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1 Introduction

2 Banach latttices

In this final chapter we discuss Banach lattices. These are Banach spaces
with an ordering related to the norm structure. Of course, the classical
function spaces C(K), Lp(µ), ℓp which we have studied up till now have such
a structure (with the pointwise, resp. coordinatewise ordering).

In the first section we bring a concise introduction to the basic theory
of ordered sets with very brief proofs. In section 2 we discuss the theory of
partially ordered vector space and Riesz spaces (i.e. partially ordered vector
spaces which are lattices with repect to their ordering). Finally, in section 3
we introduce and study Banach lattices.

2.1 Ordered sets

1.1. Definition Recall that a partial ordering on a set X is a bineary
relation ≤ on X so that

• x ≤ x (x ∈ X);

• if x ≤ y and y ≤ z then x ≤ z (x, y, z ∈ X);

• if x ≤ y and y ≤ x, then x = y (x, y ∈ X).

A partially ordered set is a pair (X,≤) where ≤ is a partial ordering on
X . We use the abbreviation “poset” for a partially ordered set. A poset
(X,≤) is totally ordered if for each pair x, y in X either x ≤ y or y ≤ x. It
is directed if for each pair x, y in X there is a z ∈ X with x ≤ z and y ≤ z.

The following are some simple examples of posets.
A. The relation of equality on a set X is a partial ordering.
B. If P (X) denotes the family of all subsets of a given set X , then the relation
of inclusion is a partial ordering on P (X).
C. The space RX of real-valued functions on a given set X has a natural
parial ordering defined by

x ≤ y ⇐⇒ x(t) ≤ y(t) (t ∈ X)

(this is called the pointwise ordering).
Note that every subset of a given poset is automatically a poset. Thus the

set of all open subsets of a topological space, the set of measurable subsets
of a measure space etc. are in a natural way posets. Simlarly, the spaces
C(K), S(µ) resp. L

√
are posets.
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1.2. Exercises A. Let X be a set and R a binary relation on X which
satisfies conditions 1) and 2) of definition 1.1 (such a relation is called a
pre-order). Show that the the relation

x ∼ y ⇐⇒ xRy and yRx

is an equivalence. relation. Show that the relation R̃ defined by

AR̃B ⇐⇒ there exist x ∈ A, y ∈ B with xRy

is a partial ordering on the family X∼ of equivalence classes.
(This is a convenient way of dealing with situations where condition 3)

fails. Elements which cannot be distinguished by the ordering are identified
with each other).
B. Let A be a ring with identity. Show that the relation

xRy ⇐⇒ there is a z ∈ A with x = yz

is a pre-oder on R. What is the equivalence relation defined in A. above?
If X and Y are posets, a mapping between X and Y is isotone if f(x) ≤

f(y) whenever x ≤ y. Such an f is a (poset) isomorphism if it is a bijection
and its inverse f−1 is also isotone.

1.3. Exercise Let (X,≤) be a poset. If x ∈ X , define

Lx = {y ∈ X : y ≤ x}.

Show that x ≤ y if and only if Lx ⊂ Ly. Deduce that X is isomorphic to a
subset of P (X) (with the natural ordering of inclusion).

1.4. Definition Let (X,≤) be a poset. a ∈ X is maximal if for each
x ∈ X , x ≥ a implies x = a. Similarly, a is maximal for a subset A of X
if a is maximal for A with the induced ordering. a ∈ X is an upper bound
for A if for each x ∈ A, x ≤ a. If, in addition, a ∈ A, then a is called a
greatest element for A. a is called the supremum of A in X (written
supX A or simply supA) if a is a least element of the set of all upper bounds
of A.

Lower bounds, least elements and infima are defined in the obvious way.
The following construction is often useful: let X be a poset without a

greatest element. Then we can embed X in a natural way into a poset with
a greatest element as follows: Let X∞ = X∪{∞} (i.e. we are adding an ideal
“element at infinity” to X). On X∞ we define a partial ordering as follows:
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if x, y are in X then the order relation between x and y remains unchanged.
All elements of X are smaller than ∞. X∞ is the poset obtained from X
by adding a greatest element. Similarly, if X has no smallest element,
we can embed it into a poset X−∞ with smallest element.

In general we write X̃ for the poset obtained by adding a largest and
smallest elements (of course, if X already has one or both of these, we refrain
from adding it or them).

1.5. Exercises A. In this exercise we show how to define products of
posets. If {Xα}α∈A is a family of posets we define an ordering on the product
space as follows

(xα) ≤ (yα) if and only if xα ≤ yα for all α.

Show that this is a partial ordering. When is it a total ordering resp. di-
rected?
B. Show that a set can have at most one greatest elements (so that we can
talk of the greatest element) and hence at most one supremum.
C. A poset X satisfies the ascending chain condition (abbreviated ACC)
if for each sequence (xn) in X with xn ≤ xn+1 for each n, there is an N ∈ N
so that xn = xN for n ≥ N . Show that this implies that X has a maximal
element.
D. The following exercise shows that if Y is a subset of a poset X and A ⊂ Y
then it can happen that both supY A and supX A exist but are distinct (so
that the subscript X is not completely superfluous). X is the poset C([0, 1])
with the pointwise ordering and Y is the subset of X consisting of the affine
functions i.e. those of the form t 7→ at + b (a, b ∈ R). Then if A is the set
consisting of the functions t resp. 1− t, the suprema of A in Y and X both
exist but are distinct.
E. A chain in a poset X is a subset which is totally ordered in the induced
ordering. Note that Zorn’s Lemma can be stated in the following form. If
every chain in a poset X has an upper bound, then X has a maximal element.
Show that every chain in a poset is contained in a maximal chain i.e. a chain
which is not properly contained in a larger chain.
F. Let {x(α,β)} be a set of elements in a poset X indexed by the set A× B.
Suppose that for each αinA yα = sup{x(α,β) : β ∈ B} exists. Show that
{x(α,β)} has a supremum if and only if {yα} has and that in this case

sup
(α,β)∈A×B

{x(α,β)} = sup
α∈A}{yα}.

G. Let (Xn) be a sequence of posets. On X =
∏

n∈NXn we define a partial
ordering, distinct from that of B above, called the lexicogrphic ordering
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for obvious reasons: (xn) ≤ (yn) if and only if they are equal or xk < yk
where k is the first integer for which xk 6= yk.

Show that X is totally ordered if each Xn is.
We come to the important concept of a lattice i.e. a poset with finite

suprema and infima:

1.6. Definition A lattice is a poset X in which every set with two ele-
ments has a supremum and an infimum. Examples of lattices are RX (X a
set), C(K) (K compact), P (X) (X a set).

1.7. Exercise A. Let S be a set. We consider the posets Top (S) (the
family of all topologies on S),

••••••••• Proposition 0 x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z) (x, y, z ∈ X);

x ∨ (y ∧ z) ≤ (x ∨ y) ∧ (x ∨ z) (x, y, z ∈ X).
Proof. For the first statement we have the inequalities x ∧ y ≤ x and
x ∧ y ≤ y ≤ y ∨ z. Hence x ∧ y ≤ x ∧ (y ∨ z). Similarly x ∧ z ≤ x ∧ (y ∨ z)
and the result follows. The second part is proved similarly.

1.12. Definition A lattice (X,≤) is distributive if equality holds in the
above expressions, that is, if

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (x, y, z ∈ X)

resp.
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (x, y, z ∈ X).

If S is a set, the lattices P (S) and RS are distributive. As an example of a
non-distributive lattice we consider the poset with five elements, a greatest
element 1 and a smallest element 0 together with three further elements x,
y, z which are not related to each other by the order but all lie between 0
and 1.

1.13. Exercise A. Show that a totally ordered lattice is distributive.
B. Show that if (X,≤) is a distributive lattice then the following “cancellation
law” holds:

(z ∧ x = z ∨ y) and (z ∨ x = z ∨ y) implies x = y (x, y, z ∈ X).

Proposition 1 1.14. Proposition Let (X,≤) be a distributive lattic with 0
and 1. Then each x ∈ X possesses at most one complement.
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Proof. Suppos that y and y1 are elements of X such that

x ∨ y = 1, x ∧ y = 0, x ∨ y1 = 1, x ∧ y1 = 0.

Then

y1 = y1 ∧ 1 = y1 ∧ (x ∨ y) = (y1 ∧ x) ∨ (y1 ∧ y) = 0 ∨ (y1 ∧ y) = y1 ∧ y

and so y = y1 by symmetry.

1.15. Definition A lattice X is complete (resp. σ- complete) if each
subset (resp. each countable subset) has a supremum and infimum. X
is Dedekind complete if each subset with an upper bound (resp. lower
bound) has a supremum and an infimum. Dedekind σ-completeness is de-
fined in the obvious way. For example, if S is a set, P (s) is complete and
RS is Dedekind complete but not complete. Top (S) is complete. The space
C([0, 1]) is not Dedekind complete.

1.16. Exercise Show that

• any complete lattice has a 0 and 1;

• if X is a lattice, X̃ the lattice obtained by adding a zero and 1, then
X is Dedekind complete if and only if X̃ is complete;

• a lattice is complete if and only if it is Dedekind complete and has a 0
and 1.

In fact, in the definition of completness (resp. Dedekind completeness)
it suffices to demans that suprema exist. For example if X is a lattice in
which every nonempty set with an upper bound has a supremum, then X is
Dedekind complete. For if B is a subset with a lower bound. Denote by B̃
the set of lower bounds for B. Then x = sup B̃ exists and is an infimum for
B by definition.

Many concrete lattices appear in the form of lattices of suitable subsets
of a given set. Most of the useful cases can be subsumed in the following
general scheme:

1.18. Definition Let S be a set. A Moore family on S is a subfamily F
of P (S) which satisfies the following conditions:

• S ∈ F , ∅ ∈ F ;
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• if A is a subfamily of F , then
⋂

A ∈ F .

We regard F as a poset with the inclusion ordering. Examples of Moore
families are:

• Cl (S)—the family of closed subsets of a topological space S;

• SS (V )—the family of subspaces of a vector space V ;

• ClSS (E)—the family of closed subspaces of a Banach space E;

• SubG (G)—the family of subgroups of a group G;

• Conv (V )—the family of convex subsets of a vector space V .

We now claim that a Moore famaily F is a lattice i.e. that A ∨ B and
A ∧B exist for A,B ∈ F . (Note that we de not claim that it is a sublattice
of P (S)—the above examples show that this is not the case in general).

The existence of A∧B is obvious—we simply take the intersection A∩B
of A and B. For the supremum, we define

A ∨B = ∩{C ∈ F : A ∪ B ⊂ C}.

Then one can check that A ∨ B is in fact a supremum for {A,B}.
Exactly the same reasoning provides infima and suprema for arbitrary

subfamilies of F and hence F is a complete lattice.

1.19. Exercise Calculate the suprema of two elements A and B in the
Moore families listed above.

Note that since the supremum in a Moore family need not be the set
theoretical union, such a lattice may fail to be distributive as the next exercise
shows.

1.20. Exercise Show that the lattice of subgroups of an abelian group
need not be distributive (consider the subgroups G1, G2, G3 of G = Z × Z
where G1 is generated by (1, 0), G2 by (0, 1) and G3 by (1, 1).

We now consider the possibility of embedding a poset in a complete one.
Some of the preliminaries are taken care of in the next exercise:
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1.21. Exercise Let X be a poset with greatest element. If A ⊂ X , define
L(A) to be the set of lower bounds for A, U(A) to be the set of upper bounds.
A is said to be saturated if A = L(U(A)). Show that

• if A ⊂ X , then L(U(A)) is saturated;

• if x ∈ X , then Lx is saturated;

• the family of saturated sets is a Moore family.

Proposition 2 1.22. Proposition Let X be a poset. Then X can be embed-
ded into a complete lattice X̂ so that

• if A ⊂ X is such that supXA exists, then supX A = supX̂ A;

• the analogous condition for infima holds;

• x = supX̂{y ∈ X ; y ≤ x} (x ∈ X̂).

Proof. We can assume that X has a greatest element. Then X̂ , the family
of saturated subsets ofX , being a Moore family, is complete and the mapping
x 7→ Lx embeds X into X̂ . It remains to show that the above three properties
hold.

Suppose firstly that A ⊂ X and x0 = supX A exists. We must show
that L(U(

⋃

x∈A Lx)) = Lx0
. Clearly, U(A) = U(

⋃

x∈A Lx)) and so x0 is the
smallest element of U(

⋃

x∈A Lx). Hence L(U(
⋃

x∈A Lx)) = {y : y ≤ x0} =
Lx0

.
For the second part suppose that A ⊂ X and x0 = infX A exists. We

must show that
⋂

x∈A Lx = Lx0
and this is obvious.

For the third part suppose that A is saturated. We show that A =
supX̂{Lx : x ∈ A} i.e. A = L(U(

⋃

x∈A Lx)). But this follows immediately
from the equation A = L(U(A)) and U(A) = U(

⋃

x∈A Lx).

Using the order structure of a poset, we can define a notion of convergence
of nets:

1.23. Definition A net (yα)α∈A in a poset X is increasing (resp. de-
creasing) if whenever α ≤ β, ,then yα ≤ yβ (resp. yα ≥ yβ). A net (yα)
increases to y if (yα) is increasing and y is its supremum. yα decreases to
y is defined similarly. A net (xα)α∈A is said to be order convergent to x
(written xα → x) if there are nets (yβ)β∈B and (zγ)γ∈γ so that

• (yβ) increases to x;
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• (zγ) decreases to x;

• for each β ∈ B, γ ∈ γ, there is an α0 ∈ A so that zγ ≤ xα ≤ yβ for
α ≥ α0.

Proposition 3 • if (xα) is increasing then xα → x if and only if x is
the supremum of the net;

• if (xα)α∈A, (x
′
β)β∈B are nets with order limits x and x′ resp. and if for

each α ∈ A there is a β0 ∈ B so that x′
β ≥ xα for β ≥ β0, then x ≤ x′;

• A net (xα) can have at most one order limit;

• if (xα) is order convergent to x then so is each subnet.

Proof.

(i) Suppose that (yβ) and (zγ) are as in the definition. For β ∈ B, there
is an α0 in A so that xα ≤ yβ if α ≥ α0. Hence if α ∈ A and α′ ∈ A are such
that α′ ≤ α and α′ ≥ α0, then xα′ ≤ xα ≤ yβ and so xα ≤ yβ for each α and
β. Thus xα ≤ inf{yβ} = x for each α. On the other hand, if z is an upper
bound for {xα} then z is also one for {zγ} and so z ≥ sup{zγ} = x.

We leave the remainder of the proof as an exercise.

1.25. Exercise Let X be a complete lattice and define, for a net (xα)α∈A

lim inf{xα} = sup
β∈A

inf{xα : α ≥ β}}

lim sup{xα} = inf
β∈A

sup{xα : α ≥ β}}.

Show that xα → x if and only if = lim inf(xα) = lim sup(xα). Deduce that in
an arbitrary lattice, xα → x if and only the same condition holds, the lim inf
and lim sup being taken in the completion X̂ .

1.26. Exercise A. Let (X,≤) be a lattice. A subset A ⊂ X is defined to
be closed if it contains the limit of each order convergent net in A. Show
that this defines a topology on X (i.e. the set of all subset of X whose
complements are closed in this sense is a topology). Prove that this topology
is T1. Show that if xα → x in X for the order, then xαtox for the topology
(the converse is not true in general).
B. Consider the sequence (tn) in C([0, 1]). Show that it decreases to zero in
this lattice, but does not converge pointwise to zero.
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C. If (X,≤) is a lattice with zero elements 0, a non-zero x ∈ X is an atom if
each y ∈ X with 0 ≤ y ≤ x is either 0 or x. Identify the atoms in the lattices
P (S), RS, SS (V ), ClSS (E) from above. A lattice is said to be atomic if
each x ∈ X is the supremum of the atoms which are smaller than x. Which
of the above lattices are atomic?
D. Show that if S anbd T are T1 topological spaces so that Cl (S) and Cl (T )
are lattice isomorphic, then S and T are homeomorphic. (Let Φ be a lattice
isomorphism from Cl (S) onto Cl (T ). If s ∈ S, then the corresponding
singleton is an atom and hence so is its range. This defines a mapping from
S into T . Show that this is the required homeomorphism).
E. Let {Xα}α∈A be a family of lattices. Show that their product is complete
if and only if this holds for each Xα. Prove the same result for the properties:
Dedekind complete, distributive, complemented. F. Let X be a lattice with
ACC and DCC (i.e. each descending sequence is eventually stationary).
Show that X is complete. Show that if it has one of these properties, then
it is Dedekind complete. Show that if X is a lattice with ACC and a is
the supremum of a subset A of X , then there is a finite subset of A whose
supremum is a.
G. Let f be an isotone mapping from a complete lattice into itself. Then f
has at least one fixed point (consider the supremum of the set of those x for
which x ≤ f(x).

We now turn to one of the most important topics in the theory of lattices—
that of Boolean algebras. These are lattices which possess those properties
of P (S) which are relevant to the most elementary level of set theory.

1.27. Definition A Boolean algebra is a distributive lattice (X,≤) with
a zero and a unit in which each element has a complement. Then by 1.14 the
complement is uniquely determined and so we can introduce the notation x′

for the complement.
If S is a set, P (S) is a Boolean algebra. Similarly, if S is a topologcial

space, Clopen (S), the set of subsets of S which are simultaneously open and
closed, is a Boolean algebra under the partial ordering induced from P (S).

Proposition 4 If x and y are elements of the Boolean algebra X, then

• (x′)′ = x;

• x ∧ y = 0 ⇐⇒ y ≤ x′;

• x ≤ y ⇐⇒ x′ ≥ y′.

10



Proof.

We prove the second statement. Suppose that x ∧ y = 0. Then

y = y ∧ 1 = y ∧ (x ∨ x′) = (y ∧ x) ∨ (y ∧ x′) = 0 ∨ (y ∧ x′) = y ∧ x′

and so y ≤ x′.
On the other hand, if y ≤ x′, then x ∧ y ≤ x ∧ x′ = 0.
For the third part, it follows from the second one that

x ≤ y ⇐⇒ x ≤ (y′)′ ⇐⇒ x ∧ y′ = 0 ⇐⇒ y′ ∧ x = 0 ⇐⇒ y′ ≤ x′.

Corollar 1 • (x ∨ y)′ = x′ ∧ y′ and (x ∧ y)′ = x′ ∨ y′;

• if A ⊂ X has a supremum, then (supA)′ = inf{y′ : y ∈ A}.

Proposition 5 (the infinite distributive law) If x ∈ X and A ⊂ X has a
supremum, then x ∧ (supA) = sup(x ∧A).

Proof. For each y ∈ A, x ∧ y ≤ x ∧ supA and so x ∧ supA is an upper
bound for x ∧ A. Suippose that z is also an upper bound. Then for each
y ∈ A,

z ∨ x′ ≥ (x ∧ y) ∨ x′ = (x ∨ x′) ∧ (y ∨ x′) = y ∨ x′ ≥ y

and so z ∨ x′ ≥ supA. Hence

z = z ∨ 0 = z ∨ (x ∧ x′) = (z ∨ x) ∧ (z ∨ x′) ≥ (z ∨ x) ∧ supA ≥ x ∧ supA

and so z ≥ x∧ supA. Hence x∧ supA is the smallest upper bound for x∧A.

Corollar 2 x ∨ (inf A) = inf(x ∨ A).

1.32. Exercises A. Let S be a topological space. A subset A of S is regu-
larly closed if it is the closure of an open set. Show that the family of such
sets is a Boolean algebra under the natural ordering but that infimum and
complements of elements do not, in general, coincide with the set theoretical
intersection or complement.
B. ABoolean ring is a ring (R,+, ., e) with unit e so that x.x = x (x ∈ R).
Show that x + x = 0 (x ∈ R) and that R is commutative. Show that if
(X,≤) is a Boolean algebra, then x with the operations

: (x, y) 7→ (x ∧ y′) ∨ (y ∧ x′) (1)

: (x, y) 7→ x ∧ y (2)
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is a Boolean ring. On the other hand, if (R,+, ., e) is a Boolean ring, then
R under the operations

∨ : (x, y) 7→ x+ y − x.y (3)

∧ : (x, y) 7→ x.y (4)

is a Boolean algebra. Thus the concepts of a Boolean algebra and a
Boolean ring are essentially equivalent.

Our main purpose in the remaining part of this chapter will be to prove a
famous result of Stone, namely that every Boolean algebra X is representable
in the form Clopen (S) for some topological space S. To do this we introduce
some new concepts:

1.33. Ideals Let X be a Boolean algebra. A subset A of X is normal if
for each y ∈ A, x ≤ y implies x ∈ A (x ∈ X). It is an ideal if it is normal
and closed under ∨. In particular, a normal subset (and so an ideal) is clased
under ∧. As usual, the interseciton of a family of ideals is an ideal and so
there is a smallest ideal I(A) containing any subset A of X (it is called the
ideal generated by A). An ideal is maximal if is is proper (i.e. 6= X) and
not properly contained in another ideal other than X itself. Note that an
ideal is proper if and only if it does not contain the unit.

An example of an ideal is [0, x] = {y ∈ X : 0 ≤ y ≤ x} for x ∈ X .
The following characterisation of ideals generated by normal subsets will

be useful later:

Proposition 6 1.34. Proposition Let A be a normal subset of X. Then
I(A), the ideal generated by A, consists of the set {supF : J ∈ J (A)} of
those elements which are the suprema of finite subsets of A.

Proof. The set on the right hand side is clearly contained in any ideal
containing A and so is contained in I(A). Conversely, since A is normal, it
is an ideal and so contains I(A).

Corollar 3 Let A be a normal subset of a Boolean algebra. Then I(A) is
proper if and only I(J) is for each J ∈ J (A).

Proposition 7 Every proper ideal is contained in a maximal ideal.

The proof is a typical application of Zorn’s Lemma.

Corollar 4 Let x be an element of the Boolean algebra X with x 6= 1. Then
x is contained in a maximal ideal.
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Proof. Apply 1.36 to [0, x].

Proposition 8 Let I be a maximal ideal in the Boolean algebra X. Then if
x ∈ X, x ∈ I or x′ ∈ I.

Proof. Suppose that x /∈ I, x′ /∈ I. Then let

I1 = [0, x], I2 = {y ∨ y1 : y ∈ I, y1 ∈ I1}.

I2 is an ideal containing I. However, I2 is proper for if 1 were an element of
I2, then we could write 1 = y ∨ y1 with y ∈ I and y1 ≤ x and so y ≥ x′ i.e.
x′ ∈ I. This contradicts the maximality of I.

Corollar 5 If I is a maximal ideal and I1 and I2 are ideals whose intersec-
tion lies in I, then either I1 ⊂ I or I2 ⊂ I.

Proof. Suppose that there exist x1 ∈ I1 \ I and x2 ∈ I2 \ I. Then x′
1 ∈ I,

x′
2 ∈ I and x1 ∧ x2 ∈ I1 ∩ I2 ⊂ I. Then 1 = x′

1 ∨ x′
2 ∨ (x1 ∧ x2) is an element

of I and this is a contradiction.

1.40. Exercise let I be a subset of the power set P (S) of a set S. Then I
is a proper ideal if and only the family of complementary sets Ic = {S \ A :
A ∈ I} is a filter on S. I is a maximal ideal if and only if Ic is an ultrafilter.

Let X and X1 be Boolean algebras. A (Boolean algebra) morphism
from X into X1 is a lattice morphism f which preserves 0 and 1 i.e. f is a
ring morphism forthe associated Boolean rings.

For example if φ is a mapping from a set S into a set S1, then the mapping
f : A 7→ φ−1(A) is a morphism from P (S1) into P (S).

We now discuss briefly subalgebras and quotient algebras of Boolelan
algebras.

Subalgebras Let X be a Boolean algebra. A non-zero subset X1 of X is
a subalgebra if it is a sublattice and is closed under complementation. Then
X1 contains the zero and one of X and so is a Boolean algebra under the
induced ordering. If S is a topological space, then Clopen (S) is a subalgebra
of P (S). On the other the family of regularly closed subsets is not in general
a subalgebra.
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Quotient algebras Let I be an ideal in a Boolean algebra X . Then I is
an ideal in the associated ring and so the quotient space X/I is also a ring.
In fact, it is easy to see that it is a Boolean ring i.e. satisfies the conditions
of 1.32. B.

Hence the quotient of a Boolean algebra by an ideal is also a Boolean
algebra—called the quotient algebra of X with respect to I. The natural
mapping form X onto X/I is, of course, a Boolean algebra morphism. For
example, if S1 is a subset of S, then I = {A ∈ P (S) : A ⊂ S1} is an ideal in
P (S) and the quotient algebra P (S)/I is naturally isomorphic to P (S \ S1)
as the reader can check for himself.

From this it follows that if X is a Boolean algebra, a subset I is an ideal
if and only if there is a Boolean algebra morphism f from X into a Boolean
algebra Y so that I is the kernel of f i.e. the set {x ∈ X : f(x) = 0}. The
special case where I is a maximal ideal is important enough to be stated as
a proposition.

Proposition 9 1.41. Proposition A subset I of X is a maximal ideal if and
only if it is the kernel of a non-trivial morhpism f from X into the Boolean
Z2 (i.e. the unique Boolean algebra with two elements—0 and 1).

1.42. Exercise Prove 1.41 and deduce that if x is a non zero element of a
Boolean algebra, then there is a morphis from X into Z2 so that f(x) = 1.

Let S be a set. A collection F of subsets of S is a field if it is a Boolean
subalgebra of P (S), i.e. if it is closed under finite unions, finite intersections
and complementation. If F is a field of sets and x0 ∈ S, then Ix0

= {A ∈
F : §′ /∈ A} is a maaximal ideal of the Boolean algebra F . It is called
the maximal ideal determined by x0. A field F of sets in S separates S if
whenever x 6= y in S there is an A ∈ F so that x ∈ A and y /∈ A. F is
perfect if each maximal ideal in F is determined by a point of S.

For example if S is a set, the P (S) separates S but is not perfect unless
S is finite (this follows from the existence of ultrafilters on an infinite set S
which are not fixed i.e. of the form

U§ = {A ⊂ S : § ∈ A}

for some x ∈ S. This in turn is a consequence of the axiom of choice—
consider an ultrafilter containing the filter of cofinite subsets of S i.e. those
subsets whose complements are finite).

If S is a Hausdorff topological space, then Clopen (S) does not separate S
in general. A necessary condition for this to be the case is that S be totally-
disconnected i.e. the connected component of each x ∈ S is the singleton
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x (this is the case, for example, when S is discrete or S =). It is also easy to
see that if S is compact, then Clopen (S) is perfect. For if A is any maixmal
ideal of this algebra, then by the finite intersection property the intersection
of the complements of sets of A is non-empty. It is then clear that A is the
maximal ideal determined by a point of this set.

The next result shows that if a field is both separating and perfect then
it must be of the form Clopen (S) for a suitable topology on S.

Proposition 10 1.43. Proposition Let F be a perfect field of subsets of a set
S which separates S. Then there is a compact , totally disconnected topology
τ on S for which F is the algebra of clopen subsets.

Proof. Let τ be the topology on S which has F as a basis i.e. a subset
U of S is open if and only it it is the union of sets of F . Suppose that U
is an open covering of S. We show that U has a finite subcovering. We can
assume that each U ∈ U is in F and that U is normal as a subset of the
Boolean algebra F . If there is no J ∈ J (U) which covers S then the ideal
I(U) generated by U is proper in F and so is contained in a maximal ideal.
But this maximal ideal is determined by a point x0 ∈ S and so x0 /∈

⋃

U and
this is a contradiction.

We now show that F consists of the clopen subsets of τ . If A ⊂ S is
clopen, then A is the union of sets in F . Since A is closed in S and S is
compact, it is the union of a finite number of those sets and so is in F . (S, τ)
is totally disconnected since F is perfect.

We now come to our main result on Boolean algebras:

Proposition 11 Let X be a Boolean algebra. Then there exists a totally
disconnected space S so that X is isomorphic to the Boolean algebra of clopen
subsets of S.

Proof. We let S denote the set of maximal ideals of X and put U(x) =
{I ∈ S : x /∈ I} for x ∈ X . Then F = {U(§) : § ∈ X} is a field of subsets
of S and the mapping x 7→ U(x) is an isomorphism from X into F . For if
x, y ∈ X , then

U : (x ∨ y) = {I ∈ S : x ∨ y /∈ I} (5)

= {I ∈ S : (x /∈ I) or (y /∈ I)} (6)

= U(x) ∪ U(y). (7)
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Similarly,

U : (x ∧ y) = {I ∈ S : x ∧ y /∈ I} (8)

= {I ∈ S : (x /∈ I) and (y /∈ I)} (9)

= U(x) ∩ U(y). (10)

(for x ∧ y ∈ I ⇐⇒ (x ∈ I) or (y ∈ I) since if x ∧ y ∈ I, [0, x] ∩ [0, y] ⊂ I
and so [0, x] ⊂ I or [0, y] ⊂ I.

It is clear that U(x′) = S \ U(x).
x 7→ U(x) is injective since if x 6= 0, there is a maximal ideal I so that x′,

the complement of x, is in I (1.36) and so x /∈ I (1.38) i.e. U(x) 6= ∅ = U(0).
F is perfect: let I be a maximal ideal in F . Then its pre-image I0 in X

is also a maximal ideal. For each x ∈ X , U(x) ∈ F if and only if x ∈ I0 i.e.
if and only if I0 /∈ U(x) and so I is the ideal determined by I0.

F separates S: for if I 6= J , there is an x = inX so that x ∈ I \ J say.
Then J ∈ U(x) and I /∈ U(x). The result follows now by applying 1.43 to F .

In the light of this result, we discuss briefly conditions on the topological
space S which ensure that Clopen (S) is complete (resp. σ-complete).

1.44. Definition A topological space S is extremally disconnected
(resp. σ-extremally disconnected) if the closure of every open set (resp.
the closure of every Fσ-open set) is open. (Recall that an Fσ-set is, by defi-
nition, a countable union of closed sets). S is a Stonian space space (resp.
σ-Stonian) if it is compact and extremally disconnected (resp. compact and
σ-extremally disconnected). Spaces with either of the above properties are
automatically totally disconnected.

Proposition 12 Let S be a totally disconnected compact space. Then Clopen (S)
is

• σ-complete if and only if S is σ-Stonian;

• Dedekind complete if and only if S is Stonian.

Proof. We prove the second claim. Suppose that S is Stonian. Let A be a
subset of Clopen (S). Then if U is its union, this is an open set in S and so
its closure is in Clopen (S). This is the supremum of A in Clopen (S).

Conversely, suppose that the latter algebra is complete. Let U be open
in S. Since S is totally disconnected, there is a family A of clopen sets in
S so that U is their union. Let U1 be the supremum of the family A in the
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algebra. Then we claim that U1 is the closure of U and so the latter set
is open. (It is clear that Ū ⊂ U1. If U1 \ Ū were non-empty then it would
contain a non-empty clopen set V . But then U1\V would be an upper bound
for A which is strictly smaller than U1).

Corollar 6 If X is a complete Boolean algebra (resp. a σ-Dedekind complete
Boolean algebra), then the Stone space of X is Stonian (resp. σ-Stonian).

1.47. Exercises A. Show that a product of Boolean algebras is also a
Boolean algebra.
B. Identity this product as a field of subsets in the disjoint union of the Sα

when each Boolean algebra is a field Fα of subsets of a set Sα.
C. Show that any Boolean algebra is isomorphic to a subalgebra of a product
of Boolean algebras, all of which are isomorphic to Z2.
D. Let S be compact and totally disconnected. Show that the mapping

s 7→ Is = {U ∈ Clopen (S) : s /∈ U}

is a bijection from S onto the set of maximum ideals of Clopen (S).
E. If S is a set, the Stone space of P (S) is βS, the Stone-∨CechcompactificationofSwiththediscretetopol
F. Classify all finite Boolean algebras.

2.2 Riesz spaces

We now turn to the topic of vector spaces which are also provided with
an order structure. Of course we assume that some compatibility condition
between the two structures holds. The classical function spaces and sequence
spaces which we have considered all have natural orderings and these supply
a motivation for the theory.

Definition A partially ordered vector space (abbreviated (POVS))
is a poset (E,≤) where E is a real vector space such that the following
conditions are satisfied: if x, y, x ∈ E and λ > 0 then x + z ≤ y + z and
λx ≤ λy whenever x ≤ y.

E is a Riesz space if it is a POVS and, at the same time, a lattice under
its ordering.

The following vector spaces are Riesz spaces under their natural ordering:
RS, C(K), S(µ), Lp(µ).

We list some properties of Riesz spaces which are simple consequences of
the definition:
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• x+ supA− sup(x+ A) (x ∈ E,A ⊂ E);

• sup(λA) = λ supA (λ > 0, A ⊂ E);

• sup(λA) = λ inf(A) (λ < 0, A ⊂ E). In particular x∨y = −((−x)(−y)) (x, y ∈
E).

• x+ y = xy + x ∨ y (x, y ∈ E).

(For we have: ((x− y)∨ 0)+ y = x∨ y resp. (x− y∨0 = x+((−y)∨ (−x)) =
x− (x ∧ y) and so x ∨ y − y = x− (x ∧ y)).

If x is an element of a Riesz space, we put

x+ := x ∨ 0; (11)

x− := x+ + x−. (12)

Then

x=x+ − x− (for x+ 0 = s ∨ 0 + x ∧ 0 = x+ − x−).
If x and y are elements of E we say that x and y are disjoint if |x|∧|y| = 0

(written x ⊥ y).
The decomposition x = x+ − x− expresses x as the difference of two

positive elements. In general, such decompositions ate not unique. However,
we do have the following:

if x = y − z where y, z ≥ 0 then x+ ≤ y, x− ≤ z;
if x = y− z where y, z ≥ 0 and yz are disjoint, then y = x+, z = x− (note

that x+ and x− are always disjoint.)

Definition For elements x, y of Riesz space E, λ ∈ R, the following rela-
tionship hold:

• (x+ y)+ ≤ x+ + y+;

• (λx)+ = λx+(λ > 0);

• |x+ y| ≤ |x|+ |y|;

• x ∧ y = (x+ y − |x− y|)/2, x ∨ y = (x+ y + |x− y|)/2;

• |x| = 0 if and only if x = 0.

Note that for the Riesz function spaces listed above, the symbols x+, x−, |x|
habe their usual meaning (positive part, negative part resp. absolute value
of a function).

In constrast to the situation for general lattices, the distributive law al-
ways holds in a Riesz space:
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Proposition 13 If X is an element of a Riesz space E, A a subset of E,
then

x ∧ sup(A) = sup(x ∧A).

Proof. We always have the inequality: x ∧ supS ≥ sup(x ∧ A). Suppose
that x ≥ wy for each y ∈ A. Then

z ≥ (x− y) ∧ 0 + y ≥ (x− supA) ∧ 0 + y.

Since this holds for each y ∈ A, we have

z ≥ (x− supA) ∧ 0 + supA = x ∧ supA.

The following is an important property of Riesz spaces:

Proposition 14 (Riesz decomposition property) Let x, y, z be positive ele-
ments of a Riesz space so that x = y + z. Then for every representation
x = x1 + · · ·+ xn of x as the sum of n positive elements, there exist positive
{y1, . . . , yn} resp. {z1, . . . , zn} so that

y =

n
∑

i=1

y + i, z =

n
∑

i=1

zi and xi = yi + zi

for each i.

Proof. We give the proof for n = 2. The general case follows by induction.
We put y2 := x2∧y. Then y2 ≤ y and y2 ≤ x2 ≤ x. Hence if y1 := y−y2, then
0 ≤ y1 ≤ x1 since x1 = x−x2 ≥ (y−x2)∨0 = y+[(−x2)∨(−y)] ≥ y−y2 = y2.
Thus if we define z1 := x1 − y1 and z2 := x2 − y2 we habe the required
decomposition.

Exercises A. Show that P ([0, 1]), the space of real polynomials of degree
n on [0, 1] with the pointwise ordering, does not have the above property;
B. Show that Ck([0, 1]), the space of k-times continuously differentiable func-
tions in C([0, 1]) (k < 1) with the pointwise ordering is a POVS which is not
a Riesz space but does have the property above.
C. E be a POVS. Show that each of the following properties is equivalent to
the Riesz decomposition property:

• [0, x] + [0, y] = [0, x+ y] (x > 0, y > 0);

19



• for all pairs A,B of finite subsets of E, A ≤ B (i.e. x ≤ y for each x ∈ A
and each y ∈ B) implies the existence of a x ∈ E with A ≤ z ≤ B.

Lemma 1 If x, y, z are positive elements of a Riesz space, then

x ∧ (y + z) ≤ x ∧ y + y ∧ z.

Proof. Let u = x∧ (y+ z). Applying the Riesz decomposition property to
the decomposition,

y + z = u+ (y + z − u)

we obtain elements u1 and u2 so that 0 ≤ u1 ≤ y, 0 ≤ u2 ≤ z and u = u1+u2.
But then u1 ≤ x ∧ y and u2 ≤ x ∧ z and so u ≤ x ∧ y + x ∧ z. q.e.d.

Proposition 15 If x, y, z are elements of a Riesz space E and l ∈ R, then
x and (ly + z) are disjoint whenever x and y and x and z are.

Proof. It clearly suffices to prove the two special cases l − 1 and z = 0.
a) the case l = 1:

0 ≤ |x| ∧ |y + z| ≤ |x| ∧ (|y|+ |z|) ≤ |x| ∧ |y|+ |x||w|z| = 0.

b) the case z = 0:

0 ≤ |x| ∧ |ly| ≤ sup(1, |l|) (|x| ∧ |y|) = 0.

In the next result we use the following notation: a subset A of a Riesz space
E is disjoint if each distinct pair x, y of elements from A is disjoint.

Proposition 16 Let E be a Riesz space.

• if x, y ∈ E, x ⊥ y, then (x+ y)+ = x+ + y+, (x+ y)− = x− + y−;

• if x1, . . . , xn are disjoint elements of E then

x1 + · · ·+ xn = x1 ∨ · · · ∨ xn;

• if x1, . . . , xn are disjoint elements of E shose sum
∑n

i=1 xi is non-
negative, then each xi is non-negative;

• a disjoint set of (non-zero) elements is linearly independent.
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Proof. 1. We have x+ ∧ y− = x− ∧ y+ = x+ ∧ x− = y+ ∧ y− = 0
and so (x+ + y+) ⊥ (x− + y−). The result follows now from the fact that
(x++ y+)− (x−+ y−) is a decomposition of x+ y into a difference of disjoint
positive elements.
2. For n = 2 the result follows from the relation x1 + x2 = x1 ∨ x2 + x1 ∧ x2

and the fact that
0 ≤ |x1 ∧ x2| ≤ |x1| ∧ |x2| = 0

and so x1∧x2 = 0. The general case follows by a simple induciton argument.
3. It follows from 1. that

(

n
∑

i=1

xi

)−

= x−
1 + · · ·+ x−

n .

Hence if for some i we have xi > 0, then (
∑n

i=1 xi)
− > 0.

4. Suppose that there are scalars l1, . . . , ln so tht
∑n

i=1 lixi = 0. Then by 3.
lixi ≥ 0 and lixi ≤ 0 for each i and so li = 0.

Exercise Show that if x and y are disjoint elements of a Riesz space, then

|x+ y| = |x− y| = |x|+ |y| = |x| ∨ |y|.

As the above results show, elements of a Riesz space tend to satisfy the simple
identities which hold in R (and so in spaces of the type RS). There is one
aspect, however, where care is required. Riesz spaces can contain “infinitely
small” elements i.e. non-zero elements x so that {nx : n ∈ N} is order
bounded. A simple example is R2 with the lexicographics ordering where
the element (0, 1) satisfies this condition. For this reason we introduce the
following definition:

Definition A Riesz space E satisfies the axiom of Archimedes (or is
Archimedean) if for each x ≥ 0 the fact that {nx : x ∈ N} is bounded
implies that x = 0.

The examples RS, C(K),S(µ),L
√
(µ) are all Archimedean. Another im-

portant concept is that of a unit:

Definition An element e of a Riesz space E is a unit for E if x ∧ e < 0
for each x > 0. It is a strong unit if for each x ∈ E there is an n ∈ N with
|x| ≤ ne.

For example, any strictly positive function is a unit for RS resp. a strong
unit for C(K) (in particular, the constant function 1). S(µ) has a unit but
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not a strong unit in general. If S is an infinite set and C(S) is the set of
functions in RS with finite support then C(S) with the induced order is a
Riesz space which does not have a unit.

Exercise If E is a Riesz space with strong unit e, then the mapping

|| ||e : y → inf{λ > 0 : |y| ≤ λe}

is a seminorm on E and it is a norm if E satisfies the Archimedes axiom.
|| ||e is the Minkowski functional of the unit interval {x ∈ E; |x| ≤ e} and,
for y ∈ E, ||y||e = max(||y+||e, ||y

−||e).
Except in the trivial case of a zero-dimensional space, a Riesz space will

never be complete (as a lattice). However, many of the classical spaces
are Dedekind complete (resp. Dedekind σ-complete). We note some simple
properties of such spaces:

• For a Riesz space to be Dedkind complete, it suffices that every bounded
subset of E have a supremum;

• A Dedekind σ-complete spaces is automatically Archimedean (for if
x ≥ 0 is such that {nx : n ∈ N} is bounded and y = sup{nx : x ∈ N},
then clearly y + x = x and so x = 0).

Exercise Show that if E is a Dedekind σ-complete Riesz space with strong
unit e then (E, || ||e) is a Banach space.

We now turn to the standard types of constructions on Riesz spaces. As
usual these are characterised by so-called universal properties with respect
to suitable classes of mappings. For Riesz spaces, there are several possible
choises of these classes: if T : E → F is a linear operator between RIesz
spaces, then we say that

T is isotone if x ≥ 0 implies that Tx ≥ 0 (this coincides with the
definition after 1.2 for lattices);T is a Riesz morphism if T (x ∧ y) =
Tx ∨ Ty (i.e. T is a lattice morphism); T is order continuous if for
each net (xα), xα ↓ 0 implies that Txα ↓ 0; T is σ-order continuous
if for each sequence (xn) nn ↓ 0 implies that Txn ↓ 0.

Exercise Let T be a linear mapping from a Riesz space E into a Riesz
space F . Show that T is a Riesz morphism if the following condition holds:

(Tx)+ = T (x+) (x ∈ E).
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If T is a Riesz morphism show that it is order continuous if and only if the
following condition holds: for each subset A of E for which supA exists,
sup T (A) exists and sup(T (A)) = T (supA).

If E is a Riesz space, then each vector subspace F which is closed under
the lattice operations is also a Riesz space – it is called a Riesz subspace of
E. For example, C(K) is a Riesz subspace of RK and each L

√
(µ) is a Riesz

subspace of S(µ).
We now discuss quotient spaces. Firstly, let E be a POVS, I a subspace

and denote by πI the natural projection from E onto E/I we define a relation
≤ as follows:

x ≤ y if and only if(y − x) = πi(z) for some z ≥ 0.

This relation is a pre-ordering on E/I but not always an ordering. In fact it
is an ordering if and only if I satisfies the following condition:

if x ≥ 0 and x ≤ y for some y ∈ I, then x ∈ I.

Exercise Show that if I satisfies this condition, then E/I is a POVS. Show
that if T is an isotone linear mapping between POVS’s then KerT satisfies
this condition (so that it is a necessary condition for E/I to be a POVS).

We now turn to quotients of Riesz space. For this we introduce the
following concepts. A subset A of a Riesz space E is solid if whenever y ∈ A
and x ∈ E is such |x| ≤ |y|, then x ∈ A. An ideal in E is a solid Riesz
subspace.

•• Proposition 17 Let I be an ideal in Riesz space E. Then the quotient space
E/I is also a Riesz space.

Proof. We first show that in this situation an element πI(x) is positive
if and only if x− ∈ I. The sufficiency of this latter condition is clear since
πI(x) = πI(x

+)−πI(x
−) = πI(x

+) ≥ 0. On the other hand, if πI(x) ≥ 0 then
there is a y ≥ 0 in E so that πI(x) = πI(y) i.e. y − x ∈ I. Now −x ≤ y − x
and so

0 ≤ x− = (−x) ∨ − ≤ (y − x) ∨ 0 = (y − x)+ ≤ |y − x|.

Hence x− ∈ I since y − x ∈ I and I is an ideal. We know that E/I is
POVS. We now show that for each x ∈ E, πI(x

+) is the supremum of the
pair {πI(x), 0}. It is clear that πI(x

+) is greater that both elements. Suppose
that y ∈ E is such that πI(y) ≥ πI(x) and πI(y) ≥ 0. Then y− ∈ I and
(y − x)− ∈ I. Hence

(y − x)− = ((x ∨ 0)− y) ∨ 0 = (x− y) ∨ (−y) ∨ 0 = (y − x)− ∨ y− ∈ I
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and so πI(y) ≥ πI(x
+). It now follows easily that E/I is a Riesz space.

The space E/I is called the quotient Riesz space of E by I. Typical
examples are as follows:

if S1 is a subset of S and IS1
denotes the set of those functions in RS

which vanish on S1, then IS1
is an ideal in RS. The corresponding quotient

space is naturally isomorphic to RSS1. If (Ω,
∑

, µ) is a measure space and

I := {x ∈ S(µ) : x(t) = 0 almost everywhere}

then I is an ideal in S(µ) (and so in each Lp(µ)). The corresponding quotient
spaces are just S(µ) resp. Lp(µ).

Exercises A. Suppose that I is an ideal in the Riesz space E. If E is
Dedekind complete, does it follow that E/I also is? If e is a strong unit for
E, need πI(e) be a strong unit for E/I?
B. The space ℓ∞ of bounded sequences is an ideal in RN. Show that the
quotient space RN/ℓ∞ is non-Archimedean.
C. Let {Eα} be a family of POVS’s. Show that the product space E =
∏

α∈A Eα, provided with the product ordering, is also a POVS and that it is
a Riesz space if each Eα is. Show that if {Sα} is a family of sets and S is
their disjoint union, then RS is naturally (Riesz) isomorphic to the product
∏

α∈A RSα.
D. With the notation of C show that each Eα is an ideal in

∏

α∈A Eα and
so isomorphic to a quotient of E. Show that E is Dedekind complete if and
only if each Eα is.

We consider the question of embedding a given Riesz space in a Dedekind
complete one. Since every such space is Archimedean and the latter is ob-
viously a hereditary property it is clear that a necessary condition for this
to be possible is that the spce be Archimedean. In fact his condition is also
sufficient as the next result shows:

Proposition 18 Let E be an Archimedean Riesz space. Then there excists
a Dedekind complete Riesz space Ê with the following properties:

• E ⊂ Ê;

• for each subset A ⊂ E such that supE(A) exists, we have supE(A) =
supÊ(A);

• if x ∈ Ê, x = sup{y ∈ ELy ≤ x} = inf{z ∈ E : z ≥ x};

• every order continuous Riesz morphism from E into a Dedekind com-
plete Riesz space F factors in a unique way through Ê.
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Proof. We use the notation of 1.22 with the exception that Ê denotes the
family of all saturated subsets of E with the exception of and E. We remark
here that a nonempty saturated subset A is in E if and only if there is a
b ∈ E so that A ≤ b.

(Clearly, if this condition is satisfied, then A|neE. If it is not satisfied,
then A has no upper bounds i.e. U(A) =. Hence A = L(U(A)) = L() =
E). Ê is a Dedekind complete lattice and (1)− (2)) are satisfied (where we
understand (1) in the sense that the inclusion x → Lx is a lattice isomorphism
from E onto a sublattice of Ê).

On = hatE we define a linear structure as follows:

A
·
→ + := L(U(A +B)); (13)

λ · A := λA(λ > 0); (14)

0 · A := L0; (15)

λ · A := −U(|λ|A) (λ < 0). (16)

(We note that all the sets on the right hand sides are saturated. The only
non-trivial case is −U(|λ|A). Then we have

L(U{−U(|λ|A)}) = L(−U(|λ|A))) = L(−|λ|A) = −U(|λ|A).

By applying the above criterion, it can be checked that they are in Ê.) In
the verification that Ê, with these operations, is a vector space we check the
folowing points. (Those remaining can be proved with similar methods.)

• (a) addition
·
→ + is associative;

• (b) L0 is a zero for addition;

• (c) A
·
→ +(−1)A = L0 (A ∈ Ê);

(d) λ(A
·
→ +B) = λA

·
→ +λB (λ ∈ R, A, B ∈ Ê).

(a) We show that (A+
·
→ +B)

·
→ +C = L(U(A + B + C)) and the result

follows by symmetry. Since A + B ⊂ A
·
→ +B, then (A + B) + C ⊂ (

·
→

+B)
·
→ +C and so

L(U(A +B + C)) ⊂ (A
·
→ +B)

·
→ +C.

Suppose that x ∈ (A + B) + C – we show that x ≤ u if u is an upper
bound for (A+B+C) i.e. if u ≥ a+b+c for each a ∈ A, b ∈ B, c ∈ C. Then

a+b ≤ u−c and so z ≤ u−c for each z ∈ A+B. Hence for any x ∈ A
·
→ +B,
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c ∈ C, then z + c ≤ u and so u is an upper bound for (A
·
→ +B) + C. Thus

x ≤ u as required.
(b) A + L0 = {x + z : x ∈ A, z ≤ 0} = A since A is saturated and so

A
·
→ +L0 = A.

(c) x ∈ (−1)A if and only if x = −y where y ∈ U(A). Hence if a ∈ A,

a+ x = a− y ≤ 0. Thus A+ (−1)A ⊂ L0 and so A
·
→ +(−1)A ⊂ L0. If this

inclusion is strict, there is a z ∈ U(A + (−1)A) with z− > 0.
Then −z− = z ∧ 0 ∈ U(A+ (−1)A) and so −z− ≥ a+ a′ for each a ∈ A,

a′ı−U(A). Repeating this process, we obtain {a+nz : n ∈ N} ⊂ A and this,
together with the fact that U(A) 6= ∅, gives a contradiction since E satisfies
the axiom of Archimedes.

(d) This is clear if λ ≥ 0. So we suppose that λ < 0. Then

λ(
·
→ +B) = (−|λ|)(A

·
→ +B) = (−1)|λ|)A

·
→ +B) = (−1)(|λ|A

·
→ +|λ|B)

(17)

= (−|λ|A
·
→ +(−|λ|)B = λA

·
→ +λB. (18)

Exercise Complete the proof by showing

• that x → Lx embeds E as a Riesz subspace of Ê,

• that 4) holds (for x ∈ Ê define Tx to be

sup{Ty : y ∈ E, y ≤ x}).

A useful property of ideals in certain Riesz space is the fact that they split the
space up into two parts in a way reminiscent of the splitting of Hilbert space
into the sum of orthogonal subspaces. For example, if A is a measurable
subspace of a measure space Ω and

I1 = {x ∈ Lp(µ) : x|ΩA = 0} (19)

I2 = {x ∈ Lp(µ) : x|A = Ω} (20)

then I1 and I2 are ideals in Lp(µ) and this space is the algebraic direct sum
I1 ⊕ I2. Note that I2 is just I⊥1 , the set of elements disjoint form I1. We
will now discuss an abstract version of this decomposition. Note that the
corresponding decomposition fails for the Riesz space C([0, 1]). We shall see
that the decisive factor is the Dedekind completeness of Lp(µ) in contrast to
C([0, 1]).
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First we introduce the term band to denote an ideal I in a Riesz space
E wihich is sup-closed i.e. such that if A is a subset of E whose supremum
supA exists, then supA ∈ I. Examples of bands are the ideals I1, I2 described
above. More generally, if A is a subset of a Riesz space and A⊥ is defined to
be the set {y ∈ E : y ⊥ x for x ∈ A} of elements which are disjoint from A
then A⊥ is clearly a band. (This follows from the simple fact that if A is a
subset of Riesz space and x ⊥ A then x ⊥ supA-provided the latter exists).

If A is a subset of a Riesz space, then there exists a smallest band con-
taining A – the intersection of all bands containing A – we denote it by
B(A). Since, by the above remark, A⊥⊥(= (A⊥)⊥) is a band containing A,
it is clear that B(A) ⊂ A⊥⊥. We shall discuss below the question of when
equality holds. Firstly we give a characterisation of those elements of the
band generated by an ideal.

Proposition 19 Let I be an ideal in a Riesz space E. Then a positive
element x in E is in B(I) if and only if it is representable as the supremum
of some subset of I.

Proof. Let Ĩ := {x ≥ 0 : x = supA1 for some A1 ⊂ I}. We show that

• (i) if x ≥ 0 is bounded above by a y ∈ Ĩ, then x ∈ Ĩ;

• (ii) x+ λy ∈ Ĩ (x, y ∈ I, λ ≥ 0);

• (iii) supE A1 ⊂ Ĩ for each A1 ⊂ Ĩ so that supE A1 exists. From this it
follows easily that Ĩ − Ĩ is a band. Since I ⊂ Ĩ − Ĩ ⊂ B(I), the result
follows.

(i) there is a set A ⊂ I so that y = supA. Then x = sup(x ∧ A) and
x ∧A ⊂ I.
(ii) we can assume that λ = 1. Let A1 := {z ∈ I, 0 ≤ z ≤ x + y}. x + y
is an upper bound for A1. On the other hand, if z′ is an upper bound, then
z′ ≥ x′ + y′ for each x′, y′ ∈ I with 0 ≤ x′ ≤ x, 0 ≤ y′ ≤ y and so z′ ≥ x+ y
i.e. x+ y = supA1.
(iii) follows from 1.5.F.

We now show that B(A) = A⊥⊥, provided that the Riesz sspace is
Archimedean. The proof uses the following Exercise:

Exercise Show that if I is an ideal in a Riesz space E, then for x > 0, x ∈
I⊥⊥ there is a y > 0 in I with y ≤ x.

Proposition 20 Let E be an Archimedean Riesz space. Then for each A ⊂
E,B(A) = (A⊥)⊥.
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Proof. We can suppose that A is an ideal. Suppose that there is an x ∈
A⊥⊥B(A). We can assume that x ≥ 0. Then if A′ := {y′ ∈ A : 0 ≤ y′ ≤ x},
we have x ≥ y := supA′. Thus 0 < x − y ∈ (A⊥)⊥ and so there is a z ∈ A
with 0 < z < x− y. Hence z + A′ ⊂ A′ and so {nz : n ∈ N} ⊂ A′. But this
contradicts the fact that E is Archimedean.

Exercise Show that the converse holds i.e. that a Riesz space E with the
property that B(A) = A⊥⊥ for each subset A is automatically Archimedean.

Our main aim is to obtain a decomposition of the form

E = E1 ⊕ E⊥
1

for suitable bands E1 in a Riesz space E¿ We begin by defining the projection
of an element x ∈ E onto E1. Here it is useful to bear in mind the splitting
of Lp(µ) discussed above.

Suppose first that x is positive element of E. We say that the projection
of x into E1 exists if

{sup{y ∈ E1 : 0 ≤ y ≤ x}

exists and in this case we denote it by πE1
(x). For general x in E we say

that πE1
(x) exists if πE1

(x+) and πE1
(x−) exists and we define πE1

(x) to be
their difference.

Of course, if E is Dedekind complete, then πE1
(x) exists for each x ∈ E

and each band E1 in E. On the other hand, if E1 is the band

{x ∈ C([0, 1]) : x = 0 on ]1/2, 1

in C([0, 1]), then πE1
(1) does not exist.

If A is a measurable subset of Ω and E1 is tha band of functions which
vanish outside of A then πE1

(x) is the function χAx (χA is the characteristic
function of A).

The connection between projections on ideals and decompositions of the
space is made explicit in teh following result:

Proposition 21 Let x be an element of a Riesz space E, E1 a band in
E. Then πE1

(x) exists if and only if x has a representation of the form
x = y + z where y ∈ E1, z ∈ E⊥

1 . This representation is unique and, in fact,
y = πE1

(x), z = πE⊥

1
(x).
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Proof. Suppose first that x ≥ 0 has such a representation, x = y + z
(y ∈ E1, z ∈ E1). Then y ≥ 0 and z ≥ 0 since y and z are disjoint. Suppose
that u ∈ E1 is such that 0 ≤ u ≤ x. We show that u ≤ y which implies that
y = πE1

(x) by the definition of the latter.
For u = u∧ x ≤ u∧ y+ u∧ z = u∧ y. If a general x has a representation

x = y + z, then x+ = y+ + z+, x− = y− + z− by 2.8 and so we can apply the
above case.

Now assume that y = πE1
(x) exists and put z = x − y (where x ≥ 0).

It suffices to show that z ∈ E⊥
1 . Hence consider x1 ∈ E1 we shall show that

z ∧ |x1| = 0.
Now 0 ≤ z ∧ |x1| is in E1 (since E1 is a band) and y + z ∧ |x1| ≤ x and

so y + z ∧ |x1| ≤ y i.e. z ∧ |x1| = 0.

Using this and the fact that projections always exist in Dedekind complete
spaces we get:

Proposition 22 Let E1 be a band in a Dedekind complete Riesz space E.
Then E is the algebraic direct sum

E1 ⊕E⊥
1

and the vector space isomorphism x → (πE1
(x), πE⊥

1
(x)) from E onto E1⊕E⊥

1

is also a Riesz space isomorphism. In particular, πE1
is a Riesz morphism

from E onto E1 (which is also a vector space projekction).

Definition Let E be a Dedekind complete Riesz space. A family {Eα} of
bands in E decomposes E if

• they are disjoint i.e. Eα ⊥ Eβ (α 6= β);

• if x ∈ E is such that x ⊥ Eα for each α then x = 0.

For example if {xα} is a collection of disjoint elements so that if x ∈ E is
such that x ⊥ xα for each α ∈ A, then x = 0, the bands B(xα) decomposes
E. (The typical example of this is the canonical basis (en) in any of the Riesz
spaces ω, ℓpc0.)

The word decomposes in the above definition is motivated by the next
result, where the sum of two elements in 2.25 is replaced by an infinite sum.
Note however that since we have topology available, the notion of an infinite
sum is replaced by the suprema of finite sums of disjoint elements.

Proposition 23 If {Eα} decomposes the Dedekind complete Riesz space E,
then for x ∈ E

x = sup
α∈A

πEα
x+ − sup

α∈A
πEα

x−.
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Proof. It suffices to show that this holds for x ≥ 0. By the Dedekind
completeness y := supα∈A πEα

x exists and in less than x. We claim that
x − y ⊥ Eα for each α and so x − y = 0. For if this were not the case,
there would be a β ∈ A and a zβ ∈ E so that (x − y) ∧ zβ > 0. But
u = (x− y)∧ zβ ∈ Eβ and 0 ≤ πEβ

(x) +u ≤ y+ u ≤ x which contradicts the
definition of πEβ

(x).

Proposition 24 Corollary If the Dedekind complete Riesz space is decom-
posed by the bands {Eα}, then E is Riesz isomorphic to an ideal in

∏

α∈A Eα.

Proof. We map x onto the element (πEα
(x))α∈A of the product.

The example E = ℓ1, En = B(en) shows that the image of E in the prod-
uct space can be (and usually is) a proper ideal. Using this decomposition
we can now prove a result which can often be used for reducing proofs to the
case where a given Riesz space has a unit. First we introduce the adjective
principal to describe an band which is generated by one element i.e. is of
the form B(u) (u ∈ E). We note the following simple facts:

• if E is Archimedean, then |u| is a unit for B(u);

• if E is Dedekind σ-complete, then the projection of an element x ∈ E
onto B(u) (which we denote by πu(x)) always exists and is given by
the formula:

πu(x) = sup{x ∧ n|u| : n ∈ N}.

The converse also holds i.e. if E1 is a band in the Archimedean space E and
u is a unit for E1, then E1 is generated by u (for, by 2.25, it suffices to show
that (u)⊥ ⊂ E⊥

1 . Suppose that x ⊥ u and y ∈ E1 with |x| ∧ |y| > 0 (.e. x is
not i E1). Then |x| ∧ |y| ∧ |u| > 0 and |x| ∧ |u| > 0 -contradiction.

Proposition 25 Let E be a Dedekind complete Riesz space. Then there
exist Dedekind complete Riesz spaces {Eα} with units so that E is an ideal
in
∏

α∈A Eα.

Proof. By 2.28 and the above remarks it suffices to produce a family {Eα}
of principal bands which decomposes E. This is equivalent to producing a
family {xα} of disjoint elements which is maximal i.e. cannot be extended
to a properly greater one. The existence of such a family is established by
applying Zorn’s Lemma to the family S of disjoint subsets of E.

In our proof of the spectral theorem for self-adjoint operators, the order
structure of the linear operators played an important role. If we extract
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the order theoretical kernel of the proof we can prove an abstract spectral
theorem for Riesz space, originally due to Freundenthal. While reading the
following results, it is helpful to keep in mind the example L∞(µ) of bounded,
measurable functions on a measure space Ω. The theorem that we prove is an
abstract form of the fact that such functions can be approximated uniformly
by step functions. To do this, we begin by indtroducing an abstract version
of the concept of a characteristic function.

Definition Let E be an Archimedean Riesz space with unit 1. e ∈ E
is called a component if e ∧ (1 − e) = 0. We write C(E) for the set of
components of E. Then 0 and 1 are components and C(E) ⊂ [0, 1] (the set
of elements x in E with 0 ≤ x ≤ 1).

In C([0, 1]) 0 and 1 are the only components. For a general compact space
K the components of C(K) are the characteristic funcitons χU where U is
a open subset of K i.e. a subset which is simultaneously closed and open
(note that this condition means precisely that χU is continuous). In S(µ) the
components are the characteristic funcitons of easurable subsets – the same
holds for the space Lp(µ). In S(µ) resp. Lp(µ) they are the corresponding
equivalence classes.

An important fact for us is that C(E) is a Boolean algebra.

Proposition 26 C(E), with the ordered induced from E, is a Boolenalgebra
and, for each e ∈ C(E), e′, the complement of e in the sence of 1.27, is 1− e.
C(E) is complete if E is Dedekind complete.

Proof. (i) We show that C(E) is closed under suprema in E. If A ⊂ C(E)
and e := supE A exists, then

0 ≤ e ≤ 1 and 0 ≤ 1− e ≤ 1− e for each e1 ∈ A.

Hence 0 ≤ e1 ∧ (1− e) ≤ e1 ∧ (1− e) = 0 for each e1 ∈ A and so

e ∧ (10e) = (supA) ∧ (1− e) = sup
e1∈A

e1 ∧ (1− e) = 0

i.e. e ∈ C(E).
(ii) Since e ∈ C(E) if and only if (1− e) ∈ C(E) it follows that C(E) is closed
under infima in E.

Hence C(E) is a lattice with 0 and 1. It is distributive as a sublattice of
the distributive lattice E and it is complete if E is Dedekind complete.
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(iii) We show that e ∈ C(E) has a complement, namely (1− e). By definition
of C(E), e ∧ (1− e) = 0. On the other hand

e ∨ (1− e) = e+ (1− e) = 1.

Corollar 7 (i) e1 ⊥ e1e1 + e2 ∈ C(E) (e1, e2 ∈ C(E));
(ii) if e1 ≤ e2, e2 − e1 ∈ C(E);
(iii) e1 − (e1 ∧ e2) ⊥ e2(e1, e2 ∈ C(E)).

Proof.

(i) e1 + e2 = e1 ∨ e2
(ii) (1 − e2) ⊥ e2 and so (1 − e2) ⊥ e1. Hence 1 − e2 + e1 ∈ C(E) and so
e2 − e1 ∈ C(E).
(iii) e1 − (e1 ∨ e2) = e1 + [(−e1) ∨ (−e2)] = 0 ∨ (e1 − e2) ≤ 1− e2.

For concrete Riesz spaces we can identify this Boolean algebra se follows:
if E = RS then C(E) is naturally isomorphic to P (S). Similarly, if K is
compact, then C(C(K)) is the algebra Clopen (S) of clopen subsets of K. If
E is one of the spaces S(µ), of Lp(µ), then C(E) is the albegra of measur-
able (resp. p-integrable) subsets of Ω (a measurable set is p-integrable if its
characteristic function is in L

√
).

Exercise Use 1.44 to show that if X is a Boolean algebra then there is a
Riesz space E with C(E) = X .

The following simple result shows how to construct components in certain
Riesz spaces: if E is an Archimedean Riesz space with unit 1 and E1 is a
band in E then πE1

(1) (if it exists) is a componen in E. For 1 has the
decomposition e+ (1− e) in E1 ⊕ E⊥

1 and so e ⊥ (1− e).
Another useful observation is given in the following exercise:

Exercise Let E be a Dedekind -complete Riesz space with unit. Then the
mapping e 7→ B(e) is a bijection from C(E) onto the set of principal bands in
E. If now x is an element of a Dedekind -complete Riesz space E with unit
1 we write

e(x) := πx(1) = sup{1 ∧ n|x| : n ∈ N}.

This is a lattice theoretical version of the support of a function. For example,
if x ∈ S(µ), then e(x) = χN where N is the support of x.

We list some simple properties of e(x).
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• if x ≤ y, then e(x) ≤ e(y) (for x ≤ y implies that B(x) ⊂ B(y) and
this in turn means that e(x) ≤ e(y));

• if x ⊥ y then e(x) ⊥ e(y) (for x ⊥ yB(x) ⊥ B(y)e(x) ⊥ e(y));

• if A is a subset of E whose supremum exists, then
e(supA) = sup{e(x) : x ∈ A} (for if y = supA then

e(y) = sup
n∈N

{1 ∧ |ny| : n ∈ N} = sup
n∈N

sup
x∈A

(1 ∧ |nx|) (21)

= sup
x∈A

sup
n∈N

(1 ∧ |nx|) = sup
x∈A

e(x). (22)

(Wearetacitlyassumingthat

Aisclosedunderfinitesupremaandinfima.)

Exercise Show that e(x) = e(x+) + e(x−).
Now suppose that x ∈ E with E Dedekind -complete, with unit 1. Then

we define:

eλ(x) := e((λ1− x)+ (λ ∈ R); (23)

Bλ := B((λ1− x)+), (24)

πλ := πBλ
(λ ∈ R). (25)

In S(µ) for example, eλ(x) is the characteristic function of Nλ where Nλ is
the set {x < λ}. The reader is invited to compare the following result with
III.1.5.

Proposition 27 Lemma If x ∈ E and λ ≤ µ in R, then
(i) eλ(x) ≤ eµ(x);
(ii) λ(1− eλ(x)) ≤ x− πλx;
(iii) λ(eµ(x)− eλ(x)) ≤ (πµ − πµ)(x) ≤ µ(eµ(x)− eλ(x));
(iv) eµ(x) = sup{eλ(x) : λ < µ};
(v) supλ∈R{eλ(x)} = 1, inf{eλ(x)} = 0;
(vi) (eµ2

(x)− eµ1
(x) ⊥ (eλ2

(x)− eλ1
(x)) where λ1 ≤ λ2 ≤ µ1 ≤ µ2 in R.
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Proof.

(i) λ ≤ µλ1− x ≤ µ1− x(λ1− x)+ ≤ (µ1− x)+eλ(x) ≤ eµ(x)
(ii) if y ∈ E, then y−πB(y+)(y) = y−t+ ≤ 0. Applying this with y = (λ1−x)
we get

(λ1− x)− πλ(λ1− x) ≤ 0 i.e. λ(1− eλ(x)) ≤ χ− πλ(x).

(iii) if λ ≤ µ, then πλ ◦ πµ = πµ ◦ πλ = πλ and so, appluing πµ to (ii), we get

λ(eµ(x)− eλ(x)) ≤ πµ(x)− πλ(x).

On the other hand

(πµ − πλ) = (πµ − πλ)πµ(x) ≤ (πµ − πλ)(µeµ(x)) (26)

= µ(eµ(x)− eλ(x)). (27)

(iv) since E is Archimedean

µ1− x = sup{λ1− x : λ < µ}

and so
(µ1− x)+ = sup{(λ1− x)+ : λ < µ}.

Hence eµ = sup{eλ(x) : λ < µ}
noindent (v) let e := sup{eλ(x)}. Then for each λ > 0

0 ≤ λ(1− e) ≤ λ(1− eλ(x)) ≤ x− πλx ≤ |x|

ando so 1− e = 0 e.e. e = 1.
The second part can be proved similarly.

(vi) eµ2
(x)− eµ1

(x) ≤ 1− eλ2
(x) and eλ2

(x)− eλ1
(x) ≤ eλ2

(x) and so

eµ2
(x)− eµ1

(x) ⊥ eλ2
(x)− eλ1

(x).

Motivated by this result we define a spectral system in an Archimedean
Riesz space E with unit 1 to be a mapping : R → C(E) so that

• (λ) ≤ (µ) if λ ≤ µ;

• (µ) = sup{(λ) : λ < µ};

• inf{(λ) : λ ∈ R} = 0, sup{(λ) : λ ∈ R} = 1.
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In particular, λ 7→ eλ(x) is a spectral system.
Using a spectral system we can define a functional calculus in the following

way (recall the definition of the Riemann integral): into R. Then if p =
[t0, . . . , tn] is a partition of [a, b] (i.e. a = t0 < · · · < tn = b) we define

suP =
n−1
∑

i=0

sup{x(λ) : λ ∈ [titi+1[}((λi+1)− (λi))

slP =

n−1
∑

i=0

inf{x(λ) : λ ∈]ti, ti+1[}((λi+1)− (λi)).

The set of all such partitions is a directed set (under the ordering “P1 refines
P”) and so we can regard {suP : P ∈} and {slP : P ∈} as nets.

Proposition 28 • The net suP (resp. slP is decreasing resp. increasing;

• infP∈ s
u
P = supP∈ s

l
P ;

• both nets converge in teh sense of the norm induced by the unit element
to a common value.

The proof is entirely analogous to the proof of the existence of the Reimann
integral for continuous function and is left to the reader. By virtue of this
result we can write

∫

xd for the common value of these limits. We can now
state our order theoretical spectral theorem:

Proposition 29 (Freundenthal spectral theorem: If E is a Dedekind
-complete Riesz space with strong unit 1 and x ∈ E with |x| ≤ K1 (K > 0)
then

x =

∫ K

−K

deλ(x).

Proof. We need only remark that sP ≤ x ≤ suP for each P (where we are
using the above notation applied to the integral of the identity function with
respect to the spectral system (eλ).
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Exercises A. A Riesz space E has the principal projection property if
for every principal band E1 in E the projection πE1

exists. Prove

• that this property implies that E is Archimedean;

• that 2.38 holds also for spaces with the principal projection property
(in place of Dedekind -complete ness).

B. (an order theoretical version of the spectral theorem for unbounded op-
erators). Let E be a Dedekind -complete space with unit 1. Show that for
each x ∈ E

∫ N

−N

λdeλ(x)@ > (o) >> x as N → ∞.

(Assume that x ≥ 0 and put xN := x∧N1. Apply 2.38 to xN and show that
XN@ > o >> x.)
C. (this exercise yields yet another proof of the Radon-Nikodym theorem).

Let Ω be a set, a Boolean algebra of subset. Denote by Mf () the set of
finitely additive measures on so that

sup{|µ(A)| : A ∈} < ∞.

(i) Show that Mf(), with the natural ordering is a Dedekind complete Riesz
space;
(ii) if is a -algebra and M() denotes the countable additive measures in Mf(),
show that M() is a band in Mf ();
(iii) if µ, ν ∈ M(), then µ ⊥ ν if and only if A = A∪B where A,B ∈, A∩B =
and |ν|(A) = |µ|(B) = 0;
(iv) if µ, ν ∈ M(), ν is in the band generated by µ if and only if |ν| is
absolutely continuous with respect to |µ|;
(v) ν is a component of B(µ) if and only if there is an E ∈ so that

ν : A →

∫

A

χEdµ;

(vi) (the Radon-Nikodym theorem) let µ be a positive measure inM() and let
ν be a positive µ-absolutely continuous measure. Then there is an x ∈ L1(µ)
so that

ν : A →

∫

A

xdµ (A ∈).

One of the most important questions on Riesz spaces is that of their
representation as funciton spaces and we now bring a simple result of this type
whic will be used as the basis for more important ones later. We prove namely
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that every Dedekind complete Riesz space with strong unit is isomorphic
to a space C(K) for some compact, extremally disconnected K (cf. the
representation theorem for commutative B∗-algebras). To do this we first
gibe a lattice theoretical definition of simple functions or step functions.

Definition Let E be a Riesz space with unit 1. x ∈ E is said to be simple
if it has a representation

∑n
i=1 λiei where the λi are in R and the ei are

elements of the Boolean algebra C(E) of components. We denote the set
of simple elements by Es then it clearly has a representation of the form
x =

∑n
i=1 λiei where

∑

ei = 1 and ei ⊥ ej for i 6= j. We tacitly assume
below that our representations have this property. Note that if x, y are in Es

they have such representations

x =
n
∑

i=1

λiei

y =

n
∑

i=1

µiei

with the same ei (for if x =
∑l

j=1 λje
′
j and y =

∑m

k=1 µke
′′
k then x, for

example, has the representation

l
∑

j=1

m
∑

k=1

λje
′
j ∧ e′′K .

For the Riesz spaces C(K), S(µ),L
√
(µ) etc., the simple elements are the

appropriate step functions (continuous or measurable).

Lemma 2 • if x =
∑m

i=1 λiei =
∑n

j=1 µje
′
j then λk = µ1 whenever ek ∧

e′l > 0;

• if
∑n

i=1 λiei 6=
∑n

j=1 µje
′
j there exist k and l with ek ∧ e′l > 0 and

λk 6= µl;

• if x =
∑n

i=1 λiei, y =
∑n

i=1 µiei then x ≤ y implies that λk ≤ µk

whenever ek > 0;

• if x =
∑n

i=1 λiei and |x| ≤ 1 then λk ≤ whenever ek > 0.
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Proof.

• πek∧e′l(x) =
∑n

i=1 λiπek∧e′l(ei) = λkek ∧ e′l;

• follws from the fact that x =
∑m

i=1

∑n
j=1 λiei ∧ e′k;

• λkek = πek(x) ≤ πek(y) = µkek;

• follows from 3).

Now let E be a Riesz space with unit 1. Then we konw that there is a
compact space S and a Boolean algebra isomoprhism e → Se from C(E) into
Clopen (S). If e ∈ C(E) we write ê for the characteristic function χSe

of Se

– of course, this is an element of C(S).
If x =

∑n
i=1 λiei is a simple element of E we write x̂ for the function

∑n

i=1 λiêi in C(S).

Proposition 30 Lemma The mapping x → x̂ is a Riesz space isomorphism
from Es onto the space of simple funciton in C(S). It is an isometry from
Es′ provided with the norm || ||1 defined by the unit of E, into C(S) (with the
supremum norm).

Proof. It follws from 2.41 1) and 2) that the mapping is well defined
and injective. It is clearly surjective. By 3) it is posivite and so a Riesz
isomorphism. It is a norm-isometry by 2.41.4.

Exercise Show that if Sis a -stonian space then the continuous characteris-
tic functions separate S. Deduce that the simple functions in C(S) are dense
in C(S).

Proposition 31 Let E be a Dedekind -comlete Riesz space with strong unt
1. Then Es is norm dense in E.

Proof. This is a consequence of the Freudenthal spectral theorem 2.38 since
the partial sums suP with converge to x are in Es.

If we combine the facts contained in 2.42, 2.43 and 2.44 then we see that
the isometry x → x̂ form Es into the space of simple functions in C(S) can be
extended in a unique way to a linear isometry from E onto C(S). We denote
this extension also by x → x̂. Then we have the following representation
theorem:
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Proposition 32 Let E be Dedekind -complete Riesz space with strong unti
1. Then there is a unit-preserving Riesz isomorphism and norm isometry
from E onto a space C(S) where S is a compact -Stonian space.

We conclude this section with some remarks on elementary properties of
spaces of operators between Riesz spaces, in particular, on duality for Riesz
spaces. Firstly we note the simple fact that if E is a Riesz space and P =
{x ∈ E : x ≥ 0}, then any operator T from P into a linear space F which
satisfies the conditions

T (x+ y) = T (x) + T (y) )x, y ∈ P )

and
T (λx) = λT (x) (λ ≥ 0, x ∈ P )

can be extended (in a unique manner) to a linear operator from E into F .
The required extension is the operator

T : x 7→ T (x+)− T (x−).

Definition A linear operator T : E → F between Riesz spaces is regular
if it can be expressed as the difference T1 − T2 of positive linear operators.
We write Lr(E, F ) for the space of regular oparators. These operators can
be conveniently charcterised as follws:

Proposition 33 Consider the following conditions on a linear operator T ∈
L(E, F ) between Riesz spaces:

• ther is a positive linear operator S so that

Tx ≤ Sx (x ≥ 0);

• T is regular;

• for each x ≥ 0 in E, T ([0, x]) is bounded from above in F .

Then 1) and 2) are equivalent and each imply 3). If F is Dedekind com-
plete, then all three are equivalent.
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Proof. 2) ⇒ 1): If T = T2 − T1 where T1 and T2 are positive, then

T (x) = T2(x)− T1(x) ≤ T2(x) (x ≥ 0).

1) ⇒ 2): T = S − (S − t) and S − T is positive by condition 1).
1) ⇒ 3): S(x) is an upper bound for T ([0, x]).
3) ⇒ 1): (for F Dedekind complete): For x ≥ 0 we define

s(x) = sup{T (y) : y ∈ [0, x]}.

Then the mapping x → Sx satisfies the conditions stated befor 2.46 and so
can be extended to a positive linear operator from E into F which majorises
T (we verify the additive condition on S – the positive homogenity is trivial.
If x1 ≥ 0, x2 ≥ 0 in E, we have

S(x1 + x2) = supT ([0, x1 + x2]) (28)

= supT ([0, x1] + [0, x2]) by (29)

= supT ([0, x1]) + supT ([0, x2]) (30)

= supS(x1) + S(x2). (31)

Exercises A. Let T be a linear operator between the Riesz spaces E and
F . Show that the following are equivalent:

• T is positive;

• if x ≤ y, then T (x) ≤ T (y);

• |Tx| ≤ T (|x|) (x ∈ E).

B. Show that if T is an additive operator from E into F where E is a Riesz
space and F is an Archimedean RIesz space so that Tx ≤ Ty whenever
x ≤ y, then T is homogeneous.
C. Let T be a linear operator from a Riesz space E into a Dedekind complete
Riesz space F . Show that T is regular if and only if for each u ≥ 0 in E,
there is a v ≥ 0 in F so that T is continuous from (Eu′ || ||u) into (Fv′ || ||v).

Note that the space Lr(E, F ) is a POVS under the natural ordering (i.e.
S ≤ TT − s is positive).

Proposition 34 If F is Dedekind complete, then Lr(E, F ) is a Dedekind
complete Riesz space.
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Proof. To show that Lr(E, F ) is a Riesz space, it suffices to show that for
each T ∈ Lr(E, F ), sup(T, )) exists. But the operator A constructed in the
proof of 2.47, 3) ⇒ 1) is clearly sup(T, 0).

To show that Lr(E, F ) is Dedekind complete, it suffices to construct a
supremum for a set M of positive operators which is closed under finite
suprema and is bounded from above, say by T0. We use the operator

S : x 7→ sup{T (x) : T ∈ M}

which is defined on {x ∈ E : x ≥ 0} and can be extended to E in the
standard way. (Note that the above supremum exists since the appropriate
set is bounded from above by T0x).

Exercises A. Show that if T, T1, T2 ∈ Lr(E, F ), and x ≥ 0 in E, then

|T |(x) = sup{T (y) : |y| ≤ x};

(T1 ∨ T2)(x) = sup{T1x1 + T2x2 : x1, x2 ≥ 0, x1 + x2 = x}.

Find a corresponding formula for the supremum of an arbitrary bounded
family of operators.
B. Show that

• if x ∈ E and T ∈ Lr(E, F ), then

|Tx| ≤ |T | |x|;

• if Tα@ > (0) >> T in Lr(E, F ), then Tαx@ > (0) >> Tx for each
x ∈ E;

• if (Tα) is increasing in Lr(E, F ), then Tα@ > (0) >> T if and only if
Tα@ > (0) >> Tx for each x ∈ E.

Definition Let E and F be a Riesz spaces. Recall that a positive linear
operator Txα ↓ 0. A linear operator T ∈ L(E, F ) is defined to be order
continuous if it is expressible in the form T2−T1 where T1 and T2 are positive
and order continuous. We write Lτ (E, F ) for the space of such mappings.
Similarly T is -order continuous if it is expressible as the difference of two
positive, -order continuous operators (defined after 2.13). L(E, F ) denotes
the space of -order continuous linear operators from E into F .
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Exercise Let T be a positive linear operator from the Riesz space E into
the Riesz space F and let P = {x ∈ E : x ≥ 0}. Show that the following are
equivalent:

• T is order continuous;

• T preserves suprema i.e. for every bounded subset A of P with supre-
mum

supT (A) = T (supA);

• for every net (xα) in P ,

xα ↑ x ⇒ T (xα) ↑ T (x);

• for every net (xα) in E,

x@ > (0) >> x ⇒ T (xα)@ > (0) >> T (x).

State and prove the corresponding result for σ-order continuous operators.

Proposition 35 Let E be a Riesz space, F a Dedekind complete Riesz space.
Then Lτ (E, F ) and Lσ(E, F ) are bands in the Riesz space Lr(E, F ).

Proof. We prove this for Lτ (E, F ). First note that it is clear that the sum
of two positive, order continuous linear operators is order continuous and
hence Lτ (E, F ) is a linear subspace of Lr(E, F ).

It is also clear that if 0 ≤ T ∈ Lτ (E, F ) and if S ∈ Lr(E, F ) with
0 ≤ S ≤ T , then S ∈ Lτ (E, F ). Hence Lτ (E, F ) is an ideal in Lr(E, F ). For
if S ∈ Lr(E, F ) and S ≤ |T2 − T1| where T1 and T2 are positive and order
continuous, then

0 ≤ S+ ≤ |S| ≤ |T1|+ |T2| = T1 + T2

and so S+ is order continuous. Similarly, S− is order continuous and hence
so is S = S+ − S−.

Finally, let M be a subset of Lτ (E, F ) whose supremum T exists in
Lr(E, F ). We show that T is order continuous. Without loss of general-
ity, we can suppose that each S ∈ M is positive and that M is sup-closed.
Then if xα ↑ x in E,

T (x) = sup
S∈M

{S(x)} = sup
S∈M

sup
α∈A

{S(xα)} (32)

= sup
α∈A

sup
S∈M

{S(xα)} = sup
α∈A

{T (xα)}. (33)
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Exercise Let F be an ideal in a Riesz space E. Show that the natural
mapping

πF : E → E/F

is order-continuous if and only if F is a band. State and prove a corresponding
result for σ-order continuity.

For the next result, we say that a subset E1 of a Riesz space E is order
dense in E if for each x ∈ E there is an A ⊂ E1 with x

·
→= supA. If A can

always be chosen to be countable, then E1 is σ-order dense.

Proposition 36 If E is an Archimedean Riesz space, then E is order dense
in its Dedekind completion. If E is a Dedekind σ-compelete Riesz space with
unit, then ES is σ-order dense in E.

Proof. The first statement in just 2.13.3), while the second follows imme-
diately from the Freundenthal spectral theorem.

Just as for metric completions, we have the standard type of result on
the extension of order continuous mappings on dense subsets:

Proposition 37 Let E1 be a (σ)-order dense Riesz subspace of a Dedekind
(σ)-complete Riesz space E, T a (σ)-complete Riesz space. Then T has a
unique extension to a (σ)-order continuous, linear operator T̃ from E into
F .

The proof is standard.
We now turn to duality for Riesz spaces. If E is such a space, we have

the following dual spaces:
E∗ – the algebraic dual;
Er – the space of bounded forms on E (i.e. Lr(E,R);
Eσ – the space of σ-continuous forms (i.e. Lσ(E,R);
Eτ – the space of τ -continous forms (i.e. Lτ (E,R).
It follows immediately from 2.53 that Er is a Dedekind complete Riesz

space and that Eσ and Eτ are bands therein.
We close this section with a discussion of the lattice theoretical properties

of the canonical emedding of a space in its bidual.

Lemma 3 Let f be a non-negative linear form on a Riesz space E and let
x ∈ E be non-negative. Then there exists a g ∈ Er with 0 ≤ g ≤ f ,
g(x) = f(x) and g(y) = 0 if x ∧ y = 0.
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Proof. If z > 0 in E we define

g(z) = sup{f(z ∧ nx) : m ≥ 0}.

It is clear that g is additive and positive-homogeneous. We extend it to a
linear form on E and this has the required properties.

Now if G is an ideal in the dual Er of a Riesz space, there is a natural
linear mapping x → x̂ from E into G∗ where x̂ : f 7→ f(x).

Proposition 38 If G is an ideal in Er, then the mapping x 7→ x̂ is a Riesz
space morphism from E into Gτ .

Proof. Firstly x̂ ∈ Gτ since if fα ↓ 0 in G, then fα(x)@ > (0) >> 0 and

so (̂fα)@ > (0) >> 0. To complete the proof, it suffices to show that if
x ∧ y = 0, then x̂ ∧ ŷ = 0. Suppose that f ∈ G with f ≥ 0. There is a
g ∈ Er with 0 ≤ g ≤ f , g(x) = f(x) and g(y) = 0 by the above Lemma.
Then g ∈ G and

(x̂ ∧ ŷ)(f) ≤ x̂(f − g) + ŷ(g) = 0.

Proposition 39 Corollary Let E be a Riesz space, f ∈ Er non-negative.
Then

f(|x|) = sup{g(x) : g ∈ Er, |g| ≤ f} (34)

f(x ∨ y) = sup{g(x) + (f − g)(y) : 0 ≤ g ≤ f}. (35)

Weremarkthatonecanactuallyshowthattheimageof

EinG(EandGasin2.58)isorderdense.

2.3 Banach lattices

We now consider vextor spaces with the double structure of an ordering and
a norm. As usual we impose a suitable compatibility condition:

Definition A normed lattice is a vector space with a norm and an or-
dering under which it is a Riesz space and the following condition holds: if
|x| ≤ |y|, then ||x|| ≤ ||y||. If E is complete with respect to the norm, it is
called a Banach lattice.

Examples of Banach lattices are the classical spaces Lp(µ) (1 ≤ p ≤
∞) and C(K) with the usual structures. Another instructive example is
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the following: let E be a Banach space with unconditional basis (xn) with
constant one (i.e. we have

∥

∥

∥

∥

∥

∑

n

lnxπ(n)

∥

∥

∥

∥

∥

≤
∥

∥

∥

∑

lnxn

∥

∥

∥

for any permutation π of N and any choise (i) of signs). Then we can define
on E an ordering by putting

x ≤ yfn(x) ≤ fn(y)

for each n where (fn) is the series biorthogonal to (xn).

Exercise Show that if x and y are elements of a normed lattice then

||x|| = ||x||, ||x+ y|| = ||x− y|| if |x| ∧ |y| = 0

and
max(||x+||, ||x−||) ≤ ||x|| ≤ ||x+||+ ||x−||.

It follows easily from the definitions that the operations

(x, y) 7→ x ∧ y

and
(x, y) 7→ x ∧ y

on a normed lattice E are uniformly continuous. Hence the positive cone
P = {x ∈ E :≥ 0} is closed as are intervals i.e. sets of the form {x ∈ E : a ≤
x ≤ b}.

Using the first statement, one can extend the lattice operations to the
norm completion of a normed lattice and it is not difficult to see that this
completion is a Banach lattice.

We now turn to the dual of a normed lattice. Of course there are two
natural candidates – namely Er and E ′. Fortunately, they coincide as we
now shall see (for Banach lattices):

Proposition 40 If E is a Banach lattice, then Er and E ′ coincide.
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Proof. Firstly, it is clear that each order interval of the form [0, x] is norm
bounded and so every element of E ′ is bounded on such intervals and so is
in Er. To prove the converse, suppose that f ∈ Er is not norm bounded. By
considering f+ nad f− separately, we can assume that f ≥ 0. Then we can
find a sequence (xn) in BE so that |f(xn)| ≥ 2n. Then if x =

∑

n
1
2n
|xn| one

checks that f(x) ≥ f
(
∑n

k=1
1
2k
|xk|
)

≥ n for each n which is a contradiction.
This result has the convenient consequence that the dual of a Banach

lattice is itself a lattice, in fact a Dedekind complete Riesz space. This
follows from the above and the simple observation that if f ≥ 0 in E ′, then

||f || = sup{f(x) : x ∈ BE , x ≥ 0}.

It follows immediately from 2.58 that the natural injection JE from E into
E ′′ is a Riesz space isomorphism from E onto sublattice of E ′′.

We now turn to concrete representations of suitable Banach lattices. Re-
call that the norm on a Banach lattice satisfies the inequalities

max(||x+||, ||x−||) ≤ ||x|| ≤ ||x+||+ ||x−||.

We now examine the two extreme cases:

Definition A Banach lattice E is an abstract L-space if the norm satisfies
the condition

||x+ y|| = ||x||+ ||y||

for x, y ≥ 0 in E. It is an abstract M-space if

||x+ y|| = sup(||x||, ||y||)

if x ≥ 0 and y ≥ 0 are disjoint elements of E.
Of course, the typical examples are L1-spaces and C(K) spaces respec-

tively. Just how typical these are is the object of the next result.

Lemma 4 Let E be an abstract L-space. Then E is Dedekind complete.

Proof. Suppose that (xα)A is an increasing net which is bounded above by
x. It will suffice to show that it has a supremum. We claim firstly that each
increasing sequence of elements of the net is Cauchy. For if

x1 ≤ x2 ≤ · · · ≤

is such a sequence, then by the additivity of the norm

||x2 − x1||+ ||x3 − x1||+ · · ·+ ||xn+1 − xn|| = ||xn+1 − x1|| ≤ ||x− x1||
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and so
∑

n ||xn+1 − xn|| < ∞ which implies the result. Now if the net
(xα) where not itself Cauchy, one could construct an increasing sequence of
elements from it which is also non-Chauchy. Hence (xα) is Cauchy and so
convergent. It is clear that its limit is a supremum.

We now come to our main representation theorem for L-spaces:

Proposition 41 Let E be an L-space with order unit 1. Then there is a
compact space K and positive Radon measure on K so that E is isometrically
isomorphic to L1(µ) under an mapping which preserves the lattice structures.

Proof. By 2.45, applied to the band generated by 1, we know that the
corresponding space Es of simple functions is lattice isomorphic to the sub-
space of simple functions of a C(K)-space where K is Stonian. We define a
measure on K by putting

µ(U) = ||e||

where e ∈ C(E) is such that ê = χU .
This measure is -additive on the clopen subset of K (since if a union of

clopen sets is clopen, then it is essentially a finite union by compactness).
By the results of I.5 it can be extended to a Radon measure on K. Now we
show that E and L1(K) are isomorphic in the sense of the above statement.
First note that the mapping x 7→ x̂ from Es into the space of simple function
of C(K) is a norm isometry for the L1(µ) norm on the latter. For the norm
of a component is unchanged by the very definition of |mu and so, by the
additivity property, the norm of an element of Es is also preserved. Now the
simple function σ in C(K) are dense in L1(µ). In addition, Es is densein E.
This follows from the Freudenthal spectral theorem. For if say x ≥ 0, then it
follows from the latter that x is the supremum of an incrasing sequence (xn)
is Es. It follows as in the proff of 3.5 that ||xn − x|| →).

Exercise A. Generalise 3.6 as follows. Show that if E is an L-space, not
necessarily with unit, then there is a locally compact space S and a Radon
measure µ on S so that E and L1(µ) are isomorphic in the sence of the
Proposition.
B. If 1 < p < ∞, then E is an abstract Lp-space if

||x+ y||p = ||x||p + ||y||p

whenever x, y ≥ 0. Show that if E is such a space and has an order unit
then there is a compact space K and a Radon measure µ on K so that E is
isomorphic to Lp(µ). What happens in the case where E fails to have a unit.
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We now turn to representations of M-spaces. Our method will be to use
duality theory to reduce to the case of L-spaces.

Lemma 5 Let E be an M-space. Show that its dual space E ′ is an abstract
L-space.

Using this fact, we can immediately obtain the following representation
for M-spaces:

Proposition 42 Let E be an abstract M-space. Then E is isometrically and
lattice isomorphic to a sublattice of a C(K)-spaces.

Proof. By the above Lemma, E ′ is an abstract L-space and so isomorphic
to an L1(µ) space. Hence E ′′ is isomorphic to a C(K). The result now follows
from the fact hat JE displays E as a sublattice of E ′′.

In view of this result the sublattices of C(K)-spaces are of some interst.
One way of construction such sublattices is as follows: Let S be a subset of
K ×K ×R+. If (s, t, λ) is a triple in S, then

{x ∈ C(K) : x(s) = λx(t)}

is clearly a sublattice of C(K). Hence so is the intersection

E = {x ∈ C(K) : for each triple (s, t, λ) ∈ S

x(s) = λx(t)}.

The interest of this example lies in the fact that these are the only closed
sublattices, a fact that we sahll not prove here (its proff uses the idea of the
proof of the Stone-Weierstraß theorem). However, we remark that once we
have this result, the following theorem can immediately be deduced from 3.9:

Proposition 43 Let E is an abstract M-space with strong unit, then E is
isometrically ordere isomorphic to a C(K)-space.
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