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1 Introduction

The calculus of variations deals with the problem of maximizing or minimiz-
ing functionals i.e. functions which are defined not on subsets of Rn but on
spaces of functions. As a simple example consider all parameterized curves
(defined on [0, 1]) between two points x0 and x1 on the plane. Then the
shortest such curve is characterized as that curve c with c(0) = x0, c(1) = x1
which minimizes the functional

L(c) =

∫ 1

0

∣

∣ċ(t)
∣

∣dt

Of course this example is not particularly interesting since we know that
the solution is the straight line segment from x0 to x1. However, it does
become interesting and non trivial if we consider points in higher dimensional
space and consider only those curves which lie on a given curved surface (the
problem of geodetics).

Further examples:

1. The Brachistone Problem. Given are two points O (the origin) and P
with yP < 0. Find the curve from O to P for which

∫

c

1√−yds =
∫ 1

0

1
√

−c2(t)

√

ċ21(t) + ċ22(t)dt

is a minimum.

2. Minimal surfaces of revolution. Given are points P = (x0, y0), Q =
(x1, y1) with x0 < x1, y0 > 0, y1 > 0.

We are looking for that function f(x) so that f(x0) = y0, f(x1) = y1
which minimizes the functional

∫ x1

x0

f(x)

√

1 +
(

f ′(x)
)2
dx

3. Hamiltonian mechanics. We have a mechanical system, where posi-
tions can be defined by n generalized coordinates. The Lagrangian is
a function of the form

L(t, x, ẋ) = T (x, ẋ)− U(t, x)

where T is the kinetic energy and U is potential energy (the particular
form of L is dictated by the physics of the system). Then the depen-
dency of the position of an object of the system is described by the fact
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that the corresponding n-dimensional curve c minimizes the functional

I(c) =

∫ t1

t0

L
(

t, c(t), ċ(t)
)

dt.

4. The Dirchlet problem. U is a region in Rn with smooth boundary ∂U
and a function g is given on the boundary. The Dirchlet problem is:
find a harmonic function f on U with g as boundary values. Dirchlet’s
principle states that the solution is that function f which satisfies the
boundary condition and minimizes the functional

D(f) =

∫

U

n
∑

k=1

( ∂f

∂xk

)2

dx1 . . . dxn

(more precisely, is a stationary point).

Further problems which can be formulated in this way are: the isoperimetric
problem, Platean’s problem (soap bubbles!), Newton’s problem, Fermat’s
principle.

Examples of classical optimization problems.

1. The base b and perimeter a + b + c of a triangle ABC are given.
Which triangle has the largest area (solution: the isosceles triangle
with |AB| = |AC|).

2. Steiner’s problem. Given an acute triangle ABC, determine that point
P for which |PA| + |PB| + |PC| is a minimum. (Solution: P is the
point with AP̂B = BP̂C = CP̂A = 120◦).

3. A triangle ABC is given. Find P on BC, Q on CA, R on AB so
that the perimeter of PQC is minimal. (Solution: PQR is the pedal
triangle i.e. P is the foot of the altitude from A to BC etc.).

4. (The isoperimetric problem for polygons). Find that n-gon with fixed
perimeter S so that the area is maximal. (Solution: the regular n-gon.)

1.1 Methods employed in the calculus of variations.

I. The direct method (cf. proofs of the Riemann mapping theorem, Radon-
Nikodym theorem, existence of best approximations in closed convex sets.)
II. The method of Ritz. One approximates an infinite dimensional problem
by a sequence of finite dimensional ones— with solution x1, x2, x3 . . . Un-
der suitable conditions, this sequence will have a cluster point (limit of a
convergent subsequence) which is a solution to the original one.
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Examples: We illustrate the latter method on some of the classical situa-
tions which lead naturally to variational problems:
I. The isoperimetric problem. In this case we approximate the original prob-
lem by the one for n-gons which, as we have seen, has the regular n-gon as
solution. With care, a suitable limiting process leads to the circle as solution
to the original problem.
II. The Dirichlet problem. Here we are looking for a smooth function φ on
{x2 + y2 ≤ 1} which minimizes the functional

Dφ =

∫ ∫

(φ2
x + φ2

y)dxdy

and satisfies the boundary condition

φ(eiθ) = f(θ)

for a suitable 2π-periodic function f .
We indicate briefly how to solve this problem. It is natural to work with

polar coordinates where the functional D has the form: D(φ) =
∫ 2π

0

∫ 1

0

(

φ2
r +

1
r2
φ2
θ

)

rdrdθ.

We discretise this problem by using Fourier series, i.e., suppose that

f(θ) =
a0
2

+
∞
∑

n=1

(an cosnθ + bn sinnθ)

Write φ = 1
2
f0(r) +

∑∞
n=1

(

fn(r) cosnθ+ gn(r) sinnθ
)

where the functions fn
and gn satisfy the conditions fn(1) = an, gn(1) = bn. Then

D(φ) = π

∫ 1

0

f ′(r)2rdr + π
α
∑

1

∫ 1

0

(

f ′
n(r)

2 +
n2

r2
fn(r)

)

rdr

+ π
∞
∑

n=1

∫ 1

0

(

g′n(r)
2 +

n2

r2
gn(r)

2
)

rdr

Since each summand is independent we obtain a minimum by minimizing
each term. Hence we consider the problem

∫ 1

0

(

f ′2
n +

n2

r2
f 2
n

)

rdr = min, f(1) = an

This can be solved using the Ritz method—we consider the restriction of the
functional to those functions of the form

fn(r) = c0 + c1r + · · ·+ cmr
m, c0 + · · ·+ cm = am
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for a fixed m > n and so reduce to a classical optimization problem with
solution fn(r) = rn.

Suummarising, this method leads to the well-known solution

φ(r, θ) =
1

2
a0 +

∞
∑

n=1

(anr
n cosnθ + bnr

n sinnθ)

for the Dirichlet problem.

2 The Riemann mapping theorem.

As an application of the principle of optimizing a functional on a space of
functions we shall bring a sketch of a proof of the following famous result:

Proposition 1 (The Riemann mapping theorem) Let Ω be a simply con-
nected proper subset of C. Then Ω is conformably equivalent to the unit disc
U = {z ∈ C : |z| < 1}.

For the proof, we require the following facts.

1. Theorem of Ascoli-Arzela: A subset A of the Banach space C(K) (K a
compact metric space) is relatively compact if and only if it is uniformly
bounded and equicontinuous. Hence every sequence in such a set has
a uniformly convergent subsequence.

2. If Ω is an open subset of C, then H(Ω), the space of holomorphic
functions on Ω, is a linear space and the natural topology on this space,
that of compact convergence, is a complete metric topology. A suitable
metric can be defined as follows: Write Ω =

⋃

Ωk where each Ωk is
relatively compact in Ωk and define

d(f, g) =
∑

k

1

2k
||f − g||k

1 + ||f − g||k

where ||f − g||k = sup{|f(z)− g(z)| : z ∈ Ωk}.

3. A uniformly bounded subset of H(Ω) is relatively compact for the
above topology and hence every uniformly-bounded sequence has a
subsequence which is uniformly convergent on compacta. This fol-
lows from 1) (with the help of the diagonal process) since a uniformly-
bounded sequence of holomorphic functions is equicontinuous on com-
pacta (Cauchy integral formula).
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We now proceed to the proof of the Riemann mapping theorem. We fix a
point z0 ∈ Ω and consider the family F of all functions f in H(Ω) which are

a) injective

b) such that f(z0) = 0 and f ′(z0) > 0

c) map Ω into U .

We shall first show that F is non empty. Choose a ∈ C with a ∈ Ω and
consider a branch of ln(z− a) on Ω (this exists since Ω is simply connected).
This is, of course, injective. We even have that if it takes a value w1 then it
does not take any of the values w1+2πin, (for if ln(z1−a) = ln(z2−a)+2πin,
then z1 − a = eln(z1−a) = eln(z2−a)e2πi = z2 − a).

The function ln(z−a) is open and so there is a disc of the form (w−w0) < ǫ
around (z0− a) which lies in the image of ln(z− a). By the above reasoning,
the corresponding disc |w−w0+2πi| ≤ ǫ is not in the image of ln(z−a). Hence
w0 = ln(z−a) takes its values in the complement of the latter set. But this is
conformably equivalent to U . This provides a univalent function g : Ω → U .
The condition f ′(z0) = 0, f ′(z0) > 0 can be obtained by composing g with a

suitable Blaschke factor eiθ
z − z1
1− āz1

where z1 = g(z0) (Exercise).

We now set d = sup{f ′(z0) : f ∈ F}. By the compactness, there is an
f ∈ F with f ′(z0) = d. We claim that this f is surjective and so conformal
from Ω to U . We do this by showing that if f were not surjective we can
construct a g ∈ F with g′(z0) > f ′(z0) – contradiction.

Suppose that w1 ∈ U is not in the range of f . Once again, by composing

with the Blaschke function z 7→ z − w0

1− w̄0z
we can assume that w0 = 0. We let

F denote a branch of ln f on Ω. This takes its values in the left half plane
{Re z < 0}. We compose with a Mobiustransformation with maps the latter
onto U and takes F (z0) onto 0 to get function G from Ω into U i.e. the
mapping

w 7→ w − F (z0)

w + F (z0)
.

One computes that

G′(z0) = −d 1− |w0|2
2w0 ln |w0|

Hence the function

g(z) =
G(z)|G′(z0)|

G′(z0)
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is in F and

g′(z0) = d
1− |w0|2

2|w0| ln
(

1
|w0|

)

which is > d (contradiction). (Consider the function

h(t) = 2 ln
1

t
+ t− 1

t

h(t) = 0 and h′(t) > 0. Hence 2 ln 1
t
< 1

t
− t (t < 1) and so g′(z0) > d).

We remark that a similar method can be used to solve the Dirichlet
problem in two dimensions (see Ahlfors, Complex analysis, p. 196).

3 Analysis in Banach spaces

Since the calculus of variations is concerned with maximising functionals
on infinite dimensional space, we consider briefly the a bstract theory of
differential calculus on such spaces.

3.1 Differentiation and integration of E-valued func-
tions

Definition: Let Ω be an open or closed interval inR. A function x : Ω → E
(E a Banach space) is differentiable at t0 if

lim
t→t0

x(t)− x(t0)

t− t0

exists in E. If this is the case, its limit is the derivative of x at t0, denoted
by x′(t0). x is differentiable on Ω if it is differentiable at each t ∈ Ω. The
function x′ : t 7→ x′(t) is then the derivative of x. If this derivative is a
continuous function, then x is said to be C1.

The following properties of the derivative are evident:

1. x is differentiable at t0 with derivative a if and only if the function ρ
defined on Ω by the equation

x(t)− x(t0) = (t− t0)a+ (t− t0)ρ(t)

has limit 0 as t tends to t0;

2. if x1 and x2 are differentiable at t0, then so is x1 + x2 and

(x1 + x2)
′(t0) = x′1(t0) + x′2(t0);
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3. if T : E1 → E2 is continuous and linear and x : Ω → E1 is differentiable
at t0, then so is T ◦ x and

(T ◦ x)′(t0) = T
(

x′(t0)
)

.

This concept of differentiability unifies some apparently unrelated notions of
analysis as the following examples show:
I. Let x be a function from [0, 1] into ℓ∞. Then we can identify x with a
bounded sequence (xn) of functions on [0, 1] (where x(t) = (xn(t)). x is
continuous if and only if for each t0,

lim
h→0

∥

∥x(t0 + h)− x(t0)
∥

∥ = 0 i.e. lim
h→0

sup
n

∣

∣xn(t0 + h)− xn(t0)
∣

∣ = 0

This means that the xn are equicontinuous at t0.
Similarly, one shows that x is differentiable at t0 if and only if the following

conditions hold:

a) each xn is differentiable at t0;

b) the sequence (x′n(t0)) is bounded;

c) the functions xn are uniformly differentiable at t0 i.e. for each ǫ > 0
there is a δ > 0 so that if |h| < δ

∣

∣

∣

∣

xn(t0 + h)− xn(t0)

h
− x′n(t0)

∣

∣

∣

∣

< ǫ

for each n.

II. Now let E be the space C(J) (J a compact interval). A function x :
Ω → C(J) can be regarded as a function x̃ from Ω× J into R (put x̃(s, t) =
(x(s))(t) for x ∈ Ω, t ∈ J). Then one can check that

a) x is continuous if and only if x̃ continuous on Ω× J ;

b) x is a C1-function if and only if D1x̃(s, t) exists for each s, t, is con-
tinuous as a function on Ω × J and the following condition holds: for

each s0 ∈ Ω, the difference quotients
x̃(s0 + h, t)− x̃(s0, t)

h
tend to

D1x̃(s0, t) uniformly in t (over J).

We denote by C1(Ω;E) the space of continuously differentiable functions
from Ω into E. Similarly, we can define recursively the concept of an r-
times continuously differentiable function or Cr-function, by saying
that x is Cr if x′ exists and is Cr−1. The r-th derivative x(r) of x is then
defined to be (x′)(r−1).
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Proposition 2 (Mean value theorem) If x ∈ C1(Ω;E), then

∥

∥x(t)− x(s)
∥

∥ ≤ |t− s| sup
{

∥

∥x′(u)
∥

∥ : u ∈]s, t[
}

for s, t ∈ Ω.

Proof. By the Hahn-Banach theorem, there is, for each s, t, an f ∈ E ′

so that ||f || = 1 and f(x(t)− x(s)) = ||x(t)− x(s)||. Then, by the classical
mean value theorem applied to the scalar function f ◦ x,

∥

∥x(t)− x(s)
∥

∥ = f
(

x(t)− x(s)
)

= (t− s)f
(

x′(u0)
) (

u0 ∈]s, t[
)

≤ |t− s| ||f || sup
{

∥

∥x′(u)
∥

∥ : u ∈]s, t[
}

Later in this chapter, we shall discuss the Bochner integral which is the
analogue of the Lebesgue integral for vector-valued functions. In the mean-
time we introduce a very elementary integral which suffices for many pur-
poses. We consider functions from a compact interval I = [a, b] in R with
values in E. A function α : I → E is a step function if it has a represen-
tation

∑

aiχIi (a1, . . . , an ∈ E) where the Ii are suitable subintervals (open,
half-open or closed) of I. The step functions form a vector subspace St (I, E)
of ℓ∞(I, E), the Banach space of bounded functions from I into E. We denote
its closure therein by R(I;E)—the space of regulated functions.

We define a linear mapping λ : St(I;E) → E by specifying that λ(aiχi) =
µ(Ii)ai (µ(Ii) is the length of Ii) and extending linearly (the usual difficulties
concerning the well-definedness of this extension can be resolved as in the
scalar case. Alternatively one can reduce the problem to the scalar one by
using the Hahn-Banach theorem).

Lemma 1 λ is a continuous linear mapping from St(I;E) into E and ||λ|| =
µ(I) = b− a.

Proof. If x ∈ St(I;E) then it has a representation of the form
∑

i aiχIi

where the Ii are disjoint. Of course, ||x|| = max{||ak|| : k = 1, . . . , n} and

∥

∥λ(x)
∥

∥ =
∥

∥

∥

∑

µ(Ik)ak

∥

∥

∥
≤
∑

µ(Ik)||ak||
≤ µ(I)||x||

and so ||λ|| ≤ µ(I). That the inequality is actually an equality is easy to see
(consider the constant functions).
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Hence λ has a unique extension to a continuous linear operator from
the the definite integral of x (also written

∫ b

a
x(t)dt or simply

∫

I
x). It is

easy to check that if x ∈ R(I;E), T ∈ L(E, F ) then T ◦ x ∈ R(I;F ) and
∫

I
T ◦ x = T (

∫

I
x) (the formula holds trivially for step functions and the

general result follows by approximation). We consider some examples:
I. Let x be a function from I into ℓ∞, say

x(t) =
(

x1(t), x2(t), . . .
)

.

Then x is regulated if and only if the (xn) are uniformly regulated i.e. for
each ǫ > 0, we can find a partition {I1, . . . , Ik} of I so that each xn can be
approximated up to ǫ by step functions which are constant on the Ii. Then
we have

∫

x =

(
∫

xn

)

Note that if x takes its values in c0, then the above rather artificial condition
is equivalent to the more natural one that each xn be regulated.
II. Let x : I → C(J) be continuous. Then x is (of course) integrable and the
integral is the classical parameterized integral

t 7→
∫

x̃(s, t)ds

(x̃(s, t) := x(s)(t)).

Proposition 3 (fundamental theorem of calculus) If x ∈ C(I;E) then X :
s 7→

∫ s

a
x(t)dt is differentiable and X ′ = x (X is a primitive of X).

Proof.

∥

∥X(s)−X(s0) − (s− s0)x(s0)
∥

∥

=

∥

∥

∥

∥

∫ s

s0

x(t)dt− (s− s0)x(s0)

∥

∥

∥

∥

=

∥

∥

∥

∥

∫ s

s0

(

x(t)− x(s0)
)

dt

∥

∥

∥

∥

≤ |s− s0|max
{

∥

∥x(u)− x(s0)
∥

∥ : u ∈]s0, s[
}

and the expression in brackets tends to zero as s tends to s0 (by the continuity
of x).
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As a simple corollary we have the formula

∫ b

a

x(t)dt = X(b)−X(a)

for the definite integral where X is any primitive of x. For any two primitives
differ by a constant.

Using the concepts of differentiation and integration of Banach space
valued functions we can formulate and prove an abstract existence theorem
for differential equations which unites many classical results. We consider
equations of the form

dx

dt
= f(t, x)

where the solution is a function on R with values in a Banach space. More
precisely, U is open inR×E, f is a function from U into E and a C1-function
x : I → E (I an open interval in R) is sought whereby the condition

(∗) for each t ∈ I,
(

t, x(t)
)

∈ U and x′(t) = f
(

t, x(t)
)

is to be satisfied.
If we specialize say to E = Rn we get the system of equations

dx1
dt

= f1(t, x1, . . . , xn), . . . ,
dxn
dt

= fn(t, x1, . . . , xn)

and so, by a standard trick, n-th degree equations of the form:

dnx

dtn
= f(t, x, . . . , x(n−1)).

For the special case E = C(J) × Rn we get systems of equations with a
parameter. Hence the following existence theorem contains several classical
results as special cases:

Proposition 4 Let f : U → E satisfy the LIPSCHITZ condition
∥

∥f(t1, x1)− f(t2, x2)
∥

∥ ≤ K
(

||x1 − x2||+ |t1 − t2|
)

for (t1, x1), (t2, x2) ∈ U . Then for each (t0, x0) ∈ U there is an ǫ > 0 and a
C1-function x :]t0 − ǫ, t0 + ǫ[→ E so that

x(t0) = x0
(

t, x(t)
)

∈ U for t ∈]t0 − ǫ, t0 + ǫ[

x′(t) = f
(

t, x(t)
) (

t ∈]t0 − ǫ, t0 + ǫ[
)

.
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Proof. Since ||f(t, x)|| ≤ ||f(t0, x0)||+K(|t− t0|+ ||x−x0||), f is bounded
on bounded sets of U . Consider the operator

π : x 7→
(

t 7→
∫ t

t0

f
(

τ, x(τ)
)

dτ + x0

)

on the space
{

x ∈ C
(

[t0 − ǫ, t0 + ǫ], E
)

: x(t0) = x0

}

.

Then if ǫ is small enough, π is a contraction (since

∥

∥π(x)− π(y)
∥

∥ ≤ sup
t

∣

∣

∣

∣

∫ t

t0

(

f
(

τ, x(τ)
)

− f
(

τ, y(τ)
)

)

dτ

∣

∣

∣

∣

≤ ǫKmax
{

∥

∥x(τ)− y(τ)
∥

∥ : τ ∈ [t0 − ǫ, t0 + ǫ])

and so has a fixed point x0 by the Banach fixed point theorem. This x0 is a
local solution.

3.2 The Bochner integral

In this section we extend the Lebesgue integral to measurable Banach space
valued functions on a measure space. This is the vector analogue of the
Lebesgue integral and is called the Bochner integral. By a measure space
we mean a triple (Ω,Σ, µ) where Ω is a set, Σ is a σ-algebra of subsets of Ω
and µ is a finite, σ-additive non-negative measure on Σ.

Definition: Let (Ω,Σ, µ) be as above, E a normed space. A measurable
E-valued step function is a function of the form

n
∑

i=1

λiχAi

where λi ∈ C and Ai ∈ Σ. A function x : Ω → E is measurable if it is the
pointwise limit (almost everywhere) of a sequence (xn) of measurable step
functions.

The following facts are then easy to prove:

1. The pointwise limit (almost everywhere) of a sequence of measurable
functions is measurable;
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2. (Egoroff’s theorem) if (xn) is a sequence of measurable functions and
xn → x pointwise almost everywhere then xn → x almost uniformly
(i.e. for every δ > 0, there is an A ∈ Σ with µ(A) < δ and xn → x
uniformly in X \ A);

3. if x : Ω → E is measurable and T ∈ L(E, F ) then T ◦ x is measurable;

4. if E is separable, x is measurable if and only if x−1(U) ∈ Σ for each
open U ⊂ E.

It follows from 3. that if x is measurable, it is scalarly measurable i.e. for
each f ∈ E ′, f ◦ x is measurable. The converse is not true in general.
However, surprisingly enough, the difference between scalar measurability
and measurability is purely a question of the size of the range of x.

Proposition 5 x : Ω → E is measurable if and only if it is scalarly measur-
able and almost separably valued (i.e. x(Ω\A) is separable for some negligible
set A).

Proof. Suppose x is measurable. Then by the definition and Egoroff
there is a sequence (xn) of simple function and (An) of measurable sets with

µ(An) ≤
1

n
so that xn → x uniformly on Ω \An. Now x(Ω \⋂An) is clearly

separable and hence so is x(Ω \ An). Of course
⋂

An is negligible. For the
converse, we can assume that E is separable and so that it has a Schauder
basis (xn). This is because every separable space is isometrically isomorph
to a subspace of a subspace with Schauder basis (e.g. C([0, 1])). Then if
(Pn) is the corresponding sequence of projection, Pn ◦ x is measurable and
Pn ◦ x→ x—hence x is measurable.

As we have seen, a function x : Ω → E isBochner integrable if and only
if there is a sequence (xn) of simple functions which converges a.e. to x and is
such that for each ǫ > 0, there exists an N ∈ N with

∫

||xm − xn||dµ < ǫ for
m,n ≥ N . Then (

∫

xndµ) is a Cauchy sequence in E (the above integrals,
being integrals of step functions, are defined in the obvious way) and we
define

∫

xdµ = lim

∫

xndµ.

Proposition 6 Let x : Ω → E be measurable. Then x is Bochner integrable
if and only if

∫

||x||dµ <∞.
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Proof. The necessity follows from the inequality
∫

||x||dµ ≤
∫

||x− xn||dµ+

∫

||xn||dµ

applied to the elements of an approximating sequence of simple functions.
For the sufficiency we can assume that the E is a space with a basis. We

denote the corresponding projections once again by (Pn).
Now if

∫

||x||dµ < ∞ we have that ||x− Pn ◦ x|| converges point wise to
zero and can deduce that

∫

||x − Pnx||dµ → 0 by the Lebesgue theorem on
dominated convergence. Now the Pn◦x take their values in finite dimensional
subspaces and so can be approximated by simple functions in the L1-norm.

Proposition 7 Let x : Ω → E be Bochner integrable, T ∈ L(E, F ). Then
T ◦ x is Bochner integrable and

∫

T ◦ xdµ = T

∫

xdµ.

Proof. The result is trivial if x is a simple function. The general result
follows by continuity.

Proposition 8 Suppose that x ∈ L1(µ,E) and that C is a closed subset of
E so that

∫

A

xdµ ∈ µ(A)C
(

A ∈ A).

Then x(t) ∈ C for almost all t ∈ Ω.

Proof. We can easily reduce to the case where E is separable. Now we
show that if U is an open ball (with centre y and radius r) in E \ C, then
µ(A) = 0 where A = {t : x(t) ∈ U}. Indeed if µ(A) > 0, then

∥

∥

∥

∥

1

µ(A)

∫

A

xdµ− y

∥

∥

∥

∥

=
1

µ(A)

∥

∥

∥

∥

∫

A

xdµ−
∫

A

ȳdµ

∥

∥

∥

∥

≤ 1

µ(A)

∫

A

||x− y|| ≤ r

which is a contradiction (here we have used ȳ to denote the constant function
t 7→ y).

Now E \ C is a countable union of such U and so

µ
{

t : x(t) ∈ E \ C
}

= 0.

14



The following Corollaries are easy consequences of this result.

Corollar 1 Suppose that x, y ∈ L1(µ,E). Then

a) if
∫

A
xdµ =

∫

A
ydµ for each A ∈ A then x = y a.e.;

b) if
∫

A
f ◦ xdµ =

∫

A
f ◦ ydµ for each f in a total subset of E ′ and each

A ∈ A then x = y almost everywhere;

c) if ||
∫

A
xdµ|| ≤ kµ(A) for each A ∈ A then ||x(t)|| ≤ k for almost all t.

Proposition 9 Let x : Ω → E be Bochner integrable, A a measurable subset
of Ω. Then

∫

A

xdµ ∈ µ(A)Γ̄
(

x(A)
)

(if B ⊂ E, Γ̄ (B) is the closed convex hull of B).

Proof. If the above does not hold, then by the Hahn-Banach theorem there
is an f ∈ E ′ with

f

(
∫

A

xdµ

)

> K

where K = sup{f(y) : y ∈ x(A)}. (To simplify the notation, we are assuming
that the measure of A is one). Then

∫

A

f ◦ xdµ > K sup
{

f(y) : y ∈ x(A)
}

which is impossible because of standard estimates for integrals of real-valued
functions.

3.3 The Orlicz-Pettis Theorem

Using the machinery of the Bochner integral, we can give a short proof of a
famous result on convergence.

Proposition 10 (Orlicz-Pettis Theorem) Let (xn) be a sequence in a Ba-
nach space E so that for each subsequence (xnk

) there is an element x with
∑∞

k=1 f(xnk
) converging to f(x) for each f ∈ E ′. Then

∑

xn converges (un-
conditionally) to x. (i.e. weak unconditional convergence of a series implies
norm unconditional convergence).
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Proof. We use the fact that if f : Ω → E is Bochner integrable then the
family

{
∫

A

fdµ : A ∈ A
}

is relatively compact in E. (Exercise! Hint if f is a measurable step function
then this set is bounded and finite dimensional – hence relatively compact.
For the general case use an approximation argument).

We let Ω = {−1, 1}N be the Cantor set with Haar-measure. We define a
function Φ : Ω → E by defining Φ(ǫkxk) to be that element of E to which
∑

(ǫkxk) converges weakly. Φ is measurable, since it is clearly weakly mea-
surable (even weakly continous). Since it is bounded (uniform boundedness
theorem) it is Bochner integrable. Hence its range is norm compact. But
on norm compact sets, weak and norm convergence concide – hence

∑

xnk

converges in the norm for each subsequence.

Remark: We use here the result from “Elementare Topologie”, that if
(K, τ) is a compact space and τ1 is a weaker T2-topology on K, then τ = τ1.
In the above case τ is the norm topology and τ1 is the weak topology i.e. the
initial topology on E induced by the funcitonals of E1.

3.4 Holomorphic E-valued functions

We now introduce the concept of (complex) differentiablitity for functions x
defined on an open subset U of C with values in a Banach space E. This
topic is not directly relevant to the calculus of variations but since it is so
similar in nature to the above and is important in other branches (e.g. the
spectral theory of operators on infinite dimensional spaces) we include a brief
treatment here. For obvious reasons, we shall consider only complex Banach
spaces in this context. It will also be convenient to use the notation Ur for
the set {λ ∈ C : |λ| < r}.

A function x : U → E is complex-differentiable at λ ∈ U if

lim
λ→λ0

x(λ)− x(λ0)

λ− λ0

exists. Then the value of this limit is denoted by x′(λ0) – the derivative of
x at λ0. If x is differentiable at each λ0 ∈ U it is analytic or holomorphic.
H(U ;E) denotes the vector space of E-valued analytic functions on U . As
is easily seen, if T : E → F is continuous and linear then T ◦ x is analytic
whenever x is and we have the relation: (T ◦ x)′ = T ◦ x′. Just as in the
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scalar case, holomorphicity can be characterized using a Cauchy integral, as
we now show.

Definition: Suppose that x : U → E is continuous and Γ is a smooth curve
with parameterization

c : [a, b] → U.

We then define the curvilinear integral
∫

Γ

x(λ)dλ =

∫ b

a

x
(

c(t)
)

ċ(t)dt

(where the integral used is the one defined at the beginning of this section).
(It is no problem to extend this definition to integrals over piecewise

smooth or even rectifiable curves but the above definition will suffice for our
purposes.) Then it follows that if T : E → F is continuous and linear

∫

Γ

T ◦ x(λ)dλ = T

∫

Γ

x(λ)dλ.

Proposition 11 Let x : U → E be holomorphic and let Γ be a smooth,
closed nullhomotopic curve in U . Then

∫

Γ

x(λ)dλ = 0.

Proof. If f ∈ E ′, then the scalar function f ◦ x is analytic and so

f

(
∫

Γ

x(λ)dλ

)

=

∫

Γ

f ◦ x(λ)dλ = 0.

Since this holds for each f ∈ E ′, the integral must be zero. Exactly as in the
scalar case, this implies:

Corollar 2 (Cauchy formula) Let x be as above, λ0 a point of U and Γ a
smooth closed curve with winding number 1 with respect to Γ. Then

x(λ0) =
1

2πi

∫

Γ

x(λ)

λ− λ0
dλ.

Using the techniques we have developed, together with the classical results, it
is now easy to obtain alternative characterizations of complex differentiability—
in particular, the fact that it is equivalent to representability locally by Taylor
series. As we shall now see it follows from the uniform boundedness theorem
that x : U → E is analytic if it satisfies the apparently much weaker con-
dition that the scalar function f ◦ x be holomorphic for each f ∈ E ′ (weak
analyticity).
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Proposition 12 For a function x : Ur → E, the following are equivalent:

1. x is holomorphic on Ur;

2. for each f ∈ E ′, f ◦ x is holomorphic on Ur;

3. there is a sequence (cn) in E so that

lim sup ||cn||1/n ≤ 1/r

and x : λ 7→
∑∞

n=0 cnλ
n.

If these condition are satisfied, then x′ is also differentiable and hence x is
infinitely differentiable. Also we have cn = x(n)(0)/n!
Proof. (3) implies (1): Just as in the scalar case, we can show that if (cn)
satisfies the above condition, then the given series is absolutely convergent
on Ur and uniformly convergent on each compact subset. The series obtained
by formal differentiation also have the same convergence properties and from
this it follows that x is infinitely differentiable and the formulae for the cn
hold.
(1) implies (2) is trivial
(2) implies (3): First we note that if ρ < r then f ◦ x is bounded on the
compact set Ūρ for each f ∈ E ′ and so by the uniform boundedness theorem,
x is also norm-bounded on Ūρ. Let

Mρ := sup
{

∥

∥x(λ)
∥

∥ : |λ| ≤ ρ
}

.

If f ∈ E ′ we define

cn(f) = (f ◦ x)(n)(0)/n! = 1

2πi

∫

Γρ

(f ◦ x)(λ)
λn+1

dλ

where Γρ is the boundary of Ūρ. As is easy to see f 7→ cn(f) is a linear form
on E ′.

We can estimate as follows:

∣

∣cn(f)
∣

∣ ≤ ||f ||Mρ/ρ
n.

Hence cn is a bounded form (i.e. cn ∈ E ′′) and ||cn|| ≤ Mρ/ρ
n. Since

this holds for each ρ < r we have lim sup ||cn||1/n ≤ 1/r. Now using the
implication (3) implies (1) we know that

x̃(λ) :=
∞
∑

n=0

cnλ
n

18



defines a holomorphic function from Ur into E ′′. But it follows immediately
form the definition of the cn that

f ◦ x̃ = f ◦ x

for each f ∈ E ′. Hence x = x̃ and so x is holomorphic and each cn actually
lies in E.

This result has the following global form:

Proposition 13 For a function x : U → E, the following are equivalent:

1. x is holomorphic;

2. for each f ∈ E ′, f ◦ x is holomorphic;

3. for each λ0 ∈ U , there is a r > 0 and a sequence (cn) in E so that

x(λ) =

∞
∑

n=0

cn(λ− λ0)
n

in λ0+Ur ⊂ U where convergence is absolute and uniform on compact subsets.
x is then infinitely often differentiable.

Proposition 14 (Morera’s theorem) Let x : U → E be continuous. Then x
is analytic if

∫

Γ

x(λ)dλ = 0

for each smooth, closed, nullhomotopic curve Γ in U .

Proof. If x satisfies the given condition, then so does f ◦ x(f ∈ E ′) and
so f ◦ x is holomorphic by the classical form of Morea’s theorem. Hence x is
holomorphic by the above Proposition.

Proposition 15 (Liouville’s theorem) If x : C → E is holomorphic and
bounded, then it is constant.

Proof. If x is not constant, choose λ1, λ2 ∈ C with x(λ1) 6= x(λ2). There
is an f ∈ E ′ with

f
(

x(λ1)
)

6= f
(

x(λ1)
)

.

Then f ◦x is a non-constant, bounded, entire function which contradicts the
classical form of Liouville’s theorem.
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3.5 Differentiability of functions on Banach spaces

We now discuss the concept of differentiability for function defined on Ba-
nach spaces. The definitions for function of several variables—i.e. via local
approximation by linear operators—can be carried over without any prob-
lems. The resulting concept is called Freéchet differentiability. We shall
also discuss a weaker one—that of Gateaux differentiability).

In the following E, F,G etc. will be real Banach spaces. Letters such as
U, V,W will denote open subsets of Banach spaces.

Fréchet differentiability A function f : U → F (U ⊂ E) is Fréchet
differentiable at x0 ∈ U if there is a T ∈ L(E, F ) so that

lim
h→0

f(x0 + h)− f(x0)− Th

||h|| = 0

(equivalently f((x0 + h) − f(x) = Th + ρ(h) where ρ(h)/||h|| goes to zero
with h).

T is uniquely determined by this condition and is called the (Fréchet)
derivative of f at x0, denoted by (Df)x0

. f is differentiable on U if (Df)x
exists for each x ∈ U . f is a C1-function on U if the function

Df : x 7→ (Df)x

from U into L(E, F ) is continuous (in symbols f ∈ C1(U ;F )).

Gateaux differentiability There is a weaker concept of differentiability
which is sometimes useful—that of Gateaux differentiability. This means
that the restriction of f to lines through x0 are differentiable in the sense of
1.1 and the corresponding derivatives are continuous and linear as functions
of the direction of differentiation. More precisely, f : U → E is Gateaux
differentiable (or G-differentiable) at x0 ∈ U if

1. for each h ∈ E, the derivative

Df(x0, h) = lim
t→0

f(x0 + th)− f(x0)

t

exists and

2. the mapping h 7→ Df(x0, h) from E into F is continuous and linear.
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Note that the limit in 1) can exists for each h ∈ E without the mapping
in 2) being linear (the standard example is

(s, t) →
{

0 (s, t) = (0, 0)
st2

s2+t2
otherwise

from R2 into R). Also a function can be G-differentiable at x0 without being
continuous at x0 (and so certainly not differentiable). The standard example
is

(s, t) →
{

0 t2 ≥ s4

1 otherwise

Of course, if f is differentiable it is G-differentiable. A useful relation between
the two concepts is established in the next Proposition.

Proposition 16 f : U → F is differentiable at x0 ∈ U if it is G-differentiable
there and

lim
t→0

∥

∥

∥

∥

f(x0 + th)− f(x0)

t
−Df(x0, h)

∥

∥

∥

∥

= 0

uniformly for h is the unit sphere of E.

This is just a reformulation of the definition of differentiability.

Corollar 3 If f : U → E is G-differentiable and the function

x 7→
(

h 7→ Df(x, h)
)

from U into L(E, F ) is continuous, then f is differentiable and

(Df)x : h 7→ Df(x, h) (x ∈ U).

Proof. The continuity of the above mapping means that for every ǫ > 0
there is a δ > 0 so that

∥

∥Df(x, h)−Df(x0, h)
∣

∣ ≤ ǫ||h||

for ||x− x0|| < δ, h ∈ E.
Now there is a t ∈ [0, 1] so that

∥

∥f(x+ h))− f(x0)−Df(x0, h)
∥

∥ =
∥

∥Df(x0 + th, h)−Df(x0, h)
∥

∥ ≤ ǫ||h||

(applying the mean value theorem to the function

t 7→ f(x0 + th) ).

Thus the difference quotient converges to Df(x0, h) uniformly in h and so f
is Fréchet differentiable by the above.
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We bring some simple examples of differentiable functions:

If T : E → F is continuous and linear, then T is differentiable and (DT )x =
T for each x.

If E is the one-dimensional space R and U ⊂ R is open, then the above
concepts of differentiability both coincide with that of IIa).

If B : E × F → G is continuous and bilinear, then B is differentiable and
(DB)(x,y) is the linear mapping (h, k) → B(h, y) +B(x, k) on E × F .

Polynomials If E, F are Banach spaces, a homogeneous polynomial of
degree n is a mapping Q : E → F of the form

Q(x) = B(x, . . . , x)

where B ∈ Ln(E, F ). For convenience we write Bxn for the right hand side.
Note that we can and shall assume that B is symmetric i.e.

B(x1, . . . , xn) = B(xπ(1), . . . , xπ(n))

for each permutation in Sn. For B induces the same polynomial as its sym-
metrisation.

A polynomial is a function from E into F which is a finite sum of such
homogeneous polynomials. For example if ki : [0, 1]

i → R are continuous
symmetric functions, the mapping

x 7→
∫ 1

0
k1(s)x(s)ds+

∫ 1

0

∫ 1

0
k2(s1, s2)x(s1)x(s2)ds1ds2 + · · ·+

∫ 1

0
. . .
∫ 1

0
kn(s1, . . . , sn)x(s1) . . . x(sn)ds1, . . . , dsn

is a polynomial on C(I).
If f : E → F is a homogeneous polynomial of the form x 7→ Bxn (B

symmetric in Ln(E, F )) then f is differentiable and

(Df)x : h→ nB(xn−1, h)

(the last symbol denotes B(x, x, . . . , x, h)). The proof is based on the bino-
mial formula

B(x+ h)− B(x) =

n
∑

r=0

(

n

r

)

B(xr, hn−r)

(where B(xr, hn−r) has the obvious meaning) which can be proved just as in
the classical case.
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Thus we have

f(x+ h)− f(x) = nB(xn−1, h) +
n(n− 1)

2
B(xn−1, h2) + . . .

and the result follows.
For example, the derivative of the above polynomial on C(I) is

(Df)x : h 7→
∫ 1

0
k1(s)ds+ 2

∫ 1

0

∫ 1

0
k2(s1, s2)x(s1)h(s2)ds1ds2 +

· · ·+
∫ 1

0
. . .
∫ 1

0
kn(s1, . . . , sn)x(s1) . . . x(sn−1)h(sn)ds1 . . . dsn

We now show that the Fréchet derivative possesses the basic properties
required for efficient calculation. We begin with the chain rule and then show
that suitable forms of the inverse function theorem hold.

Proposition 17 (the chain rule) If f : U → V, g : V → G where f is differ-
entiable at x ∈ U and g is differentiable at f(x), then g ◦ f is differentiable
at x and

D(g ◦ f)x = (Dg)f(x) ◦ (Dg)x.

Proof. Let k be the function h 7→ f(x+ h)− f(x) so that

k(h) = (Df)x(h) + ||h||ρ1(h)

where ρ1(h) → 0. Also

g ◦ f(x+ h)− g ◦ f(x) = g
(

f(x+ h)
)

− g
(

f(x)
)

= g
(

f(x) + k(h)
)

− g
(

f(x)
)

= (Dg)f(x)

(

k(h) + ||k(h)||ρ2
(

k(h)
)

)

where ρ2(k) → 0 as k → 0.
Then

g ◦ f(x+ h)− g ◦ f(x) = (Dg)f(x) ◦ (Df)x(h)
plus the remainder term ||h||(Df)f(x)ρ1(h) + ||k(h)||ρ2(k(h)) which, as it is
easy to check, has the correct growth properties.
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Using the chain rule, it is easy to prove the following results:

1. if f, g ∈ C1(U ;E) then so does f + g and D(f + g)x = (Df)x + (Dg)x
(consider the chain

U → E ×E → E

x 7→
(

f(x), g(x)
)

7→ f(x) + g(x) );

2. if f ∈ C1(U ;E), g ∈ C1(U ;F ) and B : E × F → G is bilinear and
continuous, then the mapping x 7→ B(f(x), g(x)) is in C1(U ;G) and
its derivative at x is the mapping

h 7→ B
(

Dfx(h), g(x)
)

+B
(

f(x), Dgx(h)
)

;

3. (partial derivatives) let U (resp. V ) be open in E (resp. F )
f : U × V → G. Then if f is differentiable at (x0, y0), f1 (resp. f2) is
differentiable at x0 (resp. y0) where f1 : x 7→ f(x, x0), f2 : y 7→ f(x0, y)
and then

(Df)(x0,y0)(h, k) = (Df1)x0
(h) + (Df2)y0(k).

We now prove an analogue of the classical inverse function theorem for
function between Banach spaces. The proof is based on an inverse function
theorem for Lipschitz functions. Recall the definition:

If (X, d) and (Y, d1) are metric spaces, a mapping f : X → Y is Lipschitz
if there exists a K > 0 so that

d1
(

f(x), f(y)
)

≤ Kd(x, y) (x, y ∈ X).

We write Lip(f) for the infimum of the K which satisfy the condition. For
example if E and F are Banach spaces and T ∈ L(E, F ) then T is Lipschitz
and Lip(T ) = ||T ||.

Proposition 18 If E is a Banach space and T : E → E is a linear isomor-
phism and f : E → E is Lipschitz with Lip(f) ≤ ||T−1||−1 then T + f is a
bijection and (T + f)−1 is Lipschitz with constant

Lip(T + f) ≤
(

||T−1||−1 − Lip(f)
)−1

.
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Proof. If x ∈ E, then

||z|| = ||(T−1 ◦ T )(z)|| ≤ ||T−1|| ||Tz||

and so ||Tz|| ≥ ||T−1||−1||z||.
Hence we can estimate

(

||T−1||−1 − Lip(f)
)

= ||T−1||−1||x− y|| − Lip(f)||x− y||
≤

∥

∥T (x− y)
∥

∥−
∥

∥f(x)− f(y)
∥

∥

≤
∥

∥(T + f)x− (T + f)y
∥

∥

Thus T + f is injective and its inverse from (T + f)E into E is Lipschitz
with constant at most (||T−1||−1 − Lip(f))−1. We now show that T + f is
surjective: take y ∈ E and let x0 := T−1(y). We are looking for an h ∈ E so
that

(T + f)(x0 + h) = y i.e. Th+ f(x0 + h) = 0

i.e. h is a fixed point of the mapping

ρ : h 7→ −T−1(x0 + h).

Now ρ is easily seen to be a contraction and so it has a fixed point which
gives the result. The inverse function theorem says that if the derivative of
a function at a given point x0 is an isomorphism, then f is invertible in a
neighborhood of this point. Now by the very definition of the derivative, f
(up to a constant) is a small perturbation of its derivative in a neighborhood
of x0 and so satisfies the conditions of Proposition 19. However, in order to
apply Proposition 19 we must construct a function which is defined on all
of E and Lipschitz there, but agrees with f in a neighborhood of x. To do
this we use a “bell function” i.e. a function ρ : R → [0, 1] which is infinitely
differentiable, is equal to 1 on [−1, 1] and equal to 0 outside of [−2, 2].

Lemma 2 Let U be an open neighborhood of zero in the Banach space E,
f ∈ C1(U ;E), with f(0) = 0 = (Df)0. Then for every ǫ > 0, there is an
open neighborhood V ⊂ U of zero and f̃ : E → E so that

1. f̃
∣

∣

V
= f

∣

∣

V
;

2. f̃ is bounded;

3. f̃ is Lipschitz with Lip (f) < ǫ.
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Proof. Since Df is continuous, there is an α > 0 so that 2αBE ⊂ U and

∥

∥Df(x)
∥

∥<
ǫ

1 + 2||ρ′||

(||x|| ≤ 2α) where ||ρ′|| is the supremum norm of ρ′. Let f̃ be the mapping

x→ (ρ( ||x||
α
)f(x) for ||x|| ≤ 2α and f̃(x) = 0 outside of 2αBE . Clearly f̃ = f

on αBE. Also f̃ is bounded since f is bounded on 2BE (by the mean value
theorem). To check the Lipschitz condition, it is sufficient to consider x, y in
2αBE . Then

∣

∣f̃(x)− f̃(y)
∣

∣ =

∣

∣

∣

∣

ρ
( ||x||
α

)

f(x)− ρ
( ||y||
α

)

f(y)

∣

∣

∣

∣

≤
∣

∣

∣

∣

ρ
( ||x||
α

)

− ρ
( ||y||
α

)

∣

∣

∣

∣

∥

∥f(x)
∥

∥+ ρ
( ||y||
α

)

∥

∥f(x)− f(y)
∥

∥

≤ 1

α
||ρ′|| ||x− y||

∥

∥f(x)
∥

∥+ ρ
( ||y||
α

)

sup
z∈2αB(E)

∥

∥Df(z)
∥

∥||x− y||

≤ 1

α
||ρ′||||x− y|| sup

∥

∥Df(z)
∥

∥||x||+ sup
∥

∥Df(z)
∥

∥||x− y||
≤ ǫ||x− y||

Using this we can prove the following version of the inverse function
theorem:

Proposition 19 Let U be an open neighborhood of zero in E, f ∈ C1(U ;E)
with f(0) = 0. If (Df)0 is an isomorphism, then f is local diffeomorphism
i.e. there exists a neighborhood V ⊂ U of zero so that f(V ) is open and
f
∣

∣

V
: V → f(V ) is a C1-isomorphism.

Proof. Put g = f − (Df)0. We can apply the above Lemma to get a
neighborhood V of zero and a g̃ : E → E so that

1. g̃ = g on V ;

2. g̃ is bounded and Lipschitz continuous with

Lip(g) <
∥

∥(Df)−1
0

∥

∥

−1

Then by the Lipschitz inverse function theorem (Df)0+g̃ is a homomorphism
of E with Lipschitz continuous inverse. Hence f

∣

∣

V
= (g̃ + (Df)0)

∣

∣

V
is a
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bijection from V onto an open set. We show that its inverse is differentiable.
(From this it follows easily that the inverse mapping is C1.)

Choose y, y + k in f(V ). Then if x = f−1(y),

f−1(y+k)− f−1(y)− (Df)−1
x k = (Df)−1

x

(

(Df)x
(

f−1(y+k)− f−1(y)
)

−k
)

.

Now we put h = f−1(y + k) − f−1(y) i.e. k = f(x + h) − f(x). Then the
right hand side is

(Df)xh−
(

f(x+ h)− f(x)
)

and this is ||h||ρ(h) where ρ(h) → 0 as ||h|| → 0. Now since f and f−1 are
Lipschitz, ||h|| → 0 if and only if ||k|| → 0 and so f−1 is differentiable at x
and

(Df−1)x =
(

(Df)x
)−1

.

As in the finite dimensional case we can deduce the following corollary:

Proposition 20 (implicit function theorem) Let U be an open neighborhood
of (x0, y0) in E × F , f : U → G a C1-function with f(x0 − y0) = 0. Sup-
pose that (D2f)(x0,y0); F → G is an isomorphism, where (D2f)(x0,y0) is the
derivative of the function

y 7→ f(x0, y)

at y0.
Then there are open sets W ⊂ E, W ′ ⊂ U with x0 ∈ W , (x0, y0) ∈ W ′

and a C1-mapping g : W → F so that for x, y ∈ W ′,

f(x, y) = 0 if and only if x ∈ W and y = g(x).

Proof. Write π for the C1-mapping

(x, y) 7→
(

x, f(x, y)
)

.

Then the derivative (Dπ)(x0,y0) is the operator

[

IdE 0
(D1f)(x0,y0) (D2f)(x0,y0)

]

Here we are using an obvious matrix notation to describe mappings from
E × F into E × F (i.e. the matrix

[

T11 T12
T21 T22

]
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denote the maps

(x, y) 7→ (T11x+ T12y, T21x+ T22y)

where T11 ∈ L(E,E), T12 ∈ L(F,E), T21 ∈ L(E, F ), T22 ∈ L(F, F )).
(D1f)(x0,y0) is the derivative (at x0) of the mapping

x 7→ f(x, y0).

Now (Dφ)(x0,y0) is an isomorphism and so there is an open neighborhood
W ′ ⊂ U of (x0, y0) so that φ|W ′ is a diffeomorphism. Denote its inverse by
ψ. Then if (x, y) ∈ W ′ f(x, y) = 0 if and only if (x, f(x, y)) = (x, 0) or,
equivalently, φ(x, y) = (x, 0) i.e. (x, y) = ψ(x, 0).

So the required g is the mapping

x 7→ π
(

ψ(x, 0)
)

where π is the natural projection from E × F and g is defined on

W :=
{

x : (x, 0) ∈ φ(W ′)
}

.

We now consider higher derivatives. In contrast to the situation of function
on R a new complication arises due to the fact that the derivative of a
function f from U into F takes its values not in F but in the Banach space
L(E, F ). Hence, the derivative of Df , if it exists, will have its values in
L(E,L(E, f)). By the time we get to say the fourth derivative the range
space is a rather complicated nested operator space. Fortunately, the above
space is naturally isometric to L2(E, F ). More generally, we have

Lk(E, F ) ∼= L
(

E,Lk−1(E, F )
)

.

This puts us in the position to define recursively the notion of a Cr-function
and its higher derivatives: f : U → F is of class Cr (or f ∈ Cr(U ;E)) if
f is differentiable and Df ∈ Cr−1(U ;L(E, F )). We then define Drf by the
equation (Drf)x(h1, . . . , hr) = (D(Dr−1f)x(h1)(h2, . . . , hr).

Proposition 21 (Taylor’s theorem) Let f : U → E be a Cr-function and
let x ∈ U, h ∈ E be such that {x+ th : t ∈ [0, 1]} ∈ U . Then

f(x+ h) = f(x) + (Df)x(h) + · · ·+ 1

(r − 1)!
(Dr−1f)xh

r−1 +Rr(h)

where the remainder term Rr is
∫ 1

0

(1− t)r−1

(r − 1)!
(Drf)x+th(h

r)dt

and so satisfies the growth property lim||h||→0
Rr(h)

||h||r = 0.
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Proof. Let g be the function t 7→ f(x+ th). Then

g(k)(t) = (Dkf)x+thh
k.

(Exercise.) Now

d

dt

(

g(t) + (1− t)g′(t) + · · ·+ 1

(r − 1)!
(1− t)n−1g(r−1)(t)

)

=
1

(r − 1)!
(1−t)r−1g(r)(t).

Integrating both sides from 0 to 1 and substituting for the terms of the form
g(k)(t) gives the result.

As in the classical case, the first and second derivatives give information
on the extrema of functionals on Banach spaces:

Proposition 22 Let f : U → R (U ⊂ E) be a C2-function, x0 a point in
U . Then

1. if f(x0) is a local minimum or maximum for f , (Df)x0
= 0;

2. if (Df)x0
= 0 and the second derivative (D2f)x0

satisfies the condition:
there is a k > 0 so that (D2f)x0

(h2) ≥ k||h||2 (resp. (D2f)x0
(h2) ≤

−k||h||2), then f(x0) is a local minimum (maximum).

The proof is exactly as in the finite dimensional case.
We now return to the main subject:

4 The calculus of variations

4.1 The Euler equations – application

In this section we shall use the above theory to derive the Euler equation for
a variety of problems of the calculus of variations. We begin with a simple
case.

Example A: Let L be a smooth function of three variables (t, x, z) we
calculate the derivative of the functional:

I(c) =

∫ t1

t0

L
(

t, c(t), ċ(t)
)

dt.

We assume that L is analytic in the three variables t, x, z. Then I is contin-
uous (us a functional say on E = C1([t0, t1])) and so, in order to show that it
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is analytic, it suffices to demonstrate that its restrictions to one dimensional
affine subspaces of E are analytic. Also, in order to calculate the derivative
(DI)c(h) at h it suffices to calculate lims→0

1
s
[I(c+ sh)− I(c)]. But

1

s

[

I(c+ sh)− I(c)
]

=
1

s

[
∫ t1

t0

{

L
(

t, c(t) + sh(t), ċ(t) + sḣ(t)
)

− L
(

t, c(t), ċ(t)
)

}

dt

]

=
1

s

[
∫ t1

t0

[

sh(t)Lx(t, c, ċ) + sh′(t)Lz(t, c, ċ)
]

dt+ o(s)

]

→
∫ t1

t0

[

h(t)Lx(t, c, ċ) + h′Lz(t, c, ċ)
]

dt

This means that (DI)c is the linear form

h 7→
∫ t1

t0

h(t)Lx

(

t, c(t), ċ(t)
)

dt+

∫ t1

t0

h′(t)Lz

(

t, c(t), ċ(t)
)

dt.

Hence the vanishing of the derivative at x means that this integral must
vanish for each h ∈ C1([t0, t1]).

Problems with fixed endpoints: In many concrete problems, we wish to
specify a maximum or minimum of the functional not on the whole Banach
space but on an affine subspace (i.e. a translate of a subspace). Thus in the
above case we often have a problem with fixed endpoints that is values
x0 and x1 are given and we consider the extremal values of the functional on
the subspace

E1 =
{

c ∈ C1
(

[t0, t1]
)

: c(t0) = x0 and c(t1) = x1

}

= c+ E0

where c ∈ E1 and E0 is the corresponding space with the homogeneous
conditions c(t0) = 0 = c(t1). In the order to calculate the derivatives we
compute exactly as above, but using test functions h ∈ E0. In this case the
final result can be simplified, using integration by parts, as follows:

(DI)c(h) =

∫ t

t0

h(t)Lx

(

t, c(t), ċ(t)
)

dt−
∫ t1

t0

h(t)
d

dt
Lz

(

t, c(t), ċ(t)
)

dt

=

∫ t

t0

h(t)
[

Lx

(

t, c(t), ċ(t)
)

− d

dt
Lz

(

t, c(t), ċ(t)
)

]

dt

Since this holds for each h ∈ E0 we have the necessary condition:

Lx

(

t, c(t), ċ(t)
)

− d

dt
Lz

(

t, c(t), ċ(t)
)

= 0
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for c to be an extremum of I. This is known as Euler’s equation (it is an
ordinary differential equation for c – of the most general form i.e. implicit
and non-linear). In a similar manner we have:
B. The Euler equations for the functional:

I(c) =

∫ t1

t0

L
(

t, c1, . . . , cn(t), ċ1(t), . . . , ċn(t)
)

dt

with kernel L a smooth function of the variables t, x1, . . . , xn, z1, . . . , zn are:

d

dt
Lzk

(

t, c(t), ċ(t)
)

− Lxk

(

t, c(t), ċ(t)
)

= 0

(k = 1, . . . , n).
C. The Euler equations for the functional:

I(c) =

∫ t1

t0

L
(

t, c(t), ċ(t), . . . , c(n)(t)
)

dt

with smooth kernel L = L(t, x, z1, . . . , zn) (and boundary conditions

c(k)(t0) = αk (k = 0, . . . , n− 1)

ck(t1) = βk (k = 0, . . . , n− 1)

is

Lx −
d

dt
Lz +

d2

dt2
Lz2 − · · ·+ (−1)n

dn

dtn
Lzn = 0

D. The Euler equation for functions of several variables. Consider the func-
tional

I(φ) =

∫ ∫

U

L

(

u, v, φ(u, v),
∂φ

∂u
,
∂φ

∂v

)

du dv

with boundary conditions

φ(u, v) = f(u, v) on ∂U.

1

s

{

I(φ+ sh)− I(φ)
}

=

∫ ∫

U

[

L(u, v, φ+ sh, φ1 + sh1, φ2 + sh2)− L(u, v, φ, φ1, φ2)
]

du dv

=

∫ ∫

hLxdu dv +

∫ ∫

φ1h1Lzdu dv +

∫

φ2h2Lwdu dv

But, by Green’s theorem:

∫ ∫

U

h1Lzdu dv+

∫ ∫

U

h2Lwdu dv =

∫

∂U

h(Lzdv−Lwdu)−
∫ ∫

U

h

(

∂

∂x
Lz +

∂

∂y
Lw

)

du dv
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(Consider the differential form

ø = h(u, v)Lz

(

u, v, φ(u, v), φ1(u, v), φ2(u, v)
)

dv−h(u, v)Lw

(

u, v, φ(u, v), φ1(u, v)φ2(u, v)
)

du

dø = (h1Lz +
∂
∂u
Lz) + (h2Lw + ∂

∂v
Lw)). Hence (DI)φ(h) =

∫∫

h{Lx − ∂
∂u
Lz −

∂
∂v
Lw}du dv and so the Euler equation for

I(φ) =

∫ ∫

U

L(u, v, φ, φ1, φ2)du dv

with smooth kernel L = L(u, v, x, z, w) is

∂

∂u
Lz +

∂

∂u
Lw − Lx = 0

In the case where higher derivatives occur, for example second derivatives,
we have the following form for the Euler equations: In this case we have

L = L(u, v, x, z1, z2, z2, z1w1, w2).

(zs is a place-holder for the second partial derivative with respect to u, z1w1

for the mixed partial derivative (not the product of z1 and w1). Then the
Euler equation is:

Lx −
∂

∂u
Lz1 −

∂

∂v
Lw1

+
∂2

∂u2
Lz2 + 2

∂2

∂u∂v
Lz1w1

+
∂2

∂v2
LOw2 = 0.

For example, if

I(φ) =

∫ ∫

1

2

[

(

∂2φ

∂u2

)2

+
∂2φ

∂u2
∂2φ

∂v2
+

(

∂2φ

∂v2

)2
]

ldudv,

then in this case Euler’s equation is

∆∆φ = 0.

Examples: I. The shortest line between (t0, α0) and (t0, α1), (α1 > α0) in
R2: Here

I(c) =

∫ t1

t0

√

1 + ċ(t)2dt

L(t, x, z) =
√
1 + z2

Lx = 0, Lz =
z√

1 + z2
. Euler’s equation:

d

dt

ċ(t)
√

1 + ċ(t)2
= 0
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Hence
ċ(t)

√

1 + ċ(t)2
and so also

ċ(t)2

1 + ċ(t)2
is constant. From this it follows easily

that ċ(t) is constant i.e. c(t) has the form at + b for suitable a, b which can
be determined from the boundary conditions.
II. As above in 3 dimensions:

I(c) =

∫ t1

t0

√

1 + ċ1(t)2 + ċ2(t)2dt

L(t, x, z) =
√

1 + z21 + z22

Euler equations:
d

dt

ċ1(t)
√

1 + ċ1(t)2 + ċ2(t)2
= 0

d

dt

ċ2(t)
√

1 + ċ1(t) + ċ2(t)2
= 0

Once again, one can deduce that c is affine.
III. Surfaces of revolution with minimal area:

I(c)

∫ t1

t0

c(t)
√

1 + ċ(t)2dt c(t0) = x0, c(t1) = x1.

L(t, x, z) = x
√
1 + z2

Lx =
√
1 + z2, Lz =

xt√
1 + z2

Euler’s equation:
d

dt

c(t)ċ(t)
√

1 + ċ(t)2
=
√

1 + ċ(t)2

This simplifies to the equation c(t)c̈(t) = 1 + ċ(t)2 which tacitly assumes
that c is C2. However this follows from the form of the equation. For if

y = Lz(t, x, z) =
xz√
1 + z2

, simple algebra shows that z =
y

√

x2 − y2
.

Hence if d(t) = Lz(t, c(t), ċ(t)) we have

d(t) =
c(t)ċ(t)
√

1 + ċ(t)2

and so ċ(t) =
d(t)

√

c(t)2 − d(t)2
.

Hence c is C2 (since d is C1).
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The original Euler’s equation is equivalent to the system:

ċ(t) =
d(t)

√

c(t)2 − d(t)2

ċ(t) =
c(t)

√

c(t)2 − d(t)2

By standard methods one obtains the explicit solution

c(t) = b cosh
t− t0
b

(b > 0).

The constants b and t0 are determined by the boundary conditions. (Note
that such a solution cannot be found for arbitrary boundary conditions.)
IV. Geodetics in R2 for the metric tensor

[

g11 g12
g12 g22

]

(where the g’s are smooth functions of two variables with g11 > 0, g11g12 −
g212 > 0). In this case:

I(c) =

∫ t

t0

√

g11(t, c(t)) + 2g12(t, c(t))ċ(t) + g22(t, c(t))ċ2(t)dt

L(t, x, z) =
√

g11(t, x) + 2g12(t, x)z + g22(t, x)z2

The Euler equation is then

d

dt

g12(t, c(t)) + g22(t.c(t))ċ(t)
√

g11(t, c(t)) + 2g12(t, c(t))ċ(t) + g22(t, c(t))ċ(t)2

−
∂g11
∂x

(t, c(t)) + 2
∂g12
∂x

(t, c(t))ċ(t) +
∂2g22
∂x

(t, c(t))ċ(t)2

2
√

g11(t, c(t)) + 2g12(t, c(t))ċ(t) + g22(t, c(t))ċ(t)2

Sometimes written as

d

dt

F +Gċ√
E + 2F ċ+Gċ2

− E2 + 2F2ċ+G2ċ
2

2
√
E + 2F ċ+Hċ2

= 0

(with E = g11, F = g12 = g21, G = g22). We can consider the same problem
in 3 dimensions.

Here





g11 g12 g13
g21 g22 g23
g31 g32 g33



 is a positive definite matrix whose entries are

smooth functions of those variables (t, x1, x2).
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In this case:

I(c) =
√

g11 + 2g12ċ2 + 2g13c3 + g22ċ22 + 2g23ċ2ċ3 + g33ċ23

L(t, x, z) =
√

g11(t, x2, x3) + 2g12z2 + 2g13z3 + g22ċ22 + 2g23z2z3 + g33z23

Euler’s equation:

d

dt

(

g12 + g22ċ2 + g23ċ3
L

)

− 1

2L

(

∂

∂x2
g11 + 2

∂

∂x2
g12ċ2+

)

= 0

V. Fermat’s principle:

I(c) =

∫ t1

t0

µ
(

t, c1(t), c2(t)
)
√

1 + ċ1(t)2 + ċ2(t)2dt µ = µ(t, x1, x2)

the coefficient of refraction)

L(t, x1, x2, z1, z2) = µ(t, x)
√

z21 + z22

Lx1
=

∂µ

∂x1

√

1 + z21 + z22 Lz1 =
µz1

√

1 + z21 + z22

Lx2
=

∂µ

∂x2

√

1 + z21 + z22 Lz2 =
µz2

√

1 + z21 + z22

Equations

d

dt
µ
(

t, c(t)
) ċk(t)
√

1 + ċ1(t)2 + ċ2(t)2
= µxk

(

t, c(t)
)
√

1 + ċ1(t)2 + ċ2(t)2 (k = 1, 2).

VI. Dirichlet’s problem. Recall that we minimized the functional

I(φ) =

∫ ∫

[

(

∂φ

∂u

)2

+

(

∂φ

∂v

)2
]

du dv

Thus L = 1
2
(z2 + w2) and Euler’s equation is ∆φ =

∂2φ

∂x2
+
∂2φ

∂y2
= 0

Similarly if

I(φ) =

∫ ∫

1

2

[

(

∂2φ

∂u2

)2

+ 2

(

∂2φ

∂u2

)(

∂2φ

∂y2

)

+

(

∂2φ

∂v2

)2
]

du dv
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then the Euler equation is

∆∆φ =
∂4φ

∂u4
+ 2

∂4φ

∂u2∂v2
+
∂4φ

∂v4
= 0

VII. Minimal surfaces. Here

I(φ) =

∫

√

1 + φ2
u + φ2

v

L(u, v, x, z, w) =
√
1 + z2 + w2

Euler’s equation is

φuu(1 + φ2
v)− 2φuvφuφv + φvv(1 + φ2

u) = 0

This can be interpreted geometrically as stating that the mean curvative
vanishes (cf. Vorlesung Differentialgeometrie).

Remark: Consider the implicit curves

{f = c}

Then their curvatures are given by the formula:

κ =
−f11f 2

2 + 2f1f2f12 − f22f
2
1

|gradf |3

(cf. Differentialgeometrie) and so the equation hat the form:

f11 + f22 = κ|gradf |3

Hence if the level curves are straight lines, then

f11 + f22 = 0

i.e. f is harmonic.

Example: f is linear. Then it is a plane.
f is aθ(x, y) + b. Then the graph is the helicoid

f(u, v) = (u cos v, u sin v, av)

Scherk’s example: Scherk solved this equation for f of the form f(x, y) =
g(x) + h(y)
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This leads to the equation

−g′′(x)
1 + g1(x)2

=
h′′(y)

1 + h1(y)2
= const

Solutions: g(x) =
1

a
ln cos ax, h(x) = −1

a
ln cos ay

f(u, v) =
1

a
ln
(cos au

cos av

)

(Catalan showed that the only ruled surfaces which are minimal are the
helicoid or the plane).

Surfaces of revolution: We rotate the curve (t, c(t), 0) about the x-axis.

φ(u, v) =
(

u, c(u) cos v, c(u) sin v
)

.

The equation H = 0 then becomes

−cc̈ + 1 + ċ2 = 0

with solution

c(t) = a cosh

(

t

a
+ b

)

.

4.2 The Weierstraß representation:

We now show how to construct a large class of minimal surfaces by using
results from function theory. We consider a parameterized surface M in R3

i.e. M is the image of a smooth function φ = (φ1, φ2, φ3) from U(⊂ R2)
into R3. We denote by N the normal vector to the curve i.e. N(u, v) =
φ1(u, v)× φ2(u, v)

|φ1(u, v)× φ2(u, v)|
. We suppose that the parameterization is conformal

(or isothermal). This means that there is a scalar function λ(u, v) so that
(φ1|φ1) = λ(u, v) = (φ2|φ2), (φ1|φ2) = 0. Then we have the equation ∆φ =
φ11 + φ22 = 2λ2HN where H is the mean curvature of the surface. From
this it follows that the surface is minimal iff ∆φ = 0 i.e. the components
φ1, φ2, φ3 are all harmonic. Then if we introduce the functions f1, f2, f3 where

fi =
∂φi

∂z
, these are analytic functions.
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Remark:
∂

∂z
is the operator

1

2
(
∂

∂u
− i

∂

∂v
).

A simple calculation shows that if φ is harmonic, then
∂

∂z
φ satisfies the

Cauchy-Riemann equations and so is holomorphic). Furthermore we have
the relations by

f 2
1 + f 2

2 + f 2
2 = 0

between the f ’s. For

f 2
1 + f 2

2 + f 2
3 =

1

4

∑

i

(

∂φi

∂u
− i

∂φi

∂v

)2

=
1

4

∑

i

(

∂φi

∂u

)2

−
∑

i

(

∂φi

∂v

)2

− 2i
∑

i

∂φi

∂u

∂φi

∂v

=
1

4

[

|φu|2 − |φv|2 − 2i(φu|φv)
]

= 0

A similar calculation shows that

|f1|2 + |f2|2 + |f3|2 = 2λ2 > 0

Conversely, we have the following. Suppose that we have three holomorphic
functions (f1, f2, f3) on U so that

a) f 2
1 + f 2

2 + f 2
3 = 0

b) |f1|2 + |f2|2 + |f2|2 6= 0

c) each fi has a primitive Fi.

Then the function φ = (φ1, φ2, φ3) where φi = ℜFi is a parameterization of
a minimal surface.

Examples. I. The helicoid. Here

f1 = cosh z, f2 = −i sinh z, f3 = −i.

φ1 = ℜ sinh z = cos v sinh u

φ2 = ℜ(−i cosh z + i) = sin v sinh u

φ3 = ℜ(−iz) = v

This is the helicoid as one sees by making the change of variable t = sinh u.
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II. The Catenoid. Here we take

f1 = sinh z, f2 = i cosh z, f3 = 1

φ1 = cos v cos u− 1

φ2 = sin v cosh u

φ3 = u

This is a parameterization of the surface of rotation of the catenary.
III. Scherk’s surface. Take

f1(z) =
i

z + i
− i

z − i
=

2

1 + z2

f2(z) =
i

z + 1
− i

z − 1
=

2i

1− z2

f3(z) =
4z

1− z4
=

2z

z2 + 1
− 2z

z2 − 1

(defined on U = {|z| < 1}). Then

φ1 = arg
z + i

z − i

φ2 = arg
z + 1

z − 1

φ3 = ln

∣

∣

∣

∣

z2 + 1

z2 − 1

∣

∣

∣

∣

IV. Enneper’s surface:

f1 =
1

2
(1− z2)

f2 =
i

2
(1 + z2)

f3 = z

φ(u, v) =
1

2

(

u− u3

3
+ uv2,−v + v3

3
− u2v, u2 − v2

)

.

V. Henneberg’s surface:

f1(z) =

(

− 1

z4
+

1

z2
+ 1− z2

)

f2(z) = i

(

− 1

z4
− 1

z2
+ 1− z2

)

f3(z) = 2

(

z − 1

z3

)
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φ(u, v) =

(

u3(1− u2 − v2)3 − 3uv2(1− u2 − v2)(1 + u2 + v2)2

3(u2 + v2)3

3u2v(1 + u2 + v2)2(1− u2 − v2)− v3(1− u2 − v2)

3(u2 + v2)3

(1− u2 − v2)2u2 − (1 + u2 + v2)v2

(u2 + v2)2

)

In the case of problems

I(c) =

∫ t1

t0

L(c1, . . . , cn, ċ1, . . . , ċn)dt

which are defined on parameterized curves it is natural to ask: under which
conditions is the integral independent of the parameterization? This will be
the case if L is homogeneous in z i.e.

L(x, ρz) = ρL(x, z) (ρ > 0)

As an example we have

I(c) =

∫

√

∑

gij ċi(t)ċj(t)dt

Remark: In the case of a parameterization problem we have L is homoge-
neous of degree 1 – hence Lxi

is homogeneous of degree 1 and Lzi is homoge-
neous of degree 0. A result of Euler states that if φ is homogeneous of degree
n, then

∑

ξi
∂φi

∂ξi
= nφ

From this it follows that we have the following relationships:
∑

Lzkzk = L
∑

Lxizkzk = Lxi

∑

Lzizjzj = 0

Hence the equations:
d

dt
Lzk

(

c(t), ċ(t)
)

− Lxk

(

c(t), ċ(t)
)

= 0 (k = 1, . . . , n)

are not independent. This means that if we add the further equation
∑

ċi(t)
2 = 1,

the system will not be overdetermined. This is useful in simplifying calcula-
tions.
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Example: Fermat’s principle.

L(t, z) = µ(x1, x2, x3)
√

z21 + z22 + z23 .

If we choose the curve with arc-length parameterization, we have

d

ds
(µγ′k) = µxk

(explicitly:
d

ds

(

µ
(

γ(s)
)

γ′k(s) = µxk

(

γ(s)
)

)

or
d

ds
(µ(γ(s))γ′k(s)) = gradµ(γ(s)).

The Brachistone:

I(c) =

∫ t1

t0

√

ċ1(t)2 + ċ2(t)2
√

c2(t)

with boundary conditions c(t0) = (a, 0), c(t1) = (b1, b2) with b1 > a, b2 > 0.

L(x, z) =

√

z21 + z22√
x2

Lx1
= 0, Lx2

= −
√

z21 + z22
2x2

√
x2

Lzi =
1√
x2

zi
√

z21 + z22

We assume that the curve is parametrized by arc length i.e. that ċ21+ ċ
2
2 = 1.

In accordance with the notation of “Differentialgeometrie” we write γ(s) for
c(t). The first equation is:

d

ds

γ′1(s)
√

γ2(s)
= 0.

Hence
γ′1(s)
√

γ2(s)
is constant.

Case 1. The constant = 0. Then γ′1(s) = 0 and so γ1 is constant. But this
is impossible, since b1 > a.
Case 2. The constant k 6= 0.

γ2(s) = k γ′1(s)
2 (k > 0)
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It follows from results of “Differentialgeometrie” that we can write γ′(s) =
(cos θ(s), sin θ(s)) for a smooth function θ. Then

γ2(s) = k cos2 θ(s).

Differentiating: sin θ(s) = 2k cos θ(s) · − sin θ(s)θ′(s) i.e. −2k cos θ(s)θ′(s) =

1. Hence
ds

dθ
= −2k cos θ and so

dγ1
dθ

= γ′(s)
ds

dθ
= −2k cos2 θ.

Hence γ′ = k1−k(θ+sin θ cos θ). If we use t = π−2θ as a new parameter;
we have

cos2 θ =
1

2
(1 + cos 2θ) =

1

2
(1− cos t)

θ + sin θ cos θ = θ +
1

2
sin 2θ =

π − t

2
+

1

2
sin t.

This leads to the parameterization

γ1 = d+
k

2
(t− sin t), γ2 =

k

2
(1− cos t)

(

d = k1 − k
π

2

)

i.e. the solution is a cycloid.

Geodetics: We consider a Riemann manifold with metric

ds2 =
∑

gij(x)dxidxj

(cf. Differentialgeometrie). Then

I(c) =

∫ t1

t0

[

∑

gij
(

c1(t), . . . , cn(t)
)

ċi(t)ċj(t)
]

1

2

dt

with side conditions c(t0) = x0, c(t1) = x1.

L(x, z) =

(

∑

i,j

gij(x)zizj

)
1

2

Lxk
=

1

2

∑ ∂gij
∂xk

zizj
√
∑

gijzizj

Lzk =

∑

l gklzl
√
∑

gijzizj
.

If we assume that we have parametrized by arc length, i.e.
∑

gij(c(t))ċi(t)ċj(t) =
1 we have:

d

ds

(

Lzk

(

γ(s), γ′(s)
)

=
∑

l

gkl
(

γ(s)
)

γ′′l (s) +
∑

i,j

∂gkj
∂xi

γ′i(s)γ
′
j(s)
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=
∑

l

gklγ
′′
l +

1

2

∑

i,j

(

∂gkj
∂xi

+
∂gki
∂xj

)

γ′j(s)γ
′
i(s)

This leads to the equation:
∑

l

gklγ
′′
l +

∑

i,j

γij,k
(

γ(s)
)

γ′j(s)γ
′
i(s) = 0 k = 1, . . . , n

where

Γij,k =
1

2

(

∂gjk
∂xi

+
∂gik
∂xj

− ∂gij
∂xk

)

(cf. Differentialgeometrie).

4.3 Applications to Physics:

The Euler equations of suitable variational problems arise in Physics in two
situations:
I. Equilibrium states – Principle of minimization of potential energy.
II. Dynamics – Variational principle of Hamilton. The corresponding Euler
equations are the differential equations of the corresponding physical systems.
We consider a system with n degrees of freedom. Then the “position” is a
function of n parameters

q1, . . . , qn

T (q̇1, . . . , q̇n, q1, . . . , qn) is the kinetic energy. It has the form

T =
∑

Pik(q1, . . . , qn, t)q̇iq̇k

The potential energy U is a function of position and time i.e. U(q1, . . . , qn, t).

Hamilton’s principle: This states that the system minimizes the func-
tional:

J =

∫ t1

t0

(T − U)dt

Then the Euler equations are:

d

dt

∂T

∂q̇i
− ∂

∂qi
(T − U) = 0

Now at an equilibrium point, we have T =
∑

aikq̇iq̇k (where (aik) is a positive
definite matrix and U =

∑

bikqiqk (where (bik) is a positive definite matrix).
This leads to the system of equations:

∑

aikq̈k +
∑

bikqk = 0
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Examples: I. The vibrating string: Kinetic energy

T =
1

2

∫ 1

0

ρu2tdx (ρ the density function)

U =
1

2

∫ 1

0

µu2xdx.

(µ is the coefficient of elasticity). Then

∫ t1

t0

(T − U)dt =
1

2

∫ t1

t0

∫ 1

0

(ρu2t − µu2x)dx dt.

This gives the equation
ρutt − µuxx = 0

If a force f(x, t) is acting, then we give an additional term
∫ 1

0
f(x, t)u dx and

so the equation
ρutt − µuxx + f(x, t) = 0

For stable equilibrium we minimize the functional

∫ 1

0

(µ

2
u2x + fu

)

dx.

This leads to equation µuxx−f(x) = 0. The corresponding terms for a beam
are:

ρutt + µuxxxx + f(x, t) = 0

resp.
µuxxxx + f(x) = 0

Further examples: I. A free particle. In this case

L =
1

2
mv22 =

m

2
(v21 + v22 + v23).

i.e. L = z21 + z22 + z23 .
II. A system of non-reacting particles:

L = T =
∑ mαv

2
α

2

where v2α = (zα1 )
2 + (zα2 )

2 + (zα3 )
2. If the particles react with each other

(e.g. by gravity or electricity), then this is modified by a term U which is a
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function of the position vectors of the particles e.g. L = T − U where T is
as above and

U = −1

2

∑ γmamb

|trα − trβ|
.

The special cases of two resp. three particles are the famous Kepler problem
of the motion of the Sun-Earth system, respectively the three body problem.
III. Double pendulum swinging in a plane (cf. Landau and Lifchitz):

L =
m1 +m2

2
[l21φ̇

2
1 + l22φ̇

2
2 +m2l1l2φ̇1φ̇2 cos(φ1 − φ2)] +

+(m1 +m2)gl1 cosφ1 +m2l2 cosφ2.

In this context it is illuminating to consider the invariance of the Eu-
ler equation under changes of coordinates. Suppose that we introduce new
coordinates (q̃α, ṽα, t̃) where

q̃α = q̃(q, t) t̃ = t.

Then

ṽα =
∑

j

∂q̃i
∂qj

vj +
∂qi
∂t
.

Then if F = F (q, v, t),

d

dt

(

∂F

∂vi
− ∂F

∂qi

)

=
∑

j

∂q̃j
∂qi

[

d

dt

(

∂F

∂q̃j

)

− ∂F

∂q̃j

]

.

Example: Consider a single particle moving under gravity. We calculate
its equations of motion in spherical coordinates i.e.

q1 = x, q2 = y, q3 = z, U = mgy, T =
m

2
(ẋ2 + ẏ2 + ż2)

resp.
q̃1 = r, q̃2 = θ, q̃3 = φ.

Then

L =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2)−mgr cos θ.

Hence the equations of motion are

0 =
d

dt

(

∂L

∂ṙ
− ∂L

∂r

)

= mr̈ −mr(θ̇2 + sin2 θφ̇2) +mg cos θ
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(corresponding to the dependency on r). From the dependency on θ, we have

0 = mr2θ̈ + 2mrṙθ̇ − r2 sin θ cos θφ̇2 −mgr sin θ,

while from the dependency of φ, we get

d

dt
(mr2 sin2 θφ̇) = 0.

(The last equation means that angular momentum about the z-axis is pre-
served. This is a g general fact. If we have a coordinate system in which
L is independent of the coordinate q̃i, then the corresponding momentum

pl =
∂L

∂vl
will be conserved.

Example: We consider the transformation from stationary Cartesian co-
ordinates to rotating ones i.e.

q1 = q̃1 cosωt− q̃2 sinωt, q2 = q̃1 sinωt+ q̃2 cosωt, q3 = q̃.

Solving the Euler equations: The general Euler equation can be rather
intractable. However, in certain cases where L has a particularly simple form,
one can apply standard methods of ordinary differential equations. Examples

a) L is independent of x. Then the Euler equation is

d

dt
Lz

(

t, ċ(t)
)

= 0

and so Lz(t, ċ(t)) is constant. In principle we can solve this to get ċ(t)
explicitly as a function of t and obtain the solution by interpolation.

b) L is independent of t Then we have

d

dt

(

ċ(t)Lzc(t), ċ(t)
)

− L(c(t), ċ(t)) = c̈(t)Lz + ċ(t)
d

dt
Lz − Lz c̈(t)− Lxċ(t)

= ċ(t)

(

d

dt
Lz − Lx

)

= 0

Hence we have the equation:

L
(

c(t), ċ(t)
)

− ċ(t)Lz

(

c(t), ċ(t)
)

= const

which we again solve for ċ(t) as function of c(t) and the constant. We can
solve this by standard methods (rewriting as a differential equation in t!).
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Examples. I. The Isoperimetric problem. First we simplify the problem
by assuming that the curve is convex. We choose the x-axis so that it halves
the area. We thus reduce to the following variational problem: Maximize:

∫ t0

0

c(t)dt

under the conditions c(0) = c(t0) = 0,
∫ t0
0

√

1 + ċ(t)2dt = 1 (where t0 is also

unknown). If we choose s =
∫ t

0

√

1 + ċ(u)2du as new independent variable,
then we reduce to the following:

∫ 1

0

y(s)
√

1− y′(s)2ds

where y(s) = c(t). One solves this equation. The solution to the original
problem is then the parameterized curve

(

x(s), y(s)
)

where

x(s) =

∫ s

0

√

1−
(dy

ds

)2

ds

In our concrete case we have

L(t, x, z) = x
√
1− z2

Hence
−y(s)

√

1− ẏ(s)2
= −1

d
. This has solution y =

1

d
sin(ds+ c1)

x(s) =

∫

√

1− ẏ(s)2ds =

∫

sin(ds+ c1)ds = −1

d
cos(ds+ c1) + d1.

From this it follows that the solution of the isoperimetric problem is a circle.
II. The Brachistochrone:

∫ t1

t0

√

1 + ċ(t)2

φ(t, c(t))
dt

L(t, x, z) =

√
1 + z2

φ(t, x)
= ψ(t, x)

√

1|z2

ψc̈(t) = ψx

(

t, c(t)
)

− ψt

(

t, c(t)
)

ċ(t)
(

1 + ċ(t)2
)

.

Special case:

φ(t, x) =
1√
x

i.e. L(t, x, z) =

√

1 + z2

x
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Then the equation is
−1

√

c(t)(1 + ċ(t)2)
=

1

d
. (The solution is a cycloid).

II. Minimal surface of variation.
∫ t1

t0

c(t)
√

1 + ċ(t)2dt

This is the special case of the above example with

L(t, x, z) = x
√
1 + z2 i.e. ψ(t, x) = x

Then we have
−c(t)

√

1 + ċ(t)2
= −1

d

This has solution c(t) =
1

d
cosh(dt + c1) – i.e. the solution is the surface of

rotation of a catenary i.e. a catenoid.

Problems without fixed endpoints: Here we consider the problem of
finding an optimal value of the functional

I =

∫ t1

t0

L(t, c, ċ)dt

without conditions on the endpoints. Since a solution is automatically a solu-
tion of the problem with fixed endpoints and so satisfies the Euler equation,
the expression for its derivative simplifies to

(DI)c(h) = Lz

(

t, c(t), ċ(t)
)
∣

∣

t1

t0
.

This leads to the additional condition: Lz(t, c(t), ċ(t)) = 0 at t0 and t1 for
the solution. In a similar way for the case of optimizing the functional

I =

∫ t1

t0

L(t, x1, . . . , xn, z1, . . . , zn)dt

without conditions on the endpoints, we get the additional equations

Lzi

(

t, c1(t), . . . , cn(t), ċ1(t), ċ2(t), . . . , ċn(t)
)

= 0 (i = 1, . . . , n)

at t0 and t1. For

I =

∫ ∫

L
(

u, v, φ(u, v), φ1(u, v), φ2(u, v)
)

du dv,

we get the additional equation

Lz1

dφ

ds
− Lw

dφ

ds
= 0

on ∂U .
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Problems with side conditions: Recall the proof of the spectral theo-
rem: In the finite dimensional case, we consider the problem of maximizing
the function of (Ax|x) =

∑

aijξiξj under the side condition (x|x)2 =
∑

ξ2i =
1. The method of Lagrange multipliers leads to the fact that the maximum
occurs at an eigenvector and hence such an eigenvector exists. In the case
of a compact, self-adjoint operator, we consider the problem of optimizing
I(x) = (Ax|x) under the condition (x|x) = 1. Then

(DI)x(h) = 2(Ax|h)
(DI∗)x(h) = 2(x|h)

Hence if a x0 is a maximum, there is a λ so that

(Ax0|h) = λ(x0|h)

for each h ∈ H . This again means that x0 is an eigenvector. The general
situation is as follows. I and I∗ are functionals on an affine subspace of a
Banach space. Then if c is a solution of the optimisation problem: I(c) is
maximum (or minimum) with side condition I∗(c) = 0 then there is a λ ∈ R
so that

(DI)c = λDI∗c .

We can reduce to the finite dimensional case by the following trick. Firstly,
we assume that E is separable (the general case is proved similarly, with
a slightly more complicated terminology). Then we can express E as the
closed hull of the union

⋃

En of finite dimensional subspaces. Suppose that c
is a solution of our optimisation problem. Without loss of generality we can
assume that c lies in E1 and hence in each En. c is then a fortiori a solution
of the optimisation problem for I restricted to each En. Since (DI

∗)c 6= 0, we
can also, without loss of generality, assume that the restriction of the latter
to each En is non-zero. Hence by the finite dimensional version of the result,
there is, for each n a scalar λn so that

(DIn)c + λn(DI
∗
n)c = 0,

where the subscript denotes the restriction to En. But it then follows easily
that the λn are all equal and so we have the equation

(DI)c + λ(DI∗)c = 0

where we have denoted by λ the common value.
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Example: The isoperimetric problem. In this case

L(x, z) =
1

2
(x1z2 − x2z1), L∗(x, t) =

√

z21 + z22

Lx1
=

1

2
z2, L∗

x1
= 0

Lx2
= = −1

2
z1, L∗

x2
= 0

Lz1 = −1

2
x2, L∗

z1
=

z1
√

z21 + z22

Lz1 =
1

2
x1, L∗

z2 =
z2

√

z21 + z22

Assume: z21 + z22 = 1. Then we have the equation

d

ds

(

−1

2
γ2(s) + µγ′1(s)

)

− 1

2
γ′2(s) = 0

d

ds

(

1

2
γ1(s) + µγ′2(s)

)

+
1

2
γ′1(s) = 0

Hence:
µγ′′1 − γ′2 = 0, µγ′′2 + γ′1 = 0

Hence:
µ(γ′1γ

′′
2 − γ′2γ

′′
1 ) = γ′21 + γ′22 = 1

Hence κ is constant – thus the solution is a circle.

Example: The hanging chain: This corresponds to minimising the func-
tional

I(c) =

∫ t1

to

c(t)
√

1 + ċ(t)2 dt

under the side condition

I∗(c) =

∫ t1

t0

√

1 + ċ(t)2 ldt− 1 = 0.

Then
L+ λL∗ = (x+ λ)

√
1 + z2

and so
(L+ λL∗)x =

√
1 + z2, (L+ λL∗)z = (x+ λ)

z√
1 + z2

.
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The Euler equation is thus

d

dt
(c(t) + λ)

ċ(t)
√

1 + ċ(t)2
) =

√

1 + ċ(t)2.

This is the same as the equation for the minimal surface of rotation (with
c(t) replaced by c(t) + λ). Hence the solution is

c(t) = −λ+ d cosh
t− t̄

d

with boundary conditions

−λ+ d cosh
t− t̄

d
= α1,−λ+ d cosh

t1 − t̄

d
= α2

and further condition

d(sinh
t1 − t̄

d
− sinh

t0 − t̄

d
) = 1.

(The constants d and t̄ are then determined by the equations

d =
t1 − t0
2σ

, t̄ =
1

2
[(1− τ

σ
)t0 + (1 +

τ

σ
)t1]

where tanh τ = b− a and

sinh σ

σ
=

√

1− (b− a)2

t1 − t0

with σ > 0).
In our treatment, we have tacitly assumed that the Euler equation, which

in the case of the simplest functional

I(c) =

∫ t1

t0

L(t, c(t), ċ(t)) dt

is an implicit ordinary differential equation of order 2 can be solved to give
an explicit equation. If we regard this equation in the following form

Lx(t, c(t)ċ(t))−Lzt(t, c(t)ċ(t))− c(t)Lzx(t, c(t)ċ(t))− c̈(t)Lzz(t, c(t), ċ(t)) = 0

we see that the condition for this to be the case is that Lzz(t, c(t)ċ(t)) 6= 0
along the solution c. We consider here the case which is the extreme opposite
of this namely where the Euler equation is such that every suitable curve is
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a solution. If we consider the above form of the equation, we must clearly
have that Lzz vanishes identically. This means that L has the form

A(t, x) + zB(t, x).

The Euler equation is then

d

dt
Lz − Lx = 0

which reduces to the equation Bt −Ax = 0. i.e. the well-known integrability
condition for the differential form Adt+Bdx. In this case we have

∫ t1

t0

L(t, c(t)ċ(t)) dt =

∫ t−1

t0

[A(t, c(t)) + ċ(t)B(t, c(t))] dt =

∫

c̄

Adx+Bdy

where c̄ is the curve with parametrisation t 7→ (t, c(t)) and this is independent
of the curve when the above integrability condition holds.

The second variation: As in the case of finite dimensional optimisation,
the second variation of the functional can provide more detailed information
on the nature of an extremum. We shall use this method here to show that
if c is a solution of the Euler equations for the functional

I(c) =

∫ t1

t0

L(t, c(t), ċ(t)) dt

with fixed endpoints, then

Lzz(t, c(t), ċ(t)) ≥ 0

is necessary for c to be a minimum of I. (We remark here that the non-
vanishing of this expression is the Lagrangian condition for the fact that the
Euler equation can be written as an explicit differential equation of second
order. In the case of a system of equations i.e. where

L = L(x1, . . . , xn, z1, . . . , zn),

then the corresponding condition is that the matrix Lzizj be positive semi-
definite).

In order to prove the above fact, consider the Taylor expansion

I(c+ tH) = I(c) + (DI)c(th) + (D2I)c(th, th) + o(||th||2).

52



Since (DI)v vanishes, we see that

lim
s→0

1

s2
(I(c+ sh)− I(c)) = (D2I)c(h, h).

Hence, by the one-dimensional result, if c is a minimum, we must have
(D2I)c(h, h) ≥ 0 for each h. But a simple calculation shows that in this
case,

lim
s→0

1

s2
(I(c+ sh)− I(c)) =

∫ t1

t0

[

LxxH
2(t) + 2Lxzh(t)h

′(t) + Lzzh
′(t)2

]

dt.

By choosing for h concrete “peak functions”, it follows that Lzz = 0 along c.

Invariance of the Euler equation under coordinate transformations:
It follows from the coordinate-free description of the optimisation problem,
that the Euler equations are invariant under suitable coordinate transforma-
tions. The explicit calculation of this fact is particularly important in two
concrete cases: changes in the independent variable t (reparametrisations)
and changes in x (new generalised coordinates for physical systems). For the
detail, see the lectures.

Remarks on existence: In this course we have generally avoided the dif-
ficulties involved in the demonstration of the existence of a solution to the
optimisation problem. Three exceptions were the proofs of the Riemann
mapping theorem and the spectral theorem for compact operators (where we
used a compactness argument) and the existence of a best approximation
from a compact subset of a Hilbert space (where we used a geometrical ar-
gument). In general, the existence question is one of considerable depth. For
example it embraces such significant problems as the solution of the Dirichlet
problem and Plateau’s problem on the existence of minimal surfaces bounded
by given closed, space curves, resp. the existence of geodetics on curved man-
ifolds (theorem of Hopf-Rinow). In fact, it is not difficult to supply examples
where simple optimisation problems fail to have a solution or, even when
they do, the solution is not obtainable as a limit of a minimising sequence.

Examples: 1. Firstly, we can obtain a large collection of examples where
a smooth functional need not have a minimal by considering a well-behaved
manifold such as the plane or the sphere where any pair of points can always
be joined by a minimal geodetic and removing a point. Then it is easy to
construct pairs in the adjusted manifold which cannot be so joined.
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2. Consider the points (−1, 0) and (1, 0) in the plane and the problem of
finding a smooth curve c of minimal length joining them and satisfying the
condition that ċ(0) = (0, 1). It is clear that the minimal length is 2 but that
this is not attained by any appropriate curve.
3. The problem of minimising the functional

∫ 1

−1

x4y′
2
dx

for the set of all curves y = y(x) with y(−1) = −1, y(1) = 1. The minimal
value is 0 and one again, it is not attained by any smooth curve.
4. The following is an example where the optimisation problem trivially has
a solution. However, we display a minimal sequence which is such that no
subsequence converges to the solution. We consider the Dirichlet problem
i.e. that of minimising the functional

D(φ) =

∫ ∫

G

(φ2
x + φ2

y)dxdy

in the trivial case where G = {x2 + y2 ≤ 1} and the boundary value is the
zero function. Of course, the solution is the constant function zero. However
we can construct an explicit minimal sequence which does not converge to
the zero function (cf. Lectures). We conclude the course with a brief mention
of abstract methods which are used to attack the problem of existence.

Weak topologies: It is often advantageous to replace the norm topology
on the Banach space upon which the functional is defined by the so-called
weak topology (i.e. the initial topology induced by the elements of the
dual of E). This has the advantage that larger sets can be compact for
the weak topology. For example in the Lp-spaces (1 < p < ∞) and the
corresponding Sobolew spaces (see below), the unit ball is weakly compact
(but not, of course, norm compact). The disadvantage is that, this topology
being weaker than the norm one, it is harder for the functional φ to b e
continuous.

Semicontinuity. The previous objection can often be met by noting that
for a function on a compact set to be bounded below and attain its minimum,
it suffices for it to be lower semi-continuous. Thus the norm on an infinite
dimensional Banach spaces is not weakly continuous but it is weakly lower
semi-continuous.
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Sobolew spaces: In applying abstract methods to functionals given by
integrals of suitable kernels, it is crucial to choose the correct Banach spaces
on which the functional acts. These are determined by the growth and dif-
ferentiability conditions required to give meaning to the integral expression
involved. In order to get spaces with suitable properties, it is usually nec-
essary use a generalised form of derivative, the distributional derivative (see
Vorlesung, Funktionalanalylsis II, or a course on Distribution theory). The
resulting spaces are called Sobolew spaces and are defined as spaces of func-
tions for which suitable distributional derivatives are Lp-functions.

As an example of an abstract result of the type which can be used to
obtain existence statements in a general situation, we mention without proof:

Proposition 23 Let E be a reflexive Banach space, φ : E → R a norm con-
tinuous functional. Then if φ is convex, it is weakly lower semi=continuous.

If φ is weakly semi-continuous and coercive i.e. such that limx→∞
φ(x)

||x|| .0,
then φ attains its minimum on E.
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