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1 The natural numbers

1.1 Peano’s axioms

We denote by N the set of the natural numbers i.e.

N = {1, 2, 3, . . .}.

If we include the zero element 0, then we denote the resulting set by N0.
Hence

N0 = {0, 1, 2, 3, . . .}.
N is characterised by the following properties:

Peano’s Axioms

1. 1 ∈ N;

2. Every natural number has a uniquely determined successor n′;

3. Every natural number n, with the exception of 1, is the successor of a
uniquely determined natural number.

4. Suppose that A is a subset of N which is such that 1 ∈ A and if n ∈ A,
then n′ ∈ A. It follows that A = N.

1.2 Mathematical induction

The third property above is often expressed in the following way:

Proposition 1 (The Principle of mathematical induction) Let A(n) be a
statement which depends on the natural number n. Then if

1. A(1) holds;

2. for each n ∈ N we have: if A(n) holds, then so does A(n′),

Then A(n) is true for each n ∈ N.

Proof. Put A = {n ∈ N : A(n) holds} and use property 3).
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There are several useful variants of this principle, for example

Proposition 2 (Mathematical Induction — Variant I) Let A(n) be a state-
ment which depends on the natural number n. If

1. A(n0) holds;

2. for each n ≥ n0 we have: If A(n) holds, then so does A(n′).

Then A(n) is true for each n ≥ n0.

Proof. Put B(n) = A(n0 + (n− 1)) and use the original form.

Proposition 3 (Mathematical Induction — Variant II) If A(n) is a state-
ment which depends on the natural number n and if

1. A(1) is valid;

2. for each n ∈ N we have: whenever A(1), . . . , A(n) hold, so does A(n′).

Then we have A(n) for each n.

Proof. Put B(n) = A(1) ∧A(2) ∧ · · · ∧A(n).

With the aid of mathematical induction, we can define:
I. Addition: We define the sum m+ n of two natural numbers as follows:

1. For m ∈ N we put m′ := m+ 1;

2. If a natural number is the successor n′ of the natural number n, then
we put m+ n′ := (m+ n)′.

One then sees that m + n is defined for each n. (put A = {n : m +
n is defined}).

As expected, the familiar laws of addition hold:

1. m+ n = n +m (m,n ∈ N) (commutativity);

2. m+ (n+ p) = (m+ n) + p (m,n, p ∈ N) (associativity).

Proof. We prove the associativity. For this we use induction on p.
For p = 1 we have the statement: (m + n′) = m + n′. p → p + 1: We

assume that m+ (n + p) = (m+ n) + p. Then

(m+ n) + p′ = [(m+ n) + p]′ = [m+ (n+ p)]′ = m+ (n+ p)′ = m+ (n+ p′).
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The proofs of the other facts are similar. The reader should work some
of them out if only for achieving the kind of self-discipline of proving facts
which appear to be obvious.
II. Multiplication: We also define the product of two natural numbers induc-
tively:

1. m.1 = m (m ∈ N);

2. m.n′ = m.n +m (m,n ∈ N).

One can then show as for addition that mn is defined for each pair m and n
as for addition.

Once again, the familiar laws hold:

1. m.n = n.m (m,n ∈ N);

2. m.(n.p) = (m.n).p (m,n, p ∈ N);

3. m.(n + p) = m.n +m.p (m,n, p ∈ N) (the distributive law);

Notation Suppose that for each k with m ≤ k ≤ n we are given a number
ak. Then one puts

n
∑

k=m

ak = am + am+1 + · · ·+ an

n
∏

k=m

ak = am.am+1 . . . an.

Once again, we are tacitly using induction. A more formal version of this
definition would be:

m
∑

k=m

ak = am

n′

∑

k=m

ak =
∑n

k=m ak + an′ .

The fact that this concept is well-defined can be shown as follows: If we put
A = {n ≥ m :

∑n
k=m ak is defined}, then it follows that A = {n : n ≥ m}).

We bring some examples of simple and useful facts which are proved with
induction:
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Proposition 4
n
∑

k=1

k =
n(n+ 1)

2

for each natural number n.

Proof. Induction. The case n = 1 is clear.

n → n+ 1: Suppose that
∑n

k=1 k =
n(n + 1)

2
. Then

n′

∑

k=1

k = (
∑n

k=1 k) + n′

= n(n+1)
2

+ (n + 1)

= 1
2
(n + 1)(n+ 2) = 1

2
n′(n′ + 1).

Proposition 5
n
∑

k=1

(2k − 1) = n2

for all natural numbers n.

Proof. Exercise.

Notation If n ∈ N we put

n! =
n
∏

k=1

k.

(We use the convention 0! = 1).

Proposition 6 The number of possible permutations of a set {a1, . . . , an}
with n elements is n!.

Proof. We prove the formally more general statement that if S, S1 n are
sets with n elements then there are n! bijections from S onto S1. Once again
we use induction. The case n = 1 is clear.
n → n + 1: We fix one element a in S. There are n + 1 possible images
for a in S1. Each such choice of image provides us with n! bijections by the
induction hypothesis. Hence altogether we have (n+ 1)!.
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Notation If k and n are natural numbers with k ≤ n, we denote by

(

n

k

)

the number of subsets of a set with n elements which contain k elements.

(We use the convention

(

n

k

)

= 1, in the case where k = 0).

Proposition 7 1.

(

n

1

)

= n,

(

n

n

)

= 1;

2. for 1 ≤ k ≤ n we have the relation

(

n

k

)

=

(

n− 1

k − 1

)

+

(

n− 1

k

)

.

3. for 0 ≤ k ≤ n
(

n

k

)

=
n!

k!(n− k)!
.

Proof. 1) is clear.
2) We decompose the family of subsets with k elements of

{a1, . . . , an}

into two disjoint classes.

a) those which contain a1. There are

(

n− 1

k − 1

)

such sets.

b) those which do not contain a1. There are

(

n− 1

k

)

such subsets.

3) The proof is by induction on n. It is clearly true for n = 0. n → n + 1:

Suppose that

(

n

k

)

=
n!

k!(n− k)!
. Then

(

n + 1

k

) =

(

n

k − 1

)

+ n

k

= n!
(k−1)!(n−k+1)!

+ n!
k!(n−k)!

= n!
(k−1)!(n−k)!

(

1
n−k+1

+ 1
k

)

= n!
(k−1)!(n−k)!

(

n+1
(n−k+1)k

)

= (n+1)!
(n−k+1)!k!

= (n′)!
k!(n′−k)!

.
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In the following Proposition we use the notion of a real number. This
will be discussed in detail in the next section (we now only use the facts that
multiplication and addition of real numbers obeys the usual basic laws).

Proposition 8 (Binomial theorem) Let x, y be real numbers and n a natural
number. Then

(x+ y)n =

n
∑

k=0

(

n

k

)

xn−kyk.

Proof. By induction on n.
n = 1 is clear.
n → n+ 1: Suppose that (x+ y)n =

∑n
k=0

(

n
k

)

xn−kyk. Then

(x+ y)n
′

= (x+ y)n+1

= (x+ y)
∑n

k=0

(

n

k

)

xn−kyk

=
∑n

k=0

(

n

k

)

xn−k+1yk +
∑n

k=0

(

n

k

)

xn−kyk+1

=
∑n′

k=0 n’-1. kxn′−kyk +
∑n′

k=0

(

n′ − 1

k − 1

)

xn′−kyk

=
∑n′

k=0

[(

n′ − 1

k

)

+

(

n′ − 1

k − 1

)]

xn′−kyk

=
∑n′

k=0

(

n′

k

)

xn′−kyk.

(We use the convention

(

n

k

)

= 0, if k < 0).

Proposition 9 If x 6= 1 then

n
∑

k=0

xk =
1− xn+1

1− x
.

Proof. Exercise.

1.3 Exercises

Exercise Show that m.n = n.m (m,n ∈ N). (Another example of proving
an obvious fact. If the reader is puzzled by the necessity of such a proof, he
should rethink the contents of this chapter).
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Exercise Prove:

n
∑

k=1

k2 = n(n+1)(2n+1)
6

n
∑

k=1

k3 = n2(n+1)2

4
.

Exercise Calculate
1 + cos θ + · · ·+ cosnθ

and
sin θ + · · ·+ sinnθ.

(Hint: use the formula for sinA sinB und sinA cosB and the telescope prin-
ciple)

Exercise Show that 2n ≥ n2 (n ≥ 4).

Exercise Calculate

n
∑

k=0

(

n

k

)

bzw.
n
∑

k=0

(−1)k
(

n

k

)

.

Exercise Show that

n
∑

j=0

(

k + j

j

)

=

(

k + n+ 1

n

)

.

Exercise Show that
(

n

1

)

+ 2

(

n

2

)

+ 3

(

n

3

)

+ · · · = n2n−1.

Exercise Show that
(

n

1

)

− 2

(

n

2

)

+ 3

(

n

3

)

− · · · = 0.

Exercise Show that

2n−1 ≤ n! ≤ nn (n ≥ 1).
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Exercise Show that

N !(N + 1)n−N ≤ n! ≤ N !nn−N (N ≥ 1, n ≥ N).

Exercise Show that
√

5
4

4n+ 1
≤ 1.3.5. . . . .(2n− 1)

2.4.6. . . . .2n
≤

√

3
4

2n+ 1
.

Exercise (The Bernoulli-inequality) Show that

(1 + x)n ≥ 1 + nx (x ≥ −1, n ∈ N).

Exercise Let x1, . . . , xn (n ≥ 2) be real numbers, all of which are either
positive or all negative and all > −1. Show that

(1 + x1) . . . (1 + xn) > 1 + x1 + · · ·+ xn.

Exercise Show that
2n ≤ n! (n ≥ 4).

Exercise Let m,n ∈ N. Show that there unique non-negative numbers q
and r so that

n = qm+ r, 0 ≤ r < m.

(“Division with remainder”).

Exercise Show that
(

n

k

)

1

nk
≤ 1

k!
(k ∈ N0).

Exercise Show that

(1 +
1

n
)n ≤

n
∑

k=0

1

k!
≤ 3.

Exercise Show that
(

n

3

)

≤ 1

3
n!.

9



Exercise Show that
(

n + 1

k + 1

)

=
n
∑

m=k

(

m

k

)

.

Exercise Let p be the polynomial tn + a1t
n−1 + · · · + an, with zeroes

λ1, . . . λn. Put sk =
∑

i λ
k
i and show that

kak = −
k−1
∑

i=0

aisk−i.

Exercise Let x be a real number and k a natural number. Put

(

x

k

)

=
k
∏

m=1

x−m+ 1

m
.

Show that
(

x+ y

n

)

=
n
∑

k=0

(

x

n− k

)(

y

k

)

.

Exercise There are
n!

n1! . . . nk!

possible ways of distributing n = n1+· · ·+nk balls amongst k urnsK1, . . . , Kk

so that n1 are placed in K1, . . . , nk in Kk.

Exercise (Abel partial Summation) Show that

n
∑

k=1

akbk = Anbn +
n−1
∑

k=1

Ak(bk − bk+1),

whereby An =
∑n

k=1.
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2 The field of real numbers

Starting with the natural numbers, we can construct successively the whole
numbers, the rational numbers and finally the real numbers. The first two
constructions are purely algebraic and will be sketched briefly. The third
step is discussed in the appendix.

2.1 The whole numbers:

We define the set of whole numbers Z to be the quotient space N × N|∼,
whereby

(m,n) ∼ (m̄, n̄) ⇐⇒ m+ n̄ = m̄+ n.

(∼ is an equivalence relation. N×N|∼ denotes the corresponding quotient
space.

We extend the algebraic operations to Z in the natural way:

[(m,n)] + [(m,n)] = [(m+m,n+ n)]

and
[(m,n)][(m,n)] = [(m.m+ n.n,m.n+m.n)].

([(m,n)] denotes the equivalence class determined by (m,n)).
Once again, the familiar laws of multiplication and adddition hold:

2.2 The rational numbers:

The set Q of rational numbers is defined as Z× (Z \ {0})|∼, whereby
(m,n) ∼ (m,n) ⇐⇒ m.n = m.n.

The algebraic operations are extended as follows:

[(m,n)] + [(m,n)] = [(m.n +m.n, n.n)]

and
[(m,n)].[(m,n)] = [(m.m, n.n)].

It is a matter of routine to verify that Q satisfies the following field axioms:

Axioms of addition:

1. x+ (y + z) = (x+ y) + z für x,y, z ∈ Q;

2. x+ y = y + x (x, y ∈ Q);

3. x+ 0 = 0 + x = x (x ∈ Q);

4. for each x ∈ Q there exists a Zahl y, so thatx+ y = 0.
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Axioms of multiplication:

1. (xy)z = x(yz) (x, y, z ∈ Q);

2. xy = yx (x, y ∈ Q);

3. x.1 = 1.x = x (x ∈ Q);

4. for each x 6= 0 in Q there exists an element x−1, so that x.x−1 = 1.

5. (the distributive law) x(y + z) = xy + xz (x, y, z ∈ Q).

We express this by saying that Q is a field. The reader will meet several
further examples of fields for example, the field of complex numbers. We will
also discuss more general structures, which satisfy some, but not all of the
above axioms. For example a skew field satisfies all of the above, except the
commutativity of multiplication. The best known example is the skew field
of quaternions.

A second important example is that of a ring. They satisfy the axioms of
addition, the distributive law and axiom (1) of multiplication.

In addition to its algebraic structure, Q is an ordered field. In order to
see this, we define successively the natural order on N, Z and Q:

1. in N: m < n ⇐⇒ there exists p ∈ N with n = m+ p;

2. in Z: [(m,n)] < [(m,n)] ⇐⇒ m+ n < m+ n.

Before defining the ordering on Q we first note that each element therein has
a representation of the form [(m,n)] with n > 0. In this case i.e. if n, n > 0,
we define

[(m,n)] < [(m,n)] ⇐⇒ m.n < m.n.

Q satisfies the following axioms:

2.3 The ordering axioms:

1. for each x ∈ Q exactly one of the folloiwng holds:

x > 0, x < 0, x = 0.

2. x > 0, y > 0 implies x+ y > 0;

3. x > 0, y > 0 implies xy > 0.

We then write x < y, if y − x > 0.
In order to differ between Q and the family R of real numbers, we require

a final axiom:
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The axiom of completeness: We postulate the existence of an ordered
field R, which satisfes the following axiom: Suppose that A 6= ∅ is a subset
of R, which is bounded above (i.e. there exists a y so that x ≤ y for each
x ∈ A). Then there exists a smallestl upper bound x0 for A (called its
supremum). Symbolically: there exists x0 so that

1) x ∈ A implies x ≤ x0

and
2) for each ǫ > 0 there exists x ∈ A so that x0 − ǫ < x.

We write then x0 = supA. Then it follows easily each set A which is boundjed
from below has an Infimum. In fact, we have inf A = sup(−A), where −A =
{−x : x ∈ A}.

This is the axiom which distinguishes between the reals and the rationals.
For Q is clearly not complete in this sense. (For a sketch of a possible
construction of the reals, see the appendix).

We remark that it is of interest that the axioms for the real numbers are
categorical i.e. there is essentially one model for them (see Appendix).

2.4 Exercises

Exercise Verify that the axiom of Archimedes holds for the real numbers:
for each x ∈ R there exists an n ∈ N with n ≥ x. This implies that for each

ǫ > 0 in R there exists n ∈ N with
1

n
≤ ǫ.

Exercise Show that
√
2 and

√
2 +

√
3 are irrational.

Exercise Take x > 0. Show that there exists an irrational number y with
0 < y < x.

Exercise Let p1, . . . , pn be positive numbers with p1 + · · ·+ pn = 1. Then

min(a, . . . , an) ≤ p1a1 + · · ·+ pnan ≤ max(a1, . . . , an).

Exercise If a, b > 0, show

√

(ab) ≤ a+ b

2
.
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Exercise Let a1, . . . , an be positive. Show

n
√
a1 . . . an ≤ a1 + · · ·+ an

n
.

Exercise Let a and b be the zeroes of the polynomial x2 − x− 1 and put

xn =
(an − bn)

a− b
. Show that x1 = 1, x2 = 1 and xn+1 = xn + xn−1.

Exercise Let (ak)
n
k1

and (bk)
n
k=1 be finite sequences of real numbers. Cal-

culate the discrimant of the quadratic function

t 7→
n
∑

k=1

(akt+ b)2.

and use this to prove the Cauchy-Schwarz inequality

(

n
∑

k=1

akbk

)2

≤
(

n
∑

k=1

a2k

)(

n
∑

k=1

b2k

)

.

Exercise Let x1, . . . , xn be positive numbers. Show

(

n
∑

k+1

xk

)(

n
∑

k=1

1

xk

)

≥ n2.

Exercise Prove Lagrange’s identity:

(

n
∑

k=1

akbk

)2

=

(

n
∑

k=1

a2k

)(

n
∑

k=1

b2k

)

−
∑

1≤k<j≤n

(akbj − ajbk)
2.

(this can be used to give an alternative proof of the Cauchy-Schwarz inequal-
ity).

Exercise If a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn, show that

(

∑

k

ak

)(

∑

k

bk

)

≤ n
∑

k

akbk.

Exercise Show that the set of all real numbers of the form a+ b
√
2 (a, b ∈

Q) is a field.
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Exercise Show that the family of all real polynomials is a ring. The family
of all rational functions is a field. The set of all n× n matrices is a ring.

Exercise If x is a real number, put |x| = x when x ≥ 0 and = −x when
x ≤ 0. Show that

|x+ y| ≤ |x|+ |y| |xy| = |x|.|y| and sup{x, y} =
1

2
(x+ y + |x− y|).

What is the corresponding formula for inf{x, y}?

Exercise Show that

|a| − |b| ≤ ||a| − |b|| ≤ |a− b|

resp.
||a| − |b|| ≤ |a+ b|

(a, b ∈ R).

Exercise Show that
∣

∣

∣

∣

a

b
+

b

a

∣

∣

∣

∣

≥ 2

(a, b ∈ R, a 6= 0, b 6= 0).

Exercise Let n be a natural number which is not the square of a p ∈ N.
Show that

√
n is irrationial.

Exercise Let a, b, c, d be real numbers with b > 0, d > 0, so that
a

b
<

c

d
.

Show that
a+ c

b+ d
lies between

a

b
and

c

d
.

Exercise Calculate supA, inf B, where

A = { 1
n
+ (−1)n : n ∈ N}

resp.

A = {(−1)n(1 +
1

n
) : n ∈ N}.
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Exercise Let A, B be subsets of R. Show that

sup(A ∪ B) = max(supA, supB).

What is the corresponding expression for inf(A ∪ B)? Is there a similar
formula for sup(A ∩ B)?

Exercise Let A and B be subsets of R. Show that sup(A+B) = supA+
supB but not necessarily sup(AB) = supA. supB. For which subsets does
this formula hold? Find a formula which is valid in the general case.

Exercise Let a and b be positive numbers. Show that
√
2 lies between

a

b

and
a+ 2b

a + b
. (Which of the two numbers is closer to

√
2?)
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3 Sequences and limits

3.1 Sequences

Definition 1 A sequence of real numbers is a mapping from N into R i.e.
we associate to each n ∈ N a real number an. We write

(an)n∈N or (a1, a2, a3, . . . )

for such a sequence.

Examples:

1. the constant sequence (a, a, . . . ) i.e. an = a for each n;

2. an =
1

n
for each n i.e. the sequence (1,

1

2
,
1

3
, . . . ));

3. recursively defined sequences. The most famous example is the Fi-
bonacci sequence

(1, 1, 2, 3, 5, 8, 13, 21, . . .).

This is the sequence (an) which is defined by stipulating

1) a1 = a2 = 1

2) an = an−1 + an−2 (n > 2).

3.2 Convergence

Sequence often arise in the practice as successive approximations to the so-
lutions of a problem.

The success of such an approach is documented in the following

Definition 2 A sequence (an) of real numbers converges to a (symbolically
limn→∞ an = a or an → a), if for each ǫ > 0 there exists N = N(ǫ), so that
|an − a| < ǫ, whenever n ≥ N .

Examples: The constant sequence (a, a, . . . ) converges to a. The sequence
(

1

n

)

converges to 0. The sequence (−1)n does not converge. We collect

some trivial properties of limits in

Proposition 10 1. The limit of a sequence is unique i.e. an → a and
an → b implies a = b;
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2. The limit is additive i.e. an → a and bn → b implizies an + bn → a+ b;

3. The limit is multiplicative i.e. an → a and bn → b implies an.bn → a.b.

4. If a sequence (an) of non-zero real numbers converges to a 6= 0, then

lim
1

an
=

1

a
.

As a consequence of the order completeness every sequence of real num-
bers which should converge does in fact converge. More precisely

Definition 3 A sequence (an) is Cauchy, if for each ǫ > 0 there exists an
N ∈ N, so that

|an − am| < ǫ whenever n,m ≥ N.

It is clear that every convergent sequence is Cauchy.

Proof. Put lim an = a. Choose N ∈ N, so that |an − a| < ǫ

2
, whenever

n ≥ N . Then for m,n ≥ N , we have

|am − an| = |(am − a)− (an − a)| ≤ |am − a|+ |an − a| ≤ ǫ.

Example: consider the infinite decimal expansion

N, a1a2..... = N +
a1
10

+
a2
102

+ . . . (0 ≤ ai ≤ 9).

Then the approximands

An := N +

n
∑

k=1

ak
10k

,

form a Cauchy sequence.
The main reason why one does analysis in R and not in Q is the so-called

completeness of R:

Proposition 11 Every Caucy sequence in R converges.

We shall prove this result shortly.
We now extend the concept of convergence in order to include the notion

of convergence to infinity.

Definition 4 A sequence (an) converges to ∞ (in symbols, an → ∞ or
limn→∞ an = ∞), if

for each K > 0 there exists N ∈ N, so that an ≥ K if n ≥ N.

an → −∞ is defined similarly.
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Examples: For the sequence (xn) we have: if |x| < 1, then the sequence
converges to 0. If x = 1, then it converges to 1. If x = −1 then the
sequence does not converge. If x > 1, then it converges to ∞. If x < −1, the
sequence again fails to converge. With respect to convergence, the behaviour
of monotone sequences is particularly simple:

Definition 5 a sequence (an) is

1. increasing, if an ≤ an+1 for each n ∈ N;

2. strictly increasing, if an < an+1 for each n ∈ N;

3. decreasing, if an ≥ an+1 for each n ∈ N;

4. strictly decreasing, if an > an+1 for each n ∈ N.

Definition 6 A sequence (an) is

1. bounded, if there exists K > 0, so that if n ∈ N, then |an| < K;

2. bounded above, if there is a K > 0 so that whenever n ∈ N, then
an < K;

Proposition 12 Let (an) be an increasing sequence. If (an) is bounded from
above, then it converges to sup{an}. If (an) is not bounded from above, then
it converges to infinity.

Proof. We show that if (an) is increasing and bounded from above, then
an → a = sup{an}. For take ǫ > 0. There exists N ∈ N with aN > a − ǫ.
Then we have, for n ≥ N ,

a− ǫ ≤ AN ≤ an ≤ a < a+ ǫ

i.e. |an − a| < ǫ.

Examples: I. b-adic representations: Let b be a natural number which
is ≥ 2. A b-adic fraction is a limit of the form limAn, where

An = N +
n
∑

k=1

akb
−k

Here (ak) is a sequence of natural numbers, so that 0 ≤ ak ≤ b− 1.
It is clear that (An) is Cauchy. By the completeness, if converges to a

real number x. Conversely,

19



Proposition 13 Each real number x can be represented as a b-adic fraction.

The most important cases are

1. b = 10 —the decimal expansion

2. b = 2—the dyadic expansion:

3. b = 60—sexagesimal expansion:

4. b = 12—duodecimal expansion.

Example: (Algorithm for calculating square roots).
Let a be a given positive real number. We choose an initial value x0 > 0

and define a sequence (xn) recursively as follows:

xn+1 =
1

2
(xn +

a

xn
).

Proposition 14 (xn) is decreasing, the sequence (yn) (whereby yn =
a

xn
)

increasing and 0 < yn ≤ xn (n ∈ N).

Proof. We prove the following statements by induction: 1) xn > 0 for each
n (trivial). 2) x2

n − a ≥ 0 for each n ≥ 1. For

x2
n − a = 1

4
(xn−1 +

a
xn−1

)2 − a

= 1
4
x2
n−1 +

a
2
+ 1

4
a2

x2
n−1

− a

= 1
4
(xn−1 − a

xn−1
)2 ≥ 0.

3) y2n − a ≤ 0 (n ≥ 1). For x2
n ≥ a implies that

1

x2
n

≤ 1

a
. Hence

y2n =

(

a

xn

)

≤ a.

4) xn+1 ≤ xn. For

xn − xn+1 = xn −
1

2

(

xn +
a

xn

)

=
1

2xn

(

x2
n − a

)

≥ 0.

5) yn+1 ≥ yn. This follows from the definition and 4). 6) xn ≥ yn. For if
xn < yn, then we would have x2

n < y2n and this contradicts 2) and 3).
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We now know that the sequence (xn) is increasing and bounded from
above. Hence it converges. Let L be the limit. Taking the limit in the
recursion formula

xn+1 =
1

2

(

xn +
a

xn

)

we get L =
1

2
(L+

a

L
) i.e. L2 = a.

Thus we have proved

Proposition 15 The limit L of the sequence (xn) satisfies the condition
L2 = a.

We then say that L is a (the) square root of a.

Example As a further application of this method, we note the fact that

lim

(

1 +
1

n

)n

exists. This follows from the facts that the sequence is increasing (proof by
induction) since it is obviously bounded (for example by 3). The limit is, by
definition, the Euler number e which will be discussed below.

Definition 7 Let (an) be a bounded sequence of real numbers. Then we
define

lim sup
n→∞

(an) := limk→∞ sup({ak, ak+1, . . . })

lim inf
n→∞

(an) := limk→∞ inf({ak, ak+1, . . . }).

The existence of lim sup an and lim inf an is a consequence of the order com-
pleteness of R. It is clear that the following properties hold:

Proposition 16 1. lim infn→∞ an ≤ lim supn→∞ an;

2. lim infn→∞ an = lim supn→∞ an if and only if lim an exists.
The limit is then the common value of lim inf and lim sup.

Now it is clear that if (an) is Cauchy, then

lim inf
n→∞

an = lim sup
n→∞

an.

This proves our statement about the convergence of Cauchy sequences in R.
We now bring an application of completeness— the method of nested

intervals.
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Proposition 17 Let In be a decreasing sequence of closed, bounded intervals.
Then their intersection

⋂∞
n=1 In is non-empty. Further if limn→∞ diam In =

0, then there is precisely one point in the intersection. (If I is an interval,
thendiam I is the length of I).

Proof. Put In = [an, bn]. By the assumptions (an) is increasing and (bn)
is decreasing. Hence gilt [a, b] ⊂ ⋂

In, where a = lim an, b = lim bn. The
second part is simple.

As an application, we bring a proof of the fact that the set [0, 1] is un-
countable. (compare the proof in the appendix). We first introduce some
definition:

Definition 8 A set A is countable, if there is a surjective mapping from
N onto A i.e. A is the range {an} of a sequence (an) (such a mapping is
called a numeration of A). Otherwise A is uncountable.

Examples: Evey finite set A is countable. N is countable. Z and Q are
countable. If (An) is a sequence of countable sets, then their union

⋃

n∈NAn

is also countable.
Using the diagonal method, Canto showed that the real numbers are

not countable (see appendix). We now prove the same result using nested
intervals.

Once again this is proved by contradiction. We suppose that [0, 1] is
countable i.e. we have a numeration x1, x2, . . . . We construct a nested se-
quence (In) of intervals as follows. We choose some non-degenerate closed
interval I1 which does not contain x1. Then we choose a second one I2 ⊂ I1,
which does not contain x2. Continuing in the obvious way, we obtain a nested
sequence (In), with xn 6∈ In. Now the intersection is non-empty. However,
this intersection does not contain any xn and this leads to a contradiction.

3.3 Compactness

Definition 9 Let (an) be a sequence. A subsequence of (an) is one of the
form

(an0, an1 , an2, . . . ),

whereby
n0 < n1 < n2 < . . .

If (an) converges, then so does each subsequence.
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Proposition 18 (Proposition of Bolzano-Weierstraß) Every bounded sequence
(an) has a convergent subsequence.

Proof. We can assume that the sequence lies in the interval [0, 1]. We

consider now the subintervals [0,
1

2
] and [

1

2
, 1]. Put

A1 = {n : an ∈ [0,
1

2
]} resp. A2 = {n : an ∈ [

1

2
, 1]}.

SinceN = A1∪A2, either A1 or A2 is infinite. Hence we obtain a subsequence,
which we denote by (a11, a

1
2, . . . ) so that its elements lie in a subinterval of

length
1

2
.

We repeat this method and obtain a sequence (ank)
∞
k=1 of sequences, so

that

1. for each n (an+1
k )k is a subsequence of (ank)k;

2. |anr − ans | ≤ 2−n for r, s ∈ N.

Consider now the diagonal sequence (ann) obtained by going down the
diagonal of the array of subsequences:

a1

1
a12 a13 a14 . . .

a21 a2

2
a13 a14 . . .

and
a31 a32 a3

3
a34 . . .

etc. This is

1. a subsequence of (an);

2. Cauchy and so convergent.

Remark: This method is called the diagonal method. Variants of it
are used frequently in mathematics (cf. the proof (due to Cantor) of the
uncountability of the real line).

Definition 10 A real number a is a cluster point of a sequence (an), if a
subsequence (ank

) exists which converges to a.

The theorem of Bolzano and Weierstraß states that each bounded sequence
xn has a cluster point. In fact, the reader can check that both lim inf xn

and lim sup xn are cluster points. Example: The sequence (−1)n is not
convergent and has two cluster points 1 and −1.
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3.4 Exercises

Exercise Is the following statement true?

1

n2
+

1

n
→ 1

n
.

Exercise Calculate

lim
n→∞

lim
m→∞

n−m

n+m

and

lim
m→∞

lim
n→∞

n−m

n +m
.

Exercise Calculate limn→∞ for the following sequences:

n2 − 2n + 1

n2 − 6
,

6(−1)nn + 11

n2 − 5
,

3n2 − 20n

n+ 1
.

Exercise Show that if an → a, bn → b, then |an| → |a| and max{an, bn} →
max{a, b}.

Exercise Let p be a non-constant polynomial. Show that

lim
p(n+ 1)

p(n)
= 1.

Exercise Let (an) be a sequence which converges to a. Show that

1

n
(a1 + · · ·+ an) → a.

Exercise Calculate the following limits:

lim
xn

n!
lim a1/n limnk/n.

(x is a real number a is positive and k ∈ N).

Exercise Calculate lim(1 + a
n
)n (a ≥ 0).

Exercise Let (an) be a sequence which converges to a. Show that

na1 + (n− 1)a2 + · · ·+ an
1
2
n(n+ 1)

→ a.
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Exercise Let (an) be a sequence such that

an <
1

2
(an−1 + an+1) (n > 1).

Show that (an) converges (possibly to −∞ or ∞).

Exercise Let (an) be a sequence so that an+1 =
3an + 1

an + 3
and a1 > −1.

Show that an → 1.

Exercise Let (an) be such that

a2n+1 = an + 6 (an+1 ≥ 0).

Show that if a1 ≥ −6, then an → 3.

Exercise Let a and b be real numbers. Investigate whether the sequence

an =
an4 + 13n2

bn4 + 4n2 + 1

converges or diverges.

Exercise Let a and b be real numbers. The sequence (an) is defined recur-
sively as follows:

a1 = a, a2 = b, ak =
1

2
(ak−1 + ak−2).

Calculate the limt.

Exercise Calculate the limit of the partial sums of the series

∞
∑

n=1

1

4n2 − 1
.

Exercise Calculate the infinite product

∞
∏

n=2

n3 − 1

n3 + 1

i.e. the limit of the sequence

pk =

k
∏

n=2

n3 − 1

n3 + 1
.
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Exercise Let a and x0 be positive numbers and (xn) be defined recursivley
as follows:

xn+1 =
1

k
((k − 1)xn +

a

xk−1
n

).

Then (xn) is Cauchy. The limit is a positive number b so that bk = a.

Exercise Show that a sequence of real numbers is convergent if and only
if if is bounded and has exactly one cluster point.

26



4 Limits and continuity for functions

4.1 Notation

We now consider function between suitable susbets of the real line. We shall
often require the following special sets: [a, b] = {x ∈ R : a ≤ x ≤ b},
[a, b[= {x ∈ R : a ≤ x < b}, (a, b] = {x ∈ R : a < x ≤ b}, ]a, b[= {x ∈
R : a < x < b}, [a,∞[= {x ∈ R : a ≤ x}, ]a,∞[= {x ∈ R : a < x},
]−∞, a] = {x ∈ R : x ≤ a}, ]−∞, a[= {x ∈ R : x < a}. We write further

R+ = {x ∈ R : x ≥ 0}.

We consider real-valued functions, more exactly functions defined on sub-
sets D of R with values in R. D is the domain of definition of f and the
graph of f is the set

Γf = {(x, y) ∈ D ×R : y = f(x)}.

Some examples of functions are
I. The constant functions. These are functions of the form x 7→ a for a fixed
a ∈ R.
II. The identical function. We write idD for the function x 7→ x on D.
III. Abolute value. This is the mapping x 7→ |x|.
IV. entier: This function maps x onto the largest whole number which is
smaller than or equal to x.
V. Polynomials. These are functions of the form

x 7→ a0 + a1x+ · · ·+ anx
n.

VI. Rational functions: These are functions which are quotients
p

q
of poly-

nomials. The domain of definition is {x ∈ R : q(x) 6= 0}).
VII. Step functions: Functions of the form:

∑n
i=1 aiχIi, where I1, . . . In are

intervals and a1, . . . , an are real numbers. The most famous example is the
Heaviside function χ[0,∞[.
VIII. The exponential function and the trigonometric functions: These are
defined by the the power series:

exp(x) =
∑∞

n=0
xn

n!

sin x =
∑∞

k=0(−1)k x2k

(2k)!

cos x =
∑∞

k=0(−1)k x2k+1

(2k+1)!

power series will be studied in detail below).
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Rational operations on functions: If f, g are functions on D, then we
define f + g, cf (c ∈ R), fg and f/g in the natural way. For example f + g
is the function

x 7→ f(x) + g(x).

(
f

g
is defined on the set {x ∈ D : g(x) 6= 0}).

Composition of functions: If f : D → R and g : E → R are functions
with f(D) ⊂ E, then the function

g ◦ f : D → R

is defined by (g ◦ f)(x) = g(f(x)) for x ∈ D.

Examples: We can construct the rational functions from the constants and
the identity by means of repeated applications of the elementary arithmetical
operations. Other functions which can be obtained from simpler ones with
these methods are

cosh x = 1
2
(exp(x) + exp(−x))

sinh(x) = 1
2
(exp(x)− exp(−x))

tan(x) = sinx
cos x

cotan (x) = cos x
sinx

sec (x) = 1
cos x

cosec (x) = 1
sinx

.

4.2 Limits:

Let f : D → R be a function and a ∈ R such that a is a cluster point of
D \ {a} i.e. there exists a sequence (an) in D, which converges to a.

We write
lim
x→a

f(x) = c,

if for each sequence (an) in D \ {a} with an → a we have

lim
n→∞

f(an) = c.
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Example: 1).
lim
x→0

exp x = 1.

For if 1 > x > 0, then we have the estimate:

exp(x)− 1 = x+ x2

2!
+ x3

3!
+ . . .

≤ x+ x2 + x3 + · · · = x
1−x

.

If x < 0 we use the identity exp(−x) = (exp(x))−1.
2). In the case of the Heaviside function limx→0H(x) fails to exist.

One-sided limits: The last example is the motivation for the following
definition:

Definition 11 If f : D → R and a is as above we put limx→a+ f(x) = c,
whenever c the limit of the restriction of f to D ∩ [a,∞[. limx→a− f(x) is
defined correspondingly. We then have

lim
x→0−

H(x) = 0 and lim
x→0+

H(x) = 1.

4.3 Continuity:

Definition 12 Let f : D → R be a function, a a point in D. f is contin-
uous at a, if f(xn) → f(a) for each sequence (xn) in D with xn → a.

f is continuous on D, if f is continuous at each point of D.
Left and right continuity are defined in a similar fashion.

Example: 1) It is clear that each constant function is continuous;
2) The Heaviside function is continuous on the right but not on the left at
the origin.
3) The exponential function is continuous on the real line. For

lim
h→0

exp(x+ h)− exp(x) = exp(x) lim
h→0

(exp h− 1) = exp(x).

(Here we use the functional equation exp(x+ y) = exp x. exp y which will be
proved later).

Proposition 19 Let f, g : D → R be functions which are continuous at
a ∈ D and suppose that c ∈ R. Then the functions f + g, cf, fg are also
continuous at a. If g has no zeroes, then f/g is continuous.
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Since the identity and constants are continuous, ti follows from this result
that raional functions (and hence also polynomials) are continuous. Further
examples of functions whose continuity can be deduced imeediately are the
hyperbolic functions sinh, cosh.

Proposition 20 If f : D → R and g : E → R are continuous and f(D) ⊂
E, then g ◦ f is also continuous.

Proof. Exercise.

Proposition 21 Every continuous function f : [a, b] → R is bounded i.e.
the set {f(x) : x ∈ [a, b]} is bounded (there exists a constant M , so that
x ∈ [a, b] |f(x)| ≤ M (x ∈ [a, b])).

Proof. Proof by contradiction. Suppose that the continuous function f is
not bounded from above. Then there exists for each n and point xn with
f(xn) > n. According to the result of Bolzano and Weierstraß, the sequence
(xn) has a convergent subsequence (xnk

). ut x = lim xnk
. By the continuity

of f and the fact that the sequence (xnk
) converges, we see that the image

sequence (f(xnk
)) is also convergent. This is obviously inconsistent with that

fact that the latter sequence is not bounded.

Example: The function f : x 7→ 1

x
on ]0, 1] is continuous, but not bounded.

Proposition 22 Each function which is continuous on a closed bounded in-
terval i.e.

f : [a, b] → R

attains its maximum and minimum i.e. there exist points x0 and x1, so that

f(x0) = sup{f(x) : x ∈ [a, b]}

and
f(x1) = inf{f(x) : x ∈ [a, b]}.

Proof. Choose a sequence (xn) so that

f(xn) ≥ sup{f(x) : x ∈ [a, b]} − 1

n
.

The limit x0 of a convergent subsequence satisfies the condition.
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Once again, this proposition fails for function which are defined on open
intervals or on non-bounded ones.

Proposition 23 Intermediate value theorem Let f : [a, b] → R be a contin-
uous function with f(a) < y, f(b) > y. Then there exists an x0 ∈]a, b[ with
f(x0) = y.

Proof. Put x0 = sup{x ∈ [a, b] : f(x) < y}.

In many situations it is convenient to use a variant of the definition of
continuity. This is the ǫ− δ definition:

Definition 13 Let f : D → R and let x0 ∈ D. f is continuous at x0 if and
only if for each ǫ > 0 there exists a δ > 0 so that

|f(x)− f(x0)| < ǫ for each x ∈ D with |x− x0| < δ.

This is equivalent to the original definition.
Proof. Exercise.

There are two useful strengthenings of the concept of continuity.

Definition 14 f : D → R is uniformly continuous, if for every ǫ > 0
there exists a δ > 0 so that for each x and y in D with |x− y| < δ, we have
|f(x) − f(y)| < ǫ. f : D → R is Lipschitz continuous, if there is K > 0
so that

|f(x)− f(y)| ≤ K|x− y|
for each pair x, y in D.

It is clear that Lipschitz continuity implies uniform continuity. while each
uniformly continuous function is continuous. The converse is not true in
general.

Example: The function x 7→ x2 on R is continuous, but not uniformly
continuous. The function x 7→ √

x on [0, 1] is uniformly continuous, but not
Lipschitz continuous. (The latter function will be defined rigorously below).
However, we do have:

Proposition 24 Every continuous function on a closed, bounded interval is
uniformly continuous.
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Proof. Once again, we prove this by contradiction, using the result of
Bolzano and Weierstraß. Suppose that the continuous function f is not uni-
formly continuous. Then there is a positive ǫ for which the defining condition
fails. Hence we can find for each n points xn and yn with |xn − yn| ≤ 1

n
,

but |f(xn) − f(yn)| > ǫ. There exist convergent subsequences (xnk
) and

(ynk
). (There is a small subtlety involved. Why can we assume that these

subsequences are both indexed by the same set?) From the first condition
we see that limk xnk

= limk ynk
. Let a be the limit. Then limk f(xnk

) =
limk f(ynk

) = f(a), and this clearly contradics the second estimate above.

Inverse functions: f : D → R is

1. increasing, falls x ≤ y implies f(x) ≤ f(y);

2. strictly increasing, if x < y implies f(x) < f(y);

3. decreasing, if x ≤ y implies f(x) ≥ f(y);

4. strictly decreasing, if x < y implies f(x) > f(y).

If f : [a, b] → R is continuous and strictly increasing, then its image is
the interval [A,B], where A = f(a), B = f(b) (this is a consequence of
the intermediate value theorem). f is then a bijection from [a, b] onto [A,B].
Hence we can define the inverse function f−1 from [A,B] → [a, b] as follows:

x = f−1(y) ⇐⇒ y = f(x).

Proposition 25 In the above situation, the inverse function is continuous.

Proof. Once again we a use a proof by contradiction. If the inverse is not
continuous, then we could find a sequence (yn) with the following properties:
yn → d in [A,B] but |xn − c| > ǫ for a fixed ǫ > 0, whereby d = f(c) (why?).
(xn) is the sequence xn = f−1(yn). We can then pass over to a convergent
subsequence (xnk

). Let c1 be the limit of this sequence. Then c 6= c1 but
f(c) = f(c1). This contradicts the injectivity of f .

We can now extend our list of special functions:

The root functions: We define a continuous function x 7→ xr for each
rational number r. xn is defined for r = n ∈ N. For r = 1

n
(n ∈ N) we define

the function y 7→ y1/n as the inverse of x 7→ xn i.e.

x = y1/n ⇐⇒ y = xn.
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This function is defined onR+ and is continuous (dsince x 7→ xn is a bijection
from R+ onto R+). If r = p

q
is rational with p and q natural numbers we

define x 7→ xr to be xr =
(

x1/q
)p
. For r < 0, we put

xr =
1

x−r
.

The logarithm function: The function ln is defined to be the inverse of
exp i.e. x = ln y ⇐⇒ y = exp x. Since exp is a bijection from R onto R+,
ln is continuous from R+ onto R. It follows from the functional equation of
the exponential function that ln xy = ln x+ ln y.

The generalised power functions: We can now define the function x 7→
xα for a general α ∈ R as follows: xα = exp(α ln x).

Remark: Since ln e = 1, we can now write exp(x) as ex.
Further interesting function which can be defined as the inverses of el-

ementary functions are the inverse trigonometric functions (arcsin, arccos
etc.). For more detaisl see below. We conclude this section with some exten-
sions of the limit concept:

Definition 15 Let f be a function whose domain of definition D contains
an interval [K,∞[. We write: limx→∞ f(x) = a, whenever

for each ǫ > 0 there exists K1 > K, so that |f(x)− a| < ǫ if x > K1.

The limit as x tends to −∞ is defined analogously.
We write limx→a f(x) = ∞, if

for every K > 0 there exists ǫ > 0 with f(x) > K, whenever 0 < |x− a| < ǫ.

4.4 Exercises

Exercise Calculate limx→0 cos
1
x
. (It is understood that in such examples

that one first determines whether the limit exists).

Exercise Calculate

lim
x→0

√
1 + 3x2 −

√
1− 3x2

x
.
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Exercise Calculate

lim
x→∞

3x4 − 7x2 − 1

x4 + 7
.

Exercise At which points is the function x 7→ x when x ∈ Q) and 7→ −x
otherwise continuous?

Exercise On which intervals are the following functions continuous resp.
Lipschitz continuous?

f : x 7→
√
x (x ∈ R+) g : x 7→ 1

x
(x ∈ R \ {0}).

a) [1, 2]; b) ]0, 1].

Exercise Which of the following statements is true? a) f : D → R is
Lipschitz continuous and D bounded implies f bounded. b) f, g : R →
R Lipschitz continuous implies fg Lipschitz continuous; c) f, g : R → R
Lipschitz continuous and bounded implies fg Lipschitz continuous.

Exercise Let f and g be continuous functions on [0, 1], so that f(x) = g(x),
whenever x is rational. Show that f = g.

Exercise Let p be a polynomial of odd order. Show that p has a zero.

Exercise Let A ⊂ R be bounded, f : R → R. Does it follow that f(A) is
bounded

1. if f is continuous;

2. if f is uniformly continuous;

3. if f is Lipschitz continuous?

Exercise Calculate the limits

lim
x→0

exp

(

sin x

x

)

lim
x→0

tanh x

x
.

Exercise Suppose that the function f : R → R satisfies the condition

|f(x)− f(y)| ≤ 2(e|x−y| − 1).

Show that f is uniformly continuous.
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Exercise Suppose that f is continuous on [a, b]. Show that the funciton

x 7→ sup{f(t) : t ∈ [a, x]}

is also continuous.

Exercise Let f be continuous and injective on ]0, 1[. Show that f is mono-
tone i.e. either increasing or decreasing.

Exercise f : [0, 1] → [0, 1] is continuous. Show that f has a fix point.

Exercise Let f and g be defined on R+ and satisfy the condition g(x) =
f(x2). Show that limx→∞ f(x) = A ⇐⇒ limx→∞ g(x) = A.

Exercise Let f(x) = x when x is rational and = x2 otherwise. Show that

lim
x→0+

f(x) = 0 lim
x→1−

f(x) = 1.

For which c ∈]0, 1[ does limx→c f(x) exist?

Exercise Prove directly that the function x 7→ x2 − 7x + 6 is continuous
on R.

Exercise Let f be bounded on [0, 1] and suppose that

f(ax) = bf(x) (0 ≤ x ≤ 1

a
),

where a, b > 1. Show that f is continuous at 0.

Exercise Let f : [a, b] → R, x ∈ [a, b]. Put

osc(f ; x0) = inf
n
sup{|f(x)− f(y)| : |x− x0| <

1

n
, |y − x0| <

1

n
}.

Show that f is continuous at x0 ⇐⇒ osc(f ; x0) = 0. Define:

oscu(f) = inf
n
{sup |f(x)− f(y)| : |x− y| < 1

n
}.

What is the meaning of the condition oscu(f) = 0?
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Exercise Let (an) be a sequence and a a real number. Define a function

f : D → R as follows: D = { 1
n
: n ∈ N} ∪ {0}, f( 1

n
) = an, f(0) = a. Show

that
an → a ⇐⇒ f continuous.

Exercise Let f : [a, b] → R be increasing. Show that for each x0 ∈ ]a, b[
there exists f(x+

0 ) = limx→x+
0
f(x) and f(x−

0 ) = limx→x−

0
. f(x+

0 ) − f(x−
0 )

is called the jump in f at the point x0. Prove that there exists at most
countable many points x0, where the jump is non-zero.

Exercise Let f : [0, 1[→ R be continuous on the right at 0 and such that
f(x2) = f(x)(x ∈ [0, 1[). Show that f is constant.

Exercise Let f : R → R be such that f(x+ y) = f(x) + f(y). Show that
if f is continuous at one point, then it is of the form x 7→ cx.

Exercise Show that if f : [0, 1] → R is continuous and injective, then it is
strictly monotone.

Exercise Let f be a continuous function on R and (xn) be a sequence so
that xn+1 = f(xn) for each n. Show that if the sequence (xn) converges, then
the limit is a fixed pointof f .
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5 Differentiation

5.1 Definitions

Definition 16 Let f : D → R. Then f is differentiable at the point x0 if

lim
x→x0

f(x)− f(x0)

x− x0

exists on the set D\{x0}. The limit is then the derivative of f at x0, written
f ′(x0). If the derivative exists at each point of D, then f is differntiable
and the function

x 7→ f ′(x)

is the derivative of f . If this function is continuous, then f is said to be
continuously differntiable.

We then define the n-th derivative recursively. f is n-times differentiable
if f ′ exists and is (n− 1)-times differentiable. The n-th derivative f (n) of f
is then the derivative of f (n−1). If further f (n) is continuous, then f is said
to be n-times continuously differentiable.

It is clear that a differentiable function is continuous.
There are various alternative forms of the above defintions which are often

useful.

1. there exists a real number a, so that the function

x 7→ f(x)− f(x0)

x− x0

when x 6= x0 and 7→ a when x = x0

is continuous on D. (a is then the derivative of f at x0).

2. there exist a real number a and a function ρ on D \ {x0}, so that

f(x) = f(x0) + (x− x0)a+ ρ(x)

and

lim
x→x0

ρ(x)

x− x0
= 0.

Once again a is the derivative f ′(x0).

3. (Carathéodory) There exists a function φ, which is continuous at x0 so
that

f(x) = f(x0) + (x− x0)φ(x).

a = φ(x0) is then the derivative of f .
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One verifies easily that the familiar laws with respect to the algebraic oper-
ations are valid:

1. the sum f + g of two differentiable functions is differentiable and (f +
g)′ = f ′ + g′;

2. the product f.g of two differentiable functions is differentiable and
(f.g)′ = f ′.g + f.g′.

3. the reciprocal of a differentiable function g without zeroes is differen-
tiable and

(

1

g

)′
= − g′

g2
.

The following fact is less trivial

Proposition 26 (the chain rule) Let f and g be differentiable functions so
that the composition g ◦ f exists. Then the latter is differentiable and

(g ◦ f)′ = (g′ ◦ f).f ′ d.h. (g ◦ f)′(x) = g′(f(x)).f ′(x).

Proof. We consider a point x and put y = f(x). Using the differentiablilty
of f and g we can write

f(x+ h) = f(x) + h.f ′(x) + ρ(h)

g(y + k) = g(y) + k.g′(y) + σ(k),

with limh→0
ρ(h)

h
= 0 and lim

σ(k)

k
= 0. If we put k(h) = h.f ′(x) + ρ(h),

then we get

g ◦ f(x+ h)− g ◦ f(x) = g (f(x) + k(h))− g(f(x))

= k(h).g′(y) + σ(k(h))

= h.g′(y)f ′(x) + ρ(h)g′(y) + σ(k(h)),

and the remainder term τ(h) = ρ(h)g′(y) + σ(h.f ′(x) + ρ(h)) satisfies the

condition limh→0
τ(h)

h
= 0.
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Examples: I. Constant functions: it is clear that the derivative of a con-
stant function is the constant function 0.
II. f : x 7→ cx on R. In this case, the derivative is the constant function c.
III. For the function f : x 7→ xn we have f ′(x) = nxn−1. (Use the above and
the product rule)
IV. Die exponential function: We have

exp′(x) = limh→0
exp(x+h)−exp(x)

h

= limh→0 exp(x)
exp(h)−1

h

= exp(x) limh→0
exp(h)−1

h

= exp(x).

V. The sine function:

sin′(x) = limh→0
sin(x+h)−sin(x)

h

= limh→0
2 cos( 2x+h

2
) sin h

2

h

=
(

limh→0 cos(x+ h
2
)
)

.
(

limh→0
sin h

2

h/2

)

= cos x.

Similarly, cos′(x) = − sin x. VI. The absolute value function. This function
is not differntiable at 0.

One-sided derivatives: The last function above is a typical example of a
function which is not differentiable but has one-sided derivatives.

Definition 17 Let x ∈ D and f : D → R. f is said to be differentiable
on the right at x if

f ′
+(x) = lim

h→0+

f(x+ h)− f(x)

h

exists. f is said to be differentiable on the left at x, if

f ′
−(x) = lim

h→0−

f(x+ h)− f(x)

h

exists.

For example abs′+(0) = 1, abs′−(0) = −1.
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Piecewise continuously differentiable functions: The function f :
[a, b] → R is called n-times continuously differentiable if there are finitely
many points a1 < a2 < · · · < ak so that

1. f is n-times continuously differentiable on [a, b] \ {a1, . . . , ak};

2. for each i ≤ n and r ≤ k the one-sided derivatives f
(i)
+ (ar) and f

(i)
− (ar)

exist.

For example, Step functions have this property.

Proposition 27 Let D be a closed interval and f : D → R a continuous,
strictly monotone function. We denote by φ = f−1 : E → R the inverse
function, where E = f(D). If f is differentiable and f ′(x) 6= 0 (x ∈

φ′(y) =
1

f ′(x)
=

1

f ′(φ(y))
(y = φ(x)).

Proof. We fix x0 and y0 = f(x0). Consider the difference quotient

y − y0
x− x0

and
x− x0

y − y0
,

where y = f(x). Since f and its inverse are continuous,

x → x0 ⇐⇒ y → y0.

This gives the required result on passing to the limit as x → x0 in the
equation

x− x0

y − y0
=

(

y − y0
x− x0

)−1

.

Examples: I. Since ln is the inverse of exp we have

ln′(x) =
1

exp′(ln x)
=

1

exp(ln x)
=

1

x
.

II. arcsin arccos, arctan: These are the inverse functions of sin, cos and tan.
More precisly we consider the inverses of the functions

sin with domain of definition [−π

2
,
π

2
]

cos with domain of definition [0, π]

and
tan with domain of definition ]− π

2
,
π

2
[.

Then

arcsin′(x) =
1√

1− x2
arccos′(x) = − 1√

1− x2
arctan′(x) =

1

1 + x2
.
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5.2 Some basic results

Definition 18 Let f : ]a, b[ → R be a function. f has a local minimum at
x ∈ ]a, b[ if there exists ǫ > 0 so that for each y with |x− y| < ǫ f(x) ≥ f(y).
A local maximum is defined similarly. x is a lokal extremum, if it is
either a local maximum or a local minimum.

Proposition 28 A function f : [a, b] → R is continuous on [a, b] and differ-
entiable on ]a, b[. Then we have for each local extremum x ∈]a, b[ f ′(x) = 0.

Proof. Exercise.

Proposition 29 (Rolle’s theorem) Let f : [a, b] → R be differentiable with
f(a) = f(b). Then there exists a point x0 ∈ ]a, b[, so that f ′(x0) = 0.

Proof. If the function is constant then the claim is trivially valid. Otherwise
there exists a point x1, with either f(x1) > f(a) or f(x1) < f(a). In the first
case we choose x0 so that f(x0) = sup{f(x) : x ∈ [a, b]}.

Proposition 30 (Intermediate theorem of differential calculus) Let f : [a, b] →
R be continuous and differenzierbar on ]a, b[. Then there exists ξ in ]a, b[, so
that

f(b)− f(a) = f ′(ξ)(b− a).

Proof. We prove this for the case where a = 0, b = 1. We apply use Rolle’s
Proposition to the function

f1(x) = f(x)− ((1− x)f(0) + x(f(1)).

Corollar 1 Let f and g be continuous functions on [a, b], both differentiable
on the open interval ]a, b[. Then there is a ξ in ]a, b[, so that

f ′(ξ)(g(b)− g(a)) = g′(ξ)(f(b)− f(a)).

Proof. Exercise.

Proposition 31 Let f : [a, b] → R be continuous and differentiable on ]a, b[.
If f ′ = 0 on ]a, b[, then f is constant.
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Proof. Exercise.

A similar argument shows that if a function f on an interval say is differ-
entiable and its derivative is bounded, then it is Lipschitz continuous. Hence
if f is continuously differentiable on a closed, bounded interval, then it is
automaticall Lipschitz continuous.

Proposition 32 Let f : [a, b] → R be continuous and differentiable on ]a, b[.
If f ′ > 0 on ]a, b[, then it is strictly increasing. If f ′ < 0, then f is strictly
decreasing.

Proof. Exercise.

Proposition 33 (L’Hospital’s rule:) Let f and g be differentiable near a
point c and

1. f(c) = g(c) = 0;

2. g and g′ have no zeroes in a neighbourhood of c;

3. limx→c
f ′(x)

g′(x)
exists.

Then limx→c
f(x)

g(x)
exists and we have

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.

Proof. We prove this for the one-sided limit limx→c+. Put L = limx→c+
f ′(x)

g′(x)
.

Choose δ > 0, so that
∣

∣

∣

∣

f ′(x)

g′(x)
− L

∣

∣

∣

∣

< ǫ,

whenever x ∈]c, c+ δ[. Choose 0 < h < δ. There exists ξ ∈ ]c, c+ h[, so that

f(c+ h)

g(c+ h)

(

=
f(c+ h)− f(c)

g(c+ h)− g(c)

)

=
f ′(ξ)

g′(ξ)
.

Then
∣

∣

∣

∣

f(c+ h)

g(c+ h)
− L

∣

∣

∣

∣

< ǫ.
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Proposition 34 Taylor’s theorem Let f : [a, b] → R be n-times differen-
tiable and let x0 be a point in ]a, b[. Then there exists to each x in [a, b] an
ξ between x0 and x, so that

f(x) = f(x0) +
n−1
∑

k=1

f (k)(x0)

k!
(x− x0)

k +
f (n)(ξ)

n!
(x− x0)

n.

Proof. Once again we assume that x0 = 0, x = 1. (Otherwise we consider
the function

g(t) = f(x0 + t(x− x0)).)

Wir define functions F and G on [0, 1] as follows:

F (t) = f(1)−
n
∑

k=1

f (k−1)(x0)

(k − 1)!
(1− t)n−1

resp.
G(t) = (1− t)n.

There exists ξ with F (1)−F (0)
G(1)−G(0)

= F ′(ξ)
G′(ξ)

. This is the required result.

This last result is the motivation for the following definition. Suppose
that f is infinitely differentiable near x0. Then we call the series

∞
∑

k=0

f (k)(x0)

k!
(x− x0)

k

the Taylor series of f at x0. Note that at this point we make no assumptions
about the convergence of this series.

5.3 Exercises

Exercise Calculate the derivate of the functions
√

exp xcos
√
x, x

√
x.

Exercise Show that
xαyβ ≤ αx+ βy,

where x, y, α, β are positive and α + β = 1. (Calculate the extremum of the
function x 7→ xαyβ − αx).
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Exercise Prove Hölder’s inequality

n
∑

j=1

xjyj ≤
(

n
∑

j=1

xp
j

)
1
p
(

n
∑

j=1

yqj

)
1
q

,

whereby xj > 0, yj > 0, p, q > 1, 1
p
+ 1

q
= 1.)

Exercise Let f be a continuously differentiable function on [a, b]. Show
that f is Lipschitz continuous.

Exercise Verify Leibniz’ rule:

(f.g)(n) =
n
∑

k=0

(

n

k

)

f (k)g(n−k).

Calculate (x2 sin x)(9999)..

Exercise Determine the Taylor series of ln x at x0 = 1. For which x > 0
does the series converge?

Exercise Consider the function f(x) = e−
1
x2 when x 6= 0 and = 0 when

x = 0. Show that limx→0 p(
1
x
) exp(−1

x2 ) = 0 for each polynomial p. Consider
the Taylor series for f at 0. Is f represented by this series?

Exercise Let f be twice continuously differentiable. Show that

lim
h→0

f(a+ 2h)− 2f(a+ h) + f(a)

h2
= f ′′(a).

Exercise Show that

lim
x→0

x−2[b(1 + ax)
1
3 − a(1 + bx)

1
3 + (a− b)(1 + abx2)

1
2 ] =

7

18
ab(a− b).

Exercise Let f be twice differentiable with |f(x)| ≤ A, |f ′′(x)| ≤ B (x ≥
K). Show that |f ′(x)| ≤

√

2(AB) (x ≥ K).

Exercise Let f be a function on [a, b], so that

|f(x)− f(y)| ≤ A|x− y|2 (x, y ∈ [a, b]).

Show that f is constant.
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Exercise Calculate the extrema of the function

x 7→ xm(1− x)n

on [0, 1].

Exercise Let f, g, h be continuously differentiable functions on [a, b]. Show
that there is a point ξ, so that the determinant of





f(a) g(a) h(a)
f(b) g(b) h(b)
f ′(ξ) g′(ξ) h′(ξ)





vanishes.

Exercise Use power series representations of sin and cos to show that

sin′(x) = cosx cos′(x) = − sin x.

Exercise Show that the Carathéodory definition of differentiability is equiv-
alent to the original one and use it to give proofs of of the chain rule resp.
the result on the differetiability of inverse functions.
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6 The Riemann Integral:

6.1 The definitions

Recall that a function h : [a, b] → R is a step function if there is a partition

a = x0 < x1 < · · · < xn = b

of the intervall so that h is constant on ]xk−1, xk[ for each k.
It is clear that the family of all such function forms a vector space i.e.

that the sum h1 + h2 and a product lh are again step functions whenever
h1, h2, h are step functions and l is a scalar. If ck is the value of h on the
interval ]xk−1, xk[, then the Integral

∫ b

a
h(x) dx of h is the sum

n
∑

k=1

ck(xk − xk−1).

This integral is positive and additive i.e.

∫ b

a

(h1 + h2)(x) dx =
∫ b

a
h1(x) dx+

∫ b

a
h2(x) dx

∫ b

a

λh(x) dx = λ
∫ b

a
h(x) dx.

Further

h ≤ h1 impliziert

∫ b

a

h(x) dx ≤
∫ b

a

h1(x) dx.

One attampts to define resp. calculate the integral of a more general
function via approximation from above and below by step functions.

Definition 19 Let f : [a, b] → R be an arbirtary bounded function. We put
∫ b

a

∗
f(x) dx equal to

inf{
∫ b

a

h(x) dx : h a step function with f ≤ h}

and
∫ b

a ∗f(x) dx equal to

sup{
∫ b

a

h(x) dx : h a step function with f ≥ h}.
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Examples: If f is a step function, then the upper and lower integrals of f
concide. If f is the function x 7→ 0 (x rational) and 7→ 1 (x irrational) then
the lower integral is 0 and the upper one is 1.

A bounded function is defined to be Riemann-integrable, if

∫ b

a

∗

f(x) dx =

∫ b

a ∗
f(x) dx.

The common value is then the integral of f—written

∫ b

a

f(x) dx.

We can reformulate the definition as follows:

Proposition 35 A bounded function f : [a, b] → R is integrable if and only
if for each ǫ > 0 there are step functions h1 and h2 with

h1 ≤ f ≤ h2 and

∫ b

a

h2(x) dx−
∫ b

a

h1(x) dx ≤ ǫ.

6.2 Continuous functions

Proposition 36 Every continuous function is integrable.

Proof. Let
a = t0 < t1 < · · · < tn = b

be a partition of [a, b]. For k = 1, . . . , n put

mi = inf{f(x) : x ∈ [ti−1, ti]} Mi = sup{f(x) : x ∈ [ti−1, ti]}.

We define the Riemann-Sum:

s(f) =
∑n

i=1mi(ti − ti−1)

S(f) =
∑n

i=1Mi(ti − ti−1).

It is clear that f is Riemann integrable if one can find, for each ǫ a partition
so that |S(f)− s(f)| < ǫ for this partition.

If f is continuous, then there exists for each ǫ a δ, so that |x − y| < δ

implies |f(x)−f(y)| < ǫ

b− a
. We thus choose a partition so that |ti−ti−1| < δ

for each i. Then |S(f)− s(f)| < ǫ.
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In addition we have

Proposition 37 Every monotone function f : [a, b] → R is integrable.

Proof. Exercise.

Once again, it is clear that f + g and λf are integrable, if this is the case
for f and g. Further, the integral is monotone i.e. if f ≤ g for integrable
functions f and g, then

∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

6.3 Basic results

Proposition 38 (Intermediate value theorem of integral calculus) Let f, h :
[a, b] → R be continuous functions, whereby h ≥ 0. Then there exists and
ξ ∈ [a, b], so that

∫ b

a

f(x)h(x) dx = f(ξ)

∫ b

a

h(x) dx.

Proof. We put m for the infimum and M for the supremum of f on the
intervall. Then

mh(x) ≤ f(x)h(x) ≤ Mh(x)

and so

m

∫ b

a

h(x) dx ≤
∫ b

a

f(x)h(x) dx ≤ M

∫ b

a

h(x) dx.

Hence there is η ∈ [m,M ], so that

∫ b

a

f(x)h(x) dx = η

∫ b

a

h(x) dx.

It follows from the intermediate value theorem that η = f(ξ) for an ξ ∈ [a, b].

Now let I be an interval (which is either open, half-open or closed), which
contains a. If f : I → R, then the function

F : x 7→
∫ x

a

f(t) dt

is a primitive of f . (N.B. If b < a, then we define
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx).

The origin of this name lies in the following fact:

Proposition 39 F is continuously differentiable and we have F ′ = f .
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Proof. Let x0 be a point of [a, b]. We calculate

lim
h→0

1

h
(F (x0 + h)− F (x0)) = lim

h→0

1

h

∫ x0+h

x0

f(x) dx.

By the intermediate value theorem, we have

lim
h→0

1

h
f(ξh).h,

where ξh lies between x0 and x0 + h. It is clear that the limit is f(x0).

In general we call any function F with the property that F ′ = f a prim-
itive f . In fact, we have that if F1 and F2 are primitives of f then F1 − F2

is constant. In other words,
∫ x

a
f(t) dt is up to a constant the only primitive

of f . We sometimes write
∫

f for a primitive of f .

Proposition 40 (The fundamental theorem of differential and integral cal-
culus) Let f : I → R be a continuous function with primitive F . Then we
have for each a, b ∈ I,

∫ b

a

f(x) dx = F (b)− F (a).

Proof. Exercise.

Thus we have the following method for calculating
∫ b

a
f(x) dx. Find a

function F with f as derivative. Then the value of the integral is F (x)
∣

∣

b

a
(=

F (b)− F (a)).

Proposition 41 (Integration by parts) Let f and g be continuous functions
with primitives F and G. Then FG−

∫

fG is a primitive for Fg. Hence

∫ x

a

F (t)g(t) dt = F (x)G(x)−
∫ x

a

f(t)G(t) dt.

Proposition 42 (The substitution rule) Let φ : [a, b] → R be continuously
differentiable and f : I → R continuous with φ([a, b]) ⊂ I. Then

∫ b

a

f(φ(t))φ′(t) dt =

∫ φ(b)

φ(a)

f(x) dx.
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Proof. This follows from the chain rule. For if F is a primitive for f , then
(F ◦ φ).φ′ is a primitive for f ◦ φ.

6.4 Exercises

Exercise Calculate the following integrals

∫ b

a

xα dx,

∫ b

a

1

x
dx,

∫ b

a

sin x dx.

Exercise Calculate primitives for

cosx, exp x,
1

√

(1− x2)
,

1

1 + x2
.

Exercise Calculate primitives for

xα, eλx, sin(λx), sinh(λx),

∫

dx

x
.

Exercise Calculate the indefinite integrals

∫

f ′(x) dx

f(x)
,

∫

dx

ax+ b
,

∫

tanx dx.

Exercise Calculate
∫

sec (x) dx,

∫

dx
√

(1− x2)
,

∫

dx

1 + x2
.

Exercise Show how to calculate a primitive for functions of the form 1
x+a

bzw. 1
x2+ax+b

Using this and the representation of a general rational function
as a linear combination of such functions, skethc how one can in principle
calculate a primitive for such a function.

Exercise Calculate primitives for

cosαx sin x
¯
,

√
a2 − x2,

1
√

(x− α)(-
¯
x)

.
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Exercise Calculate by means of integraion by parts

∫

x2eax dx,

∫

eax dx,

∫

eax sin bx dx,

∫

sinm x cosn x dx.

Exercise A function f : [a, b] → R is of bounded variation, if there exists
K > 0 so that

n−1
∑

k=0

|f(xi+1)− f(xi)| ≤ K

for each partition a = x0 < x1 · · · < xn = b. The smallest such K K is called
the variation of f (written Var (f)). Show

1. each monotone function is of bounded variation;

2. if f is of bounded variation, then the function

x 7→ Var (f |[a,x])

is increasing;

3. each function of bounded variation is the difference of two increasing
functions;

4. there exist non-cintuous functions of bounded variation;

5. if f is continuous and of bounded variation, then the function

x 7→ Var (f |[a,x])

is continuous.
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6.5 Criteria for the convergence of series and improper
integrals:

We now consider convergence properties for infinite series
∑∞

n=1 an, whereby
(an) is a sequence of real numbers. The series converges to s (once also says
that s is the sum of the series) if sn → s, where sn is the n-th partial sum
∑n

k=1 ak.
We begin by recasting the Cauchy criterium in this context:

Proposition 43
∑∞

n=1 an converges if and only if for each ǫ > 0 we can find
N ∈ N, so that

∣

∣

∣

∣

∣

n
∑

k=m

ak

∣

∣

∣

∣

∣

< ǫ four all m ≥ n ≥ N.

If the series is not convergent, we say it diverges. In the case where the
an are non-negative, the sequence of partial sums is increasing. Hence in this
case there are only two possibilities:

1. either the partial sums are bounded in which case the series converges

2. or the sum are unbounded and the series diverges. In this case one
somtimes writes

∑

n an = ∞).

It is clear that the series
∑∞

n=1 an can only converge when an → 0. For

an = sn+1 − sn → s− s = 0.

However, there are divergent series
∑∞

n=1 an, with an → 0 as the following
example shows.

Example:
∑ 1

n
diverges. For we can estimate the partial sums s2k+1 from

below as follows:

s2k+1 = 1 + 1
2
+ (1

3
+ 1

4
) + · · ·+ (

∑2k+1

m=2k+1
1
m
)

≥ 1 + 1
2
+ 1

2
+ · · ·+ 1

2
> 1 + k

2
.

Hence the partial sums are non bounded.
Example:

The series
∑∞

n=1

1

nk
converges for each natural number k > 1. We prove

this for the case k = 2. The general case will be proved below. We have the
estimate

2k+1−1
∑

n=1

1

n2
= 1 + ( 1

22
+ 1

32
) + · · ·+

(

∑2k+1−1
n=2k

1
n2

)

≤∑k
r=0

2r

(2r)2
≤ 2.
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Remark: In fact
∞
∑

n=1

1

n2
=

π2

6
,

∞
∑

n=1

1

n4
=

π4

90

(this will be demonstrated below).
We now bring some general criteria for the convergence or divergence of

series.

Proposition 44 (Leibniz’ criterium for alternating series) Let (an) be a de-
creasing sequence of positive numbers which converges to 0. Then the series
∑∞

n=1(−1)nan is convergent.

Proof. For the partial sums sk we have

1. s2k decreases:

2. s2k−1 increases;

3. s2k−1 ≤ s2k.

Hence: L = limk s2k and L′ = limk s2k−1 exist. Furthermor

L− L′ = lim s2k − lim s2k−1 = lim(s2k − s2k−1) = lim a2k = 0.

This clearly implies the result.

We remark that it follow easily from the proof that the limit lies between
sn and sn−1 for each n. This means that the error caused by breaking off the
sum after n-terms is at most n+1.

Example:
∑∞

n=1

(−1)n

n
converges. (In fact the sum is ln 2).

Definition 20 The series
∑∞

n=1 an is absolutely convergent, if
∑∞

n=1 |an|
converges.

It follows from the Cauchy criterium that the series then converges. For
∣

∣

∣

∣

∣

n
∑

k=m

an

∣

∣

∣

∣

∣

≤
n
∑

k=m

|an| .

The example
∑∞

n=1(−1)n
1

n
shows that a series can converge, without being

absolutely convergent. We then say that it is conditionally convergent.

Proposition 45 Let
∑∞

n=1 cn be a convergent series with non-negative terms.
konvergente Reihe mit nicht negativen Gliedern. Then the sum

∑∞
n=1 an

converges whenever the sequence (an) is majorised by (cn) (i.e. |an| ≤
cn for each n).
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Proof. In this case we have

|
n
∑

k=m

an| ≤
n
∑

k=m

cn.

This implies that the Cauchy condition is satisfied.

As a consequence we have

Proposition 46 Let (an) and (bn) be two sequences with positive terms.

Suppose that l > 0 exists, so that
an
bn

→ l. Then
∑

n an converges ⇐⇒
∑

n bn converges.

Proof. Exercise.

Since the convergence or divergence of a series is not influenced by a
change in finitely many terms it suffices when there is an N ∈ N and K > 0,
so that |an| ≤ Kcn, if n ≥ N .

Proposition 47 Let
∑

an be a series with non-zero terms. Suppose that
there exists a λ with 0 < λ < 1, so that

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

≤ λ for each n.

Then the series converges (absolutely).

Proof. It is a simple conseqnece of the hypothesis that one can majorise
the series by a convergent geometric series.

Proposition 48 Let
∑

an be an infinite series such that lim |an|1/n = λ,
where λ < 1. Then the series converges absolutly.

Proof. Once again the series can be compared with a convergent geometric
series.
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Remark: In fact, the condition lim supn |an|1/n = λ < 1 is sufficient to
guarantee convergence. Similarly the condition

lim sup

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< 1

is sufficient in applications of the quotient criterium.

Examples: I.
∑∞

n=1

n2

2n
converges (by the quotient criterium).

II.
∑ 1

n
. We know that this series diverges. However,

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< 1 for each n

resp. |an|1/n < 1 for each n.

III. The series
∑ 1

n
and

∑ 1

n2
show that the the quotient and root criteria

provide no information in the cases where the corresponding limit is 1.

Criteria for divergence: There are corresponding criteria for the diver-
gence of series which we quote without proof.

Proposition 49 If the series
∑

n an of non-zero terms diverges, then so does
∑

n bn whenever bn ≥ an for each n.

If the series
∑

n an satisfies the condition lim
∣

∣

∣

an+1

an

∣

∣

∣
→ l with l > 1, then

it diverges.
If the series

∑

n an satisfies the condition lim |an|1/n → l with l > 1, then
it diverges.

Proposition 50 Let
∑∞

n=1 an be absolutely convergent. Then each series
which arises from the former by permutation of the terms is also convergent
(to the same sum). More precisely, if σ : N → N is a bijection, then the
series

∑∞
n=1 aσ(n) converges to a =

∑∞
n=1 an.

Proof. Let ǫ > 0 be given. We choose N1 so that
∑∞

k=n |an| < ǫ, whenever
n ≥ N1. Choose N so that {σ(1), . . . , σ(N)} ⊃ {1, . . . , N1}. Then for
m ≥ N :

∣

∣

∣

∣

∣

m
∑

k=1

aσ(k) − a

∣

∣

∣

∣

∣

≤
∣

∣

∣

∑m
k=1 aσ(k) −

∑N1

n=1 an

∣

∣

∣
+
∣

∣

∣

∑N1

n=1 an − a
∣

∣

∣

≤∑∞
n=N1+1 |an|+ ǫ < 2ǫ.
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This result is false for conditionally convergent series. In fact we can
rearrange such a series so that it diverges or so that it converges to any
previously determined value. For let

∑

an be such a series. We decompose it
into two series with non-negative terms as

∑

a+n and
∑

a−n , whereby a+n = an
(an ≥ 0) and = 0 otherwise and a−n is defined correspondingly. It is clear
that

∑

an is absolutely convergent if and only if these two series converge.
Hence both of them diverge if

∑

an is conditionally convergent. Let L be
an arbitrary number. We construct a rearrangement which converges to L
as follows. We first choose sufficiently many positive terms so that the sum
is larger then L. We then take negative terms until the sum is less thant
L. We continue in this way and obtain a rearrangement with the required
properties.

We now consider the behavious of series with respect to algebraic opera-
tions:

Proposition 51 If the series
∑

n an and
∑

n bn converge, then so does the
series of sums

∑

n(an + bn) (the sum being of course
∑

n an +
∑

n bn).
If
∑∞

n=1 an and
∑∞

n=1 bn are absolutely convergent, then so is the for-
mal product

∑∞
n=1 cn (whereby cn =

∑

i+j=n aibj) absolutely-convergent. In
addition

∞
∑

n=1

cn =

( ∞
∑

i=1

ai

)( ∞
∑

k=1

bk

)

.

Proof. Let a and b be the sums of the corresponding series. resp. A and B
the sums of the absolute values. We shall show that limn→∞

∑∞
n=1 cn = ab.

Choose N so that

1. |(∑n
k=0 ak) (

∑n
k=0 bk)− ab| < ǫ for n ≥ N ;

2.
∑∞

k=n |ak| < ǫ for n ≥ N ;

3.
∑∞

k=n |bk| < ǫ for n ≥ N .

Then if n ≥ max(
N

2
,
N

2B
,
N

2A
),

∣

∣

∣

∣

∣

n
∑

k=0

ck − ab

∣

∣

∣

∣

∣

< ǫ.
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Example (the exponential sequence). Consider the series
∑∞

n=0

xn

n!
. It

follows easily from the quotient criterium that the seres converges absolutely
for each x ∈ R. We write (as above) exp x for the sum. In particular,

e = exp(1) =
∑∞

n=0

1

n!
is the euler number.

From the formula for the product of two absolutely convergent series, one
calculate

Proposition 52 (The functional equation for the exponential function) For
x, y ∈ R we have

exp(x+ y) = exp(x). exp(y).

Proof. Let ai =
xi

i!
, bj =

yj

j!
. Then

cn =

n
∑

k=0

xn−k

(n− k)!

yk

k!
=

1

n!

n
∑

k=0

(

n

k

)

xn−kyk =
1

n!
(x+ y)n.

From this we can immediately obtain some elementary properties of the
exponential function:

1. for x ∈ R, we have exp x > 0;

2. exp(−x) = (exp(x))−1;

3. exp n = en for n ∈ Z.

Further examples of functions which we define by means of infinite series
are:

The trigonometric functions: We define

cosx =
∑∞

k=0(−1)k x2k

(2k)!

sin x =
∑∞

k=0(−1)k x2k+1

(2k+1)!
.

The series converge absolutely for each x ∈ R (quotient criterium). We can
deduce from this definition that

1. cos 0 = 1, sin 0 = 0;

2. cos(−x) = cosx, sin(−x) = − sin x;
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3. cos(x+ y) = cosx cos y − sin x sin y;

4. sin(x+ y) = sin x cos y + cosx sin y;

5. cos2(x) + sin2(x) = 1;

6. sin x− sin y = 2 cos
x+ y

2
sin

x− y

2
;

7. cosx− cos y = −2 sin
x+ y

2
sin

x− y

2
.

Proof. (1) and (2) are trivial. (3) and (4) are proved using the Cauchy
product as for the exponential function. (5), (6), (7) follow from (3) and (4).

Further trigonometric functions: Using the functions sin and cos we
can define further trigonometric functions as follows:

tan x = sinx
cos x

;

cosec (x) = 1
sinx

;

cotan (x) = cos x
sinx

;

sec (x) = 1
cos x

.

Of course, these are defined for those values of x for which the corresponding
denominators are non-zero.

We can deduce elementary properties of these functions from those of sin
and cos. For example we have the following sum formula tan:

tan (x+ y) =
tanx+ tan y

1− tanxtan y
.

6.6 Improper integrals:

I. Integrals over unbounded intervals: Let f : [a,∞[→ R be bounded. If

lim
c→∞

∫ c

a

f(x) dx

exists, then we say that the integral
∫∞
a

f(x) dx converges and we define

∫ ∞

a

f(x) dx = lim
c→∞

∫ c

a

f(x) dx.

58



Similarly, we define the existence and value of
∫ a

−∞ f(x) dx resp.
∫

R
f(x) dx

for a function f , which is defined on ]−∞, a] resp on R.
II. Integrals of functions with singularities resp of unbounded functions: Let
f :]a, b] → R be such that for each ǫ > 0 the restriction of the function to
[a + ǫ, b] is bounded and integrable. IF

lim
ǫ→0+

∫ b

a+ǫ

f(x) dx

exists, then we define
∫ b

a

f(x)

to be this limit.
We remark here that there are criteria for the convergence and divergence

of improper integrals which are analogues of corresponding criteria for series.
In addition there is an analogous distinction between integrals which con-
verges absolutely (i.e. such that the corresponding integral of the absolute
value of the function converges) and those which converge conditionally. For

example, the integarl
∫∞
0

sin x

x
dx converges (its value is

π

2
—see the exer-

cises). However,
∫∞
0

∣

∣

∣

∣

sin x

x

∣

∣

∣

∣

dx diverges.

Examples: Consider the integrals
∫ ∞

1

1

xα
dx

and
∫ 1

0

1

xα
dx.

The first integral converges if and only if α > 1, the second if and only if
α < 1.

Proposition 53 Integral criterium for the convergence of series Let

f : [1,∞[→ R

be a non negative, decreasing function. Then the series
∑∞

n=1 f(n) converges
if and only if the improper integral

∫ ∞

1

f(x) dx

does so.
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Proof. Suppose that the series converges. Then so does the integral since
∑N

n=2 f(n) is the integral of a step function which is majorised by f .
On the other hand,

∑∞
n=1 f(n) is the integral of a step function which

majorises f .

Example: The series
∑∞

n=1

1

nα
. Using the above result we immediately see

that
∑ 1

nα
converges for α > 1 and diverges for α ≤ 1.

6.7 Exercises

Exercise For which x ∈ R do the following series converge?

∞
∑

k=1

(k + 2)4

k5 + 6)
x2k

∞
∑

k=0

k2xk.

Exercise Show that
∞
∑

k=1

k + 3

k(k + 1)(k + 2)
=

5

4
,

∞
∑

k=2

1

k(k2 − 1)
=

1

4
.

Exercise Which of the following series converge?

∞
∑

n=0

n3

1 + n4
,

∞
∑

n=0

n4

1 + n4
,

∞
∑

n=1

1

(n!)1/n
.

Exercise Which of the following statements are valid?

1. if
an+1

an
< 1, then

∑

an converges;

2. if an − bn → 0 and
∑

bn converge, then so does
∑

an;

3. if
∑

an converges, then so does
∑

a2n;

4. if
∑

a2n converges, then so does
∑

an;

5. if an+1 + · · ·+ a2n → 0, then
∑

an converges.

Exercise Show that
∞
∑

n=1

1

n(n + 1) . . . (n+ k)
=

1

k!k
.

60



Exercise Show that

n
∑

r=1

rxr−1 =
1− (n + 1)xn + nxn+1

(1− x)2
(x 6= 1).

For which x does the infinite series
∑∞

r=1 rx
r−1 converge?

Exercise Let k be the sum of the infinite series
∑∞

n=1
1
n2 . Show that

1 +
1

32
+

1

52
+ · · · = 3

4
k.

Exercise For which a, b, does the series

(a− b) + (a2 − b2) + (a3 − b3) + . . .

converge?

Exercise Let f be a nicht-negative, decreasing function from R+ → R.
Show that:

∑∞
n=1 f(n) converges ⇐⇒ ∑∞

n=1 2
nf(2n) converges. (Cauchy

density theorem).

Exercise Use the last exercise to investigate the convergence of series
∑ 1

nα lnn
.

Exercise For which x does the series

∑

(

α+ n− 1

n

)

xn

converge?

Exercise For which x does the series

∑ α(α + 1) . . . (α + n− 1)β(β + 1) . . . (β + n− 1)

n!γ(γ + 1) . . . (γ + n− 1)
xn

converge?

Exercise Formulate a version of the comparison test for series which is
valid for imporper integrals.
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Exercise Show that the imporper integral
∫∞
0

sin x

x
dx converges condi-

tionally.

Exercise Show that
∫ ∞

0

sin x

x
dx =

π

2
.

(Differentiate the expression F (y) =
∫∞
0

e−xy sinx
x

dx with respect to y).

Exercise (Raabe’s criterium) Show that if

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

≤ 1− β

n
,

whereby β > 1, then the series converges
∑

an (absolutely).
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7 Convergence of sequences and series of func-

tions

7.1 Definitions

Definition 21 Let (fn) be a sequence of functions from D ⊂ R with values
in R. We say that fn converges pointwise fo a function f , if : fn(x) →
f(x) for each x ∈ D.

In a certain sense this is the natural notion of convergence for functions. How-
ever, in many situations it is too weak a notion and we therefore introduce
a more subtle one.

Definition 22 Let (fn) and f be as above. Then fn converges uniformly
to f , if for each positive ǫ > 0 there exists an N , so that |fn(x) − f(x)| < ǫ
for each x ∈ D and each n ≥ N .

Examples: It is clear that uniform convergence implies pointwise conver-
gence. The following is an example of a sequence of functions which converges
pointwise, but not uniformly.

fn(x) = xn (0 ≤ x ≤ 1).

We can reformulate the definition of uniform convergence as follows:

Definition 23 Let f be a bounded function on D. We define

‖f‖∞ = sup{|f(x)| : x ∈ D}.

If f is unbounded, then we put ‖f‖∞ = ∞.

Proposition 54 fn converges uniformly to f if and only if

‖fn − f‖∞ → 0

.

Proposition 55 Let (fn) be a sequence of continuous function on D, which
converges uniformly to f on D. Then f is also continuous.
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Proof. We fix a point x0 in D and an ǫ > 0. There exists N ∈ N with
‖fn − f‖∞ < ǫ

3
, whenever n ≥ N . Since fN is continuous, there is a ¿.0, so

that |fN(x)− fN(x0)| < ǫ
3
, falls |x− x0| < δ. Then for |x− x0| < δ, we have

|f(x)− f(x0)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(x0)|+ |fN(x0)− f(x0)| ≤ ǫ.

7.2 Criteria for convergence

Proposition 56 (The WeierstraßM-test) Let fn : D → R be a sequence
of functions on D with the preoprty that

∑

n ‖fn‖∞ < ∞. Then the series
∑

n fn converges absolutely and uniformly to a function f . Hence if each fn
is continuous, then so is f .

Proof. Exercise.

Power series: A power series is a series of functions of the form

∞
∑

n=0

an(x− x0)
n.

In order to simplify the notation, we shall usually assume that x0 = 0.
Typical examples are the series which we used to define the exponention

function and the trigonometric functions. In working with these functions
we often tacitly assumed that such power series have pleasant properties and
we shall now prove that this is indeed the case.

Proposition 57 Let
∑∞

n=0 anx
n be a power series which converges for x0 6=

0. Then the series converges absolutely for each x with |x| < |x0|. Further if
converges uniformly on any interval of the form [−a, a] with a < |x0|. Hence
the function

g(x) =

∞
∑

n=o

anx
n

is defined on ]− |x0|, |x0|[ and continuous there.
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Proof. Since
∑

n anx
n
0 converges, the sequence (anx

n
0 ) is bounded. Let

K > 0 be such that |anxn
0 | ≤ K for each n.

We can now estimate the term anx
n as follows:

|anxn| =
∣

∣

∣

∣

an

(

xn

xn
0

)

xn
0

∣

∣

∣

∣

≤
∣

∣

∣

∣

x

x0

∣

∣

∣

∣

n

K.

Hence by comparison with a geometric series, we see that the series converges
absolutely.

The proof of the second claim is similar.

If we put

R = sup{x > 0 :
∑

n

anx
n converges},

then:
∑

n anx
n converges for each x with |x| < R. Further, the convergence

is absolute and uniform on any interval [−a, a] with a < R. For |x| > R the
series diverges. (In case |x| = R then we get no information in general. The
behavour there depends on the specific form of the series).

R is called the radius of convergence of the series. Using the root
test, we can get the following explicit formula for R:

R =
1

lim supn |an|1/n
.

Examples: We have already mentioned the power series representations
for exp, sin and cos. Further examples are the binomial series

(1 + x)α =

∞
∑

n=0

(

α

n

)

xn (−1 < x < 1, α ∈ R)

resp. the hyperbolic functions

sinh x =

∞
∑

m=0

x2m+1

(2m+ 1)!
.

cosh x =
∞
∑

m=0

x2m

(2m)!
.

Proposition 58 If (fn) is a sequence of continuous functions on [a, b], which
converges uniformly to f , then

∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.
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Proof. The claim follows immediately from the estimate
∣

∣

∣

∣

∫ b

a

f(x) dx−
∫ b

a

fn(x) dx

∣

∣

∣

∣

≤ (b− a)‖f − fn‖∞.

The examples above show that a similar claim for pointwise convergence
is false.

Proposition 59 Let (fn) be a sequence of continuously differentiable func-
tions on [a, b], which converges pointwise to f . Further suppose that the se-
quence (f ′

n) of derivatives is uniformly convergent. Then f is (continuously)-
differentiable and

f ′(x) = lim
n→∞

f ′
n(x).

Proof. We put g = lim f ′
n and fix x ∈ [a, b]. We have the relationship

fn(x) = fn(a) +

∫ x

a

f ′
n(t) dt.

We now let n go to ∞ and get

f(x) = f(a) +

∫ x

a

g(t) dt.

Since g is continuous, we have

f ′(x) = g(x) = lim
n

f ′
n(x).

Example: The example

fn(x) =
1

n
sin nx

shows that a sequence of functions can converge uniformly without the de-
rived sequence converging.

As a consequence of this result, we have

Proposition 60 Let
∑∞

n=0 anx
n be a power series with positive radiou of

convergence R. Then the function f : x 7→ ∑∞
n=0 anx

n auf ]−R,R[ is (in-
finitely) differentiable and

f ′(x) =

∞
∑

n=1

nanx
n−1.
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Proof. The radius of convergence of the series
∑

nanx
n−1 coincides with

that of the derived series
∑

anx
n (why?).

7.3 Taylor series:

We return to the topic of Taylor series. Recall that for a (n + 1)-times
continuously differentiable function f on the interval I we have

f(x) = f(a) +
f ′(a)

1!
(x− a) + · · ·+ f (n)(a)

n!
(x− a)n +Rn+1(x)

whereby a lies in the interior of I. The remainder term has the form
f (n+1)(ξ)

n!
(x−

a)(n+1). In applications one is interested in estimates for the remainder term.
For this the following explicit formula is often useful:

Proposition 61 We have

Rn+1(x) =
1

n!

∫ x

a

(x− t)nf (n+1)(t) dt.

Proof. This is proved by induction: n = 1: Then

f(x) = f(a) +

∫ x

a

f ′(t) dt.

n− 1 → n: Suppose that

Rn(x) =
1

(n− 1)!

∫ x

a

(x− t)n−1f (n)(t) dt.

Integrating by parts, we see that

Rn(x) = −f (n)(t) (x−t)n

n!

∣

∣

x

a
+
∫ x

a
(x−t)n

n!
f (n+1)(t) dt

= f(n)(a)
n!

(x− a)n +
∫ x

a
(x−t)n

n!
f (n+1)(t) dt

= f(n)(a)
n!

(x− a)n +Rn+1(x).
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Remark: From this it follows immediately that the remainder satisfies the
growth condition

lim
x→a

Rn+1(x)

(x− a)n
= 0.

Definition 24 Let f : I → R be an inifinitely differentiable function and
a ∈ I. Then

Tf (x) =
∞
∑

n=0

f (n)(a)

n!
(x− a)n

is called the Taylor series of f .

We do not claim that this series necessarily represents f in any sense. In fact
it can happen

1. that the series fails to converge (except trivially at the point a)

2. that the series converges, but not to f .

Examples:

f(x) = e−
1
x2

where we set f(0) = 0.
The Taylor series of this function is the trivial series with each term

vanishing.
Of course this example is non-typical. Normally the Taylor series con-

verges to f in a neighbourhood of a. For example is a function defines as a
power series

∑∞
n=0 an(x − a)n around a, then the Taylor series of f at a is

just this power series and so converges to f .

7.4 Exercises

Exercise Let (fn) and (hn) be uniformly converging sequences of functions.
Show that a) it is not in general true that fngn converges uniformly; b) if (fn)
and (gn) are, in addition uniformly bounded, then fngn converges uniformly.

Exercise Let (fn) be a sequence of continuous functions on [0, 1], which
converges pointwise to f . Show that the convergence uniform if and only if
f is continuous and (fn) is equicontinuous.

Exercise Prove Dini’s theorem: Let (fn) be a sequence of continuous func-
tions on [0, 1], which converges pointwise to the continuous function f . If the
sequence is decreasing i.e. fn+1 ≤ fn for each n, then it converges uniformly.
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Exercise Let (gn) be a decreasing sequence of functions on [a, b], which
converges uniformly to 0. Show that the series

∑

(−1)ngn converges uni-
formly.

Exercise Let (gn) be a uniformly bounded decreasing sequence of functions
[a, b], resp.

∑

fn a uniformly converging series of functions. Show that the
series

∑

fngn is also uniformly convergent.

Exercise Let (an) be a positive, decreasing sequence. Show that the series
∑

an sinnx converges uniformly on R if and only if nan → 0.

Exercise Suppose that the series
∑

an converges. Show that the Dirichlet
series

∑

ann
−s converges uniformly on [0,∞[.
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8 Fourier Series

8.1 The definitions

Definition 25 Let f and g be, for example, piecewise continuous functions
on the interval [a, b]. We define the scalar product (f |g) of f and g as follows:

(f |g) =
∫ b

a

f(x)g(x) dx.

Then as in Linear Algebra we see that

(f |g) = (g|f) (cf |g) = c(f |g) (f1 + f2|g) = (f1|g) + (f2|g)

for functions f , g, f1, f2 and real numbers c. Further (f |f) > 0, if f 6= 0.
Hence we define

‖f‖ =
√

(f |f).
Then

|(f |g)| ≤ ‖f‖‖g‖ (the Cauchy-Schwarz inequality)

and
‖f + g‖ ≤ ‖f‖+ ‖g‖ (the Minkowski inequality).

Definition 26 A sequence (φn) of continuous functions on [a, b] is called or-
thogonal, if (φm|φn) = 0, whenever m 6= n. The sequence is orthonormal,
if, in addition, ‖φn‖ = 1 for each n.

Example The sequence (φn) is orthonormal on [0, 2π], whereby

φ0(x) =
1√
2π

, φ2n−1(x) =
cosnx√

π
, φ2n(x) =

sinnx√
π

(n = 1, 2, . . . ).

If (φn) is an orthonormal system, and f is Riemann integrable, then the
series

∑

n

cnφn wobei cn = (f |φn)

is called the Fourier series of f with respect to (φn). If (φn) is the sequence
of trigonometric functions as above, then one speaks simply of the Fourier
series.
The classical Fourier series is thus

f(x) ∼ a0
2

+
∞
∑

n=1

(an cosnx+ bn sinnx),
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whereby

an =
1

π

∫ 2π

0

f(t) cosnt dt,

bn =
1

π

∫ 2π

0

f(t) sinnt dt.

The definition is motivated by the following fact:

Proposition 62 If the series
∑

n cnφn(x) is unformly convergent on [a, b],
then its sum is a continuous function with Fourier coefficients (cn).

Proof. Exercise.

Proposition 63 Let (φn) be orthonormal on [a, b] and let f be continuous
with Fourier series

∑∞
n=0 cnφn and with partial sums sn. Put

tn =
n
∑

k=0

bkφk,

whereby (b0, . . . , bn) is an arbitrary sequence of numbers. Then
∫ b

a

|f(x)− tn(x)|2 dx =

∫ b

a

|f(x)|2 dx−
n
∑

k=0

|ck|2 +
n
∑

k=0

|ck − bk|2.

Hence
∫ b

a

|f(x)− sn(x)|2 dx ≤
∫ b

a

|f(x)− tn(x)|2 dx.

Proof. It suffices to prove the expression for
∫ b

a
|f(x)− tn(x)|2 dx. This is

analogue to the corresponding calculation for euclidean spaces as in Linear
Algebra.

Proposition 64 Let f , (φn) and (cn) be as above. Then
1)

∞
∑

n=0

|cn|2 ≤
∫ b

a

|f(x)|2 dx (the Bessel inequality)

and so the series
∑ |cn|2 converges;

2) We have

∞
∑

n=0

|cn|2 =
∫ b

a

|f(x)|2 dx (Parseval’s formula)

if and only if limn→∞
∫ b

a
|f(x)− sn(x)|2 dx = 0.
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Proof. Exercise.

We say that the system (φn) is complete, if the second condition above
holds.

For example, the trigonometric system above is complete on [0, 2π]. This
will be proved below. A much more general result will be proved in analysis
III.

8.2 Convergence

We now investigate the question of the pointwise convergence of Fourier
series. We use the concept of a piecewise Lipschitz-continuous functions.
That is a piecewise continuous function with singularities a1, . . . , ak so that
the restrictions of f to ]a, a1[, ]a1, a2[, . . . are Lipschitz continuous.

Proposition 65 (The Lemma of Riemann-Lebesgue) Let f be Riemann in-
tegrable on [a, b]. Then

lim
α→∞

∫ b

a

f(x) sin(αx+ β) dx = 0

for each β ∈ R.

Proof. Step 1: The result holds if f is the characteristic function χ[a,b] of
an interval (direct computation).

Step 2: The result holds if f is a step function. This holds by step 1 and
the linearity of the integral.

The result now follows from 1 and 2 using an approximation argument.

Dirichlet Integrals We now investigate integrals of the form

∫ δ

0

g(x)
sinαx

x
dx.

Proposition 66 Proposition (Jordan) Let g be piecewise Lipschitz continu-
ous on [0, δ]. Then

lim
α→∞

∫ δ

0

g(x)
sinαx

x
dx = g(0+).
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Proof. We put

∫ δ

0

g(t)
sinαt

t
dt =

∫ h

0

[g(t)−g(0+)]
sinαt

t
dt+g(0+)

∫ h

0

sinαt

t
dt+

∫ δ

h

g(t)
sinαt

t
dt.

By the Lemma of Riemann-Lebesgue the third term converges to 0 as α → ∞.
The second term converges to

lim
α→∞

g(0+)

∫ δ

0

sinαt

t
dt = lim

α→∞
g(0+)

∫ hα

0

sin t

t
dt =

π

2
g(0+).

The first term converges to 0 and this completes the proof.

In order to apply this theorem, we use the following explicit formula for
the partial sums

sn(x) =
a0
2

+

n
∑

k=1

(αk cos kx+ bk sin kx)

of the Fourier series of f .
We have

sn(x) =
2

π

∫ π/2

0

f(x+ 2t) + f(x− 2t)

2

sin(2n+ 1)t

sin t
dt.

Proof. This follows directly from the formula

1

2
+

m
∑

k=1

cos kt =
sin(2n+ 1)t

2 sin t
.

We denote the sum by Dn(t) (the Dirichlet kernel).

Proposition 67 Let f be piecewise continuous on [0, 2π]. Then the Fourier
series of f converges at x if and only if the limit

lim
n→∞

2

π

∫ δ

0

f(x+ 2t) + f(x− 2t)

2

sin(2n + 1)t

t
dt

exists for some δ > 0. In this case sn(x) converges to this limit.

From this we easily deduce

Proposition 68 Let f be piecewise Lipschitz continuous on [0, 2π]. Then
sn(x) converges pointwise to the value 1

2
[f(x+) + f(x−)].
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Proof. We put

g(t) =
f(x+ 2t)− f(x− 2t)

2

on [0, δ
2
] and apply the above result.

Remark The Fourier series converges tokonvergiert die 1
2
[f(0+)+f(2π−)]

at the points 0 und 2π .

8.3 Césaro summability of the Fourier series

The convergence properties of the Fourier series is improved by employing
the so-called Césaro method. We define

σn(x) =
s0(x) + · · ·+ sn(x)

n+ 1
.

Then

σn(x) =
2

(n+ 1)π

∫ π/2

0

f(x+ 2t) + f(x− 2t)

2

(

sin(n+ 1)t

sin t

)2

dt.

(Proof—Exercise. One calculates the Césaro means Kn(t) of the Dirichlet
kernel).

Proposition 69 Fejér) Let f be piecewise continuous. Then σn(x) converges
for each x (and the sum is as above). The sequence converges uniformly on
each closed subinterval of [0, 2π] \ {a1, . . . , an}. In particular, it converges
uniformly on [0, 2π], provided that f has a continuous extension to the real
line which is 2π-periodic.

It is a consequence of this result that the trigonometric system is complete
on [0, 2π].
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8.4 Exercises

Exercise Let φ(x) =
1

2nn!
f
(n)
n (x), whereby fn(x) = (x2 − 1)n. Show that

(φn) is orthonormal on [−1, 1]. Calculate φ1, . . . , φ4.

Exercise Let f : [−π, π] → R be even. Show that

f(x) ∼ a0
2

+
∞
∑

n=1

an cosnx,

whereby an = 2
π

∫ π

0
f(t) cosnt dt. What is the corresponding statement for

odd f?

Exercise Show that

x = π − 2
∞
∑

n=1

sinnx

n
(0 < x < 2π)

x2

2
= πx− π2

3
+ 2

∞
∑

n=1

cosnx

n2
(0 ≤ x ≤ 2π).

Exercise Show that

π

4
=

∞
∑

n=1

sin(2n− 1)x

2n− 1
(0 < x < π);

x =
π

2
− 4

π

∞
∑

n=1

cos(2n− 1)x

(2n− 1)2
(0 ≤ x ≤ π).

Exercise Show that

x = 2
∞
∑

n=1

(−1)n−1 sinnx

n
(−π < x < π);

x2 =
π2

3
+ 4

∞
∑

n=1

(−1)n cosnx

n2
− π ≤ x ≤ π).

Exercise Shos that

x2 =
4

3
π2 + 4

∞
∑

n=1

(

cosnx

n2
− π sin nx

n

)

0 < x < 2π).
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Exercise Show that

cosx =
8

π

∞
∑

n=1

n sin 2nx

4n2 − 1
(0 < x < π).

What is the corresponding expression for sin x?

Exercise Calculate the Fourier series on [−π, π] for x cosx, x sin x.

Exercise Calculate the Fourier series of the 2π-periodic functions ln
∣

∣sin x
2

∣

∣,
ln
∣

∣cos x
2

∣

∣ , ln
∣

∣tan x
2

∣

∣.

Exercise Use Parseval’s formula to prove the following identities:

∞
∑

n=1

1

n2
=

π2

6
,

∞
∑

n=1

1

n4
=

π4

90

∞
∑

n=1

1

n6
=

π6

945
.

Exercise (the Gibbs phenomenon): Let f be the function 2H − 1 (morep
precisely the 2π-periodic extension of its restriction to [−π, π]). Show that

a) f(x) =
4

π

∑

n+1∞
sin(2n− 1)x

2n− 1
;

b) sn(x) =
2

π

∫ x

0

sin 2nt

sin t
dt;

c) the function sn on ]0, π[ has local maxima and minima at the points
xm = 1

2
mπ
n

(m = 1, 2, . . . , 2n− 1);
d) sn

(

π
2n

)

is an absolute maximum of the function;

e) limn→∞ sn
(

π
2n

)

= 2
π

∫ π

0

sin t

t
dt ∼ 1.179.
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9 The construction of the real numbers

We proved in the first section that the set Q of rational numbers is an ordered
field. We now sketch two methods for extending Q to a complete ordered
field.

Dedekind cuts (motivation: each real number x generates a decomposi-
tion

{y ∈ Q : y < x} resp. {y ∈ Q : y ≥ x}
of Q into two disjoint sets). We define: a Dedekind cut is a decomposition
Q = A ∪ B of Q, whereby

1. A and B are disjoint and A 6= ∅, B 6= ∅;

2. if x ∈ A and y ∈ B, then x < y;

3. A has no greatest element.

We define R to be the family of all Dedekind cuts of Q. One can then
show that the set R defined in this way has the required properties.

Cauchy sequences: (motivation: each real number is the limit of a Cauchy
sequence of rational numbers). We consider the family Q, whose elements are
Cauchy sequences in Q. On this family we define an equivalence relationship
∼ as follows:

(rn) ∼ (sn) ⇐⇒ rn − sn → 0.

R is the corresponding family of equivalence classes i.e. Q|∼.
We remark that the technicalities of proving that the real numbers have

the desired properties can be slightly reduced by applying this construction
firstly toQ+ (and thus constructing R+). The extension from R to R+ can
then be carried out as for the extension from N → Z.

We conclude this section with Cantor’s proof that R is uncountable. We
use the fact that each real number x between 0 and 1 has a decimal expansion
0, a1a2 . . . . The proof is by contradiction. We suppose that the numbers of
]0, 1[ can be numerated. Thus we can list them as follows:

r1 = 0, a11a
1
2a

1
2 . . .

r2 = 0, a21a
2
2a

2
2 . . .

r3 = 0, a31a
3
2a

3
2 . . .

...
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(in order to avoid ambiguities we avoid expansions which end with 99999 . . . ).
One can then easily construct a number 0, b11b

2
2b

3
3 . . . which is not on the list,

simply by going along the diagonal a11a
2
2a

3
3 . . . and changing each number in

a corresponding manner.
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