Orthogonal rational functions with real poles, root asymptotics, GMP matrices

Giorgio Young

joint work with Benjamin Eichinger and Milivoje Lukić

Complex Analysis, Spectral Theory and Approximation Linz, July 5, 2022 Jacobi matrices and orthogonal polynomials •••• Orthogonal rational functions

C regularity

GMP Matrices

Simon's Conjecture

Jacobi matrices and orthogonal polynomials

- Let μ be a compactly supported nontrivial probability measure. Define $\{p_n\}_{n=0}^{\infty}$ to be the orthonormal polynomials formed by applying Gram-Schmidt in $L^2(\mu)$ to $\{z^n\}_{n=0}^{\infty}$.
- For supp(µ) ⊂ ℝ, the orthonormal polynomials {p_n}[∞]_{n=0} satisfy a three term recurrence relation:

$$xp_n(x) = a_{n+1}p_{n+1}(x) + b_{n+1}p_n(x) + a_np_{n-1}(x), n \ge 1$$

 $xp_0(x) = a_1p_1(x) + b_1p_0(x)$

for $\{a_n, b_n\}_{n=1}^{\infty} \in (0, \infty) \times \mathbb{R}$ bounded sequences.

 The operator of multiplication by x, T_{x,dμ} has a tridagonal matrix representation in the basis {p_n}[∞]_{n=0}:

$$J = \begin{pmatrix} b_1 & a_1 & & \\ a_1 & b_2 & a_2 & \\ & \ddots & \ddots & \\ & a_2 & \ddots & \ddots \\ & & \ddots & \end{pmatrix}$$

called a bounded Jacobi matrix.

Jacobi matrices and orthogonal polynomials $\bigcirc \bullet \bigcirc$	Orthogonal rational functions	C regularity	GMP Matrices	Simon's Conjecture
Universal bounds				

- Let $E = \text{ess sup } \mu$ be the essential support of μ and $G_E(\cdot, \infty)$ be the Green function for $\overline{\mathbb{C}} \setminus E$ at ∞ .
- We have the universal inequality

$$\liminf_{n\to\infty} |p_n(z)|^{1/n} \ge e^{G_{\mathsf{E}}(z,\infty)}$$

for z away from the convex hull of E.

• We have another universal inequality in terms of the coefficients of the Jacobi matrix

$$\limsup_{n\to\infty}\left(\prod_{\ell=1}^n a_\ell\right)^{1/n} \leq \operatorname{cap}(\sigma_{\operatorname{ess}}(J))$$

• The latter inequality can be related back to the p_n by the identity $p_n(z) = \frac{1}{\prod_{\ell=1}^n a_\ell} z^n + l.o.t.$

Jacobi matrices and orthogonal polynomials	Orthogonal rational functions	C regularity	GMP Matrices	Simon's Conjecture
000				
Stahl-Totik Regularity				

• Equality in

$$\lim_{n \to \infty} |p_n(z)|^{1/n} = e^{G_{\mathsf{E}}(z,\infty)} \tag{1}$$

is called Stahl-Totik regularity for the measure μ .

• A Jacobi matrix is said to be regular for a set E if $\sigma_{\mathrm{ess}}(J) = \mathsf{E}$ and we have

$$\lim_{n\to\infty} \left(\prod_{\ell=1}^n a_\ell\right)^{1/n} = \operatorname{cap}(\sigma_{\operatorname{ess}}(J)).$$
(2)

It was first studied for the case E = [-2, 2] by Ullman 1972. • (1) \iff (2).

Jacobi matrices and orthogonal polynomials	Orthogonal rational functions	C regularity	GMP Matrices	Simon's Conjecture
Orthogonal rational functions				

- In our setting, we start with a nontrivial probability measure μ supported on ℝ, and a finite sequence C = (c₁,..., c_{g+1}) with c_k ∈ ℝ \ supp(μ). We denote E = ess sup(μ).
- Our sequence of orthonormal functions come from orthonormalizing the sequence $\{r_n\}_{n=0}^{\infty}$, where $r_0 = 1$ and for n = j(g + 1) + k, where $1 \le k \le g + 1$

$$r_n(z) = \begin{cases} \frac{1}{(\mathbf{c}_k - z)^{j+1}} \\ z^{j+1} \end{cases}$$

Call the sequence $\{\tau_n\}_{n=0}^{\infty}$.

• Orthogonal polynomials are exactly the case $supp(\mu) \subset \mathbb{R}$, $C = (\infty)$, and g = 0.

Jacobi matrices and orthogonal polynomials	Orthogonal rational functions	C regularity	GMP Matrices	Simon's Conjecture
	000			

Universal inequality for τ_n

nd orthogonal po	lynomials	Orthog	onal rational fun	ctions	C regularity	GMP Matrices	Simon's Conjecture
		000					

Universal inequality on leading coefficients

- Let $\mathcal{L}_n = \operatorname{span}\{r_\ell : 0 \le \ell \le n\}$. By the Gram-Schmidt process, there is a $\kappa_n > 0$ with $\tau_n \kappa_n r_n \in \mathcal{L}_{n-1}$. We refer to κ_n as a leading coefficient.
- We define

$$\gamma_{\mathsf{E}}^{k} = \begin{cases} \lim_{z \to \mathbf{c}_{k}} (G_{\mathsf{E}}(z, \mathbf{c}_{k}) + \log |z - \mathbf{c}_{k}|), & \mathbf{c}_{k} \neq \infty \\ \lim_{z \to \mathbf{c}_{k}} (G_{\mathsf{E}}(z, \mathbf{c}_{k}) - \log |z|), & \mathbf{c}_{k} = \infty \end{cases}$$

and

$$\log \lambda_k = \begin{cases} \gamma_{\mathsf{E}}^k + \sum_{\substack{1 \le \ell \le g+1 \\ \ell \ne k}} G_{\mathsf{E}}(\mathbf{c}_k, \mathbf{c}_\ell) & \mathsf{E} \text{ is not polar} \\ +\infty & \mathsf{E} \text{ is polar} \end{cases}$$

Then:

Theorem

For all $1 \le k \le g + 1$, for the subsequence n(j) = j(g + 1) + k,

$$\liminf_{j \to \infty} \kappa_{n(j)}^{1/n(j)} \ge \lambda_k^{1/(g+1)}.$$
(3)

Jacobi matrices and orthogonal polynomials	Orthogonal rational functions	C regularity ●○○○	GMP Matrices	Simon's Conjecture
Defining C regularity				

Theorem

TFAE:

For some $1 \le k \le g + 1$, for the subsequence n(j) = j(g + 1) + k, ٦ $\lim_{i \to \infty} \kappa_{n(j)}^{1/n(j)} = \lambda_k^{1/(g+1)};$ For all $1 \le k \le g+1$, for the subsequence n(j) = j(g+1) + k, $\lim_{i \to \infty} \kappa_{r(i)}^{1/n(j)} = \lambda_k^{1/(g+1)};$ ٢ $\lim_{n \to \infty} \left(\prod_{\ell=1}^{g+1} \kappa_{n+\ell} \right)^{1/n} = \left(\prod_{k=1}^{g+1} \lambda_k \right)^{1/(g+1)}$ For q.e. $z \in E$, we have $\limsup_{n \to \infty} |\tau_n(z)|^{1/n} \leq 1$; For some $z \in \mathbb{C}_+$, $\limsup_{n \to \infty} |\tau_n(z)|^{1/n} \leq e^{\mathcal{G}_{\mathsf{E}}(z,\mathsf{C})}$; For all $z \in \mathbb{C}$, $\limsup_{n \to \infty} |\tau_n(z)|^{1/n} \le e^{\mathcal{G}_{\mathsf{E}}(z,\mathsf{C})}$: Uniformly on compact subsets of $\mathbb{C} \setminus \mathbb{R}$, $\lim_{n \to \infty} |\tau_n(z)|^{1/n} = e^{\mathcal{G}_{\mathsf{E}}(z,\mathsf{C})}$. 1

Jacobi matrices and orthogonal polynomials

Orthogonal rational functions

C regularity ○●○○ GMP Matrices

Simon's Conjecture

Stahl-Totik regularity and C regularity

Theorem

Let C_1, C_2 be two finite sequences of elements from $\overline{\mathbb{R}} \setminus \text{supp } \mu$, not necessarily of the same length. Then μ is C_1 -regular if and only if it is C_2 -regular.

Since Stahl-Totik regularity is the case $\mathbf{C} = (\infty)$, this immediately yields:

Corollary

Let supp $\mu \subset \mathbb{R}$. Let **C** be a finite sequence of elements from $\overline{\mathbb{R}} \setminus \text{supp } \mu$. Then μ is **C**-regular if and only if it is Stahl–Totik regular.

Jacobi matrices and orthogonal polynomials	Orthogonal rational functions	C regularity ○○●○	GMP Matrices	Simon's Conjecture
Conformal invariance				

Conformal invariance follows from the previous Corollary.

Theorem

Let $f \in PSL(2, \mathbb{R}) \rtimes \{ id, z \mapsto -z \}$. If μ is a Stahl-Totik regular measure on \mathbb{R} and $\infty \notin supp(f_*\mu)$, then the pushforward measure $f_*\mu$ is also Stahl-Totik regular.

Jacobi matrices and orthogonal polynomials	Orthogonal rational functions	C regularity	GMP Matrices	Simon's Conjecture
		0000		

Weak convergence of zero counting measure

Define

$$\nu_n = \frac{1}{n} \sum_{w:\tau_n(w)=0} \delta_w$$

and for nonpolar E,

$$\rho_{\mathsf{E},\mathsf{C}} = \frac{1}{g+1} \sum_{j=1}^{g+1} \omega_{\mathsf{E}}(\mathbf{x}, \mathbf{c}_j).$$

Theorem

Let μ be a probability measure on $\overline{\mathbb{R}}$. Assume that E is not a polar set.

- **(a)** If μ is **C** regular, then w-lim_{$n\to\infty$} $\nu_n = \rho_{E,C}$.
- If w-lim_{$n\to\infty$} $\nu_n = \rho_{\mathsf{E},\mathsf{C}}$, then μ is C regular or there exists a polar set $X \subset \mathsf{E}$ such that $\mu(\mathbb{R} \setminus X) = 0$.

Jacobi matrices and orthogonal polynomials	Orthogonal rational functions	C regularity	GMP Matrices ●○	Simon's Conjecture
GMP matrices				

- For a sequence $\mathbf{C} = (\mathbf{c}_1, \dots, \mathbf{c}_{g+1})$ with $\mathbf{c}_k = \infty$, we call the matrix representation for $T_{x,d\mu}$ with respect to the basis of ORF a GMP matrix. They were introduced in a Yuditskii '18.
- GMP matrices are tridiagonal block matrices

$$A = \begin{bmatrix} B_0 & A_0 & & & \\ A_0^* & B_1 & A_1 & & \\ & A_1^* & B_2 & A_2 & \\ & & A_2^* & \ddots & \ddots \\ & & & \ddots & & \\ & & & \ddots & & \end{bmatrix}$$

where B_0 is a $k \times k$ matrix, A_0 is a $k \times (g+1)$ matrix, and A_j, B_j for $j \ge 1$ are $(g+1) \times (g+1)$ matrices.

- GMP matrices have the property that resolvents at the \mathbf{c}_{ℓ} , $\ell \neq k$ also have the above form.
- For the sequence $\mathbf{C} = (\infty)$, the matrix representation for $T_{x,d\mu}$ is a Jacobi matrix.

Jacobi matrices and orthogonal polynomials	Orthogonal rational functions	C regularity	GMP Matrices ○●	Simon's Conjecture
Regular GMP matrices				

 A relation between the κ_n and the nonzero entry on the outermost diagonal of the associated GMP matrix allows us to find a notion of regularity of a measure purely in terms of the coefficients of the GMP matrix.

Theorem

Fix a probability measure μ with supp $\mu \subset \mathbb{R}$ and a sequence $C = (c_1, \dots, c_{g+1})$ with $c_k = \infty$. Then

$$\limsup_{j \to \infty} \left(\prod_{\ell=1}^{j} \beta_{\ell} \right)^{1/j} \le \lambda_{k}^{-1}.$$
(4)

Moreover, the measure μ is Stahl–Totik regular if and only if

$$\lim_{j \to \infty} \left(\prod_{\ell=1}^{j} \beta_{\ell} \right)^{1/j} = \lambda_{k}^{-1}.$$
 (5)

			•00000
Elution were noted and the	tenen estual terror		

Finite gap sets and the isospectral torus

• We specialize to finite gap sets,

$$\mathsf{E} = [\mathbf{b}_0, \mathbf{a}_0] \setminus \bigcup_{k=1}^g (\mathbf{a}_k, \mathbf{b}_k),$$

and denote by $\mathcal{T}_{\mathsf{E}}^+$ the set of almost periodic half-line Jacobi matrices with $\sigma_{\mathrm{ess}}(J) = \sigma_{\mathrm{ac}}(J) = \mathsf{E}$. This set is called the isospectral torus.

• We consider the metric on bounded Jacobi matrices given by

$$d(J, \tilde{J}) = \sum_{k=1}^{\infty} e^{-k} (|a_k - \tilde{a}_k| + |b_k - \tilde{b}_k|).$$
 (6)

as well as the distance to $\mathcal{T}_{\mathsf{E}}^{+}\text{,}$

$$d(J, \mathcal{T}^+_{\mathsf{E}}) = \inf_{\tilde{J} \in \mathcal{T}^+_{\mathsf{E}}} d(J, \tilde{J}) = \min_{\tilde{J} \in \mathcal{T}^+_{\mathsf{E}}} d(J, \tilde{J}).$$

Jacobi matrices and orthogonal polynomials	Orthogonal rational functions	C regularity	GMP Matrices	Simon's Conjecture
				00000

The Nevai and Cesàro–Nevai conditions and Simon's Conjecture

• Denote by S_+ the right shift operator on $\ell^2(\mathbb{N})$, $S_+e_n=e_{n+1}$. The condition

$$d((S^*_+)^m JS^m_+, \mathcal{T}^+_{\mathsf{E}}) \to 0$$

as $m o \infty$ is called the Nevai condition.

• Remling 2011, the Nevai condition implies regularity. The converse is false. However, Simon 2009 conjectured

Theorem

If $E \subset \mathbb{R}$ is a compact finite gap set and J is a regular Jacobi matrix with $\sigma_{ess}(J) = E$, then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{m=1}^{N} d((S_{+}^{*})^{m} J S_{+}^{m}, \mathcal{T}_{\mathsf{E}}^{+}) = 0.$$
 (7)

where (7) is the Cesàro-Nevai condition.

Jacobi matrices and orthogonal polynomials	Orthogonal rational functions	C regularity	GMP Matrices	Simon's Conjecture
Special cases				

- Proved by Simon 2009 in the special case when E is the spectrum of a periodic Jacobi matrix with all gaps open.
- The method of proof relied on the periodic discriminant and techniques from Damanik-Killip-Simon 2010.
- Proved by Kruger 2010 for the case $\inf_n a_n > 0$ using completely different methods.

Jacobi matrices and orthogonal polynomials			Orthogonal rational functions			C regularity		GMP Matrices	Simon's Conjecture	
										000000
	A 1 1 C						 		-	

The Ahlfor's function and the Yuditskii discriminant

- Our paper proves the general case extending Simon's methods and uses techniques of Yuditskii 2018; in particular GMP matrices and the Ahlfor's function.
- The Ahlfor's function Ψ for C
 \ E is the analytic function Ψ : C
 \ E → D
 with Ψ(∞) = 0 that maximizes Re(Ψ'(∞)). It has one zero c_k ∈ (a_k, b_k)
 for each 1 ≤ k ≤ g; with ∞, these are the only zeros.
- Our discriminant is

$$\Delta_{\mathsf{E}}(z) = \Psi(z) + rac{1}{\Psi}.$$

It is a rational function with poles at the $\textbf{C}_{\text{E}}=(\textbf{c}_{1},\ldots,\textbf{c}_{g},\infty)$:

$$\Delta_{\mathsf{E}}(z) = \lambda_{g+1}z + d + \sum_{k=1}^{g} \frac{\lambda_k}{\mathbf{c}_k - z}$$

Jacobi matrices and orthogonal polynomials	Orthogonal rational functions	C regularity	GMP Matrices	Simon's Conjecture
				000000

Proving Simon's Conjecture

- We show: regularity of $J \implies$ regularity of A and its resolvents \implies the block Jacobi matrix $\mathcal{J} = \Delta_{\mathsf{E}}(A)$ is regular in the sense of Damanik-Pushnitski-Simon $\implies \mathcal{J}$ satisfies a Cesàro-Nevai condition.
- By modifying arguments of Yuditskii 2018, this implies *J* satisfies the Cesàro-Nevai condition.

Thank you!