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1 The elementary theory

1.1 Introduction.

The need for a theory of distributions arose from the inadequacy of cer-
tain methods of classical analysis with regard to some applications. Thus
a number of procedures which were being employed with success by physi-
cists could not be justified rigorously within the framework of existing theo-
ries. The most striking example, and one that we shall use as the guideline
in our construction of distributions, is the differentiation of non-continuous
functions—a famous example being the Dirac delta function which is the
“derivative” of the Heaviside function (figure 1).

In fact, the theory of distributions can also cope with other procedures
such as the changing of order in multiple integrals in situations where this is
not justified by classical results and the use of divergent series. In addition, it
allows a dramatic extension of the range of applicability of such methods as
the Fourier transform in the solution of differential equations. Distributions
have also paved the way for advances in pure mathematics, for example in
the theory of existence and uniqueness of solutions of partial differential
equations.

The origins of the theory of distributions can be traced back at least as
far as the operational calculus of Heaviside. Perhaps the first step towards a
modern mathematical presentation was made in the 1930’s by Sobolev and
Friedrichs. Dismayed by the fact that the wave equation

∂2f

∂x2
=

∂2f

∂t2

can only have solutions which are twice differentiable whereas physics require
that all functions of the form

f(x, t) = u(x+ t) + v(x− t)

are solutions, regardless of smoothness, they introduced an idea of a gener-
alised solution of this equation which allowed non-differentiable functions as
solutions.

The foundations of the theory of distributions proper is generally as-
cribed to L. Schwartz, who used the duality theory for locally convex spaces,
at that time a recent generalisation of the theory of Banach spaces, to de-
fine distributions as functionals on suitable test spaces of smooth functions.
Thus this definition generalises the notion of a measure (in the Bourbakian
sense) rather than that of a function. It was soon realised that conceptu-
ally and technically simpler approaches to the theory were possible. For
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example, Mikusinski and Temple defined distributions as generalised limits
of sequences of smooth functions i.e. used a topological completion process
reminiscent of that used by Cauchy to define real numbers. On the other
hand, H. König and J. Sebastião e Silva, independently returning to the work
of Sobolev and Friedrichs, defined distributions as generalised derivatives of
non-differentiable functions. In this approach, the role of distributions as
generalised functions (rather than as functionals) is apparent.

We shall bring a slight variant of the method of Sebastião e Silva which
lends itself to generalisations which will be exploited in later chapters to
bring a unified approach to various spaces of distributions.

Examples. We begin with some simple examples which display the necessity
of an extension of the classical concepts:

Let a particle of mass 1 move on the x-axis in such a way that its distance
x from the origin is a function of the time t. Consider the special motion
represented by the graph of x and the velocity v as functions of t as depicted
in figure 2. The force F on the particle (i.e. an instantaneous impulse at

time t = 0) is given by the formula F =
dv

dt
. Hence we are faced with the

problem of differentiating a non-continuous function. If we attempt to do
this in the classical sense, then we see that the function H which represents
the velocity is differentiable at each point, with the exception of 0, and the
derivative is zero. This is an inadequate solution in that the fundamental
theorem of calculus fails — we cannot recover the function from its derivative.
Despite this fact we shall proceed formally on the assumption that H has a
derivative (which we shall denote by δ) and we shall try to “derive” some
of its properties by formal manipulations. Suppose that f is a smooth, real-
valued function which vanishes at the points 1 and −1. Then, by integration
by parts,

∫ 1

−1

f(t)δ(t) dt =

∫ 1

−1

f(t)H ′(t) dt

= H(t)f(t)|1−1 −

∫ 1

−1

H(t)f ′(t) dt

= −

∫ 1

0

f ′(t) dt = f(0).

This leads to the “definition” of the delta function as one which is zero
everywhere except at the origin where it is infinitely large, this in such a
fashion that we have the formula

∫

R

f(t)δ(t) dt = f(0)
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for suitable functions f .
We consider the one-dimensional wave equation

∂2f

∂x2
=

∂2f

∂t2

which describes the displacement f of a particle at position x on a string
at time t. This equation is satisfied, for example, by a fictitious infinite,
homogeneous, stretched string. By introducing new independent variable
x+ t and x− t, the general solution can be calculated to have the form

f(x, t) = u(x+ t) + v(x− t)

where u and v are twice differentiable functions of one variable. Geometri-
cally, the first term (involving u) represents a plane wave travelling leftwards
with uniform velocity (see figure 3). The general solution is thus the superpo-
sition of two such waves, moving with uniform velocity in opposite directions.
Of course, this description of the solution is purely geometric and in no way
involves the smoothness of the wave functions. Thus the wave depicted in fig-
ure 4 has the correct geometrical form for a solution but cannot be regarded

as one within the classical theory since the expression
∂2f

∂x2
is meaningless.

Of course, such solutions are physically relevant.
Consider once again the vibrating string, this time a finite one with fixed

endpoints. Its motion is governed by the same differential equation, this time
for an f defined on the region [0, φ]× [0,∞[. In addition, f is subject to the
boundary conditions

0 = f(0, t) = f(φ, t) for each t.

We treat the problem where the string lies along the x-axis at time t = 0
and the particle at point x has initial velocity g(x) i.e. we have the initial
conditions

f(x, 0) = 0
∂f

∂t
(x, 0) = g(x) (x ∈ [0, π]).

(See figure 5). A typical solution of this equation, without the initial condi-
tion, is

f(x, t) = sin nx sinnt

(n a positive integer). More generally, we can superpose such solutions to
obtain ones of the form

f(x, t) =
∑

n

bn sinnx sin nt
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(where the bn’s are real numbers). The summation can be infinite—in this
discussion we shall ignore questions of convergence. Hence if we expand the
function g in a Fourier sine series

g(x) =
∑

n

an sin nx

then we can calculate the coefficients (bn) by differentiating and comparing
coefficients.

Now consider the case where the force is a sharp impulse at the point x =
π

2
. As an approximation, we can treat the case where g is the characteristic

function of an interval of length ǫ around
π

2
, normalised to have integral one

(i.e. with height
1

ǫ
) (see figure 6). This function has Fourier sine series

2

∞
∑

n=1

sinnπǫ

nπǫ
sin 2nx.

In the limiting case of a sharp impulse, represented by a δ-function, we get
the equation

δ(x−
π

2
) = 2

∞
∑

n=1

sin 2nx

which provides the correct solution

f(x, t) =

∞
∑

n=1

1

n
sin 2nx cos 2nt.

Notice the peculiar form of the equation for the Fourier expansion of the
delta-function. On the left hand side, we have a function which doesn’t exist
in any classical sense and on the right hand side a series which does not
converge. It is one of the aims of distribution theory to give such equations a
meaning. We note in passing that we could have obtained the same equation
by formally differentiating the Fourier series of the function pictured in figure
7.

We now consider the equation of the simple pendulum with external force
f i.e. the differential equation x′′+x = f . The special case x′′+x = δ(t−u)
corresponds to a sudden impulse at time t = u. Intuitively it is clear that
the solution in this case will be x = 0 until t = u. Thereafter, the pendulum
will swing according to the initial conditions x = 0, x′ = 1 (at t = u) i.e. its
equation will be

x(t) =

{

0 (t ≤ u)

sin(t− u) (t ≥ u).
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We denote this solution by G(t, u) i.e. G(t, u) is the displacement at time t
induced by an impulse at time u. Consider now the function

x(t) =

∫

G(t, u)f(u) du.

Manipulating formally once again, we have

x′′(t) + x(t) =

∫

[
∂2G

∂t2
+G]f(t) dt

=

∫

δ(t− u)f(u) dt = f(t).

Hence if we can solve the special case of the equation for an impulsive force,
we can solve the general problem by approximating a continuous force by a
series of impulses and superposing the resulting motions.

We consider again the differential equation x′′ + x = f . A standard
method for solving such equations is to introduce the Fourier transforms X
and F defined by the equations

X(u) =

∫

x(t)e−itu dt F (u) =

∫

f(t)e−itu dt.

Formal manipulation gives the following equation for X :

X(u)(1− u2) = F (u)

which no longer involves differentiation. Its solution is

X(u) =
F (u)

1− u2

and one recovers the solution x of the original differential equation by ap-
plying the inverse Fourier transform to X . However, even in the simplest
case where f is the zero function, we will encounter the difficulty that the
only X which satisfies the derived equation is the zero function. This gives
only the trivial solution of the differential equation and ignores the interest-
ing ones which correspond to simple harmonic motion. However, one might
conjecture that a distribution of the form aδ(u−1)+ bδ(u+1) (for constants
a and b), being zero everywhere except at 1 and −1, could be a solution
of the algebraic equation. This is indeed the case and supplies the missing
solutions.
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1.2 Distributions on a compact interval

We begin with a definition which is suggested by the properties which one
would expect of a space of distributions.

Definition 1 A space of distributions on the compact interval I = [a, b]
is a vector space E, together with a linear injection i from C(I) into E and
a linear mapping D̃ on E so that

a) if x ∈ C1(I), then D̃(ix) = iD(x);

b) if y ∈ E, there is an x ∈ C(I) and a positive integer p so that y =
D̃p(ix);

c) if y ∈ E and D̃py = 0, then there is an x in Pp(I) so that y = ix.

The first condition says that functions are distributions (in other words,
that distributions are generalised functions), the second that each distribu-
tion is a (repeated) derivative of some function. The third condition ensures
that if differential equations have classical solutions, then we do not introduce
any extra, unwanted distributional solutions.

In the above definition, we used the indefinite article in connection with
spaces of distributions. This was because it is not yet clear either that such
a space exists or that it is unique in a suitable sense. In fact, both of these
conditions are satisfied i.e. there is precisely one such space - which we are
then entitled to call the space of distributions on I.
Proof. We begin with the uniqueness. Suppose that we have two distri-
bution spaces E and E ′, with corresponding inclusions i and i′ resp. differ-
entiation operators D̃ and D̃′. Then we claim that there is a vector space
isomorphism U from E onto E ′ so that

a) for each x in C(I), U(ix) = i′(x);

b) if y is in E, then UD̃(y) = D̃′(y).

This clearly means that E and E ′ are essentially the same spaces. In order
to construct the above operator U , we consider a distribution y in E. y has
the form D̃p(ix) for some continuous function x on I. We simply define Uy
to be (D̃′)p(i′(x)). The reader will have no difficulty in checking that U is
well-defined and satisfies the above condition.

We now turn to the proof of the existence. Recall the sequence

C∞ ⊂ · · · ⊂ Cn+1 ⊂ Cn ⊂ · · · ⊂ C
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of function spaces. We observe that D is a continuous linear mapping from
Cn+1 into Cn for each n (indeed the latter is a quotient space of the former
with respect to this mapping). We will extend this scheme to the right to
one of the form

C∞ ⊂ . . . Cn ⊂ · · · ⊂ C ⊂ . . . C−n ⊂ C−n−1 ⊂ . . .

where C−n will consist of those distributions which are the n-th derivatives
of continuous functions.

We begin with some informal remarks before giving the precise construc-
tion. In order to construct the first space C−1, we begin with the set of
ordered pairs (x, y) of continuous functions on I. Here a function is to be
regarded as representing itself if it is in the first position. On the other hand,
if it is in the second place, it is to represent a distribution, namely its deriva-
tive, whatever that may be. It is clear, however, that such a representation
will not be unique. Thus on the unit interval, the pairs, (t, 0), (0, t

2

2
) and

(
t

2
,
t2

4
) represent the same distribution. In order to eliminate this difficulty,

we would like to say that the pair (x, y) represents the zero distribution if
x+Dy = 0. However, the fact that the operator D is not everywhere defined
on C(I) leads to difficulties. For this reason it is better to integrate the
above equation to obtain the condition Ix + y = oxconstant. (Recall that
I is a suitable integration operator). This leads to the definition of C−1 as
the quotient of the product space C(I)× C(I)/F1 where

F1 = {(x, y) : Ix+ y ∈ P1(n)}.

(This definition is independent of the particular choice of base point for the
integral operator).

This definition can be extended in the obvious way to obtain C−2 as the
quotient space C(I)× C(I)× C(I)/F2 where

F2 = {(x, y, z) : I
2x+ Iy + z ∈ P2(I)}.

For example, the delta-distribution on the interval I = [−1, 1] could be rep-
resented by the triple (0, 0, y) where y is the function

t 7→

{

0 (t < 0)

t (t ≥ 0).

It should now be clear how the construction will proceed in the in the general
case and we pass over to the formal details. We write Hn for the (n+1)-fold
product

C(I)× C(I)× · · · × C(I)
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whereby a typical element is written as (x0, . . . , xn). Fn is defined to be the
subspace

{(x0, . . . , xn) : I
nx0 + In−1x1 + · · ·+ xn ∈ Pn(I)}.

We remark in passing that Hn is a Banach space and Fn is a closed subspace
(since it is the inverse image of the closed subspace Pn(I) under a continuous
linear mapping). Hence the space C−n(I), which is defined to be the quotient
of Hn by Fn, is a Banach space (and hence an LVS). Of course, Fn (and so
also C−n(I)) is independent of the particular choice of integration operator.
The proof of the existence of a space of distributions on I now consists of
the verification of a series of simple facts.

1. The natural injection

(x0, . . . , xn) 7→ (x0, . . . , xn, 0)

from Hn into Hn+1 induces a continuous injection from C−n(I) into
C−n−1(I). This follows from the fact that the sequence (x1, . . . , xn) is
in Fn if and only if (x0, . . . , xn, 0) is in Fn+1. For the first condition
means that Inx0+ · · ·+xn is in P n(I) whereas the second is equivalent
to the fact that In+1x0l + . . . Ixn is in P n+1(I). It is clear that these
conditions are equivalent.

2. The mapping
(x0, . . . , xn) 7→ (0, x0, . . . , xn)

from Hn into Hn+1 lifts to a continuous linear mapping Dn from C−n(I)
into C−n−1(I). Here it suffices to show that if the first term in Fn, then
the second is in Fn+1. This is completely trivial.

By 1. above, we can regard C−n as a (vector) subspace of C−n−1 i.e. we have
the promised chain

C ⊂ C−1 ⊂ · · · ⊂ C−n ⊂ C−n−1 ⊂ . . .

We define C−∞ to be the union of these spaces. We regard it as an LVS as
the union of a sequence of Banach spaces. Thus a sequence is convergent
in C−∞(I) if and only it is contained in some C−n(I) and converges there.
More precisely, this means:

On C−∞ we define an operator D as follows: if x is an element of the
latter space, then it is in C−n for some n. We then define Dx to be Dn(x).
That this is well-defined follows from the fact that the following diagram
commutes.
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Our claim is that C−∞(I) with this operator is a (and therefore the) space
of distributions on I. In order to do this, we must verify that the conditions
a) - c) in the definition hold. This we proceed to do.

a) we must show that if x is in C1(I), then the two elements (0, x) and
(Dx, 0) are equivalent i.e. that their difference (Dx,−x) is in F1. This
means that IDx− x should be in P1(I) which is clearly the case.

b) Consider an element πn(x0, . . . , xn) of C
−n(I). Since

πn(x0, . . . , xn) = πn(0, . . . , I
nx0 + . . . xn),

the original distribution is DnX where

X = Inx0 + · · ·+ xn.

c) Suppose that y is in C−∞ with Dpy = 0. If y is say in C−n(I), then
the previous manipulation shows that it can be written in the form
πn(0, . . . , 0, X) with X continuous. Then

Dpy = πn+p(0, . . . , 0, X)

and this is zero exactly when X is in P n+p(I). In this case, y = DnX =
DnX ∈ P p(I).

In light of the above facts, we shall call C−∞ the space of distributions

on I. C−n(I) is called the space of distributions of order n. It consists of
those distributions which are the n−th derivatives of continuous functions.
In view of axiom a) we shall from now on drop the tilda on the D and
denote the derivative of a distribution y simply by Dy except in certain
situations where it is important to distinguish between pointwise derivatives
and distributional derivatives.

Examples. (of distributions)

I. Integrable functions: in our axiom system we demanded that continu-
ous functions be distributions. In fact, the space of distributions con-
tains most functions of any practical significance. In particular, we
can regard Lebesgue integrable functions as distributions. In this case,
however, we must distinguish between the pointwise derivative and the
distributional derivative. Examples of this will be considered in more
detail later. In order to regard such functions as distributions, we
proceed as follows: we let x be an (equivalence class of) a Lebesgue
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integrable function i.e. x ∈ L1(I). Then x has an absolutely contin-
uous primitive i.e. a function X which is such that x is equal almost
everywhere to the derivative of X . Further, any two such functions
differ by a constant. We define the distribution Tx to be the distribu-
tional derivative DX of X . The mapping x 7→ Tx is continuous and
linear from L1(I) into C−1(I). It follows from elementary facts about
the Lebesgue integral, that the mapping is injective.

Unless there is a particular reason for being more careful, we shall not
normally differentiate between x and Tx. Thus a statement such as
“the distribution z is an integrable function” means that there exists
an x in L1(I) so that y = Tx.

II. Measures: in a similar manner, we can regard Radon measures on I as
distributions. If µ is such a measure, then the function

x : s→ µ(]−∞, s] ∩ I)

is of bounded variation on I and so is integrable. Hence we can iden-
tify µ with the distribution D̃(Tx). The use of the word “identify” is
justified by the fact that the mapping which associates to µ the above
distribution is a linear injection from the space of Radon measures on
I into C−∞(I).

Examples. If a is a point in the interior of I, then we denote by Ha the
Heaviside function with singularity at a i.e. the function

s 7→

{

0 if s < a

1 if s ≥ a.

(in other words, Ha = χI∩[a,∞[).
Of course, Ha is integrable and so can be regarded as a distribution on I.

Its derivative D̃Ha, which is denoted by δa, is the Dirac distribution with
singularity at a. It is, in fact, a measure (which assigns to each set value 1

or 0 according as a is or is not a member of the set). Its derivatives δ
(n)
a are

then the (n+ 1)-th derivatives of Ha.
The functions sλ, sλ−, |s|

λ. We suppose now that 0 is an interior point
of the interval I. Consider the following functions (whereby λ is a complex
exponent):

sλ+ : s 7→

{

0 if s < 0

sλ if s ≥ 0.
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sλ− : s 7→

{

(−s)λ if s < 0

0 if s ≥ 0.

|s|λ : s 7→

{

|s|λ if s 6= 0

0 if s = 0.

(Of course, |s|λ = sλ++ sλ−). If Reλ > −1, then these functions are integrable
and so represent distributions. If, on the other hand, the real part is less
than or equal to −1, then they are well-defined, but not integrable. Hence
they do not determine distributions in the above sense. Nevertheless we can
regard them as distributions as follows. We consider firstly the case where
the real part of λ, in addition to being at most −1, is not a negative integer.
Then we choose a positive integer m so that Re(λ +m) > 0 and define the
distributions of the title as follows:

sλ+ =
Dmsλ+m

+

(λ+m) . . . (λ+ 1)

sλ− =
(−1)mDmsλ+m

−

(λ+m) . . . (λ+ 1)

|s|λ = sλ+ + sλ−.

Note that these do not depend on the choice m.
In order to be able to handle the case where the real part of λ is a negative

integer, we use the logarithm function. Define functions

ln+ : s 7→

{

ln s if s > 0

0 if s ≤ 0.

ln− : s 7→

{

0 if s > 0

ln(−s) if s ≤ 0.

ln| | : s 7→

{

ln |s| if s 6= 0

0 if s = 0.

Since these functions are integrable, they define distributions on I. We
can now define the distributions s−m

+ , s−m and |s|−m (m a positive integer)
as follows:

s−m
+ =

(−1)m

(m− 1)!
Dm ln+

s−m
− = −

1

(m− 1)!
Dm ln−

|s|−m = s−m
+ + s−m

− .
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Thus we have defined the distributions above for all complex values of the
parameter λ. It follows immediately from these definitions that we always
have the relationship

Dsλ+ = λsλ−1
+ (λ ∈ C).

The derivative of a piecewise smooth function Consider the function
sn+ where n is a positive integer. The n-th derivative of this function is the
Heaviside function H0 (times the constant n!). Hence we have the equation

D̃msn+ = (n!)δ
(m−n)
0

for m > n. Hence, if p is a polynomial of degree n− 1, say

p : s 7→ a0 + a1s+ · · ·+ an−1s
n−1,

and p+ = p.H0, then

D̃np+ = a0δ
(n−1)
0 + a1δ

(n−2)
0 + · · ·+ (n− 1)!an−1δ0

= p(0)δ
(n−1)
0 + p′(0)δ

(n−2)
0 + · · ·+ p(n−1)(0)δ0.

Thus we see that jumps in a smooth function or its derivatives induce the ap-
pearance of δ-type singularities in the derivatives. In particular, if a function
is not continuous, then the almost everywhere pointwise derivative need not
coincide with the distributional derivative. We shall use the above formula
to derive corresponding ones for the distributional derivative of a piecewise
n-times continuously differentiable function x i.e. a function for which there
is a finite sequence (a0, . . . , ak) in the interior of I so that

a) x is n-times continuously differentiable on I\{a0, . . . , ak};

b) for each i = 0, . . . , n and j = 0, . . . , k lims→aj+ x(i)(s) and lims→aj− x(i)(s)
exist. Then we write

σi
j = lim

s→aj+
x(i)(s)− lim

s→aj−
x(i)(s).

Functions of the above form are integrable and so define distributions. We
proceed to calculate the corresponding derivatives. In order to simplify the
notation, we shall suppose that x has only one point of singularity a0. x(i)

will denote the function which we obtain by differentiating x i-times on the
complement of a0. We shall regard this as an L1-function (and so as a
distribution). Hence it will not be relevant that the function is not defined
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at a0. Let p be that polynomial of degree n− 1 whose successive derivatives
at a0 are

p(a0) = σ0
0, p′(a0) = σ1

0, . . . , p
(n−1)(a0) = σn−1

0

and let p+ be the function Ha0 .p. Then x− p+ is (n− 1)-times continuously
differentiable on I as the reader can easily verify. Now the distributional
derivative of the latter function of order n is x(n) since the latter is an in-
tegrable function which is the pointwise derivative of x − p+ away from a0.
Hence

D̃nx = Dn(x− p+) +Dn(p+)

= x(n) + σ0
0δ

(n−1)
a0

+ · · ·+ σ
(n−1)
0 δa0 .

The general expression for the derivative of the original x (i.e. in the situation
where we have k singularities) is then

D̃nx = x(n) +
∑

i,j

σj
i δ

(n−1−j)
ai

.

Examples. For any positive ǫ, the function

s 7→ ln(s+ iǫ) = ln |s+ iǫ| + i arg(s+ iǫ)

is integrable on I. The pointwise limit as ǫ converges to zero is the function
ln |s|+iπ(1−H0(s)) (for s 6= 0). Hence it is natural to define the distribution
ln(s+ i0) as

ln |s|+ iπ(1−H0).

Similarly, we define distributions

ln(s− i0) = ln |s| − iπ(1−H0)

(s+ i0)−1 = D(ln(s+ i0)) = s−1 − iπδ0

(s− i0)−1 = D(ln(s− i0)) = s−1 + iπδ0.

(where s−1 is the distribution

D̃ ln |s| = D ln+ s+D ln− s = s−1
+ − s−1

− ).

Now by the Lebesgue theorem on dominated convergence, ln(s+iǫ) converges
to ln(s + i0) in the L1-sense (and so in the distributional sense). Differenti-
ating, we get:

(s+ i0)−1 = lim
ǫ→0+

(s+ iǫ)−1.
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Similarly,
(s− i0)−1 = lim

ǫ→0−
(s− iǫ)−1.

Hence if we introduce the notation

δ+0 =
1

2πi
(s− i0)−1 δ−0 =

1

2πi
(s+ i0)−1

we have the equation
δ0 = δ+0 − δ−0 .

We remark that one can show that (s+ i0)−1 is the limit of the distribu-
tions (s + iǫ)−1 without having recourse to Lebesgue’s theorem by showing
directly that the primitives of these functions converge in a suitable manner.

Remark. For reasons which will become clear later, the distributions which
we have here denoted by s−m (m a positive integer) are often denoted by the

symbol p.p.
1

sm
(for the principal part).

The methods used here allow one to regard any function on I which is
smooth except for a finite number of isolated poles—typically the restriction
of a meromorphic function to I—as a distribution.

We conclude this list of examples by showing how to derive correctly the
formula for the Fourier expansion of the delta-function referred to ion the
Introduction. We shall work in the space C−∞(I) where I is the interval
[−π, π]. Consider firstly the function 2H0 − 1 which is odd in the sense that
its graph is point-symmetric about the origin. The latter has the Fourier
expansion

1

π

∞
∑

n=1

1

n
sin(2nt)

as can easily calculated by elementary methods. This converges in the norm-
topology of L1 and so, a fortiori, in the distributional sense. Hence we can
apply the continuous operator D̃ to both sides to get the desired equation:

δ0 =
1

π

∞
∑

n=0

cos(2nt).

More generally, we have the equations

δ
(k)
0 =

1

π

∞
∑

n=0

(2n)k(−1)k/2 cos 2nt (k even)

δ
(k)
0 =

1

π

∞
∑

n=1

(2n)k(−1)(k−1)/2 sin 2nt (k odd.
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As a second example, consider the function x(t) = H(t) sin t. Using meth-
ods similar to those used above, once can show that x is a solution of the
differential equation x′′ + x = δ0, more precisely

D̃2x+ x = δ0

as claimed in the introduction.

1.3 Operations on distributions

We shall now show how to extend some standard operation on functions to
distributions. The main problem is that such operations (for example, that
of multiplication) can no longer be defined pointwise. This means that we
are forced to seek less direct methods. One of the simplest is the content of
the following Lemma:

Lemma 1 Let S be a linear operator from C(I) into C(J) (where I and
J are compact intervals) which commutes with D i.e. are such that if x
is an element of C1(I), then Sx ∈ C1(J) and D̃(Sx) = S(D̃x). Then S
possesses a unique extension S̃ to an operator from C−∞(I) into C−∞(J)
which commutes with D̃. Further if S is continuous, then so is S̃.

Proof. Suppose firstly that a function x in C(I) is constant. Then Dx = 0
and so D̃(Sx) = S(Dx) = 0 i.e. Sx is constant. Similarly, it follows from
the equation D̃nSx = SD̃nx (x ∈ Cn(I)) which is a consequence of the
commutativity; condition, that if x is in P n(I), then Sx is in P n(J). Also,
applying the commutativity relation to IX (x ∈ C(I)) and integrating, we
get the equation

I(SDIx) = (ID(SIx)

and so
ISx = SIx+ x0

where x0 is a constant. Similarly, for each n in N and x in C(I),

InSx− SInx ∈ P n(J).

Consider now the mapping

Sn : (x0, . . . , xn) 7→ (Sxo, . . . , Sxn)

from Hn(I) into Hn(J). Then Sn(Fn(I)) ⊂ Fn(J). For if (x0, . . . , xn) is in
Fn(I), then

Inx0 + · · ·+ xn ∈ P n(I)
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and so

InSx0 + · · ·+ Sxn = S(Inx0) + . . . Sxn + p = S(Inx0 + . . . xn) + p

where p ∈ P n(J). Hence we can lift Sn to a linear operator S̃n from C−n(I)
into C−n(J), the former being continuous if the latter is. These mappings
are compatible and so combine to define the mapping from C−∞(I) into C−∞

which we are looking for.

It can easily be seen from the proof that S̃ is surjective (resp. injective,
resp. bijective) if S is.

Note that, in terms of representations of distributions by finite sequences
of continuous functions, the above proof shows that S acts componentwise.

As examples of operators which satisfy the conditions of the above Lemma,
we consider translation and restriction: Translation: We know that the op-
erator

τh : ax 7→ (s 7→ x(s− h))

is continuous and linear from C(I) into C(I + h) and, of course, commutes
with differentiation. Hence we see immediately that there exists a unique
continuous linear operator τ̃h from C−∞(I) into C−∞(I + h) which coincides
with the usual translation for continuous functions and commutes with the
operation of differentiation. Restriction: If I and J are compact intervals
with J contained in I, the restriction operation ρI,J from C(I) into C(J)
satisfies the conditions of the Lemma and so there is a uniquely determined
continuous linear operator on the corresponding spaces of distributions which
coincides with the latter for continuous functions and commutes with differ-
entiation.

We call the corresponding distributions τ̃hx and ρ̃I,Jx the h-translate of
x resp. the restriction of x to J

1.4 Recolleament des morceaux

We now consider the problem of piecing together distributions which are
defined on subintervals of a given interval. We begin with the case of two
such intervals i.e. we have the situation of a compact interval K which is
the union I ∪J of two such intervals which have non-degenerate intersection.
Suppose that x is a distribution in I, y one on J and that they coincide on
I ∩ J i.e. that

ρI,I∩J = ρJ,I∩J(y).
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Lemma 2 Let I and J be compact intervals with J a subset of I. Suppose
further that (y0, . . . , yn) is a representation of a distribution of a distribution
on J and let x be a distribution in C−n(I) which agrees with y on J . Then
x has a representation (x0, . . . , xn) whereby xi = yi on J for each i.

Proof. x has a representation of the form

(x̃0, . . . , x̃n).

Since x and y coincide on J , there is a polynomial p of degree at most n− 1
so that

In(x̃0 − y0) + · · ·+ (x̃n − yn) = p

on J . We now extend the functions y0, . . . , yn−1 in an arbitrary manner to
continuous functions on I which we denote by (x0, . . . , xn−1). xn is then
determined by the equation

xn = −p + In(x̃0 − x0) + · · ·+ I(x̃n−1 − xn−1) + x̃n.

Then (x0, . . . , xn) is the required representation.

Lemma 3 Suppose that K = I∪J is a representation of the compact interval
K as above. Then if x is a distribution on I resp. y one on J which agree
on I ∩ J ,there is a distribution z on K which agrees with x on I and with y
on J .

Proof. Let (z0, . . . , zn) be a representation of x (and so of y) on I ∩ J .
By a double application of the above Lemma, we can find representations
(x0, . . . , xn) of x and (y0, . . . , yn)of y on J so that each xi and yi coincide
with zi and so with each other on the intersection. Let zi be the continuous
function on K which is equal to xi on I and so yi on J . Then (z0, . . . , zn) is
the required distribution.

We remark that the distribution z is uniquely determined by the above
condition. For if I, J,K are as above and z resp. z1 are distributions which
agree on I land on J , then they agree on K. For let (z0, . . . , zn) be a common
representation of the two distributions on I. By the penultimate Lemma, we
can find representations

(x0, . . . , xn) and (y0, . . . , yn)

for z and z1 on K where the xi and yi are extensions of zi. Since these
distributions agree on J , the function

In(x0 − y0) + · · ·+ (xn − yn)
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is a polynomial on J . However, this polynomial vanishes on the non-degenerate
interval I ∩ J and so on the whole of J . Hence z = z1.

A simple induction proof now yields the following:

Proposition 1 Let (I1, . . . , In) be a covering of the compact interval I by
such intervals so that each pair Ij and Ik is either disjoint or intersects in a
non-degenerate interval. Then if we have a sequence of distributions (xi)

n
i=1

where xi is defined on Ii and xi coincides with xj on Ii∩ Ij for each pair i, j,
there is a unique distribution x on I which agrees with each xi on Ii.

Multiplication: We now consider the problem of extending the opera-
tion of multiplication to distributions. Consider the following example which
is due to Laurent Schwartz.

Examples. We “calculate” the product s−1.s.δ0, firstly as (s−1.s).δ0, then
as s−1(s.δ0). In the first case, we have the calculation

s−1· = (D ln |s|) · s = D(s · ln |s|)− ln |s|

= D(s · ln |s|)−D(s · ln |s| − s) = Ds = 1

and so the product above is equal to δ0.
On the other hand, if we write X for that primitive of H0 which vanishes

at 0, then
H0 = DX = D(s ·H0) = H + s · δ0

and so s · δ0 = 0. Hence s−1(s · δ0) = 0.
Of course, these manipulations are purely formal (we have not yet defined

the concept of the product of two distributions). What they show is that
there is no multiplicative structure on C−∞ under which this space is a ring
and the usual rules for the derivatives of sums and products hold. Hence
we shall have to be more modest when attempting to define products of
distributions. We shall commence by defining products x.y where x is in
Cn(I) and y is in C−n(I).

Lemma 4 Suppose that x is in Cn+1 and y1 is in C(I). Then

n+1
∑

k=0

(−1)k
(

n + 1

k

)

Dn+k(Dkx·y1) =
n

∑

k=0

(−1)k
(

n

k

)

Dn+1−k(Dkx·y1)−
n

∑

k=0

(−1)kDn−k(Dkx·Dy1).

Hence if y1 is in C1(I), then

n+1
∑

k=0

(−1)k
(

n+ 1

k

)

Dn+1−k(Dkx · z1) =
n

∑

k=0

(−1)k
(

n

k

)

Dn−k(Dkx ·Dy1).
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Proof. The first equation is a simple consequence of the relationship
(

n

k

)

+

(

n

k − 1

)

=

(

n+ 1

k

)

.

The second follows from the fact that
n

∑

k=0

(−1)kDn+1−k(Dkx · y1) =
n

∑

k=0

(−1)k
(

n

k

)

Dn−k(Dk+1x · y1 +Dkx ·Dy1).

Using this fact, we can now define the distribution x.y where x is in Cn(I)
and y is in C−n(I) by putting

x · y =

n
∑

k=0

(−1)k
(

n

k

)

Dn−k(Dkx · y1)

whereby y = D̃ny1 with y1 a continuous function.
As usual, there are a number of things to be checked about this definition.

Firstly, it follows immediately from the defining expression that the product
depends linearly on each factor. We next note that if x is in fact in Cn+1(I),
then the following version of Leibnitz’ rule holds:

D(x ·Dny1) = Dx ·Dny1 + x ·Dn+1y1.

In order to show that the product is well-defined, it obviously suffices to show
that if y1 is in P n(I) and x is in Cn(I), then the defining sum above vanishes.
But by the result of the last Lemma, we have that this sum is equal to

n−1
∑

k=0

(−1)k
(

n− 1

k

)

Dn+1−k(Dkx ·Dy1)

i.e. the corresponding sum (up to n− 1) for D1, which is in P n−1(I). Hence
we can prove that it vanishes by induction.

Examples. Suppose that I is an interval which has 0 as an interior point
and that x is in C(I). Then we claim that x.δ0 = x(0).δ0. More generally,
we have the relationship

x · δn0 =

n
∑

k=0

(−1)k
(

n

k

)

x(k)(0) · δ
(n−k)
0 .

The first formula is obtained by differentiating s.H0. Firstly, using the Leib-
nitz rule we have

D(x.H0) = Dx.H0 + x.δ0.
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On the other hand, using the formulae for the derivatives of piecewise smooth
functions, we have

D(x ·H0) = Dx · h0 + x(0).δ0.

As a further example, we have the formula s−1 · s = 1 which we leave to the
reader to verify.

We remark briefly on some extensions of the definition of the product of
distributions or functions which are often useful. Firstly, one can use this
concept of the product of a continuous function and a measure to define
products of the form x.y where x is in Cn and y is the n-th (distributional)
derivative of a measure. We can also use the principle of recollement des
morceaux to define the product of two distributions such as δa.δb (where
a 6= b) i.e. distributions where the singularities of one correspond to regions
where the other factor is smooth. More precisely, suppose that x and y are
two distributions on I such that there is a covering (I1, . . . , In) by compact
intervals of the type discussed above so that on each Ii there is an ni so
that on Ii either x is in Cni(I) and y in C−ni(I) or vice versa. Then we can
define the product x.y on I by defining it on each Ii and then using the above
principle.

1.5 Division of distributions

In the following, we consider the problem of division by distributions and
show that the latter can be divided by non-vanishing polynomials. We begin
with the simplest case—that where the polynomial is the identity function:

Proposition 2 Let I be a compact interval which contains 0 as an interior
point. Then if x is a distribution on I, there is a distribution y thereon so
that s.y = x.

Proof. We assume that x has the form D̃nX where X is continuous and
introduce the function

Y : s 7→

{

snIa(
X

tn+1 ) (s < 0)

snIb(
X

tn+1 ) (s > 0)

(recall that Ia and Ib are the integration operators with base points a and
b resp., the latter being the left and right-hand endpoints of I). The reader
can check that Y is Lebesgue integrable (in fact, we have estimates of the
type

|Y (s)| ≤ C

∫ s

a

−
1

t
dt ≤ C(ln(−a)− ln(−s)) (sλ < 0)
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resp.
|Y (s)| ≤ C(ln b− ln s) (s > 0)

where C = sup |X(t)|.
We claim that the distribution y = D̃n+1Y has the required property.

Indeed, by the Leibnitz rule

Dn+1(s · Y ) = s ·Dn+1Y + (n+ 1)Dny.

On the other hand, the function sZ is piecewise smooth and so we have

D̃(s.Y ) = (n + 1)Y +X

by the formula on p. ??. Hence D̃n+1(s.Y ) = (n + 1)D̃nY + x. Comparing
the two equations, we see that s.y = x.

By induction, we see that if x is a distribution on I and if r is a positive
integer, then there is a distribution y so that sr.y = x. In fact, such a
distribution is D̃n+rY where Y is the function

Y : s 7→

{

sn

(r−1)!

∫ s

a
(s− t)r−1X(t)

tn+r dt (s < 0)
sn

(r−1)!

∫ s

b
(s− t)r−1X(t)

tn+r dt (s > 0).

We remark here that y is not uniquely determined by the equation sr.y =
x. Indeed, any distribution y of the form

r−1
∑

j=0

cjδ
(j)
0

satisfies the equation sr.y = 0 as we have seen above so that we can add such
a distribution to a solution of the above kind and we still have a solution.
We shall see later that these are the only solutions i.e. distributions y so
that sr.y = x are determined up to such combinations of derivatives of the
delta-function.

Using this result and the principle of recollement des morceaux one can
show that if p is a smooth function on I whose only zeros are isolated ones of
finite order (typically the restriction to I of polynomials or, more generally,
analytic functions on the complex plane), then for each distribution x on I
there is a distribution y with p.y = x. We leave the details to the reader.

We now consider briefly the problem of changes of variable for distribu-
tions. We consider two compact intervals I and J with a smooth mapping φ
from I into J . We wish to define an operator x 7→ x ◦ φ from C−∞(J) into
C−∞(J) in such a way that
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a) if x is a continuous function, then x ◦ φ has its usual meaning;

b) the chain rule holds i.e. D̃(x ◦ φ) = (D̃x ◦ φ)φ′. It is easy to see that if
x has the form D̃nX for some continuous function, then x ◦ φ must be

the distribution (
1

φ′
D)n(X ◦ φ).

In fact, if we choose φ so that the latter expression is meaningful, then this
can be used to define composition. More precisely, suppose that φ is in Cn+1

and that its derivative has no zeros in I. Then the above definition induces
a continuous linear mapping x 7→ x ◦ φ from C−nk(J) into C−n(I). In order
to prove this, it suffices to show that the composition x◦φ is well-defined i.e.
that if a distribution x vanishes, then so does x◦φ. But in this case, x = D̃nX
where X is a polynomial of degree??? in which case x ◦ φ = (??????) also
vanishes (by the chain rule).

We remark that the operators τh and ρI,J considered above can be as-
sumed within the framework of this construction. They are just composition
with the functions t 7→ t− h respectively the natural injection from I into J
as the reader can easily verify.

Examples. We have the formula

δ0(kt) =
1

|k|
δ0

for any non-zero scalar k. More generally,

δ
(n)
0 (kt) = |k|−nδ0

(where the expression δ0(kt) refers to the delta-function composed with the
dilation t 7→ kt).

Remark. As in the case of multiplication, we can extend this definition
if we use recollement des morceaux. For instance, it suffices to demand the
following properties from φ. We have a suitable covering (I1, . . . , In) of I by
compact intervals so that for each i, either

a) the restriction of φ to Ii satisfies the conditions required above

or

b) the restriction of x to Ii is continuous in which case e it suffices that φ
be continuous on Ii.

Under these conditions we can define x ◦ φ. Thus using this method we can
define such expressions as δ0(t

2 − a2) (for a 6= 0).
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1.6 Distributions on open sets

Our next task will be to define distributions on the whole real line R of,
more generally, on open subsets resp. intervals thereof. One possible method
would be to consider the operation of differentiation on a suitable class of
functions onR. Two natural choices are the Banach space Cb(R) of bounded,
continuous functions on the line resp. the space C(R) of all continuous
functions there. If we apply the methods of this chapter, we obtain different
spaces of distributions and in neither case do we come up with the space of
distributions of L. Schwartz.

Examples. Consider the “distributions:

T1 =
1

2
δ0 +

∞
∑

n=1

(−1)nδn;

T2 =

∞
∑

n=0

δn;

T3 =
∞
∑

n=0

δ(n)n .

The first distribution is in the space generated by the bounded, continuous
function (as the second derivative of such a function), the second is in that
defined by C(R) while the third is in neither.

In order to obtain all distributions, we shall use the method of projective
limits i.e. we shall define a distribution on R to be a collection of local
distributions defined on the compact subintervals of R which are compatible.
The formal definition is as follows:

Definition: Let U be an open interval of R and write I(U) for the
family of all non-degenerate subintervals of U . The latter is a directed set
when ordered by inclusion. The family

{C−∞ : I ∈ I(U)}

together with the restriction mappings

{ρI,J : J ⊂ I}

is a projective system of vector space. The space C−∞(U) of distributions
on U is by definition its projective limit. Thus a distribution on U is a fam-
ily {xI : I ∈ I(U)} where xI is a distribution on I which is compatible in
the sense that whenever I and J are intervals with non-degenerate intersec-
tion, then xI and xJ coincide on this intersection. As a projective limit of
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LVS’s C−∞(U) itself has a limit structure, a sequence (xn) of distributions
converging if and only if the sequence of components (xn

I ) converges in the
appropriate distribution space for each I.

We remark that we do not really need to specify a distribution on all
compact subintervals of U . For example, a sequence (xn) where xn is a
distribution on the interval [−n, n] and the restriction of xn+1 to [−n, n]
coincides with xn for each n defines in the obvious way a distribution on R.

We now list without comment some facts or constructions for distributions
on R which follow immediately from the definition and the corresponding
properties of distributions on compact intervals:

I. each locally integrable function on R (or on U) can be regarded as a
distribution there. Similarly, a measure (not necessarily bounded) on
the line can be regarded as a distribution.

II. we can extend the definition of the derivative of a distribution by defin-
ing the derivative of x which is defined by the family (xI) to be the
distribution defined by the family (D̃x)I . Of course, we denote the
latter distribution by D̃x.

III. The space of distributions on R satisfies the natural form of the axioms
given at the beginning of this chapter with the exception of ???? Thus
the distribution ??? is not the repeated derivative of any continuous
function. A distribution which is the n-th derivative of a continuous
function on the line for some integer n is called a distribution of

finite order.

IV. If U1 is a subinterval of U , we can, in the obvious way define the
restriction ρU,U1

from the space of distributions on U into the space of
distributions in U1. Similarly, we can define a translation operator τh
from C−∞(U) into C∞(U + h).

We have the following version of the principle of recollement des morceaux.

Proposition 3 Let (Uα)α∈A be a covering of U by open intervals and let
(xα : α ∈ A) be a family of distributions where xα is define on Uα and xα

coincides with xβ on Uα ∩ Uβ for each pair α, β. Then there is a unique
distribution x on U which coincides with each xα on UOα.
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Proof. Consider a compact subinterval I of U . Then the family {Uα ∩ I :
α ∈ |} is an open covering of I and so we can find a finite subcovering. We
can then use recollement des morceaux for compact intervals to deduce the
existence of a distribution xI on I which agrees with xα on Uα ∩ I for each
α. (In fact, the result referred to here is not directly applicable since Uα ∩ I
is not compact. however, we can replace these relatively open intervals with
slightly smaller closed ones which still cover I and then apply the appropri-
ate result). The distributions (xI) are clearly compatible and so define the
required distribution on U .

We can use this principle to define the support of a distribution. We
say that a distribution x on U has support in a closed set C ⊂ U if the
restriction of x to the open U \ C vanishes. There is a smallest such set
which is obtained as follows. We say that x vanishes on the open subset
U1 if its restriction there is the zero-distribution. It follows from the above
principle that there is a largest such open set, namely the union of all open
sets on which x vanishes. The complement of this set is defined to be the
support of x.

For example, the distribution δ0 and its derivatives have support in the
one-point set {0}. In fact, they are the only such distributions. More pre-
cisely, if T is a distribution on the line with support in {0}, then T is a
(finite) linear combination of δ0 and its derivatives. For the restriction of x
to the interval [−1, 1] has the form DrX for some continuous function and
since x vanishes on the open intervals ]0, 1[ and ]0, 1[, there are polynomials
p− and p+ (both of degree less than r) so that X coincides with p− on [−1, 0[
resp. with p+ on ]0, 1]. Thus X is a piecewise smooth function whose only
singularity is at the origin. The result now follows from the formula for the
distributional derivative of such a function.

From this we can deduce the fact which has already been mentioned that
the only solutions of the equation sn · x = 0 are the elements in the linear
span of δ0, δ

(1)
0 , . . . , δ

(n−1)
0 . For recall that

sr · δ
(n−1)
0 =

n
∑

k=0

(−1)k
(

n

k

)

(sr)(k)(0) · δ
(n−k)
0

which vanishes if r > n and has the value (−1)r
(

n
r

)

r!δ
(n−r)
0 otherwise. This

implies the sufficiency of the above condition.
Now suppose that sn · x = 0. Clearly sr · x = 0 for r ≥ n. Now it

follows immediately that x is supported by {0} and is a linear combination of
derivatives of δ-functions. Suppose that the highest derivative which occurs
is of order r with r ≥ n. Then if we substitute the expression

∑r
j=0 λjδ

(j)
0 for

26



x in the equation sr · x = 0 and use the above formula, we see that λr = 0
which is a contradiction.

Later we shall require the concept of the space of distributions with com-

pact support. By definition, these are the distributions x in C−∞(R) for
which there exists a compact interval I so that x is supported by I.

1.7 Limits and integrals of distributions

In order to define the limit of a distribution (at a point of the line or at
infinity), we are forced to use a definition which is motivated by L’Hopital’s
rule. we begin with the case of a distribution x on an interval I which is
unbounded on the right. We say that x(s) → 0 as s → ∞ if there exist an
integer p, a b ∈ I and a continuous function X on [b,∞], so that

x = DpX and lim
s→∞

X(s)

sp
= 0.

We leave to the reader the verification of the fact that if this condition holds
for one p-primitive X of x, then it holds for each such primitive).

More generally, we write lims→∞ x(s) = λ to mean that lims→∞(x(s) −
λ) = 0 i.e. that there is a p-primitive X so that

lim
s→∞

X(s)

sp
=

λ

p!
.

For example, since cos t = D(sin t) and
sin t

t
→ 0, we see that limt→∞ cos t =

0 in the distributional sense.
Of course, the usual rules for the calculations of limits are valid. Thus

we have
lim
s→∞

(x(s) + y(s)) = lim
s→∞

x(s) + lim
s→∞

y(s)

provided both terms on the right hand side exits. If I is unbounded on the
left, we define lims→−∞ x(s) in the analogous way.

Suppose now that a is the (finite) left endpoint of the interval I. Then
the condition lims→a+ x(s) = λ means that x has a representation as DpX
in a neighbourhood of a so that

lim
s→a+

X(s)

(s− a)p
=

λ

p!
.

We define the limit lims→b− x(s) analogously, where b is the right hand end-
point. Finally, if c is an interior point of the interval, then lims→c x(s) = λ
means that lims→a− x(s) = λ = lims→a+ x(s).
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For example, it is clear that

lim
s→0

δ
(k)
0 (s) = 0

for any derivative of the delta-function.
In contrast to the case of limits at infinity, the above condition on the

primitive X of x clearly implies that it has limit 0 at c. hence the defining
condition will only be satisfied by one primitive of x.

1.8 Continuity at a point

In general, we cannot talk about the value of a distribution at a point. how-
ever, it is clear that the expression “the value of the delta-function at the
point 1 is zero” should be a valid statement. This and more subtle phenom-
ena are covered by the following definition. Let x be a distribution on the
interval I which contains the point a as an interior point. Then we say that x
is continuous at a with value λ if x has a representation DpX near a whereby
X is continuous and

lim
s→a

X(s)

(s− a)p
=

λ

p!
.

Note that this condition is stronger than the mere existence of the limit as
s tends to a. Thus δ0 is not continuous at 0 (although lims→0 δ0(s) exists).

On the other hand, the distribution cos
1

s
is continuous at 0 (with value 0

there). This follows from the representation

cos
1

s
= 2s · sin

1

s
−D(s2 · sin

1

s
).

1.9 Primitives and definite integrals

It is clear that any distribution x on a compact interval has a primitive i.e.
a distribution X with DX = x. For if x has a representation DpY it suffices
to take Dp=1Y . Further any two such distributions differ by a constant.
The same holds true for a distribution on an open interval U . For U can
be covered by an increasing sequence (In) of compact intervals. If x is a
distribution on U , we can find a distribution X1 on I1 so that DX1 = x on
I1. Similarly, there is a distribution X2 on I2 with DX2 = x on I2. Then
X1 and X2 differ at most by a constant on I1. By subtracting this constant
from X2 we can ensure that X1 and X2 coincide on I1. Proceeding in this
manner, we can construct a sequence (Xn) where Xn is a distribution on
IN with derivative x. Furthermore, the Xn are compatible and so define a
distribution on U which is a primitive for x.
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If we now combine the notions of primitive and limit of a distribution, we
can carry over the classical definition of the definite integral of a function to
distributions. Note however that we must be more careful about specifying
behaviour at the endpoints.

Let I be an interval with endpoints a and b (the latter need not be in I i.e.
we are not assuming that the interval is closed). We say that a distribution

x in C−∞(I) is integrable (more precisely, that
∫ b−

a+
x(s) ds exists) if x has a

primitive X for which lims→a+X(s) and lims→b−X(s) exist. Of course, the
integral is then defined to be the difference of the two limits. Similarly, we
define such expressions as

∫ b−

a−

∫ b+

a−

∫ ∞

a+

∫ ∞

a−

∫ b+

−∞

etc. We remark that in order to define say
∫ b+

a−
x(s) ds, we must assume that

x is defined on an interval which contains a and b as interior points.
For example, the reader may check that

∫ ∞

−∞

δ0(s) ds =

∫ 0+

0−

δ0(s) ds = 1

∫ ∞

−∞

δ
(k)
0 (s) ds = 0 (k > 0)

∫ ∞

−∞

eist dt = 0 if s 6= 0.

The last equation follows from the fact that

eist = Dt(
1

is
eist)

and limt→±∞ eist = 0.
We note here that if a distribution x on the line is supported in a compact

interval I = [a, b], then it is integrable and its integral over the line is equal

to
∫ b+

a−
x(s) ds. This follows from the fact that there exist constants c1 and

c2 so that X − c2 on ]b,∞[ and X = c1 on ] −∞, a[ (X a primitive of x).
Then both of these integrals are equal to c2 − c1.

1.10 The order of growth of distributions

Recall that if π is a positive, continuous function defined on some neighbour-
hood [a,∞[ of infinity, then a function x (also defined in a neighbourhood of
infinity) is said to be of order π (written x ∈ O(π)) if there is a b > a so that
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the quotient x
π
is bounded on [b,∞[. x is small of order π if limt→∞

x(t)

π(t)
= 0

(written x ∈ o(π) as t→∞).
In fact, we shall only be concerned with the case where π is a power of t.
We can extend these definition to distributions as follows:

Definition 2 Let I be an interval of the form [a,∞[, π as above. Then we
say

• a distribution x in C−∞(I) is bounded near infinity f(written x ∈ O(1)
as t → ∞) if x has a representation x = D̃nX on a neighbourhood
of infinity, where X is a continuous function which is O(tn) in the
classical sense;

• we say that x ∈ O(π) as t → ∞ if x = y · π where y is a distribu-
tion which is bounded near infinity. (In this definition, we are tacitly
assuming that π is smooth);

• that x ∈ o(π) as t→∞ if x = y · π where limt→∞ y(t) in the distribu-
tional sense.

In the same way, we can define the concepts of functions which are O(π)
resp. o(π) as t tends to a−, b+ or −∞.

One of the interesting consequences of this definition is that integrability
for a distribution is more closely related to its rate of growth than is the case
for functions. In fact, we have the following properties:

Proposition 4 If x ∈ O(tα) as t→∞, then Dx ∈ O(tα−1).

For we have the equation

Dx = t−1(tDn+1) = t−1(Dn+1(tX))− (n+ 1)DnX

where x = DnX . Now if x is bounded, we can find such a representation
where X is O(tn). It follows easily then that DX is O(tn−1).

Proposition 5 If x is integrable, then x is O(t−1.

For if X is a primitive of x, then limt→∞ X(t) exists and hence X is
bounded near infinity. The result now follows from the first Proposotion.

Proposition 6 If x ∈ O(tα) for some α < 1, then x is integrable.
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For the hypothesis means that x = tαDnX near infinity, where X(t
tn

is
bounded. now we can expand the right hand side as

n
∑

k=0

ckD
n−k(tα−kX)

for suitable coefficients ck. This has primitive

n−1
∑

k=0

ckDn−k−1(t
α−kX) + cn

∫ t

0

sα−nX(s) ds

and
∣

∣

∣

∣

X(s)

sn

∣

∣

∣

∣

≤ K.

1.11 Distributions as functionals

As mentioned in the introduction, distributions were defined by Schwartz as
functionals on spaces of test functions. The fact that his theory is equivalent
to the one given here is a consequence of the fact that distributions in the
Schwartzian sense satisfy the axioms used here. however, we shall now dis-
play a more direct connection between the two theories by using integration
theory to show tl how elements of C−∞-spaces can be regarded as function-
als. Definition: We say that the distribution acts on the distributions

y (where both are in C−∞(I) for some interval I) if the product x · y is de-
fined and the definite integral

∫

I
x(s)y(s) ds exists. In this case we denote

the integral by Tx(y).

Examples. If the interval I is compact, then each distribution on I acts on
each function in C∞

0 (I). For suppose that x = DnX where X is continuous.
Then

x · y =

n
∑

k=0

(−1)k
(

n

k

)

Dn−k(X · y(k)).

Now all of the terms on the right hand sum have as primitive a distribution
which vanishes at the endpoints of I, with the exception of the final term
±X · y(n). Hence x · y is integrable and its integral is (−1)n

∫

I
X(s)y(n)(s) ds.

Since any distribution with compact support is integrable over R, it fol-
lows that Tx(y) exists whenever x · y has compact support, in particular
when

• y is in C∞
0 (R) and x is any distribution on R;

• y is in C∞(R) and x is a distribution with compact support.
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1.12 Fourier series and distributions

We say that a real number h is a period of a distribution x in C−∞(R) if
x = τhx. We write C−∞

−p (R) for the space of distributions with period 1. This
is a closed vector subspace of C−∞(R) as the kernel of the operator (τn− Id).
The usual argument shows that the set of periods of a distribution, being a
subgroup of R, is either a dense set or is the set of integral multiples of a
positive number h. In the former case it is then all of R (by continuity) and
so the distribution is constant.,

Examples of distributions in C−∞
p (R) are, of course, the exponential func-

tions e2πint (n ∈ Z) and so, more generally, trigonometrical polynomials i.e.
functions of the form

∑n2

n=n1
cne

2πint.
Even more generally, if (cn) is an absolutely summable sequence indexed

by Z, then
∑

n∈Z cne
2πint converges uniformly and so defines a periodic dis-

tribution. In particular, this is the case if (cn) is )(|n|
−2). We shall now show

that if (cn) is O(|n|k) for some positive k, then this series converges in the
distributional sense to a periodic distribution. For consider the series

∑

n∈Z\{0}

cn(2πin)
−k−2e2πint.

By the above, this series converges (uniformly) to a continuous, periodic func-
tion X . Differentiating k + 2 times, we see that the original series converges
to the distribution Dk+2X (up to a constant).

Examples. Consider the function which maps s onto s2 − s on [0, 1] and is
extended periodically to a continuous function on R. Its Fourier series is

−
1

6
−
∑

n 6=0

1

2π2n2
e2πins

which converges uniformly on the line. We can use this to obtain the Fourier
series of the delta-function, more precisely of its periodic version

δp0 =
∑

n∈Z

δn.

In fact, if we differentiate twice, we get
∑

n∈Z

δn =
∑

n∈Z

e2πint.

If we continue differentiating we get the formulae:
∑

n∈Z

δ(k)n =
∑

n∈Z

(2πin)ke2πint.
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We shall now show that, conversely, any distribution x in C−∞
p (R) has a

series representation
∑

n∈Z cne
2πint where the Fourier coefficients (cn) satisfy

the above growth condition. For the restriction of x to [0, 2] has the form
DkX for a continuously differentiable function on [0, 2] (we take the primitive
of a continuous function which represents x). Since x is periodic, X − τ1X
is a polynomial of degree at most n− 1 on [1, 2] i.e.

X|[1,2] = τ1(X|[0,1]) +H1p

for some p ∈ P n([1, 2]).
If we denote by X̃ the periodic extension of X to a function on R (which

is piecewise continuously differentiable), then x = DkX̃+y where y is a linear

combination of distributions of the form
∑

n∈Z δ
(r)
n (r = 0, 1, . . . , k−1) by the

formula for the derivative of piecewise smooth functions. Hence it suffices to
prove the existence of a Fourier series representation for distributions of type
DkX̃ (which follows by differentiating the series for X̃ , the latter converging
uniformly) and of type y, which was covered in the above example.

Examples. (The Poisson summation formula). Using the formula for the
Fourier series of the periodic delta-function, we have, for each test function
π in C∞

0 (R), the identity

∑

n∈Z

π(n) = 2π
∑

n∈Z

π̂(n)

where π̂ denotes the Fourier transform

t 7→
1

2π

∫

R

π(s)e2πst ds

of π, which is known as the Poisson summation formula. For the left
hand side is the value of the functional defined by the distribution

∑

n∈Z at
π, while the right hand side is the value of

∑

n∈Z e2πint.
We remark the easily proved fact that if α is a smooth periodic function

and x is a periodic distribution (i.e. α ∈ C∞
p (R) and x ∈ C−∞

p (R)), then αx
is also periodic and its Fourier series is obtained by formal multiplication of
those of x and α.

If x is an odd function i.e. such that x(−t) = −x(t) for t ∈ R, then its
Fourier coefficients (cn) satisfy the conditions c−k = −ck and so the Fourier
representation of x can be manipulated into the form

∞
∑

n=1

bn sin(2πnt)
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where bn =? just as in the case of functions.
Similarly even distributions have cosine representations. For example the

series for the periodic delta function can be rewritten in the form

1 + 2
∞
∑

n=1

cos(2πnt).

As a further example, we calculate the Fourier representation of the dis-
tribution cosec (2π2). The latter can be regarded as a periodic distribution
since it is a meromorphic function whose only singularities are simple poles
at the points 2πn (n ∈ Z). It can be defined directly by the formula

cosec (2πt) =
1

2π
D(ln | tan(πt)|),

the function t 7→ ln | tan(πt)| being locally integrable and 1-periodic. We now
assume that the Fourier series of the cosec-function is

∑

n∈Z cnE
2πnt and use

the fact that
(sin 2πt) · (cosec 2πt) = 1.

Of course, this equation holds pointwise, except at the singularities. In fact
it holds in the sense that the product of the smooth function represented by
the first term with the distributional second term is the constant function
“one”. We leave it to the reader to check that this is in fact, the case.

Now the Fourier series of sin 2πt is 1
2πi

(e2πt−e−2πt). Hence we can multiply
the two series out to get

(
∑

n∈Z

cne
2πint) · (e2πit − e−2πit) = 2i

i.e.
∑

n∈Z

cn(e
2πi(n+1)t − e2πi(n−1)t) = 2i

i.e.
∑

n∈Z

(cn−1 − cn+1)e
2πnt = 2i.

Comparing coefficients we see that

c−1 − c1 = 2i and cn−1 − cn+1 = 0 (n 6= 0).

Since the distribution we are analysing is odd, we have further that the even
coefficients vanish. Hence

c1 = c3 = · · · = −i
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and
c−1 = c−3 = · · · = −i,

the other coefficients vanishing. Thus the Fourier expansion is

2

∞
∑

n=0

sin((2n+ 1)2πt).

2 The Schwartzian theory

We now use the duality theory for locally convex spaces to develop the
Schwartzian theory of distributions. In view of the fact that the material
has been covered in the first chapter from a different point of view and will
be treated again in more depth in later chapters, we shall merely give a brief
overview of the theory in the present chapter.

We begin with the elementary case of distributions on a compact interval
I = [a, b] of the line. We shall show here that the C−∞-spaces which we
constructed in the first chapter can also be defined by means of duality. Our
starting point is the Banach spaces Cn

0 (I). This is the space of Cn-functions
in I which vanish, together with all derivatives up to order n, at the endpoints
of the interval. Note that these can also be described as those functions x for
which the extension to a function on the line which is obtained by setting x
equal to zero outside of I is also Cn. Of course, Cn

0 (I) is a closed subspace
of Cn(I) and so is a Banach space with the norm

|| ||n : x 7→ max{||xk)||∞ : k = 1, . . . , n}

The dual of Cn
0 (I) is called the space of distributions of order n on I

and denoted by Dn(I). Note that this space does not coincide with C−n(I)
(it consists of the distributional n-th derivatives of measures rather than of
continuous functions as we shall see shortly). However, the union of the Dn-
spaces, which we denote temporarily by D(I), will be shown to satisfy the
axioms of chapter I and so is the space of distributions on I.

We remark firstly that it follows from one of the versions of the Weierstraß
approximation theorem that C0(I) is dense in each Cn

0 (I) and so that Cn+1
0 (I)

is dense there. Hence we can regard Dn(I) as a subspace of Dn+1(I) (more
precisely, the adjoint of the embedding of Cn+1

0 (I) into Cn
0 (I) is an injection

of Dn into Dn+1).
We now show how to differentiate distributions. The mapping D is con-

tinuous and linear form Cn+1
0 (I) into Cn

0 (I). Hence its transpose D′ maps
Dn(I) into Dn+1(I). We define the derivative of a distribution f in Dn(I)
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to be the distribution −D′(f) in Dn+1(I). (As a temporary notation, we
shall denote distributions in this section by letters such as f , g etc. to em-
phasise that they are elements of the dual spaces of Banach spaces of smooth
functions). The rather mysterious minus sign in the above definition comes
from the formula for integration by parts as we shall see below. In order to
distinguish between the operators D, D̃ and the one introduced above, we
shall denote the latter by ∆. Once again, this is a temporary notation to
avoid confusion in the following.

Our first task will be to show how to regard continuous functions as
distributions i.e. as functionals on the Cn

0 -spaces. Of course, this is done
by means of integration i.e. we identify the continuous function y with the
distribution

Ty : x 7→

∫

I

x(t)y(t)dt

which is a linear form on each Cn
0 (I).

We now verify that the distributional derivative of a smooth function
coincides with its classical derivative. In terms of the notation which we
have just introduced, this means that for x in C1(I), Tx′ = ∆Tx. This is an
exercise in integration by parts. For if y is in C1

0(I), we have

Tx′(y) =

∫

I

x′(t)y(t)dt

= x(t)y(t)|ba −

∫

I

x(t)y′(t)dt

= −Tx(y
′) = ∆(Tx)(y).

Of course, this explains the minus sign in the definition of ∆.
In order to show that the space of distributions defined here coincides

with that of the first chapter, it only remains to show that each distribution
is a repeated derivative of a continuous function. We remark firstly that this
is the case for a measure.

We now turn to the general theory of Schwartzian distributions. In order
to do this we introduce the following menu of locally convex spaces:

I. Test spaces on a compact interval. We begin with the space of test
functions on I = [a, b]. Here we define

E([⊣, ⌊]) = lim
←−
\

E\([⊣, ⌊])

where En([a, b]) is the space of functions on [a, b] which are n-times
continuously differentiable. This is a Banach space under the norm
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|| ||n∞ defined above and so E([⊣, ⌊]) is a Fréchet space. Hence so is its
closed subspace

D([⊣, ⌊]) = lim
←−
\

D
\
′ ([⊣, ⌊])

which consists of those function all of whose derivatives vanish at the
endpoints a and b. Dper(R) is defined to be the closed subspace of
E([⊣, ⌊]) consisting of those functions x which satisfy the boundary
conditions

x(n)(a) = x(n)(b)(n = 0, 1, 2, . . . ).

This space can be identified with that of those smooth functions on R

which are periodic (with period the length of the interval i.e. (b− a)).

D[⊣,⌊](R) is the closed subspace of E([⊣, ⌊]) consisting of those functions
which satisfy the boundary conditions

x(n)(a) = x(n)(b) (n = 0, 1, 2, . . . ).

This can be identified with the space of those smooth functions on the
line which have support in [a, b]. The corresponding dual spaces are

D′(I) - the space of distributions on I;

D′
I(R) - the space of distributions on the line with support

in I;

D′
p(I) - the space of periodic distributions on I.

II. Test functions and distributions on open subsets of R. If U is an open
interval in R, we can represent it as a union

⋃

In of an increasing
sequence of compact intervals. For example, if U =]0, 1[, we take In =
] 1
n
, 1− 1

n
[. If U = R+, we take In =] 1

n
, n[. If U = R, we take In =]−n, n[.

We then define E(U) to be the projective limit

Thus E(U) is a Fréchet space, D(U) is an LF-space. We have the
following particular cases:

More generally, if U is an open subset of the line, then U has a unique
representation U =

⋃

n Un as a countable union of disjoint open inter-
vals. We then define

III. Subsets of Rn: If U is a bounded, open subset of Rn and K is its
closure, then we define the dual space of

If Ω is an open subset of Rn, we define

D(⊗) = limDK\
(⊗)
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where Ω =
⋃

Ωn is a covering of Ω by a sequence of relatively compact, open
subsets of Ω, whereby we assume that Ωn ⊂ Ωn+1 for each n. Kn is the
closure of Ωn. (The space D(⊗) , together with its topology, is independent
of the choice of the Ωn as the reader can check).

Examples of distributions on Ω: As in the case of distributions on compact
intervals, we can regard the following mathematical objects as distributions
on the open subset Ω of the line:

locally summable functions;

measures.

Since the space D(⊗) has a partition of unity, the following properties hold
as immediate consequences of the abstract theory of inductive and projective
limits with partitions of unity:

D(⊗) is an LF -space;

D(⊗) is complete;

a subset B of D(⊗) is bounded if and only if there is a compact
subset K of Ω so that

B is contained and bounded in DK(⊗);

D(⊗) is a Montel space;

a sequence (φn) of test functions converges to zero in D(⊗) if and
only if there is a compact subset K of Ω so that the supports of
the φn are all in K and φ

(k)
n → 0 uniformly on K for each k ∈ N.

We define the differentiation operators for spaces of distributions as fol-
lows: consider the operator

Dp = Dp−1
1 . . .Dp−n

n

on D(⊗) where p = (p1, . . . , pn) is a multi-index. Of course, this is a con-
tinuous, linear operator on the latter space and we define the operator ∆p

on the corresponding space of distributions to be (−1)p times its transpose
(where (−1)p is, by definition, (−1)p1+...pn). Of course, Dp and ∆p can also
be regarded as operators on the following spaces:

The dual of the space E(U) is called the space of distributions with

compact support. The nomenclature is justified by the following consid-
erations. We say that a distribution vanishes
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2.1 Unbounded operators and spaces of distributions

Our starting point will be an unbounded, self-adjoint p.l.o. A on the Hilbert
space H . We shall assume that A ≥ I (the significance of this assumption
will be discussed later). For each k in N we introduce a new Hilbert space
Hk which is none other than the domain of the operator Ak. This is provided
with the scalar product

(x|y)k = (Akx|Aky).

That this is a Hilbert space (i.e. complete) can be seen immediately from
the spectral theorem. For we can suppose that A is a multiplication operator
Mx defined on an L2-space, where x is a measurable function with x ≥ 1.
Then Hk is the space of functions y in L2 so that xky is also in L2, under
the scalar product

(y|z)k =

∫

x2kyz dµ

i.e. it is just L2(x2kµ)–the L2-space associated with the measure ν which has
density x2k with respect to µ. The Hilbert spaces Hk decrease as k increases
and we define H∞ to be the intersection

⋂

Hk, with the corresponding lo-
cally convex structure. Thus H∞ is a reflexive Fréchet space as a limit of a
sequence of Hilbert spaces. We define H−k to be the dual space of Hk. We
have the following natural representation of the latter:hb We note that Hk

is a dense subspace of H . Hence, if we take the adjoint of the injection from
Hk into H , we obtain a (continuous) injection from H ′ into the dual of H−k.
We can identify the first space with H via the Riesz theorem and so we see
that H is a subspace of H−k and we have the symmetric diagram

Hk ⊂ H ⊂ H−k.

We remark that this discussion show that H−k can be regarded as the com-
pletion of H with respect to the negative norm ‖ ‖−k which is defined as
follows:

‖y‖−k = sup {(y|z) : z ∈ BHk}.

(Of course, the scalar product is that of H).
In terms of our concrete representation of H as L2(µ) resp. Hk as

L2(x2kµ), it is easy to check that H−k is just L2(x−2kµ), where the dual-
ity between Hk and H−k is established by the scalar product in L2(µ). we
then define H−∞ to be the union

⋃

H−n of the spaces with negative norms.
It follows from ??? that H−∞ is the dual of H∞, in particular, it is a reflexive
(DF)-space and hence complete, barrelled and bornological.
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We have thus generated an infinite scale

H∞ ⊂ · · · ⊂ Hn ⊂ · · · ⊂ H0 ⊂ · · · ⊂ H−n ⊂ · · · ⊂ H−∞

of Hilbert spaces (where we have denoted H by H0 for reasons of symmetry),
flanked by the limiting cases H∞ and H−∞.

We remark that if H is a Hilbert space and H1 is a dense subspace with
a Hilbert structure defined by an inner product ( | )1 which dominates the
scalar product in H (i.e. is such that (x|x) ≤ (x|x)1 for each x in H1), then
this can be used to generate such a scale.

The space H∞ and H−∞ constructed above are, when regarded in the
L62-model, none other than the Nachbin spaces

H∞ =
⋂

n

L2(x2nµ) H−∞(x−2nµ).

In order to investigate the structure of these spaces we use the following
very simple result:

Proposition 7 If T is a continuous linear operator on H which commutes
with A, then T maps H∞ continuously into itself and has a unique extension
to a continuous linear operator on H−∞.

We denote these operators by T∞ and T−∞ respectively.

40


