1 GE(z , ck) E is not polar

+∞ E is polar

Then,

Theorem

For all z ∈ C \ R,

lim inf
n→∞

|τn(z)|1/n ≥ eGE(z,C).
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Universal inequality on leading coefficients

Let Ln = span{r` : 0 ≤ ` ≤ n}. By the Gram-Schmidt process, there is a
κn > 0 with τn − κnrn ∈ Ln−1. We refer to κn as a leading coefficient.

We define

γk
E =

{
limz→ck (GE(z , ck) + log |z − ck |), ck 6=∞
limz→ck (GE(z , ck)− log |z |), ck =∞

and

log λk =

γ
k
E +

∑
1≤`≤g+1
6̀=k

GE(ck , c`) E is not polar

+∞ E is polar

Then:

Theorem

For all 1 ≤ k ≤ g + 1, for the subsequence n(j) = j(g + 1) + k,

lim inf
j→∞

κ
1/n(j)
n(j) ≥ λ1/(g+1)

k . (3)
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Defining C regularity

Theorem

TFAE:

(i) For some 1 ≤ k ≤ g + 1, for the subsequence n(j) = j(g + 1) + k,

lim
j→∞

κ
1/n(j)
n(j) = λ

1/(g+1)
k ;

(ii) For all 1 ≤ k ≤ g + 1, for the subsequence n(j) = j(g + 1) + k,

limj→∞ κ
1/n(j)
n(j) = λ

1/(g+1)
k ;

(iii)

lim
n→∞

(
g+1∏
`=1

κn+`

)1/n

=

(
g+1∏
k=1

λk

)1/(g+1)

(iv) For q.e. z ∈ E, we have lim supn→∞ |τn(z)|1/n ≤ 1;

(v) For some z ∈ C+, lim supn→∞ |τn(z)|1/n ≤ eGE(z,C);

(vi) For all z ∈ C, lim supn→∞ |τn(z)|1/n ≤ eGE(z,C);

(vii) Uniformly on compact subsets of C \ R, limn→∞ |τn(z)|1/n = eGE(z,C).
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Stahl-Totik regularity and C regularity

Theorem

L̄et C1,C2 be two finite sequences of elements from R \ suppµ, not necessarily
of the same length. Then µ is C1-regular if and only if it is C2-regular.

Since Stahl-Totik regularity is the case C = (∞), this immediately yields:

Corollary

Let suppµ ⊂ R. Let C be a finite sequence of elements from R \ suppµ. Then
µ is C-regular if and only if it is Stahl–Totik regular.
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Conformal invariance

Conformal invariance follows from the previous Corollary.

Theorem

Let f ∈ PSL(2,R) o {id, z 7→ −z}. If µ is a Stahl–Totik regular measure on R
and ∞ /∈ supp(f∗µ), then the pushforward measure f∗µ is also Stahl–Totik
regular.
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Weak convergence of zero counting measure

Define

νn =
1

n

∑
w :τn(w)=0

δw

and for nonpolar E,

ρE,C =
1

g + 1

g+1∑
j=1

ωE(x, cj).

Theorem

Let µ be a probability measure on R. Assume that E is not a polar set.

(a) If µ is C regular, then w-limn→∞ νn = ρE,C.

(b) If w-limn→∞ νn = ρE,C, then µ is C regular or there exists a polar set
X ⊂ E such that µ(R \ X ) = 0.
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GMP matrices

For a sequence C = (c1, . . . , cg+1) with ck =∞, we call the matrix
representation for Tx,dµ with respect to the basis of ORF a GMP matrix.
They were introduced in a Yuditskii ’18.

GMP matrices are tridiagonal block matrices

A =



B0 A0

A∗0 B1 A1

A∗1 B2 A2

A∗2
. . .

. . .

. . .


where B0 is a k × k matrix, A0 is a k × (g + 1) matrix, and Aj ,Bj for
j ≥ 1 are (g + 1)× (g + 1) matrices.

GMP matrices have the property that resolvents at the c`, ` 6= k also have
the above form.

For the sequence C = (∞), the matrix representation for Tx,dµ is a Jacobi
matrix.
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Regular GMP matrices

A relation between the κn and the nonzero entry on the outermost
diagonal of the associated GMP matrix allows us to find a notion of
regularity of a measure purely in terms of the coefficients of the GMP
matrix.

Theorem

Fix a probability measure µ with suppµ ⊂ R and a sequence C = (c1, . . . , cg+1)
with ck =∞. Then

lim sup
j→∞

(
j∏
`=1

β`

)1/j

≤ λ−1
k . (4)

Moreover, the measure µ is Stahl–Totik regular if and only if

lim
j→∞

(
j∏
`=1

β`

)1/j

= λ−1
k . (5)
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Finite gap sets and the isospectral torus

We specialize to finite gap sets,

E = [b0, a0] \
g⋃

k=1

(ak , bk),

and denote by T +
E the set of almost periodic half-line Jacobi matrices with

σess(J) = σac(J) = E. This set is called the isospectral torus.

We consider the metric on bounded Jacobi matrices given by

d(J, J̃) =
∞∑
k=1

e−k(|ak − ãk |+ |bk − b̃k |). (6)

as well as the distance to T +
E ,

d(J, T +
E ) = inf

J̃∈T +
E

d(J, J̃) = min
J̃∈T +

E

d(J, J̃).
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The Nevai and Cesàro–Nevai conditions and Simon’s Conjecture

Denote by S+ the right shift operator on `2(N), S+en = en+1. The
condition

d((S∗+)mJSm
+ , T +

E )→ 0

as m→∞ is called the Nevai condition.

Remling 2011, the Nevai condition implies regularity. The converse is
false. However, Simon 2009 conjectured

Theorem

If E ⊂ R is a compact finite gap set and J is a regular Jacobi matrix with
σess(J) = E, then

lim
N→∞

1

N

N∑
m=1

d((S∗+)mJSm
+ , T +

E ) = 0. (7)

where (7) is the Cesàro–Nevai condition.
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Special cases

Proved by Simon 2009 in the special case when E is the spectrum of a
periodic Jacobi matrix with all gaps open.

The method of proof relied on the periodic discriminant and techniques
from Damanik–Killip–Simon 2010.

Proved by Kruger 2010 for the case infn an > 0 using completely different
methods.
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The Ahlfor’s function and the Yuditskii discriminant

Our paper proves the general case extending Simon’s methods and uses
techniques of Yuditskii 2018; in particular GMP matrices and the Ahlfor’s
function.

The Ahlfor’s function Ψ for C \ E is the analytic function Ψ : C \ E→ D
with Ψ(∞) = 0 that maximizes Re(Ψ′(∞)). It has one zero ck ∈ (ak , bk)
for each 1 ≤ k ≤ g ; with ∞, these are the only zeros.

Our discriminant is

∆E(z) = Ψ(z) +
1

Ψ
.

It is a rational function with poles at the CE = (c1, . . . , cg ,∞):

∆E(z) = λg+1z + d +

g∑
k=1

λk

ck − z
.
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Proving Simon’s Conjecture

We show: regularity of J =⇒ regularity of A and its resolvents =⇒ the
block Jacobi matrix J = ∆E(A) is regular in the sense of
Damanik-Pushnitski-Simon =⇒ J satisfies a Cesàro-Nevai condition.

By modifying arguments of Yuditskii 2018, this implies J satisfies the
Cesàro-Nevai condition.



Thank you!
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