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I. Facts on analytic functions

Notation.We use both letters z and P to represent points in the plane (z denotes
the corresponding complex number). As a general rule we write z when we are em-
phasising the algebraic properties of the complex plane, P when we are emphasising
geometrical aspects. Sometimes we will write zP to denote the complex number
corresponding to the point P in the plane.
U(P, r) denotes the open disc {z ∈ C : |z − zP | < r}. ∂U denotes its boundary. D
is the unit disc i.e. the case P = 0, r = 1.
Ω or U denotes a generic domain in C (i.e. an open, connected subset).

Let f be a function from U into C. We shall identify without explicit comment
f with the vector field (u, v) or pair of functions of two real variables where

f(x+ iy) = u(x, y) + iv(x, y).

Example. For f(z) = z3 resp. f(z) = ez, we have u(x, y) = x3 − 3xy2 v(x, y) =
3x2y − y3 resp. u(x, y) = ex cos y v(x, y) = ex sin y.

We define f to be holomorphic if it is C1 and satisfies the Cauchy-Riemann
equation

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

(In fact it suffices that f be differentiable and satisfy the above equations. It is
usually proved in an elementary course on function theory that the continuity of
the partial derivatives then follows).

We remark that the above condition signifies that the Jacobi matrix of f has the

form

[

a −b
b a

]

of a similarity, more precisely a rotation followed by a dilation.

Notation.We employ the differential operators

∂

∂z
=

1

2

(

∂

∂x
− i

∂

∂y

)

,
∂

∂z̄
=

1

2

(

∂

∂x
+ i

∂

∂y

)

.

(Thus f = u+ iv satisfies the Cauchy-Riemann equations if and only if ∂f∂z̄ = 0).

Examples.
∂

∂z
z = 1,

∂

∂z
z̄ = 0,

∂

∂z̄
z = 0,

∂

∂z̄
z̄ = 1.

If f is complex differentiable

f ′(z) =
∂f

∂z
=
∂f

∂x
= −i∂f

∂y
.

Also ∆f = 4
∂

∂z

∂

∂z̄
= 4

∂

∂z̄

∂

∂z
.
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The (real) chain rule takes the following form: if f, g are C1, then

∂

∂z
(f ◦ g) = ∂f

∂z
(g(z))

∂g

∂z
(z) +

∂f

∂z̄
(g(z))

∂ḡ

∂z
(z)

∂

∂z̄
(f ◦ g) = ∂f

∂z
(g(z))

∂g

∂z̄
(z) +

∂f

∂z̄
(g(z))

∂ḡ

∂z̄
(z).

Exercise. If f is holomorphic, then ∆(ln |f |2) = 0. For

(∆(ln |f |2) = ∆ ln f +∆ ln f̄ = 4
∂

∂z

∂

∂z̄
ln f + 4

∂

∂z̄

∂

∂z
ln f̄ = 0.

Exercise. If φ is harmonic and f is analytic, then φ ◦ f is harmonic. (Three
suggestions for a proof:

1) use the real version of the chain rule and the Cauchy Riemann equations.

2) use the fact that being harmonic is a local property and that a function is
harmonic if and only if it is locally the real part of an analytic function.

3) use the complex chain rule).

Definition. If γ is a (piecewise) C1 curve in U then we define
∫

γ

f(z) dz

in the usual way. Using the above definition and the theorem of Stokes, we obtain
immediately:

Proposition. If f is holomorphic on U and γ is the boundary of a two-dimensional
cube in U (cf. Analysis I), then

∫

γ
f(z) dz = 0.

From this we deduce in the usual way

Corollary. If f and γ are as above, then

f(z) =
1

2πi

∫

γ

f(ζ)

ζ − z
dζ

whenever the winding number of γ with respect to z is 1 (i.e. 1 = 1
2πi

∫

γ
1
ζ−z dζ).

From this result one deduces the existence of the Taylor series and the Laurent
series as in an elementary course on complex variables.

These allow us to classify the isolated singularities of a function as follows:
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Definition. Let F : U → C be a holomorphic function where U is a punctured
neighbourhood of z0. We suppose that F has Laurent series

∞
∑

n=−∞

an(z − z0)
n.

Then there are three possibilities:

(1) a removable singularity. This is the case if an = 0 whenever n is negative;
(2) a pole. This is the case when at least one an (n negative) is non-zero and

only finitely many are non-zero;
(3) an essential singularity. The remaining case (i.e. infinitely many an (n

negative) are non-vanishing).

The growth behaviour of F near z0 can be used to distinguish between the three
cases. If F is bounded near z0 then the latter is a removable singularity. If |F |
tends to ∞ as z → z0, then it is a pole. If it is unbounded but does not tend to ∞,
then we have an essential singularity.

Further consequences of the Cauchy integral formula are

Proposition. If f is a holomorphic, non-zero function on U , then its zero set
Z(f) is discrete.

Liouville’s theorem. A bounded entire function is constant.

The principle of the argument. Let F be analytic on U , γ a simple closed curve
which is the boundary of a two dimensional cube in U and suppose that F has k
zeroes in the interior of γ and none on the curve. Then

k =
1

2πi

∫

γ

F ′(ζ)

F (ζ
dζ.

This implies the following result of Hurwitz:

Proposition. Suppose that the sequence (Fn) of holomorphic functions converges
almost uniformly (i.e. uniformly on compact subsets) in U to F and that none of
the Fj has zeroes. Then either F has no zeroes or it is the constant function 0.

Another consequence of the Cauchy integral formula is:

Maximum principle. If F : U → C is such that there is a P ∈ U so that
|F (P )| ≥ |F (z)| for each z ∈ U \ {P}, then F is constant.

From this we can deduce
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Schwarz’ Lemma. Let F : D → D be holomorphic with F (0) = 0. Then |F (z)| ≤
|z| and |F ′(0)| ≤ 1. If we have equality in the first equation for some non-zero z or
in the second, then F has the form z 7→ αz für α ∈ ∂U .

Proof. We apply the maximum principle to the function

G 7→
{

F (z)/z (z 6= 0)

F ′(0) (z = 0).

Below we shall discuss general Möbius transformations in some detail. For the
present moment we will consider the special function

φa : z 7→ z − a

1− āz
,

where |a| < 1. This maps D conformally onto D and a to 0. This follows easily
from general facts (see below) and the following calculation which shows that ∂D
is mapped onto itself. Suppose that |z| = 1. Then

|φa(z)| =
∣

∣

∣

∣

z − a

1− āz

∣

∣

∣

∣

=

∣

∣

∣

∣

1

z̄

z − a

1− āz

∣

∣

∣

∣

=

∣

∣

∣

∣

z − a

z̄ − ā

∣

∣

∣

∣

= 1.

Also it is easily calculated that the inverse of φa is of the same form, in fact it is
φ−a.

We also use the notation ρτ (τ ∈ R) to denote the rotation z 7→ eiτz which is
also clearly a conformal mapping on D. On the other hand we have:

Proposition. Suppose that F : D → D is conformal. Then it has the form

F : z 7→ φa ◦ ρτ (z)

for some a and τ .

Proof. We put b = F (0). Then G = φb ◦ F is as in the Lemma of Schwarz. Hence
|G′(0)| ≤ 1. But its inverse G−1 satisfies the same conditions and so, by the chain
rule, |G′(0)| ≥ 1. Hence it is equal to one and so G is a rotation from which the
result follows.

Using the above mappings we can obtain the following version of the Schwarz-
Lemma which is invariant under such conformal mappings.

Proposition—Schwarz, Pick. Let F : D → D be holomorphic with F (z1) = w1,
F (z2) = w2, F (z) = w. Then

∣

∣

∣

∣

w1 − w2

1− w̄1w2

∣

∣

∣

∣

≤
∣

∣

∣

∣

z1 − z2
1− z̄1z2

∣

∣

∣

∣

,
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and

|F ′(z)| ≤ 1− |w|2
1− |z|2 .

If there is equality in the first case for a pair of distinct z’s or in the second for
some z then F is conformal (and so of the above form).

Proof. We use the Möbius trausformations

φ(z) =
z + z1
1 + z̄1z

, ψ(z) =
z − w1

1− w̄1z

which take 0 to z1 resp. w1 to 0. Thus ψ ◦ F ◦ φ satisfes the conditions of the
Lemma of Schwarz. Hence we have the inequality: |ψ ◦ F ◦ φ(z)| ≤ |z|. If we
choose z = φ−1(z2), then we obtain the first inequality after a routine computation.
Similarly, the inequality |φ′(w1)F

′(z1)φ
′(0)| ≤ 1 which we obtain by using the chain

rule produces the second result.

Normal families

We consider now the space H(U) of holomorphic functions on a domain U . We
regard this as a Fréchet space (complete metrisable locally convex space) with the
countable family {pn} of seminorms where pn(f) is the supremum of the absolute
value of f on Kn and (Kn) is a (countable) basis for the compact subsets of U .
We shall only require the following facts about the corresponding topology—it is
metrisable and convergence means uniform convergence on compact subsets of U .

Then we have the following characterisation of the relatively compact subsets of
H(U) which follows from the theorem of Ascoli and the Cauchy integral theorem:

Proposition. A subset A of C(U) is relatively compact if and only if it is uniformly
bounded and equicontinuous on compacta. A ⊂ H(U) is relatively compact if and
only if it is uniformly bounded on compacta.

In particular we have Montel’s theorem—if A is uniformly bounded, then it is
relatively compact.

Relatively compact subsets of H(U) are traditionally called normal families.
Using a standard reformulation of the condition of relative compactness in metric
spaces we can recover the classical definition: A is normal if and only if each
sequence (fn) in A has a subsequence which converges almost uniformly. (The
limit function is then automatically in H(U)).

One of the main applications of normal families is to the proof of the Riemann
mapping theorem:

Proposition. Let the domain U be a proper subset of C and simply connected
(equivalently, homeomorphic to D). Then U is conformally equivalent to D.
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Proof. We begin the proof with the following two reductions.

Firstly we note that if the closure of U is a proper subset of C (i.e. U is not
dense in C), then we can find a disc in the exterior of U . Inversion in this disc is a
conformal mapping of U onto a bounded set.

On the other hand since U is simply connected, we can define a branch of the
logarithm on U . (For convenience, we assume that 0 /∈ U and 1 ∈ U—we can
clearly arrange this by simple transformations. Then we define

ln z =

∫

γ

1

z
dz

where γ is a path from 1 to z in U . By the condition of simply connectedness, this
is independent of the path and so is an analytic function). By the usual argument
the image of U under this function (which is then conformally equivalent to U)
satisfies the conditions of the previous paragraph.

Hence combining these two arguments we can reduce to the case where U is a
bounded region.

We now introduce for a fixed P in U the family

F = {f : U → D : f is 1− 1, holomorphic and f(P ) = 0}.

This is non-empty (since we can find such a function on any bounded disc). By
Montel’s theorem, F is normal.

Now we set M = sup{|f ′(P )| : f ∈ F} and find a sequence (fn) with |fn′(P )| ≥
M − 1

n
.

Since F is normal we can, by going over to a subsequence, assume that fn
converges in H(U), say to f . We claim that f ∈ F and (as is obvious) |f ′(P )| =M
i.e. the above supremum is attained. Firstly we note that f is non-constant (why?).
Secondly, f takes its values in D as the limit of the fn. But it then follows from
the maximum modulus theorem that in fact its image is a subset of D.

It can easily be deduced using Hurwitz’ theorem that f is also 1− 1 (Exercise).

Hence it remains to show that f is onto. This is where the concrete analysis
comes in. We shall show that if f is not onto, then we can find a g in F with too
large a value for |g′(P )|. Assume therefore that f is not onto. Suppose that the
value β is omitted. We now compose with the Möbius transformation φβ to get
a function F which omits the value 0. Since this function is defined on a simply
connected domain, we can again as above define a function lnF (by putting

lnF (z) =

∫

F ′(ζ)

F (ζ
dζ,

the integral being taken along any path in U from P to z). We can then define Fα

for any α by putting
Fα(z) = exp(α lnF (z)).
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Putting this together we define an analytic function µ where

µ(z) = (φβ ◦ f(z))1/2 .

Then we put

ν(z) =
|µ′(P )|
µ′(P )

φτ ◦ µ(z)

where τ = µ(P ). Then ν ∈ F and one can compute that

ν′(P )| = 1 + |β|
2|β|1/2M

and this is strictly greater then M . This contradiction proves the result.

We close this section by stating the two further main results of this course. They
will be proved later.

Picard’s little theorem. If F is a non-constant entire function, then F misses
at most one value. In other words if there are two values w1 and w2 which are not
in the range of an entire function, then the latter is constant.

Picard’s great theorem. If F is holomorphic in a punctured neighbourhood of P
and has an essential singularity there then for each smaller punctured neighbour-
hood, F misses at most one complex value there.
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Appendix—The theorem of Ascoli

The classical theorem of Ascoli characterises compact subsets of C(K) where K
is compact:

Proposition. A subset A of C(K) is relatively (norm)-compact if and only if it is
uniformly and equicontinuous.

The proper setting for generalisations is the following situation: K is a compact
space and (M,d) is a complete metric space. Then the space C(K;M) of continuous
(and so uniformly continuous) functions from K into M has a natural metric d∞
where d∞(f, g) = supx∈K d(f(x), g(x)).

A family F in C(K;M) is relatively compact (for this metric) if and only if it is
bounded and equicontinuous and for each x ∈ K, Fx = {f(x) : f ∈ F} is relatively
compact. In particular, if M itself is compact, then this reduces to the fact that F
is equicontinuous.

From this we can easily deduce the following (using the diagonal method): Let
U be locally compact and σ-compact and consider C(U ;M). This is a metric space
(with almost uniform convergence as the corresponding concept of convergence) and
a subset is equicontinuous if and only if it uniformly bounded and equicontinuous
on compacta and satisfies the third condition above. If M is compact, only the
equicontinuity is necessary since the other two hold automatically. In the final
section we shall be particularly interested in the case where M is the sphere (in
three space).

We now give some exercises which are useful in deriving Montel’s theorem from
the above versions of Ascoli’s theorem.

Exercise. Show that F ⊂ H(U) is normal if and only if it is normal at each point.
(F is normal at z if there is a neighbourhood of z on which the restrictions of the
functions of F are normal). (Use the diagonal method).

Exercise. Show that if F is a subset of H(U), then the following conditions are
equivalent.

1) F is locally bounded i.e. for each K compact in U F is uniformly bounded
on K;

2) each z ∈ U has a neighbourhood on which F is uniformly bounded.

Exercise. Show that if F is a uniformly bounded subset of H(U), then so is
{f ′ : f ∈ F}. (Use the previous exercise and the Cauchy integral formula for the
derivative).

We remark that from the above it follows that if A is a locally bounded subset
of H(U) then it is equicontinuous (since the derivates are locally bounded and
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this implies that the restrictions of A to compact subsets are uniformly Lipshitz
continuous).

We close with a famous result of classical function theory which can easily proved
using these ideas.

Exercise. Prove the theorem of Vitali-Porter: Let (fn) be a locally bounded se-
quence in H(U), f ∈ H(U) so that lim fn(z) exists for each z in a subset A of
U which has an accumulation point in U . Show that there is then an f ∈ H(U)
so that fn → f almost uniformly. (Compare the (compact) topology of almost
uniform convergence with the Hausdorff topology of pointwise convergence on A).
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II. Cross ratios, Möbius transformations, Circle geometry

The complex form of the equation of a circle

We can write the equation of the circle with centre z0 and radius r as

(z − z0)(z̄ − z̄0) = r2.

If we set
S(z) = zz̄ − z0z̄ − zz̄0 + z0z̄0 − r2

this has the form S(z) = 0. The function S is called the power of z with respect
to the circle.

It is convenient to consider a more general equation of the form

Azz̄ +Bz̄ + B̄z +D = 0 (∗)
with A and D real. If A = 0 this is a line and if A 6= 0 we can divide out to get the
equation

zz̄ +
B

A
z̄ +

B̄

A
z +

D

A
= 0

which is of the above form where z0 = −B
A , z0z̄0 − r2 = D

A . Hence the equation

represents a real, non-degenerate circle if and only if A 6= 0 and AD − |B|2 < 0.

Exercise. Show that if C and C1 are two (non concentric) circles, then the locus
of those points with the same power with respect to the two circles is a straight
line (called the radical axis of the circles). Show that if we have three circles then
the corresponding three radical axes are concurrent or parallel.

It will be useful to write (∗) in matrix form as

[ 1 z̄ ]

[

A B
B̄ D

] [

z
1

]

= 0

where the 2 × 2 complex matrix C =

[

A B
B̄ D

]

is hermitian. Two such matrices C
and C′ define the same circle if and only if one is a real multiple of the other.

Geometric interpretation of the power of a point. We consider the power
of a point P with respect to the above circle. We assume without loss of generality
that P is the origin and consider the intersection of the line t 7→ tω where ω is a
complex number with |ω| = 1 with the circle. This leads to the quadratic equation

At2|ω|2 +Btω + B̄tω̄ +D = 0

This has in general two roots t1 and t2 with the property that t1.t2 = D
A (which

is independent of the direction). This latter quantity is just the power of P with
respect to the circle. This is positive if P lies outside of the circle, zero if it lies
on the circle and negative if it lies inside of the circle. In the latter case the power
is the square of the length of the tangent from P to the circle. The fact that t1t2
is independent of direction translates into a well-known result of circle geometry
(even for the case where P lies inside of the circle).



12

Exercise. What is the locus of the set of points whose power with respect to a
given circle is constant, resp. the points so that the difference of its powers to two
given circles is constant resp. so that the ratio of these powers is constant?

Möbius transformations

The typical Möbius transformation has the form

T = TA : z 7→ az + b

cz + d

where A is the invertible complex matrix

[

a b
c d

]

. (Note that two matrices induce

the same Möbius transformation if and only if they are proportional). Its inverse
is the Möbius transformation

w 7→ dw − b

−cw + a

with matrix

[

d −b
−c a

]

which is (up to a constant) the inverse of A. A simple

calculation shows that the composition TA ◦ TB of two Möbius transformations is
the transformation TAB.

Important special cases are those with matrices:
[

1 t
0 1

]

. This is the translation z 7→ z + t;
[

k 0
0 1

]

where k > 0. This is the dilation z 7→ kz;
[

k 0
0 1

]

where |k| = 1. This is the rotation z 7→ kz;
[

0 1
1 0

]

. Inversion z 7→ 1

z
.

We remark that the last transformation is inversion in the unit circle (i.e. the

mapping z 7→ 1

z̄
) followed by a reflection in the x-axis.

We can write the general Möbius transformation in the form

az + b

cz + d
=

bc+ d

c2
(

z + d
c

) +
a

c
(c 6= 0)

resp.
a

d
(z + b) (c = 0)

from which one sees that the mappings of the above special type (i.e. translation,
dilation, rotation, inversion) generate the group of Möbius transformations.
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The cross ratio

If z1, z2, z3, z4 are distinct points of the plane we define:

(z1, z2, z3, z4) =
z1 − z2
z1 − z4

÷ z3 − z2
z3 − z4

This is the image of z1 under the (uniquely determined) Möbius transformation

z 7→ z − z2
z − z4

÷ z3 − z2
z3 − z4

which maps z2 7→ 0, z3 7→ 1, z4 7→ ∞.

Proposition. If T is a Möbius transformation, then

(Tz1, T z2;Tz3, T z4) = (z1, z2; z3, z4).

Proof. This can be proved simply by substituting the value of T (z1) etc. and
carrying out the corresponding calculation.

One can simplify the proof by using the above result which shows that it suffices
to consider transformations of the four special forms described above. Of these only
the case of inversion needs to be calculated and this is very simple.

Proposition. Let T be a Möbius transformation. Then T maps circles or straight
lines onto circles (or straight lines).

Proof. We use the remark of the previous proof to reduce to the only non-trivial

case, the transformation z 7→ 1

z
. Then if we substitute w =

1

z
in the equation

Azz̄ +Bz̄ + B̄z +D = 0

then we get
Dww̄ +Bw + B̄w̄ +A = 0

which is the equation of a circle (if D 6= 0) or a line (D = 0). (We remark that the
two cases correspond to whether the origin lies on the circle or not).

In fact a routine calculation show that if C is the circle with matrix

C =

[

A B
B̄ D

]

and T is the Möbius transformation with matrix A, then the pre-image of C has
matrix A∗CA.
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Proposition. The points z1, z2, z3, z4 lies on a circle (or line) if and only if their
cross-ratio is real.

Proof. We fix z2, z3, z4 and note that for z ∈ C, then the cross-ratio of z, z2, z3,
z4 is real if and only if

(z, z2; z3, z4) = (z, z2; z3, z4)

and this simplifies to the equation of a circle or line.

Exercise. Give an alternative proof of this by showing that there is a Möbius
transformation T which takes z2, z3 and z4 to points w2, w3, w4 on the real line.
Then w = T (z) lies on the real line if and only if its cross-ratio with the other w’s
is real. Then apply the above proposition.

Exercise. Suppose that we have four circles S1, S2, S3, S4 with S1∩S2 = {z1, w1},
S2 ∩ S3 = {z2, w2}, S3 ∩ S4 = {z3, w3}, S4 ∩ S1 = {z4, w4}. Then if z1, z2, z3, z4 lie
on a circle (or line), so do w1, w2, w3, w4 (the cross-ratios

(z1, w2; z2, w1), (z2, w3; z3, w2), (z3, w4; z4, w3), (z4, w1; z1, w4)

are real. Multiplying gives that the product (z1, z3; z2, z4)(w1, w3;w2, w4) is real).

We remark that using this one can prove the following fascinating chain of results
due to W.K. Clifford (for the details see Yaglom).

Suppose that we have three straight lines in general position. Then they deter-
mine a circle (the circumcircle of the corresponding triangle).

Suppose now that we have four such lines. Then by omitting one line at a time
we obtain four configurations as above and so four circles. The first result of Clifford
states that these four circle have a common point. We call this the central point

of the configuration.

We now consider a configuration of five lines. This determines five configurations
of four lines and hence five central points. The next result of Clifford is that these
five points lie on a circle.

This series of results can be continued indefinitely, the statements alternating
between the fact that a given family of circles have a common point and a given
family of points all lie on a circle. The reader is invited to give an exact formulation.

Similarity

We say that two Möbius transformations H and H1 are similar if there is a
transformation S so that H1 = S−1HS. For the corresponding matrices T and T1,
this means that there is a non-zero complex number q and an invertible matrix A so
that T1 = qA−1TA. Under normal matrix similarity, the trace and the determinant
are invariants. However the presence of the factor q above means that this will no
longer be the case for this notion of similarity. However, it is easy to see that the
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quotient of the square of the trace by the determinant is invariant. In fact it is
more convenient to use the expression

σ(T ) =
(TrT )

2

detT
− 4 =

(a− d)2 + 4bc

ad− bc
.

(Thus if T = Id, then σ = 0—this explains the presence of the term −4).

We shall now show that each Möbius transformation is similar to one of a particu-
larly transparent form, a fact which is useful, for example, in examining the effect
of iterating such transformations. In order to do this we consider the fixed point
set of T i.e. the solutions of the equation

z =
az + b

cz + d
.

Case I: c = 0. Then T is entire and ∞ is a fixed point. Hence T has the form
z 7→ z + t (a translation which has no finite fixed points unless t = 0 i.e. T is the
identity)
or

z 7→ kz + t (k 6= 1, 0). This has a single finite fixed point
t

1− k
.

Case II. c 6= 0. Then the fixed point equation simplifies to the (genuine) quadratic
equation

cz2 + (d− a)z − b = 0

and so T has either 1 or 2 finite fixed points.
Hence there are three possibilities:
I. T has at least three fixed points. Then T is the identity and every point is a
fixed point.
II. T has 2 fixed points z1 6= z2 (one of which can be ∞);
III. T has a single fixed point z1 (which can be at infinity).

We consider case II. Let S be a Möbius transformation with 0 7→ z1, ∞ 7→ z2 and
put T1 = S−1TS. Then T1 has 0 and∞ as fixed point and so T1 : z 7→ kz (k 6= 1).
Case III. Let S be a Möbius transformation with ∞ 7→ z1. Then T1 = S−1TS has
∞ as fixed point and so is entire. Hence T1 : z 7→ z+ t (otherwise it would have an
additional fixed point).

Summarising we have:

Proposition. Let T be a Möbius transformation. Then T is similar to a transfor-
mation of the form z 7→ kz or z 7→ z + t.
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Exercise. Calculate σ for the two transformations above. Show that any two
translations are similar and that z 7→ kz and z 7→ k1z are similar if and only if

(k = k1 or) k =
1

k1
. Deduce that two Möbius transformations (both 6= Id) are

similar if and only if they have the same value of σ.

Hence we can say: T is

(1) elliptic if |k| = 1 but k 6= 1 (i.e. −4 ≤ σ ≤ 0);
(2) proper hyperbolic if k > 0 (i.e. σ > 0);
(3) improper hyperbolic if k < 0 (i.e. σ < 4);
(4) loxodromic if |k| 6= 1 but k is not real (i.e. σ is not real).

Exercise. Discuss the nature of the fixed points (i.e. attractive, repulsive or stable)
of transformations of each of the above type.

For a general Möbius transformation we have four special points. Firstly the

pole z∞ = −d
c
i.e. the pre-image of ∞. Secondly Z∞ = T (∞) =

a

c
. We also have

the two fixed points γ1 and γ2. If we consider the quadratic equation of which these
are solutions we see that

γ1 + γ2 =
−d+ a

c
= z∞ + Z∞.

This means that
Z∞ − γ1 = γ2 − z∞.

i.e. that the four points are the vertices of a parallelogram.

Conversely the parallelogram determines the Möbius transformation. For the
Möbius transformation has the form z 7→ Z where

Z =
z∞z − γ1γ2
Z − z∞

(exercise) and so

Z − z∞ =
(γ1 − Z∞)(γ1 − z∞)

z − z∞
resp.

Z − γ2 =
(γ1 − z∞)(z − γ2)

z − z∞
.

Hence
γ1 − z∞
z − z∞

=
Z − Z∞

γ1 − Z∞
=
Z − γ2
z − γ2

i.e. the triangles γ1z∞z, ZZ∞γ1 and Zγ2z are similar.

This fact can be used to give a ruler and compass construction of Z given z and
the parallelogram.
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The Poisson formula

We conclude by indicating briefly how Möbius transformations can be used to
derive the Poisson formula for the solution of the Dirichlet problem on the circle.

Let w =
z − a

1− āz
. Then a routine calculation shows that

1− |w|2 =
(1− |a|2)(1 − |z|2)

|1− az̄|2

and

dw =
1− aā

(1− āz)2
dz

so that
|dw|2

(1− |w|2)2 =
|dz|2

(1 − |z|2)2

(we shall give a geometrical interpretation ot his equatio below). This suggests the
relevance of the following invariant version of the Laplace operator

(1− |w|2)2 ∂2Φ

∂w∂w̄
= (1− |z|2)2 ∂

2Φ

∂z∂z̄

(N.B.
∂2Φ

∂z∂z̄
=

1

4

(

∂2Φ

∂x2
+
∂2Φ

∂y2

)

and so the solutions of the corresponding homogeneous equation are as for the
Laplace operator i.e. they are just the harmonic functions). Now consider the
effect of the mapping z 7→ w on the circle. We write this as eiτ 7→ eiψ . Then

eiψ =
1− ae−iτ

1− āeiτ
eiτ .

Differentiating we get:

eiψdψ =
1− aā

(1 − āeiτ )2
eiτdτ.

and dividing the latter two equations

dψ =
1− aā

|1− āeiτ |2 dτ.

Hence if a = ρeiθ (ρ < 1), then dψ = P (ρ, θ − τ)dτ where

P (ρ, θ − τ) =
1− |a|2

|1− āeiτ |2 =
1− ρ2

1− 2ρ cos(θ − τ) + ρ2
.

Then

P (ρ, α) =
1− ρ2

1− 2ρ cosα+ ρ2
= 1 + 2ℜ eiα

1− ρeiα

= 1 + 2
∑

ρn cosnα
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and so satisfies the Laplacian equation

ρ
∂

∂ρ

(

ρ
∂ρ

∂r

)

+
∂2u

∂θ2
= 0.

Now let u be continuous on D and harmonic on D. We shall now deduce Poisson’s
formula by means of the following computations:
Step 1.

1

2π

∫ 2π

0

u(ρeiθ)dθ = u(0).

For if we integrate the Laplace equation in polar form we get:

ρ
∂

∂ρ

(

ρ
∂

∂ρ

1

2π

∫

u(ρeiθ) dθ

)

= − 1

2π

∫ 2π

0

∂2

∂θ2
u(ρeiθ)dθ

= − 1

2π

∂

∂θ
u(ρeiθ)

∣

∣

∣

∣

2π

0

= 0.

Hence

ρ
∂

∂ρ

1

2π

∫ 2π

0

u(ρeiθ)dθ

is constant and letting ρ→ 0 we see that the constant is 0. Thus

1

2π

∫ 2π

0

u(ρeiθ)dθ = c.

Again letting ρ→ 0 shows that the constant c is u(0).
Step 2. We consider the function v such that v(z) = u(w) (so that v(a) = u(0) and
v(eiτ ) = u(eiψ)). Then

v(a) = u(0) =
1

2π

∫ 2π

0

u(eiψ)dψ =
1

2π

∫ 2π

0

v(eiτ )
1− |a|2

|1− āeiτ |2 dτ

and so if a = aρiθ, we have

v(ρeiθ) =
1

2π

∫ 2π

0

u(eiτ )
1− ρ2

1− 2ρ cos(θ − τ) + ρ2
dτ

which is Poisson’s formula.

We conclude this section with some general exercises on Möbius transformations:

Exercise. Show that T 2 = Id if and only if a + d = 0. In this case, for any z
the pair z and Tz are conjugate points. On the other hand show that if a Möbius
transformation has two distinct conjugate points, then it is an involution (suppose
that the conjugate points are 0 and ∞). (z1 and z2 are said to be conjugate

points for T if T (z1) = z2 and T (z2) = z1. Determine the conjugate points for the
transformations z 7→ z + t and z 7→ kz).
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Exercise. Show that every simple Möbius transformation is a product of two in-
versions and so that every transformation is a product of inversions. (By simple we
mean one of the four basic types discussed at the beginning of the section).

Exercise. Show that inversion z∗ of z in a circle C is characterised by the fact
that it lies on each circle through z which is orthogonal to C.

Exercise. Show that a Möbius transformation z 7→ Z with fixed points γ1 and γ2
has the form

Z − γ1
Z − γ2

= k
z − γ1
z − γ2

.

This implies (Z∞, z∞; γ1, γ2) = k2. (This is the k of the characteristing theorem).

Exercise. Consider the Möbius transformation

w = k
z − a

z − b
.

This is the general form of a transformation with a 7→ 0 and b 7→ ∞. Consider
the pre-image under this map of the polar coordinate lines in the plane. The lines
through the origin go to circles through a and b and the circles with centre at the
origin goe to the family of circles which is biorthogonal to the former. These are

called the circles of Apollonius and have equations

∣

∣

∣

∣

z − a

z − b

∣

∣

∣

∣

= c. (i.e. they are the

loci of the points whose distances to a and b are proportional).

Exercise. Show that the general form of the Möbius transformation z 7→ w with
a 7→ a′ and b 7→ b′ is

w − a′

w − b′
= k

z − a

z − b
.

Exercise. Describe those Möbius transformations which are periodic i.e. such that
T n = Id for some n ∈ N.
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Domains as Riemann manifolds

In this section we shall be motivated by the results and concepts from the course
“Elementary Differential Geometry”. We shall consider a domain Ω together with
a positive C2 function ρ defined on Ω. (Sometimes we shall allow ρ to have zeroes
but the set of such zeroes will be discrete—we shall then only assume that ρ is C2

on the complement of the zero set).

If z ∈ Ω and ξ is in C = R2 (in reality in the tangent space to the manifold at
z), we define

‖ξ‖ρ,z = ρ(z)|ξ|.

Then we define the length ℓρ(γ) of a path by the equation

ℓρ(γ) =

∫ b

a

‖γ′(s)‖ρ,γ(s) ds.

([a, b] is the parametrising interval). Note that we are not implying by the use of
the symbols γ and s that γ has arc length parametrisation (as we did in DG).

If P and Q are points in U , then

ρ(P,Q) = inf{ℓρ(γ)}
the infimum being taken over all paths in U from P to Q.

We remark that it follows from a general theorem on Riemann manifolds that
the above infimum is attained (i.e. there is a path from P to Q with length ρ(P,Q))
for each pair P , Q if and only if U is complete under the metric ρ (it is relatively
easy to see that the latter is a metric).

In the language of DG we are dealing with the Riemann manifold U with metric
tensor (first fundamental form)

G =

[

ρ2(x, y) 0
0 ρ2(x, y)

]

(i.e. “ds2 = ρ2(dx2 + dy2)”).

Then g =
√
detG = ρ2 and

G−1 =

[

1/ρ2 0
0 1/ρ2

]

.

Our main examples will be

Ω = D and ρ =
1

1− |z|2
resp.

Ω = H+ = {z ∈ C : ℑz > 0} with ρ =
1

y2
.

In fact these spaces are essentially the same and are models for non-euclidean
(hyperbolic) geometry.
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Example. A routine calculation show that the length of the curve γ(t) = t (0 ≤
t ≤ 1− ǫ) in the Poincaré metric

1

1− |z|2 is 1
2 ln

2− ǫ

ǫ
. For the length is

∫ 1−ǫ

0

1

1− t2
dt

which gives the above expression. If we put R = 1− ǫ then it takes the form

1

2
ln

1 +R

1−R
.

This result can be reinterpreted as the fact that if P = 0 and Q = (R, 0) where

0 < R < 1, then ρ(P,Q) = 1
2 ln

(

1+R
1−R

)

. (It is intuitively obvious and easy to

demonstrate that the above path is the shortest route from P and Q. In fact if we
consider a curve of the form γ(t) = t+ ib(t) with b(0) = 0, b(1− ǫ) = 1− ǫ, then it
length is

∫ 1−ǫ

0

(1 + b′(t)2)1/2

1− t2 − b(t)2
dt

which is clearly larger than the above value).

We remark that the metrics on D and H+ above define the usually topology on
these subsets of C. However, they are not metrically equivalent to the euclidean
metrics there. In fact both of these metrics are complete (see below)

Definition. Suppose now that f : Ω1 → Ω2 is a non-constant holomorphic func-
tion. If ρ is a metric on Ω2, we define the induced metric f∗ρ on Ω1 by putting

f∗ρ(z) = ρ(f(z))

∣

∣

∣

∣

∂f

∂z

∣

∣

∣

∣

.

If f is a bijection and ρ1 resp. ρ2 are metrics on the above spaces, then f is an
isometry if f∗ρ2 = ρ1. Then f

−1 is also an isometry.
A simple calculation shows that then ℓρ1(γ) = ℓρ2(f ◦ γ) for each curve in Ω1 and
so that ρ1(P,Q) = ρ2(f(P ), f(Q)) for P ,Q in Ω1.

For example one can show that if h is a conformal mapping of D, then h is an
isometry for the Poincaré metric. For this it suffices to consider the two cases ρτ
and φa discussed above:

Case 1) w = eiτz. Then h′(z) = eiτ and so its absolute value is 1. Hence

h∗ρ(z) = ρ(w) =
1

1− |w|2 =
1

1− |z|2 = ρ(z).
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Case 2). w =
z − a

1− āz
. Then

h∗ρ(z) = ρ(w)

∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

=
1

1− |a−a|2

|1−āz|2

1− |a|2
|1− āz|2

=
1− |a|2

1− āz|2 − |z − a|2

=
1− |a|2

(1 − |a|2)(1 − |z|2) .

From this we can deduce the following formula:

Proposition. If P and Q are points of D, then

ρ(P,Q) =
1

2
ln





1 +
∣

∣

∣

P−Q
1−P̄Q

∣

∣

∣

1−
∣

∣

∣

P−Q
1−P̄Q

∣

∣

∣



 .

Proof. Firstly we have already seen that the formula is true for P = 0 and Q =
(R, 0). For the general case, we use the isometry φP (with the notation from above).
Then

ρ(P,Q) = ρ(0, φP (Q)) = ρ(0, |φP (Q)|),
the last equality following from the fact that rotations about the origin are isome-
tries. But

|φP (Q)| =
∣

∣

∣

∣

P −Q

1− P̄Q

∣

∣

∣

∣

.

The same calculation shows that the curve of shortest length from P to Q is

γP,Q : t 7→
t Q−P
1−QP̄

+ P

1 + tP̄ Q−P
1−QP̄

.

This is the pre-image of the straight line from 0 to φP (Q) and so by the properties
of Möbius transformations discussed above is (in general) an arc of a circle which
cuts the unit circle at right angles.

Using the above formula one can check that ρ(0, z) ≤ r if and only if
1

2
ln
(

1+|z|
1−|z|

)

< r i.e. if and only if |z| ≤ e2r − 1

e2r − 1
. This allows us to show the

equivalence of topologies mentioned above. For it follows that the discs with centre
0 form a basis there for both topologies. Further the above Möbius transformations
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are homemomorphisms for both topologies. From this it is easy to deduce that ρ
induces the natural topology on the open ball. We can also see that (D, ρ) is com-
plete. For let (zn) be a ρ Cauchy sequence. Then it is bounded, say ρ(zn, 0) ≤ M
for some constant M . But then

|zn| ≤
e2M − 1

e2M + 1

and so the sequence lies in a compact subset of U . It follows easily from this that
it converges (for both the natural and the ρ-topology).

Exercise. Calculate the Christoffel symbols and the geodetic equations for D.

We remark that it is not difficult to see that the above properties determine the
Poincaré metric. In fact if ρ̄ is a metric on D so that each conformal mapping of
the disc is an isometry, then ρ̄ is a multiple of the Poincaré metric. For suppose

that w = h(z) =
z + z0
1 + z̄0z

. Then since

h∗ρ̄(0) = ρ̄(0)

we have

|h′(0)|ρ̄(h(0)) = ρ̄(0)

i.e.

ρ̄(z0) =
1

1− |z0|2
ρ̄(0) = ρ̄(0)ρ(z0)

which means that ρ̄ is a multiple of the poincaré metric.

On the other hand, if f : D → D is an isometry for ρ then f is automatically
holomorphic.

Proof. For by the usual reduction we can assume that f(0) = 0. Then as above the
circle CR = {z : |z| = R} is mapped onto itself for each 0 < R < 1. This means
that for any P

|f(P )− f(0)|
|P − 0| =

|f(P )|
|P |

and so f is conformal at 0 (in the sense that it preserves angles between curves).
Once again by the homogeneity, this holds everywhere. But by a classical result
(cf. Ahlfors) this implies that f is either holomorphic or anti-holomorphic. The

latter case is impossible (since then

∣

∣

∣

∣

∂f

∂z̄

∣

∣

∣

∣

= 0).

The Lemma of Schwarz-Pick can now be interpreted as follows: Suppose that f
is a holomorphic function on the disc. Then f is a contraction i.e. f∗ρ ≤ ρ (and so
ℓρ(f ◦ γ) ≤ ℓρ(γ) and ρ((f(P ), f(Q)) ≤ ρ(P,Q)).
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Using a refinement of the Banach fixed point theorem one can deduce that if f
is a holomorphic mapping on the disc with relatively compact range, then it has a
(unique) fixed point.

Proof. Under these conditions the function

g : z 7→ f(z) + ǫ(f(z)− f(0))

maps D into D for small enough ǫ. Then, by the above, g is a contraction in the
weak sense and, since f ′(z) = 1

1+ǫg
′(z), f is a contraction in the sense of the Banach

fixed point theorem.

It follows from the proof that the fixed point is obtained as the limit of the
iterated sequence z, f(z), f2(z), f3(z), . . . for any z in the disc.

Curvature

Since the (Gaussian) curvature is an intrinsic quantity of a Riemann surface, it
can be defined in terms of the metric tensor. In fact, the formula of the Theorema
Egregium simplifies in this case to

−∆ ln ρ(z)

ρ(z)2

and we denote this quantity by κU,ρ(z) (or simply κ(z)). (For in the case where
F = 0, the Theorema Egregium produces the following formula for the curvature:

4E2G2κ = E(E2G2 +G2
1) +G(E1G1 + E2

2)− 2EG(E22 +G11).

A simple calculation shows that this yield the above expression when E = ρ2 = G).
It follows immediately from these remarks that this quantity is preserved by an
isometry. (This can also be deduced directly by a simple computation).
It is easy to see that κ = 0 when ρ is the constant function 1 on C, while κ = −4

for the Poincaré metric. On the other hand if ρ =
2

1 + |z|2 , then κ = 1 (we shall

see the geometrical reason for this shortly).

The curvature will play a crucial role in our versions of the Picard theorems. In
order to see the connection note that the theorem of Liouville (in the form that
each entire function with values in D is constant) can be regarded as a special
case of Picard’s little theorem. We shall show that the same result holds for entire
functions with values in a domain U which allow a metric with certain curvature
properties.

Proposition. Let U be a domain with metric σ for which κ ≤ −4. Then if f :
D → U is holomorphic, f∗σ ≤ ρ.



25

Proof. We consider the smaller disc U(0, r) (with r < 1) and then let r go to 1. On

this set we rescale the metric to ρr =
r

r2 − |z|2 , for which we also have constant

curvature = −4. Define the function v =
f∗σ

ρr
. This is continuous and non-negative,

and converges to zero at the boundary. Hence |v| attains its maximumM at a point
τ ∈ U(0, r). We show that M ≤ 1, from which our result follows. We can suppose
that f∗σ(τ) > 0. Then the curvature of f∗σ is defined at τ (and is ≤ −4). Now
since ln v has a maximum at τ , its Laplacian there is ≤ 0 (consider the Hessean
matrix). Thus

0 ≥ ∆ ln v(τ) = ∆ ln f∗σ(τ) −∆ ln ρr

= −κf∗σ(τ)(f
∗σ(τ))2 + κρr (ρr(τ))

2

≥ 4(f∗σ(τ))2 − 4(ρr(τ))
2

and so v(τ) ≤ 1 which implies that M ≤ 1.

We remark that this can be regarded as a form of Schwarz’ lemma (apply the
above to an f which vanishes at 0).

Rescaling, we get:

Proposition. Let U be a domain with metric σ for which κ ≤ −B < 0. Then if

ραA is the metric
2α√

A(α2 − |z|2)
on U(0, α), we have

f∗σ(z) ≤
√
A√
B
ραA(z)

for each holomorphic mapping f from U(0, α) → U .

Proof. Exercise.

As an application we have

Proposition. Let U be a domain with a metric σ so that κσ ≤ −B < 0. Then
each holomorphic function f from C into U is constant.

Proof. We consider f as a mapping from U(0, α) with metric ραA for positive A.
Then

f∗σ(z) ≤
√
A√
B
ραA(z)

for |z| < α. Letting α go to infinity gives f∗σ(z) ≤ 0 and so f∗σ = 0. But this can
only happen if f ′ vanishes identically.

This result contains Liouville’s theorem as a special case.
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In order to motivate our proof of Picard’s little theorem, consider how we can
prove the following generalisation of Liouville. We show that every entire function
with values in C \ [0, 1] is constant. For it is a standard exercise in conformal
mappings to map the above range space conformally into D and so we can deduce

it from the usual version of Liouville. (Use successively the mappings z 7→ z

z − 1
,

z 7→ z1/2 and z 7→ z − 1

z + 1
).

Proposition. Let U be a subset of C whose complement contains at least two
distinct points. Then there is a metric ρ on U with κρ ≤ −B < 0.

Proof. It is no real loss of generality to assume that the omitted points are 0 and
1. Then we define

ρ(z) =

[

(

1 + |z|1/3
)1/3

|z|5/6

] [

(

1 + |z − 1|1/3
)1/3

|z − 1|5/6

]

.

ρ is a smooth positive function on U and a tedious calculation shows that the
curvature is

κ(z) = − 1

18

[

(

|z − 1|1/3
)5/3

(1 + |z|1/3)2(1 + |z − 1|1/3) +
|z|5/3

(1 + |z|)1/3(1 + |z − 1|2/3

]

.

Then κ < 0 and it follows from the fact that limz→0 κ(z) = − 1
36 = limz→1 κ(z) and

limz→∞ κ = −∞ that it is bounded away from zero.

This, combined with the above result, immediately implies Picard’s little theo-
rem.

We now turn to the great theorem. We shall be interested in functions which take
their values in the extended plane Ĉ = C ∪ {∞}. We identify this with the sphere
S2 in R3 via stereographic projection. More precisely, if we denote by (α, β, γ)
the coordinates of a point P on the sphere (which is distinct from the north pole
N = (0, 0, 1)) then an elementary exercise in analytic geometry shows that the
point z = x + iy on the plane which is the intersection of the latter with the line

through N and P is given by the formula z =
α+ iβ

1− γ
. On the other hand, if we

are given a point z in the plane, then the corresponding point P = (α, β, γ) on the
unit sphere is given by the equations

α =
2ℜz

1 + |z|2 , β =
2ℑz

1 + |z|2 , γ =
−1 + |z|2
1 + |z|2 .

The north pole is mapped onto ∞ by convention.

If we calculate the first fundamental form of the corresponding parametrisation

φ(x, y) =

(

2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
−1 + x2 + y2

1 + x2 + y2

)
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of the sphere, we get:

E =
4

(1 + |z|2)2 = G, F = 0.

This implies, amongst other facts, that stereographic projection is conformal and

that the metric σ(z) =
2

1 + |z|2 in the plane corresponds to the usual metric on S2

as a surface in R3 (i.e. our correspondence is an isometry for these metrics).

We can compute that if P1 and P2 are the points on the sphere which correspond
to the complex numbers z1 and z2 in the plane, then the chordal distance from P1

to P2 (i.e. the distance in R3, not the geodetic distance on the sphere) is

2|z1 − z2|
√

1 + |z1|2
√

1 + |z2|2

resp.
2

√

1 + |z1|2
if z2 = ∞.

For if P1 has coordinates (α1, β1, γ1) and P2 (α2, β2, γ2), then this distance is

2− 2(α1α2 + β1β2 + γ1γ2)

and if we substitute the above expressions for the α’s, β’s and γ’s, then this reduces
to the above formula.

We denote this quantity by χ(z1, z2). An easy computation shows that

χ

(

1

z1
,
1

z2

)

= χ(z1, z2).

The length of a curve in the plane (using the metric σ) is then
∫

γ

2|dz|
1 + |z|2 .

σ(z1, z2), the spherical metric, is the infimum of the lengths of the paths joining z1
and z2.

If f is a holomorphic mapping from U into the sphere, we define the quantity
f#(z) as the limit

lim
z′→z

χ(f(z), f(z′))

|z − z′|

and this can be computed to be
|f ′(z)|

1 + |f(z)|2 . It follows immediately from this

definition that this quantity coincides for f and
1

f
.

If we compare the above formula for f# with the definition of the induced metric
then we see that the length of a curve is given by the formula

∫

γ 2f
#(z) |dz|. (i.e.

this is the length of the curve in the plane, using the above metric or the length of
its image on the sphere using the spherical metric).
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We now consider the space of continuous functions from U into Ĉ. In particular,
each meromorphic function can be so regarded—we set the value of such a function
at a pole to be ∞. (For the definition and elementary properties of meromorphic
functions we refer to any standard text on function theory e.g. Ahlfors). We are
now in the situation described in the appendix to the first section. Hence we can
define:

Definition. Let (fn) be a sequence of meromorphic functions. Then we say that
(fn) converges normally if it converges in the sense of the metric defined above to
a meromorphic function or to the constant function ∞.

Under this definition we see that both the sequence (n) and
(n

z

)

converge nor-

mally.

A family F of meromorphic functions on U is then said to be normal if each
sequence in F contains a subsequence which converges normally.

Using the version of Ascoli’s theorem quoted in the above appendix, we see
that a family of meromorphic functions is normal if and only if it is spherically
equicontinuous on compacta (i.e. equicontinuous as a family of functions with
values in the sphere under its geodetic metric).

Normal convergence can be characterised as follows:

Proposition. We have fn → f normally if and only if each z0 has a neighbourhood

on which either fn → f or
1

fn
→ 1

f
uniformly.

Marty’s theorem. Let F be a family of meromorphic functions on U . F is
normal if and only if the family {f#σ : f ∈ F} is uniformly bounded on compact
subsets of U (σ is the natural metric on the sphere).

Remark. Using the definition of the induced metric this means that for each com-
pact subset K of U there is a positive constant M so that for each z ∈ K and each
f ∈ F , we have

|f ′(z)|
1 + |f(z)|2 ≤M.

Proof. First suppose that the above condition is satisfied. We fix z0 and consider
each z in a suitable compact disc around z0. Then if we choose the appropriate M
for this disc we have, for any path from z0 to z within this disc and any f ∈ F ,

χ(f(z0), f(z)) ≤
∫

γ

f#(ζ) |dζ| ≤ C|z − z0|.

This implies that F is equicontinuous on K.

On other hand suppose that there is a compact subset of U , a sequence (zn) in
K and a sequence (fn) in F with f#

n (zn) → ∞. By the normality we can suppose
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that fn is convergent. Let z0 be a limit point of (zn). Then there is a disc around

this point for which either fn → f or
1

fn
→ 1

f
uniformly. In either case f#

n → f#

uniformly on this disc (we use here the fact mentioned above that

(

1

f

)#

coincides

with f#). But this implies that f#
n is uniformly bounded on the disc and this

contradicts the assumptions.

Proposition. Let U be a domain in C and P , Q and R three distinct points in
the extended plane. Then if F is a family of holomorphic functions taking values

in Ĉ \ {P,Q,R}, F is normal.

Proof. We make the customary reduction to the case where the three exceptional
points are 0, 1 and ∞. Then it suffices to show that the family is normal on any
disc U(z0, α). It is no loss of generality to suppose that z0 = 0. We use the special
metric constructed above on C\{0, 1}. By rescaling we can assume that it is ≤ −4.
We denote this metric by µ. Then by the version of the Schwarz’ Lemma (with
A = B = 4) we have f∗µ(z) ≤ ρAα (z) for z in U(0, α). We now compare µ with the

spherical metric σ. One sees easily that
σ

µ
goes to zero near the critical points 0, 1

and ∞. Hence there is an M > 0 so that σ ≤M.µ and so

f# = f∗σ ≤M.f∗µ ≤M.f∗ρAα

on U(0, α). By Marty’s theorem, F is normal.

In particular, we can deduce as a corollary that a family of holomorphic functions
on U which omit two (finite) values is normal.

The second Corollary of the above result is Picard’s great theorem.

Proof. We suppose that we have a function on the punctured unit disc D′ which
omits the values 0 and 1. We prove that 0 is either a pole or a removable singularity.

We consider the family of functions fn : z 7→ f
( z

n

)

. This family also omits the

values 0 and 1 and so is normal. Hence it has a subsequence which converges
normally and so either to a holomorphic function on the punctured disc or to the
constant function ∞. It is easy to see that f has in the first case a removable
singularity and in the second case a pole at 0.
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