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Jacobi matrices and orthogonal polynomials

@ Let p be a compactly supported nontrivial probability measure. Define
{pn}20o to be the orthonormal polynomials formed by applying
Gram-Schmidt in L?(2) to {z"}22,.

@ For supp(u) C R, the orthonormal polynomials {p,}i2 satisfy a three
term recurrence relation:

xpn(x) = ant1Pnt1(x) + bnt1pn(x) + @anpa-1(x),n > 1
xpo(x) = ar1p1(x) + bipo(x)

for {an, bn}21 € (0,00) x R bounded sequences.

@ The operator of multiplication by x, T 4, has a tridagonal matrix
representation in the basis {pn}nco:

b1 ail
a b a

J=
az

called a bounded Jacobi matrix.
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Universal bounds

o Let E = esssup u be the essential support of 1 and Ge(+, 00) be the Green
function for C \ E at oo.

@ We have the universal inequality

lim inf|pa(z)|*/" > e%E*>°)
n—oo

for z away from the convex hull of E.

@ We have another universal inequality in terms of the coefficients of the

Jacobi matrix 1
lim sup <H aé) < cap(oess(J))

n—oo

@ The latter inequallty can be related back to the p, by the identity
pn(z) = =2 tlot
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Stahl-Totik Regularity

@ Equality in

lim |pa(z2)["/" = =) (1)
n—o00

is called Stahl-Totik regularity for the measure p.

@ A Jacobi matrix is said to be regular for a set E if oess(J) = E and we have

n 1/n
im (1‘[ ) — cap(oen(J)). )

It was first studied for the case E = [-2,2] by Ullman 1972.
o (1) = (2).
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Orthogonal rational functions

@ In our setting, we start with a nontrivial probability measure 1 supported
on R, and a finite sequence C = (c1,...,Cg4+1) With cx € R\ supp(u). We
denote E = esssup(u).

@ Our sequence of orthonormal functions come from orthonormalizing the
sequence {r,}n2g, where ro =1 and for n = j(g + 1) + k, where
1<k<g+1

1
_ (cx—z)yt1
r,,(Z) - {Zj‘il

Call the sequence {7,}52,.

@ Orthogonal polynomials are exactly the case supp(p) C R, C = (00), and
g=0.
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Universal inequality for 7,

We define
ﬁ ng Ge(z,ck) E is not polar

+00 E is polar

Ge(z,C) = {

Then,

For all z € C\ R,

Un s o9e(0).

lim inf|7,(2)|
n— oo
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Universal inequality on leading coefficients

o Let £, =span{r; : 0 < ¢ < n}. By the Gram-Schmidt process, there is a
Kn > 0 with 7, — Knrn € Ly—1. We refer to k, as a leading coefficient.

o We define
= lim;—c, (Ge(z,ck) + log |z —ck]), ¢k # o0
E lim;_c, (Ge(z, ck) — log |z]), Cx = 00
and
Y& 4+ S 1<e<gi1 Ge(ck,c¢¢) E is not polar
log Ak = L#k
+00 E is polar
Then:

For all1 < k < g + 1, for the subsequence n(j) = j(g + 1) + k,

2 o 1 j 1 i
l'fﬂg}f Rn{j’;(‘,) > )‘k/(g+ ). (3)
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Defining C regularity

Simon’s Conjecture

TFAE:
@ Forsomel < k < g+ 1, for the subsequence n(j) = j(g + 1) + k,

e e e 6

R 1/n() _ y1/(g+1).
A, gy = N

For all 1 < k < g+ 1, for the subsequence n(j) = j(g + 1) + k,

’

el 1/n £l 1/(g+1)
"Il’rgo (H H,H—z) - (H Ak)
=1 k=1

For g.e. z € E, we have limsup,_, _ |(2)[*/" < 1;

imjsoo 100 = AL/(EFD)

For some z € C., limsup, . |7a(2)]"/" < €90,

For all z € C, limsup,_, . |7a(2)[|}/" < e%=©);
Uniformly on compact subsets of C \ R, lim,_soo |7a(2)|"/"

— %(z.6)




Stahl-Totik regularity and C regularity

Let C1, Cy be two finite sequences of elements from R \ supp u, not necessarily
of the same length. Then p is Cyi-regular if and only if it is Co-regular.

Since Stahl-Totik regularity is the case C = (00), this immediately yields:

Let supppu C R. Let C be a finite sequence of elements from R \ supp 1. Then
w is C-regular if and only if it is Stahl-Totik regular.
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Conformal invariance

Conformal invariance follows from the previous Corollary.

Let f € PSL(2,R) x {id,z — —z}. If p is a Stahl-Totik regular measure on R
and oo ¢ supp(fip), then the pushforward measure f,p is also Stahl-Totik
regular.




Define

and for nonpolar E,

Let ;1 be a probability measure on R. Assume that E is not a polar set.

@ [Ifpis C regular, then w-limy— o vn = pE.c.

@ Ifw-limy 00 vn = pE,c, then p is C regular or there exists a polar set
X C E such that u(R\ X) = 0.
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GMP matrices

@ For a sequence C = (cy,...,Cqg41) With cx = 0o, we call the matrix
representation for T g4, with respect to the basis of ORF a GMP matrix.
They were introduced in a Yuditskii '18.

@ GMP matrices are tridiagonal block matrices

By Ao
A: B A
Al B A

Az

where By is a k x k matrix, Ao is a k X (g + 1) matrix, and A;, B; for
j>1are (g+1)x(g+1) matrices.

@ GMP matrices have the property that resolvents at the c,, £ # k also have
the above form.

@ For the sequence C = (00), the matrix representation for T 4, is a Jacobi
matrix.
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Regular GMP matrices

@ A relation between the k, and the nonzero entry on the outermost
diagonal of the associated GMP matrix allows us to find a notion of

regularity of a measure purely in terms of the coefficients of the GMP
matrix.

Theorem

Fix a probability measure p with supp i C R and a sequence C = (c, .

with cx = co. Then

Jj—oo

j 1/j
lim sup (H B[) <AL (4)
=1

Moreover, the measure y is Stahl-Totik regular if and only if

j 1/j
lim ( m) =L (5)
J—o0 =1
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Finite gap sets and the isospectral torus

@ We specialize to finite gap sets,

E= [bo,ao] \ U(ak,bk)7

k=1

and denote by 7" the set of almost periodic half-line Jacobi matrices with
Oess(J) = 0ac(J) = E. This set is called the isospectral torus.

@ We consider the metric on bounded Jacobi matrices given by

Ze (|ak — &| + |bx — bil). (6)

k=1
as well as the distance to 72",

d(J,7¢") = inf d(J,J) = min d(J, J).
JeTg JeTd
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The Nevai and Cesaro—Nevai conditions and Simon’s Conjecture

@ Denote by S, the right shift operator on €2(N), Sie, = enr1. The
condition

d((s1)"JST, Te") — 0
as m — oo is called the Nevai condition.
@ Remling 2011, the Nevai condition implies regularity. The converse is
false. However, Simon 2009 conjectured

Theorem

IfE C R is a compact finite gap set and J is a regular Jacobi matrix with
Oess(J) = E, then

N— oo

N
. 1 *k\m m
lim Nmz;d((sg JS™ T2 = 0. (7)

where (7) is the Cesaro—Nevai condition.
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Special cases

@ Proved by Simon 2009 in the special case when E is the spectrum of a
periodic Jacobi matrix with all gaps open.

@ The method of proof relied on the periodic discriminant and techniques
from Damanik—Killip—Simon 2010.

@ Proved by Kruger 2010 for the case inf, a, > 0 using completely different
methods.
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The Ahlfor’s function and the Yuditskii discriminant

@ Our paper proves the general case extending Simon’s methods and uses
techniques of Yuditskii 2018; in particular GMP matrices and the Ahlfor’s
function.

@ The Ahlfor’s function W for C \ E is the analytic function ¥ : C\ E — D
with W(oo) = 0 that maximizes Re(W’'(00)). It has one zero ¢, € (ax, bk)
for each 1 < k < g; with oo, these are the only zeros.

@ Our discriminant is

Ae(z) = W(z) + %

It is a rational function with poles at the Ce = (cy, ..., Cg, 00):

Ae(z) = dgr1z+d+ Z

k—Z
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Proving Simon’s Conjecture

o We show: regularity of / = regularity of A and its resolvents =—> the
block Jacobi matrix 7 = Ag(A) is regular in the sense of
Damanik-Pushnitski-Simon = 7 satisfies a Cesaro-Nevai condition.

@ By modifying arguments of Yuditskii 2018, this implies J satisfies the
Cesaro-Nevai condition.



Thank you!
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