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1 Introduction

The modern theory of topology draws its roots from two main sources. One
is the theory of convergence and the related concepts of approximation which
play such a central role in modern mathematics and its applications. Since
the problems dealt with are of such complexity, the earlier ideal of obtain-
ing exact and explicit solutions in closed forms usually must be replaced by
methods which provide successive approximations to the solution. A famil-
iar example of this is the Newton method for obtaining approximate roots
of an equation of the form f(x) = 0 where f is a suitable function. The sec-
ond source is that branch of geometry which is often referred to as “rubber
sheet geometry” i.e. the study of those properties of a geometrical object
which remain unchanged under continuous deformations (in contrast, say,
to Euclidean geometry which is concerned with those properties which re-
main unchanged under congruence). It is remarkable that the same abstract
theory—topology—provides the framework for both topics. It is also rather
fortunate, since an introduction to the more informal and geometrical aspects
of topology is rather more digestible than a dry axiomatic approach which
has no intuitive material to draw on. For this reason, we begin with a brief
survey of topological notions for subsets of R". The usual (euclidean) metric
plays an important role here and this leads naturally to the introduction of
the general notion of a metric in the second chapter.

With this more intuitive material available, abstract topological spaces
are introduced in the next chapter and the various topological concepts are
clarified in this context. We also provide a small collection of pathologi-
cal spaces. The next chapter deals with the various methods of construct-
ing topological spaces. In particular, the construction of the quotient space
provides an opportunity for giving a brief survey of classical results on two-
dimensional spaces. the next three chapters are devoted to special topological
properties which eliminate much of the pathology that can occur in the most
general situations. We then treat two variations of the notion of a topological
space—uniformities and compactologies. In fact, the concept of a topological
space is, in a certain sense, unsatisfactory and owes its pre-eminence more
to a historical accident. For many applications, it can be profitably be re-
placed by one of the above ones. This will be particularly useful in the next
section where we consider structures on spaces of mappings between topo-
logical spaces. We conclude the first chapter with a discussion of three of
the most important special spaces—the Cantor set, the irrationals and the
Hilbert cube.



2 The topology of subsets of R"

The familiar objects of study in geometry are subsets of two and three (or
higher) dimensional space and have a topology which is intimately related to
the euclidean distance between points. Recall that the latter is defined by
the formula

d2<x7y) =

where x = (§) and y = (1;). (The reason for incorporating the rather
mysterious subscript “2” will become apparent below). For future reference
we note that this distance satisfies the following natural conditions: 1)
dy(z,y) > 0 and do(x,y) = 0 if and only if 2 = y;  2) do(z,y) = dao(y, v);
3) do(z,y) < do(z,y) + da(y, z) for points z,y, and z in R".
Using this distance function we can define the following concepts which
will be familiar from an elementary analysis course:

1. A sequence (z) in R" converges to a point x if and only if dy(xy, y) — 0.
Of course, this just means that the coordinates of the point x; converge
to those of x i.e. if 2 = (£F) and = = (&;), then £F — & for each 1.

2. A function f : A — B (where A and B are subsets of suitable euclidean
spaces) is continuous if and only if for each zg € A and for each € > 0,
there is a § > 0 so that da(f(x), f(xo) < € whenever dy(z, z0) < 0.

3. Two such sets A and B are homeomorphic if there is a bijection
f from A onto B which is such that f and its inverse f~! are both
continuous. Such an f is called a homeomorphism.

For example, the circle and the square are homeomorphic. However, the
unit interval [0, 1] is not homeomorphic to the unit circle. This is intuitively
clear and can be proved by the following informal argument, which can be
made precise by using the concepts of chapter 1.5: if we remove any point
from the unit circle, the latter remains in one piece (i.e. is connected in the
terminology of 1.5). The unit interval does not have this property. Hence the
two spaces cannot be homeomorphic.

A further (perhaps surprising) example of two homeomorphic sets are the
open interval ]0,1[ in R and R itself. Figure 1 displays a homeomorphism
between these two spaces.

1. An open ball in R" is a set of the form
U(x;e) ={y € R" : do(z,y) < €}.
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x is the centre of the ball, € the radius.

2. A subset U of R" is defined to be open if it is a union of open balls
i.e. if for each x in U there is an € > 0 so that U(x;e) C U. The
subset C' is closed if it contains the limit of any converging sequence
in the set. This is equivalent to either of the following formulations: a)
the complement R™\C' is open; b) each point x with the property that
U(z;e) NC # O for each € > 0 is in C. More generally, if A is a subset
of R", then a set U in A is relatively open (or simply open in A) if it
is of the form U N A where U is open in R". Similarly, the relatively
closed subsets of A are those of the form C'N A where C' is closed in
R".

In terms of these concepts, the above definition of continuity can be reformu-
lated as follows: f A — B is continuous if and only if for each relatively
open subset U of B, f~}(U) is open in A.

Owing to the importance of some particular subsets of R", we introduce
special notations for some of those which occur most frequently:

1. I denote the unit interval [0, 1] in the real line. Notice that I is home-
omorphic to any closed, bounded interval [a, b], a suitable homeomor-
phism being provided by the affine mapping ¢ — (b—a)t +a (cf. figure
2). Tis not homeomorphic to any of the following intervals: |0, 1], [0, 1],
[0, 00| ete.

2. More generally, I" is the standard hypercube in R" (cf. figure 3). This
is the subset {z € R" : 0 < ¢; <1 for each i} of n-space. Of course, it
is just the Cartesian product of n copies of 1.

3. S!is the unit circle in two-space i.e. the set

{r € R?:|z| = 1}.

4. More generally, S" = {x € R"™ : |z| = 1} is the n-dimensional
hypersphere. (Warning: it is not the Cartesian product of copies of
the circle. This latter space is the object of the next example).

5. T" (the n-dimensional torus or simply the n-torus) is the cartesian
product S* x -+ x S' of n-copies of the circle. As such, it is a subset
of R*. T? = S! x S' is the usual torus. As defined here it is a subset
of R* but one usually visualises it as a subset of R* as in figure 4. The
homeomorphism between these two surfaces is obtained as follows: each
point in S! has the complex representation e for some 0 € 0, 27][. We
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identify the pair (¢, e*®) in S' x S' with the point on the ring-shaped
torus with angular coordinates # and ¢ as in figure 4.

6. B" is the subset {z € R" : |z| < 1} of R"—it is called the unit cell of
the latter space. Its “boundary” is S"' (the notion of the boundary
of a set is also a topological one which will be introduced rigorously in
chapter 1.3).

Note that B" and I" are homeomorphic. It will often be convenient to
denote topological spaces which are homeomorphic to standard ones from
the above list by the same symbol since they are indistinguishable from the
topological point of view. Thus the boundary of the ellipsoid

2 2 2
{:L’ER?’:%—l—i—;#—i—g:l}
is homeomorphic to S? and so may be denoted by this symbol.

Concerning the concept of homeomorphism, a few words of warning are
in order. Firstly, in informal discussions on topology the property of being
homeomorphic is often paraphrased by stating that the two spaces can be
transformed into each other by means of smooth operations (such as stretch-
ing or shrinking, but not tearing). However, the two subsets of two-space
shown in figure 5 are homeomorphic but cannot be deformed into each other
(within the plane) by such operations. Often the appropriate concept for
subsets of R"™ is a sharper form of homeomorphism, involving the way in
which they live in the latter space. We say that two subsets of R" are em-
bedded there in the same way (up to topological equivalence) if there is a
homeomorphism h of n-space onto itself which maps one of the spaces onto
the other. Thus the two sets in the plane above are homeomorphic but are
not embedded in R? in the same way. They are, however, embedded in R?
in the same way.

A more spectacular example of this phenomenon is the so-called “horned
sphere” of Alexander which is illustrated in figure 6. It is a subset of three-
space which is homeomorphic to S? but is not embedded in R? in the same
way as the latter. (This should be clear from the diagram—the loop around
the horned sphere cannot be smoothly extricated from the sphere. There
is no such loop which has the same property with respect to the standard
sphere in space).

Another example of this phenomenon which has an attractive intuitive
basis is the topic of knots. A mathematical knot is defined to be a subset
of space which is homeomorphic to S!. Two such knots are pictured in
figure 7 (of course, in everyday parlance, the first one would be regarded



as being unknotted). The second is the simplest of all knots, called the
trefoil. The reader will note that the difference between them is that they
are not embedded in R? in the same way. Hence a knot (more precisely, a
mathematical knot) is an equivalence class of copies of S', the equivalence
relationship being that two such copies are embedded into space in the same
way. There exists a rich mathematical theory of such knots.

In this chapter, we will bring an elementary, non-rigorous approach to
some of the more appealing results of topology. We shall consider special
cases (for the plane) of results which are, in fact, valid in higher dimensions.
(These higher dimensional results will be proved rigorously in chapter III).
Our approach will be based on the concept of the winding number of suit-
able mappings in two dimensions. Although the geometrical meaning of this
concept and the properties of it which we shall require for our development
are intuitively obvious, it will not be possible to give a completely rigorous
treatment at this stage. Our approach will thus be rather informal.

We shall be concerned with continuous mappings from the circle into the
punctured plane i.e. the set R*\ {0}. In view of the importance of the latter
space in what follows, we introduce the notation PP for it. Functions of
the type mentioned above can be regarded as closed loops around the origin
(cf. figure 8). We can assign to such functions a number — the so-called
winding number — which describes how often the curve winds around the
origin. For example, the above curves have winding numbers 0,1, —1, —2
respectively (we are employing the usual convention that the anti-clockwise
direction is regarded as positive).

Before sketching how this concept can be given a rigorous topological
definition, we bring some preliminaries. Firstly, we note that in the above
discussion we can replace the circle by any space which is homeomorphic
to it. Thus it will often be convenient to consider the winding number
of mappings from OI*, the boundary of I’ (i.e. the square with vertices
(0,0),(1,0),(1,1),(0,1)), into PP. Now consider the two subsets

Ur={z=(£,§): & >0o0r & # 0}

and

UQZ{I‘I€1<OOT€27AO}
of the punctured plane. It is clear that they are open and that their union
is all of PP. The point of introducing them is that although there is no
continuous function on PP which measures the angle which a given vector
makes with the z-axis, there are such functions on U; and U,. More precisely,
there are continuous functions

0, :U; =] — 7, and 05 : Uy —]0, 27|
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so that
x = |z|(cosby(x),sin by (z)) (x € Uy)

resp.

x = |z|(cos Oy (), sin by () (z € Uy).

Now suppose that f is a continuous function from S' into PP. Then we
claim that there is a finite sequence of points sq, ..., s, which traverses the
unit circle in the anti-clockwise direction as in figure 9 (i.e. the sequence
does not double back) so that sy = s, and on each circular segment from
s; to s;11 the range of f lies either in U; or in Us. Intuitively, this fact is
rather obvious in view of the continuity of f but in order to give an exact
proof we shall require the concept of compactness which will be introduced
and studied in 1.7.

We now define the winding number of f by means of the following
formula

wlf) = 5= (T lsi) ~ B ()

where 6, is 6, or 0y according as the range of ¢ on the arc-segment between
s; and s;11 is in U; or in Us. Since the jumps in the function obtained at the
endpoints of the segments which arise from exchanging the two 6 functions
are always multiples of 27, it is clear that w(f) is a whole number.

We shall require some simple properties of the winding number. Firstly,
it is independent of the choice of subdivision. This is proved by showing that
if we have two such subdivisions, then we can combine the endpoints to form
one which is finer than both as in figure 10. It is not difficult to see that the
winding numbers defined by the original subdivisions are the same as those
defined by the common refinement.

For the next property, it will at first be more convenient to consider
functions from OI% into PP. We claim that if the function f has a continuous
extension to a function from I? into PP, then its winding number is zero.
The proof of this uses a very common type of argument. Once again, it
involves an application of compactness and so we shall merely sketch it.

Firstly, we dissect the unit square into four smaller ones as in figure
11. The restriction of f to the boundaries of these squares (which are also
homeomorphic to dS') defines four mappings foo, for, fio and fi; into PP
and these can also be assigned winding numbers. It is clear that we have the
relationship:

w(f) = w(foo) +w(for) +w(fio) +w(fi)

(for if we consider the definition of the various winding numbers of the four
submappings, then we can arrange for the subdivisions which define them



to match up at the common borders as in figure 12. Then if we sum the
expressions for the winding numbers, the terms which correspond to the
common segments cancel and we are left with the winding number of f).

We now repeat this process by dissecting the four smaller squares into
four new ones. We thus obtain 16 mappings whose winding numbers sum to
that of f. We can continue this process indefinitely. At the n-th stage, we
have 4™ mappings whose winding numbers sum to that of f. Each of these
mappings is the restriction of the continuous function to a very tiny square
and once again it is intuitively obvious that by choosing n large enough we
can arrange for each of these submappings to remain in either U; or Uy, which
implies that they have winding number zero. Hence that of f is zero.

Of course, this result means that if we have a continuous function f from
S! into PP which has a continuous extension to a mapping from B? into
PP, then its winding number vanishes.

We shall now use the winding number to prove some results on the topol-
ogy of the plane:

Proposition 1 There is no continuous mapping from B? into S' which is
such that r(x) =z for x € S'.

This follows immediately from the above considerations, since the restriction
of 7 to S! is then the identity which, of course, has winding number 1 in
contradiction to the above statement since the condition on r» means precisely
that it is a continuation of the identity function.

At this point, we remark that a continuous mapping r from a subset X
of n-space onto a subset X, of X which is such that r(z) = x whenever z is
in Xy is called a retraction from X onto X;. X, is then called a retract
of X. This is an important concept in topology since there is then a close
relationship between the topological properties of X and those of Xj. In this
context, the above result means that the circle is not a retract of B2

The next result is one of the famous theorems of topology. It is often
called the “crumpled handkerchief” theorem since it can be paraphrased as
follows: if one lays a handkerchief flat on a table, picks it up, crumples it
and replaces it so that it lies within the region which it previously covered,
then there is at least one point which returns to its original position.

The mathematical statement of the theorem is as follows:

Proposition 2 (The Brouwer fized point theorem in two dimensions) If f is
a continuous mapping from B? into itself, then f has a fized point i.e. there
is a point x € B* with f(r) = .



Proor. If f has no fixed points, then figure 13 shows how to construct a
retraction r from B? onto S'.
]

The third result concerns the non-existence of certain vector fields on
spheres. A vector field on S” is a continuous mapping f from S™ into R™**
so that f(z) is perpendicular to x for each z. If we transfer the vector f(x)
so that its initial point is at x, then we can visualise such a field as a “hairy
ball”.

We shall be interested in vector fields which do not vanish at any point
of the sphere. Figure 14 shows that such vector fields exists on S'. Our
next result shows that such fields do not exist on the sphere. (The general
situation is that such a field always exists on spheres of odd dimension and
never on those of even dimension).

Proposition 3 (the “hairy ball” theorem) Every vector field on the two di-
mensional sphere has a zero.

The proof for the two dimensional case is as follows: Suppose that we have
a vector field which vanishes nowhere. We consider a point xy on the sphere.
Since the value of the field at xy is non-zero and since it is continuous there,
we can choose a very small circular neighbourhood of the point on which the
field is almost constant i.e. looks very much like the picture in figure 15.

We now cut this small disc from the sphere. The remainder is homeomor-
phic to B? so that we can regard the restriction of the vector field to it as a
continuous mapping from B? into PP. Hence its restriction to the boundary
has winding number 0 by the above. However, the following diagram (figure
16) should convince the reader that the winding number is in fact 2.

The Borsuk-Ulam antipodal theorem The following result has found
its way into popular works on topology as the statement that at any given
time there are two antipodal points on the surface of the earth at which the
temperature and humidity level coincide. Its mathematical statement is as
follows:

Proposition 4 Let f and g be continuous functions from S* into the real
line. Then there is an xq in S* with f(x¢) = f(—x0) and g(xo) = g(—20).

PROOF. We consider the continuous function
G:xe (f(x) — f(=2),9(x) — g(—x))

from S? into R?. The result to be proved is clearly equivalent to the claim
that G has a zero. The proof is by contradiction. We suppose that G has no
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zeros. Consider then its restriction to the upper hemisphere. The latter is
homeomorphic to B? and G maps the latter into PP. Hence, by the above,
the winding number of its restriction to the equator is zero. We shall deduce
a contradiction by using the symmetry of GG to show that its winding number
cannot be equal to zero. Suppose that we calculate the winding number of
G by using a dissection of the

circle which is symmetric as in figure 17. Then it is clear that the angular
change on any one arc is the same as that on the opposite one. Hence the
winding number is twice the angular change between sg and s, (divided by
27). But the latter must be an odd multiple of 7 and so the winding number
of G cannot be zero.

3 Metric spaces:

We now abstract from the above concrete situation by using a standard
method—we use the essential properties of the metric used above to define the
concept of an abstract metric spaces. It is then a routine exercise to extend
many of the above definitions and properties to this abstract situation. Since
much of these (in the concrete situation) will be familiar from a standard
Analysis course, we will not spend much time on motivational remarks.

Definition: Let X be a set. A metric on X is a mappingd: X x X — R
so that

1) d(z,y) > 0 and d(z,y) = 0 if and only if z = y;

2) d(z,y) = d(y, z);

3) d(x,2) < d(z,y) + d(y, z) all these for x,y,z € X.

We can then use the metric to define all of the concepts which we have
discussed in the context of subsets of R"™. Before doing so, we consider some
further examples.

I. The discrete metric: If X is a set, we define a metric dp on X by setting
dp(z,y) to be equal to 1 if 2 and y are distinct and to be equal to 0 otherwise.
IT More generally, if we have a family {(X,,d,)} of metric spaces, then we
can define a metric d on their disjoint union X = I1.X,,, by putting d(x,y) = 0
if x and y come from different X’s. If both come from the same one, say X,,
we define d(x,y) to be d,(x,y). The example of I is the case where each X,
is a singleton.

ITI. The indiscrete semi-metric: If X is a set, we consider the mapping d;
which associates to each pair (x,y) the value zero. This is not a metric since
it fails the second part of condition 1) above. However, it does satisfy the
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other conditions. Such a mapping is called a semi-metric. It can be used
to define continuity and convergence in exactly the same way as for metrics.
However, we shall see later that convergence can then have some rather odd
properties.

Using a metric, we can define the following concepts which will provide
the basis for our treatment of topological spaces.

A subset N of X is said to be a neighbourhood of a point z if there is
an € > 0 so that U(z,e) C N where U(z,€) denotes the set {y : d(z,y) < €}
(the open ball with centre z and radius ¢).

Note that if N; and N, are neighbourhoods of z, then so is their intersec-
tion NyN Ny (since if U(x, e1) C Ny and U(x, €3) C No, then U(xz, €) C NyNNy
where € = min(ey, €5)). It is trivial that if N is a neighbourhood of x, then so
is any superset of N. Further if we denote by A (§) the family of neighbour-
hoods of z, then the intersection of the sets of N/(§) is the one-point set {z}.
(For if y # x, then € > 0 where € = d(z,y) and U(z, §) is a neighbourhood
of z which does not contain y).

A subset U of a metric space X is said to be open if it is a neighbourhood
of each of its points i.e. for each x € U there is an € > 0 so that U(x,¢) C U.
This is equivalent to the fact that U is a union of open balls. It is clear that
the empty set ) and X are open. Also any union resp. finite intersection
of open sets is open. Continuity of mappings: Let (X, d) and (Y, d;) be
metric spaces, f : X — Y a mapping between them. f is continuous at
xo € X if for each positive € there is a 6 > 0 so that d(x,y) < § implies that
di(f(x), f(y)) < e. It is continuous on X if it is continuous at each point
of X. This can be expressed in terms of neighbourhoods resp. open sets as
follows. f is continuous at z if and only if whenever N is a neighbourhood
of f(zo), f~H(N) is a neighbourhood of zy. (for the original condition means
that f~Y(U(f(x0),€) D U(xp,d)). Similarly f is continuous on X if and
only if f~1(U) is open for each U open in Y.

A bijection f : X — Y is a homeomorphism if both f and f~! are
continuous.

As in the case of functions on R, we can use the metric to introduce two
stronger notions of continuity — those of uniform continuity and Lipschitz
continuity. A function f : X — Y as above is uniformly continuous if
for each positive € there is a positive ¢ so that di(f(x), f(y)) < € whenever
d(xz,y) < 0. f is Lipschitz continuous if there is a positive K so that we
have the estimate di(f(z), f(y)) < Kd(z,y) for x,y in X. It is clear that
Lipschitz continuity implies continuity which in turn implies continuity. Of
course, none of these implications is reversible.

Such functions enjoy the expected stability properties. Thus compositions
of continuous (uniformly continuous resp. Lipschitz continuous functions)
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have the same properties. Care is required, however, with products. Thus the
product f.g of two Lipschitz continuous functions with values in R need not
be Lipschitz (as the example where both f and ¢ are the identity mapping
on the real line shows). However, the product of two bounded, Lipschitz
continuous functions is Lipschitz continuous, as the reader can verify. Similar
remarks apply to uniformly continuous functions.

3.1 Convergence of sequences:

A sequence (z,) in a metric space (X,d) converges to a point z in X if
d(xn,x) — 0. In terms of neighbourhoods, this can be reformulated as
follows: x, — x if and only if for each N € N (§) there is a K € N so that
x, € N whenever n > K. Note that a mapping f from X into Y is then
continuous if and only if f(z,) — f(z) in Y whenever z,, — = in X.

The closure of a set A is the set A consisting of those x which have the
following property: for each positive ¢, there is a y € A with d(z,y) < € (i.e.
for each € > 0, U(x,e) N A # ()). We say that A is closed if A = A. This
can be reformulated as follows: for each y not in A there is a > 0 so that
U(y,0) € X\ Aie X\ Aisopen. Notice that = is in the closure of A if
and only if there is a sequence (z,,) in A which converges to x (take z,, to be
an element of ANU(z,+)). Hence A is closed if and only if it contains the
limits of converging sequences with terms in A. In the metric space (X, dp),
a sequence converges to x if and only if there is an N € N so that x, = z for
n > N. (We say then the sequence is eventually constant). In a space with
the indiscrete semi-metric, every sequence converges to every point. (This
shows, in particular, that in the absence of the definiteness condition on the
metric, limits of sequences need not be unique). Every function from a set
X with the discrete metric into a second metric space is continuous. On the
other hand, every function from a metric space into a set with the indiscrete
semi-metric is continuous.

A subset A of a metric space X is dense in X if its closure is equal to X.
This means that every element of the latter space is the limit of a sequence
in A. The classical example is Q, the set of rational numbers, which is dense
in the real line.

We continue with some more pathological examples of metric spaces:
IV. The post office metric: This is a metric on the plane. The distance
between two points x and y is defined to be the sum |z| + |y| of the lengths
of the vectors if  and y are distinct. Otherwise it is defined to be zero. (The
reader should imagine the origin as an operating centre through which every
signal from x to y has to pass). One can check that this is a metric. In fact,
it is probably easier to verify the following more general fact from which it
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follows immediately. If we define the distance between two points P and @)
in the plane to be the shortest length of a path from P to () under suitable
restraints, then this will be a metric provided the latter satisfy some natural
conditions such as the following;:

a) the constant path from P to P satisfies the restraints;

b) if a suitable path from P to () satisfies the restraints, then the same path
taken backwards is a suitable one from @) to P;

c) if we have a suitable path from P to Q) resp. from @ to R, then we can
join them together to form a suitable path from P to R. In the above case,
a path from P to @ is defined to be suitable if it goes through the origin
(Except in the trivial case where the endpoints coincide — then there is no
restraint).

Using this general fact it is easy to describe two further examples — the
taxi-driver’s metric and the Washington DC metric.

Metrics on R": We have already considered the euclidean metric on n-
space. Two further useful metrics are
VI. d; where

di(z,y) = > |& = nil.
i=1

VII. d, where
doo<x7y> = nax ‘gl - 77@|

Note that we have the following inequalities:

From this it follows immediately that each of these metrics induces the same
notion of convergence.

We now consider some infinite dimensional spaces.
VIIL. ¢*. This is the space of bounded sequences in RN i.e.

> = {:E = (gn) : Sup |§n| < OO}
On this space we define the supremum metric
doo = sup{|&, — nu| : n € N}

IX. % is the space of sequences r = (&,) which are square summable
i.e. such that > [£,|> < oo. The metric dy on this space is defined by

the formula do(x,y) = /D |& —mi?. X. ' is the space of absolutely
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summable sequences i.e. those z € RN with 3 |€,| < co. On this space we

use the metric

XI. C(]0,1]) denotes the space of continuous, real-valued functions on the
unit interval. On this space we define the following three metrics:
the supremum metric: d(z,y) = sup, |x( ) —y(t)];

the L:-metric: do(x,y) \/fo |z (t) — y(t)|2dt;

the L'-metric: d;(z,y) fo |x(t) |dt

We omit the routine and unexcmng proofs that the above really are met-
rics. In contrast to the finite dimensional case, these three metrics define
completely different notions of convergence in the space C(]0, 1]).

We now introduce two further, highly important examples of metric

spaces:
XII. The Hilbert cube i.e. the subset

(r=(6) e lel <)

of * — regarded as a metric space with the metric dy. (This is the natural
infinite dimensional analogue of the hypercube in R").

XIII. The Cantor set: Recall the classical definition of the Cantor set via
missing thirds. We consider the sequence (F},) of closed subsets of the unit
intervals as in Figure 1 (i.e. those obtained by removing successively the
middle thirds of the intervals). The intersection (] F, is a closed subset of
the interval and, in particular, a metric space. It consists of those points in
the unit interval which have a tryadic representation of the form » >~ @, 37"
where the coefficients a,, are either 0 or 2. (For we remove those tryadic
numbers whose n-th coefficient is 1 at the n-th stage of the construction).
Because of its importance we denote this topological space by Can Note that
at the k-th level of the construction, we split the interval into 2* sub-intervals.

If we denote these by A¥ ... A% then F, = Ufil AF and the Cantor set is

2k7
oo 2k
Can = ﬂ U Af.
k=11i=1

Later we shall encounter a less geometric description of the Cantor set, which,
however, is often more convenient for analysing its properties.

We now turn to some aspects of the theory of metric spaces which use the
metric explicitly. We begin with completeness. This is a generalisation of the
distinguishing characteristic of the real numbers in contrast to the rational
ones — the existence of limits for sequences which should converge. This is
usually an essential property in applications to analysis.
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Definition: A sequence (z,) in a metric space is Cauchy if the follow-
ing condition is satisfied: for each positive € there is an N € N so that
d(xpm, x,) < € for m,n > N. The metric space (X,d) is complete if each
Cauchy sequence converges there.

Before considering concrete examples, we note that the property of a
sequence being Cauchy is not a topological one i.e. it is not preserved under
homeomorphisms. For example, consider the mapping f : n — % from N
onto D = {1 : n € N}. We regard both of these sets as metric spaces
(with the metric induced from R). Then f is a homeomorphism. However
the sequence (+) is Cauchy in D but its image in N under the continuous

mapping f~! is not Cauchy there.

Examples of complete spaces: . Any set X, when provided with the
discrete metric, is complete for the trivial reason that any Cauchy sequence
therein is eventually constant and so convergent.

IT. The real line is complete. This is a fundamental property which will be
familiar from a course on elementary analysis.

ITI. Tt follows easily from the completeness of the real line that the higher
dimensional spaces R? are complete (with respect to any of the three metrics
dy,dy, dy introduced above). For a sequence in R? is Cauchy resp. conver-
gent if and only if the same is true of each of its components.

IV. Any closed subset of R? is complete. For if (x,,) is a Cauchy sequence in
such a set B, then this sequence has a limit in R, which, by the closedness,
must lie in B.

V. An example of a space which is not complete is the open interval |0, 1] in
the line. This fails to be complete since the Cauchy sequence (%) there is not
convergent. (Note that this space is homeomorphic to the real line which is
complete).

The above examples suggest the following simple facts: a) if X is a com-
plete metric space, then each closed subset thereof is complete under the
induced metric; b) If a subset X; of a metric space X is complete for the
induced metric, then X is closed in X.

We now consider the completeness of some infinite dimensional spaces:
The space (> is complete, as are ¢! and ¢?>. More generally, if S is an
arbitrary space, we can define a natural generalisation ¢>°(S) of the former
space as follows. This space is also complete. The space C([0,1]). This is
complete with respect to the supremum norm since it is a closed subspace of
the complete space £>°(S) (this is just a restatement of the well-known fact
that the uniform limit of continuous functions is continuous). We remark
here that the space C([0,1]) is not complete for the metrics d; and ds.
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Recall that a function f : X — X; where (X,d) and (X3, d;) are metric
spaces is Lipschitz continuous if there is a K > 0 so that

for each x,y € X. The smallest such K is then called the Lipschitz con-
stant of f. If the latter is strictly smaller than 1, then f is called a contrac-
tion. Lipschitz continuous functions enjoy an important property which is
described in the following Proposition:

Proposition 5 Let (X,d) and (X1,dy) be metric spaces where Xy is com-
plete and suppose that Xy is a dense subset of X. Suppose that f : Xg — X3
15 a Lipschitz-continuous function. Then it can be extended to a Lipschitz-
continuous function f from X into Xy. Furthermore, this extension is unique
and has the same Lipschitz constant as f.

ProoF. The proof is based on the simple observation that the image of a
Cauchy sequence under a Lipschitz mapping is also Cauchy. Suppose that z
is a point of X. It is then the limit of a sequence (x,) in Xy. The latter is then
Cauchy in X, and hence the image sequence (f(z,)) is Cauchy in X;. By
the completeness of the latter there is a y in X to which (f(x,)) converges.
The remainder of the proof consists of the verification of the following facts:
1) y depends only on = (and not on the choice of the sequence (z,)). For
if (2,,) is a second sequence in X, which tends to z, then d(x,, z,,) tends to
zero. It follows from the Lipschitz condition that d(f(x,), f(z,)) also tends
to zero. Hence (f(z,)) and (f(z,)) have the same limit.

2) The function f which maps x to the above z if x is not in X, (and agrees
with f on Xj) is Lipschitz. For if K is the Lipschitz constant of f and (x,)
resp. (y,) are sequences in X, which tend to x resp. y, then the inequality

d(f(wn), f(yn)) < Kd(wn, yn)

tends in the limit to the desired inequality

d(f(z), f(y)) < Kd(z,y).

Remark: In this proof we have tacitly used the fact that if x, — 2 and

Yn — y, then d(z,, y,) — d(z,y). The reader should check that this holds.
In the light of the above proposition, it is an important fact that every

metric space can be completed in the sense that it can be imbedded as a
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dense subset of a complete space. We prove this by means of the following
Lemma. Before stating it, recall that an isometry between two metric spaces
(X1,dq) and (X3, dy) is a bijection f so that do(f(x), f(y)) = di(x,y) for each
pair z,y in X;. If such an f exists, X; and X, are said to be isometric or
isometrically isomorphic.

Proposition 6 Let (X,d) be a metric space. Then X is isometric to a
subspace of the metric space (*°(X).

PRrROOF. Choose a fixed zg in X (we are assuming that X is non-empty). If
x € X, let f, be the function

foy = (d(x,y) — d(z, o).

Then |f.(y)| < d(x,xg) for each y and so f, € £*°(X). The mapping = — f,
is the required isometry.
]

Proposition 7 Let (X, d) be a metric space. Then X is isometric to a dense
subset of a complete metric space.

PROOF. The closure of the image of X in ¢*°(X) as in the above Lemma is
the required space.
]

We note the following properties of this embedding which follow imme-
diately from the above results:
I. Consider the embedding j from X into the above complete space which
we denote by Y. Then if f is a Lipschitz continuous mapping from X into
a second complete space Z, there is a unique Lipschitz mapping f from Y
into Z so that f = foj. (This is just a rather abstract and pedantic way of
saying that f is an extension of f if we regard X as a subspace of Y via the
isometry j).
IT. Any two complete spaces which contain X as dense subspaces in the above
way are isometrically isomorphic. More precisely, if Y] is a second space into
which X is isometrically embedded as a dense subspace via a mapping ji,
then there is an isometric isomorphism 7 from Y onto Y; so that [ o j = j.
The proof is simple. The mapping j; from X into Y] extends to a mapping [
from Y into Y; by the above extension property. I has the required properties.

This result implies that the space Y constructed above is essentially
unique and so independent of the method of construction. Hence we can
simply refer to it as the completion and denote it by X.
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Products of metric spaces: If (Xi,d;),...,(X,,d,) are metric space,
there are various natural ways of defining a metric on their product X; x
«++ X X,. As in the case of R", there are three particularly simple ones:

r,y) = diw,y)
(z,y) = /2 diwi, yi)?

(z,y) > max(d;(zi, i)

where x = (z;),y = (y;)-

Since these metrics are equivalent in the sense that they define the same
notions of convergent resp. Cauchy sequences, we are free to use any one of
them — it will be convenient to use the third one.

In the case of countable products [], . X, of metric spaces, we shall
assume at first that each metric is bounded by 1 i.e. that d,(z,y) < 1 for
each pair z,y in X,,. Then we define a metric d on the Cartesian product as
follows: if x = (z,,) and y = (y,), then

Aw9) = 3 5ol ),

The properties of the product which we shall require are as follows:

k

n

) in the product is Cauchy if and only if for each n
F)> | in X,, is Cauchy.

1. a sequence xy = (z
the sequence (z

2. a sequence (z}) as above converges to x = (,,) if and only if 2% — z,,
in X,, for each n.

3. [ X, is complete if each X, is.

PRrROOF. We prove the first statement. The proof of 2) is almost identical
and 3) follows from 1) and 2). Firstly, the natural projection from IT1X,,
onto X, is clearly Lipschitz (with constant 2™) for each m. This implies the
necessity of the above condition.

]

Now suppose that each sequence (z%) (as k varies) is Cauchy. We shall
show that (2*) is Cauchy. Given a positive €, choose N so that 2~V < £ and
a K € N so that if k,1 > K, then d,(z%, 2!) < s forn =1,...,N. Then
d(z*, 2!) <eif k,l > K.

We remark now that if (X,d) is an arbitrary metric space, then e :
(z,y) — min(1,d(x,y)) is a metric on X which has the same Cauchy se-

quences resp. convergent sequences as d. Hence we can define a countable
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product of arbitrary metric spaces by replacing their metrics by ones which
are bounded as above and then using this construction.

We shall be interested in the following examples of products of the form
XN where X is a fixed metric space. This is the special case of a product
where each of the components is the same.

L IN — a product of countably many copies of the unit interval. This space
is essentially the Hilbert cube. More precisely, the mapping (&,) — (%Sn) is
a homeomorphism from IN onto the Hilbert cube.

II. NN — the product of countably many copies of the natural numbers.
(the latter regarded as a metric space with the discrete metric). Strangely
enough, this space is homeomorphic to the irrational numbers and, from a
topological point of view, is their most convenient representation. The exact
proof of this requires some elementary number theory. Since we shall not
require this identification directly, we shall be content with the remark that
each sequence (&,,&s,...) in NN defines an irrational number by means of a
continued fraction.

This defines a mapping from NY into the irrationals which is, in fact,
a homeomorphism onto. This fact can also be proved without recourse to
number theory as follows. We list the rationals as a sequence r1,7s,... and
construct a countable family 7\ of partitions of the irrationals into countable
collections of intervals so that the length of each interval in 7, is at most
27" and so that r, is the endpoint of one of the intervals of Z\ but not of
any previous partition. Then each irrational number z is in precisely one
intersection of the form

I NI NI N...

where I! _ denotes the n;-th interval in Z,, etc. The mapping
T (ny,ng,...)

is the required homeomorphism from the irrationals onto N™.
I11. The space {0,1}N, i.e. the infinite product of countably many copies
of the discrete space {0,1}. This space is homeomorphic to the Cantor
set. In fact, if z = (&,) € {0,1}N, then f(z) = Y o7, 2?% is an element of
[0,1] — indeed, of the Cantor set. Once again, the mapping = — f(x) is a
homeomorphism from the product space {0, 1}N onto Can.

For future reference, we note the following fact which follows immediately
from this description of the Cantor set. There is a continuous surjection from

the Cantor set onto the unit interval I. Indeed
e Y o
’ n=1 2”
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is such a mapping.

Now this implies that there is a continuous surjection from Can™ onto
IN. But IN is the Hilbert cube and Can™ is ({0, 1}™)N and it should come
as no surprise that the latter space is once again the Cantor set. In fact, we
have:

Proposition 8 If X is a metric space, then XN and (X™)N are homeomor-
phic.

PROOF. An element of the second set is a sequence of sequences in X and so
can be regarded as a double sequence of such elements i.e. X = (X,,) where
X, = («I"). Now the latter double sequence can be straightened out into
a single sequence e.g. as the sequence (r1,z?%, 23, 3, z1,...). This defines a
homeomorphism from (X™N)N onto XN,

Putting this together, we see that there is a continuous mapping from
Can onto the Hilbert cube.

We now bring some results on metric spaces in which the completeness
plays an essential role. Firstly, if A is a subset of a metric space, then its
diameter is the number

diam (A) = sup{d(z,y) : x,y € A}.
(This can of course be infinite).

Proposition 9 Let (A,) be a sequence of non—empty, closed subsets of a
complete metric space (X, d) so that A,y1 C A, for eachn and oxdiam A, —
0. Then the intersection NA, is non-empty (and in fact consists of a single
point).

ProOOF. We choose for each n an z,, € A,. Then of course d(z,,,z,) <
diam Ay whenever m,n > N. Hence (z,) is Cauchy. Let = denote its limit.
Then z,, € A,, for m > n and so in the limit x € A,, since the latter is closed.
Since this holds for each n, we have that = is in the required intersection.
Suppose now that there were a second element y in this intersection, with
y # x. There is an n € N with oxdiam A,, < d(x,y). y cannot be an element
of A, (since x is in the latter). This provides a contradiction.

]

The next result is the basis of countless existence theorems in analysis.

Proposition 10 Let (A,,) be a sequence of closed subsets of a complete met-
ric space (X, d) whose union is X. Then |J A% is dense in X.
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PROOF. Suppose, if possible, that the conclusion is not valid. Then there
is a non-empty, open set U; with U; N (Y, 4n) = 0. Since U is not a
subset of Aj, the difference U;\ A; is non-empty (and open) and so contains
an open ball Vj of radius € > 0. Since Vj is not a subset of Ay, Vi\ A,
contains an open ball V5 of positive radius €. Continuing inductively, we
obtain a decreasing sequence (V},) of open balls, whereby V,, has radius ¢,.
Furthermore, V.1 C V,\A,. We can arrange for the radii ¢, to converge to
zero. Then by Cantor’s result the intersection of the V,, contains a point z.
It is clear that x is in none of the A,, which is a contradiction.

Exercise: In the above proof we committed the crime of applying the result
of Cantor to a decreasing sequence of open balls. Use the fact that each open
ball contains a smaller, closed one to correct the proof.

Proposition 11 If X and (A,) are as above and X is supposed to be non-
empty, then there is an ng so that A,, has non-empty interior.

The above result is known as Baire’s theorem. Almost the same proof demon-
strates the following version of this result:

Proposition 12 [f X is as above and (A,) is a sequence of closed subsets
so that the interior (|J A,)° of their union is non-empty, then there is an ng
so that the interior of A,, is non-empty.

The above results can be usefully reformulated by using the following
concepts. A subset A of a metric space is nowhere dense if the interior of
its closure is empty. It is of first category if it is expressible as a countable
union of nowhere dense sets. It is of second category if it is not of first
category i.e. if whenever A is expressed as the union (J A, of a countable
family of sets, then at least one A, fails to be nowhere dense. Thus the
theorem of Baire states that each non-empty, complete metric space is of
second category.

Examples: Q is a set of first category in R. In fact, any countable subset
of a metric space in which singletons are open is of first category. Of course,
Q is not nowhere dense. The Cantor set, regarded as a subset of [0, 1], is
a non-trivial example of a nowhere dense set (i.e. it is nowhere dense and
uncountable).
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Definition: A subset of a metric space is a G- set if it is an intersection of
a sequence of open sets. Before stating the next version of Baire’s theorem,
we note that the intersection of two dense subsets of a metric space need not
be dense — a typical example is the pair Q and R\Q of dense subsets of the
line whose intersection is empty. However, the intersection of two open, dense
subsets is dense (easy exercise). (In fact, the intersection of an open dense
subset with any dense subset is dense). Our next version of Baire’s theorem
is a significant strengthening of this result for complete metric spaces:

Proposition 13 Let (X, d) be a complete metric space. Then an intersection
of a sequence of open, dense subsets is dense (and so a dense Gg-set).

PRroOF. The proof is based on the simple fact that a subset of a metric space
is open and dense if and only if its complement is a closed, nowhere dense
set. Hence if each of the sequence (U,,) is open and dense and if A is their
intersection, then the complement of A is the union of the complements of
the U,. Hence if the latter set contains a non-empty, open set, then so must
one of the sets (X\U,) by Baire’s theorem and this would contradict U,’s
status as an open dense subset.

]

Proposition 14 If (G,) is a sequence of dense Ggs-subsets of a complete
metric space, then their intersection is also a dense Gg-subset.

As an example of an application of the theorem of Baire, we bring the fol-
lowing result on boundedness of sequences of functions (it is the basis of a
number of famous results of Banach in functional analysis - notably of the
Banach Steinhaus theorem):

Proposition 15 Let M be a subset of the space C(X) of continuous real-
valued functions on a complete, non-empty metric space X which is pointwise
bounded i.e. such that for each t € X there is a K > 0 so that |z(t)] < K
for each x € M. Then there is a non-empty, open subset U of X so that M
is uniformly bounded on U (i.e. there is an L > 0 so that |z(t)| < L for each
r€MandteU).

Proor. This is a simple application of Baire’s theorem using the sets

A, ={t € X :|z(t)| <n for each x € M}.
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Another result which uses the completeness of the metric space is the
famous fixed point theorem of Banach. We have already met an example
of fixed point theorem — namely that of Brouwer which states that each
continuous mapping on B2 has a fixed point. In fact, the same result holds
in higher dimensions and we shall prove this in a later chapter. The Banach
fixed point theorem has an entirely different character. It is true for a much
wider class of spaces (in fact, for any complete metric space) but requires
a condition on the mapping which is much stronger than continuity. In
return, the fixed point is unique and the proof provides a method of finding
it, respectively good approximations to it.

Proposition 16 Let (X, d) be a non-empty complete metric space and let f
be a contraction on X. Then f has a fixed point.

PROOF. We choose any point zg € X and define a sequence (x,,) recursively
as follows:

T = f(.ﬁl]()), To = f(.Tl), ceeys Tpa1 = f(.]j‘n), e

We shall show that this is a Cauchy sequence and hence convergent. Its limit
x is then a fixed point since

r =lim z, = lim 2,11 = lim f(z,) = f(z).
Firstly, we have the estimate:
A(@n, Tpg1) = d(f(Tn-1), [(@0)) < Ad(Tp—1,25) < - < ANd(20, 21)
where A < 1 is such that

d(f(x), f(y)) < Md(z,y)

for z,y € X. This implies that

+ d(Tntp-1; Tntp)
-+ >\n+p_1d(l'0, l‘l)
d(ﬂfo, 1’1)

d(!L‘n, xn-{—p) S d(xna :L‘n-l—l) + -
S )\nd(l‘o, IL‘1) + .
=}

<

which tends to zero as n tends to infinity.
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The reader will have observed that this proof provides a theoretical basis
for the simpler iteration methods used for solving equations numerically.

In the above situation, the fixed point is unique as the reader can easily
verify.

One consequence of this theorem is the so-called Lipschitz inverse function
theorem, which we state for functions on R".

Proposition 17 Let A : R" — R" be an invertible, linear operator and
f : R" = R" be a Lipschitz-continuous mapping whose Lispchitz constant
satisfies the inequality Lip f < |A7Y~™'. Then A + f is a bijection and
its inverse (A + f)~! is also Lipschitz-continuous, with constant at most
(1A = Lip ()~

PRroOF. The fact that A+ f is injective and that its inverse has the required
Lipschitz constant follows from the estimate:

[(A+ flz = (A+ [yl = [A(z —y) + f(z =yl
> [A(x —y)| = (Lip (/) ]z -y
> [A7 e = y| = (Lip (f)]z — y]
> (|A7H™ = (Lip ()| — yl.

The surjectivity follows from the fact that the equation (A + f)z = y can be
rewritten as a fixed point equation as follows:

r=A"y— Ao f(x)

It follows from the Banach fixed point theorem that this equation has a
solution.
]

We have seen above that a closed subset of a complete metric space is
itself complete. On the other hand, a subset of a metric space which is
itself complete with respect to the induced metric is automatically closed.
A rather more subtle question is the following: which subsets of a given
complete metric spaces are topologically complete i.e. such that there is an
equivalent metric on the subset for which it is complete? Another way of
saying this is that the subset be homeomorphic to a complete metric space.
For example, the open subset | — 1, 1] of the space [—1,1] is not complete
but it is topologically complete, being homeomorphic to R. This is a special
case of the following result:

Proposition 18 Let U be an open subset of a complete metric space (X, d).
Then U 1is topogically complete.
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PROOF. We define a new metric d on the space U as follows:

d(x,y) = d(z,y) + [6(x) — ¢(y)]

where ¢(z) = d(z, X\U)™!. The proof consists of the verification of the
following two facts: a) d is equivalent to the original metric d on U; D)
(U, CZ) is complete. We prove the second statement and leave the (similar)
proof of the first to the reader. Let (x,) be a d-Cauchy sequence. Then
it is certainly d-Cauchy and so d-convergent, say to x. It suffices to show
that « lies in U and d(x,,x) — 0. If = does not lie in U, then ¢(z,) — oo.
This implies that d(z,,z;) — oo. But this is obviously incompatible with
the fact that the sequence is J—Cauchy. Since z € U, then ¢, the distance
of x from X\U, is positive. x, — = (for d) and so there is an N in N so
that d(z,,z) < $ if n > N. Hence ¢(z,) < 2 for such n. If we now piece

2
together the three pieces of information: d(zy,z) —0;  d(z,, X\U)) —

d(xz, X\U);  {¢(x,)} is bounded, then we can deduce that d(x,,z) — 0.

Recall the definition of a G§-subset of a metric space. These are subsets
which are describable as countable unions of open sets. Dually, we define the
notion of an F,-set which is a countable union of closed sets.

Examples: Each closed subset C of a metric space is trivially an F,-set but
it is also a Gs. For the set U, = {z € X : d(z,C) < 1} is open (as the union
of the open balls Uy, %) as y ranges through C). C'is clearly the intersection
of the U,,. By taking complements, we see that every open set also has both of
these properties simultaneously. A non-example is provided by the rationals
which form an F,-subset of the reals but not a G5. For suppose that () has a
representation as the intersection of a sequence (U,,) of open (dense) subsets.
Then the complement of each of the U, is nowhere dense. But if (r,) is an
enumeration of the rationals, we can write R = J,(X\U,) U (U{r.}) as a
countable union of nowhere dense sets which contradicts Baire’s theorem.

In a certain sense, GGs-subsets of metric spaces are the natural domains
of definition of continuous mappings. For suppose that f is a continuous
mapping from a subset A of a metric space X into a complete metric space
Y. If x is in the closure of A, we define

. 1
osc (fyz) = infsup {d(f(y), f(2)) 1y, 2 € Ulz, )N A}.
Then if osc(f;z) = 0, (f(z,)) is a Cauchy sequence whenever (z,) is a
sequence in A which converges to z. For if € is a given positive number,

there is a K € N so that d(f(y), f(z)) < € for y, z in U(z, ) N A. Hence if
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we choose N € N so that d(z,z,) < & for n > N, then d(f(z,,), f(zn)) <€
for m,n > N. Hence if we set Ay = {z € A : oxosc(f;x) = 0}, we can
extend f to a function f from A, into Y by defining f(x) to be the limit
of the sequence (f(z,)). One then checks that this extension is well-defined

(i.e. the value of f(z) is independent of the choice of the sequence (z,)) and
the intersection of the sequence of subsets (A,) where A, is the set of those
z in the closure of A for which osc(f;z) < % and the latter is an open subset
of A as can easily be checked. Hence Ay is a G5 in A and so in X. (For A is
a Gs and it is easily seen that Gs-subsets of Gs-sets are themselves Gs). We
have thus proved the following result:

Proposition 19 Let f be a continuous mapping from a subset A of a metric
space X into a complete metric space Y. Then there is a Gs-set Ay between

A and its closure so that f can be extended to a continuous function f from
Ag into Y.

From this we can quickly deduce the following result:

Proposition 20 Let X and Y be complete metric spaces and let f : A — B
be a homeomorphism between subsets of X andY . Then there are Gs-subsets
Ay and By containing A and B respectively (and contained in their closures)
so that f extends to a homeomorphism from Ay onto Bj.

PROOF. We can extend f to a continuous f from Ay into Y and g = f~!
to a continuous ¢ from By into X where Ay and By are suitable G’s. Then
Ay =AgN f7Y(By) and By = By N §~'(Ap) are the required sets.
]

We remark here that in the above proof we used the simple fact that the
pre-image of a Gs-set under a continuous mapping is also a Gs.

We are now in a position to describe those subsets of a complete metric
space which are topologically complete. First we show that Gs-subsets have
this property:

Proposition 21 A Gs-subset of a complete metric space X is topologically
complete.

PROOF. A is the intersection of the sequence (U,) of open subsets of X.
We know that each U, is topologically complete. Hence so is their product
[1U,, (since products of sequences of complete metric spaces are themselves
complete metric). Now A is homeomorphic to a closed subset of the latter
product (see the exercise below) and this finishes the proof.
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Exercise: Show that the mapping = — (z,x,z,...) is a homeomorphism
from A onto a closed subset of the product of the U,.

We can now complete our characterisation of topologically complete sub-
sets.

Proposition 22 A subset A of a complete metric space (X,d) is topologi-
cally complete if and only if it is a Gs.

Proor. We have already seen above that this condition is sufficient. We
shall now verify the necessity. Suppose that d; is a metric on A which is
equivalent to d there and is such that (A,d;) is complete. We now apply
the above extension result to the identity from A (as a subset of X) into
the complete metric space (A, d;). We can extend this to a homeomorphism
from a Gs-set Ay (containing A and contained in A). But a homeomorphism
is a bijection and there is no non-trivial extension of the identity on A to a
bijection. Hence A is itself a Gs.

3.2 Metric spaces

Definition: Let X be aset. A metric on X is amappingd: X x X — R*
so that

1) d(z,y) > 0 and d(x,y) = 0 if and only if z = y;

2) d(z,y) = d(y, x);

3) d(z, z) < d(z,y) + d(y, z) all these for z,y,z € X.

We can then use the metric to define all of the concepts which we have
discussed in the context of subsets of R™. Before doing so, we consider some
further examples.

[. The discrete metric: If X is a set, we define a metric dp on X by setting
dp(x,y) to be equal to 1 if z and y are distinct and to be equal to 0 otherwise.
IT More generally, if we have a family {(X,,d,)} of metric spaces, then we
can define a metric d on their disjoint union X = I1.X,,, by putting d(z,y) =0
if  and y come from different X’s. If both come from the same one, say X,
we define d(x,y) to be d,(x,y). The example of I is the case where each X,
is a singleton.

ITI. The indiscrete semi-metric: If X is a set, we consider the mapping d;
which associates to each pair (z,y) the value zero. This is not a metric since
it fails the second part of condition 1) above. However, it does satisfy the
other conditions. Such a mapping is called a semi-metric. It can be used
to define continuity and convergence in exactly the same way as for metrics.
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However, we shall see later that convergence can then have some rather odd
properties.

Using a metric, we can define the following concepts which will provide
the basis for our treatment of topological spaces. A subset N of X is said to
be a neighbourhood of a point z if there is an € > 0 so that U(z,¢) C N
where U(x,€) denotes the set {y : d(z,y) < €} (the open ball with centre
x and radius €). Note that if N; and N, are neighbourhoods of z, then
so is their intersection Ny N Ny (since if U(z,¢;) C Ny and U(z,e2) C Ny,
then U(z,e¢) C Ny N Ny where € = min(ey, €;)). It is trivial that if N is a
neighbourhood of z, then so is any superset of N. Further if we denote by
N (§) the family of neighbourhoods of z, then the intersection of the sets of
N(8§) is the one-point set {z}. (For if y # z, then € > 0 where € = d(z,y)
and U(z, §) is a neighbourhood of z which does not contain y).

A subset U of a metric space X is said to be open if it is a neighbourhood
of each of its points i.e. for each x € U there is an € > 0 so that U(z,e) C U.
This is equivalent to the fact that U is a union of open balls. It is clear that
the empty set () and X are open. Also any union resp. finite intersection of

open sets is open.

Continuity of mappings: Let (X,d) and (Y, d;) be metric spaces, f :
X — Y a mapping between them. f is continuous at zy, € X if for each
positive e there is a 6 > 0 so that d(z,y) < ¢ implies that d;(f(z), f(y)) < e.
It is continuous on X if it is continuous at each point of X. This can
be expressed in terms of neighbourhoods resp. open sets as follows. f is
continuous at z; if and only if whenever N is a neighbourhood of f(xy),
f7Y(N) is a neighbourhood of zy. (for the original condition means that
FHU(f(xo),€) D U(wo,d)). Similarly f is continuous on X if and only if
f~YU) is open for each U open in Y.

A bijection f : X — Y is a homeomorphism if both f and f~! are
continuous.

As in the case of functions on R, we can use the metric to introduce two
stronger notions of continuity — those of uniform continuity and Lipschitz
continuity. A function f : X — Y as above is uniformly continuous if
for each positive € there is a positive ¢ so that di(f(x), f(y)) < € whenever
d(z,y) < 9. f is Lipschitz continuous if there is a positive K so that we
have the estimate di(f(z), f(y)) < Kd(z,y) for x,y in X. It is clear that
Lipschitz continuity implies continuity which in turn implies continuity. Of
course, none of these implications is reversible.

Such functions enjoy the expected stability properties. Thus compositions
of continuous (uniformly continuous resp. Lipschitz continuous functions)
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have the same properties. Care is required, however, with products. Thus the
product f.g of two Lipschitz continuous functions with values in R need not
be Lipschitz (as the example where both f and ¢ are the identity mapping
on the real line shows). However, the product of two bounded, Lipschitz
continuous functions is Lipschitz continuous, as the reader can verify. Similar
remarks apply to uniformly continuous functions.

Convergence of sequences: A sequence (z,) in a metric space (X,d)
converges to a point x in X if d(z,,x) — 0. In terms of neighbourhoods,
this can be reformulated as follows: z,, — z if and only if for each N € N (§)
there is a K € N so that z,, € N whenever n > K. Note that a mapping f
from X into Y is then continuous if and only if f(x,) — f(z) in Y whenever
z, — v in X.

The closure of a set A is the set A consisting of those 2 which have the
following property: for each positive ¢, there is a y € A with d(z,y) < € (i.e.
for each € > 0, U(x,¢) N A # ()). We say that A is closed if A = A. This
can be reformulated as follows: for each y not in A there is a § > 0 so that
U(y,0) € X\ Aie. X\ Aisopen. Notice that = is in the closure of A if
and only if there is a sequence (z,) in A which converges to x (take x, to be
an element of ANU(z,1)). Hence A is closed if and only if it contains the
limits of converging sequences with terms in A. In the metric space (X, dp),
a sequence converges to x if and only if there is an N € N so that =, = z for
n > N. (We say then the sequence is eventually constant). In a space with
the indiscrete semi-metric, every sequence converges to every point. (This
shows, in particular, that in the absence of the definiteness condition on the
metric, limits of sequences need not be unique). Every function from a set
X with the discrete metric into a second metric space is continuous. On the
other hand, every function from a metric space into a set with the indiscrete
semi-metric is continuous.

A subset A of a metric space X is dense in X if its closure is equal to X.
This means that every element of the latter space is the limit of a sequence
in A. The classical example is Q, the set of rational numbers, which is dense
in the real line.

We continue with some more pathological examples of metric spaces:
IV. The post office metric: This is a metric on the plane. The distance
between two points x and y is defined to be the sum |z| + |y| of the lengths
of the vectors if x and y are distinct. Otherwise it is defined to be zero. (The
reader should imagine the origin as an operating centre through which every
signal from x to y has to pass). One can check that this is a metric. In fact,
it is probably easier to verify the following more general fact from which it
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follows immediately. If we define the distance between two points P and @)
in the plane to be the shortest length of a path from P to () under suitable
restraints, then this will be a metric provided the latter satisfy some natural
conditions such as the following;:

a) the constant path from P to P satisfies the restraints;

b) if a suitable path from P to ) satisfies the restraints, then the same
path taken backwards is a suitable one from @) to P;

c) if we have a suitable path from P to Q) resp. from @ to R, then we can
join them together to form a suitable path from P to R. In the above case,
a path from P to @ is defined to be suitable if it goes through the origin
(Except in the trivial case where the endpoints coincide — then there is no
restraint).

Using this general fact it is easy to describe two further examples — the
taxi-driver’s metric and the Washington DC metric.

Metrics on R": We have already considered the euclidean metric on n-
space. Two further useful metrics are
VI. d; where

di(z,y) = > |& = nil.
i=1

VII. d, where
doo<x7y> = nax ‘gl - 77@|

Note that we have the following inequalities:

From this it follows immediately that each of these metrics induces the same
notion of convergence.

We now consider some infinite dimensional spaces.
VIIL. ¢*. This is the space of bounded sequences in RN i.e.

> = {:E = (gn) : Sup |§n| < OO}
On this space we define the supremum metric
doo = sup{|&, — nu| : n € N}

IX. % is the space of sequences r = (&,) which are square summable
i.e. such that > [£,|> < oo. The metric dy on this space is defined by

the formula do(x,y) = /D |& —mi?. X. ' is the space of absolutely
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summable sequences i.e. those z € RN with 3 |€,| < co. On this space we

use the metric

XI. C(]0,1]) denotes the space of continuous, real-valued functions on the

unit interval. On this space we define the following three metrics: the
supremum metric: doo(z,y) = sup, |x(t)—y(t)|;  the L*metric: dy(z,y) =
\/fo |z(t) — y(t)|2dt;  the L-metric: di(x,y) fo lz(t) — y(t)|dt.

We omit the routine and unexciting proofs that the above really are met-
rics. In contrast to the finite dimensional case, these three metrics define
completely different notions of convergence in the space C(]0, 1]).

We now introduce two further, highly important examples of metric
spaces:

XII. The Hilbert cube i.e. the subset

(r=(6) el lal <)

of > — regarded as a metric space with the metric dy. (This is the natural
infinite dimensional analogue of the hypercube in R").

XIII. The Cantor set: Recall the classical definition of the Cantor set via
missing thirds. We consider the sequence (F},) of closed subsets of the unit
intervals as in Figure 1 (i.e. those obtained by removing successively the
middle thirds of the intervals). The intersection (] F, is a closed subset of
the interval and, in particular, a metric space. It consists of those points in
the unit interval which have a tryadic representation of the form » > | a,3™"
where the coefficients a,, are either 0 or 2. (For we remove those tryadic
numbers whose n-th coefficient is 1 at the n-th stage of the construction).
Because of its importance we denote this topological space by Can Note that
at the k-th level of the construction, we split the interval into 2* sub-intervals.

If we denote these by AY ... A% then F, = U?il A¥ and the Cantor set is

2k
oo 2k
Can = ﬂ U Af.
k=1:1=1

Later we shall encounter a less geometric description of the Cantor set, which,
however, is often more convenient for analysing its properties.

We now turn to some aspects of the theory of metric spaces which use the
metric explicitly. We begin with completeness. This is a generalisation of the
distinguishing characteristic of the real numbers in contrast to the rational
ones — the existence of limits for sequences which should converge. This is
usually an essential property in applications to analysis.

y
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Definition: A sequence (z,) in a metric space is Cauchy if the follow-
ing condition is satisfied: for each positive € there is an N € N so that
d(xpm, x,) < € for m,n > N. The metric space (X,d) is complete if each
Cauchy sequence converges there.

Before considering concrete examples, we note that the property of a
sequence being Cauchy is not a topological one i.e. it is not preserved under
homeomorphisms. For example, consider the mapping f : n — % from N
onto D = {1 : n € N}. We regard both of these sets as metric spaces
(with the metric induced from R). Then f is a homeomorphism. However
the sequence (+) is Cauchy in D but its image in N under the continuous

mapping f~! is not Cauchy there.

Examples of complete spaces: . Any set X, when provided with the
discrete metric, is complete for the trivial reason that any Cauchy sequence
therein is eventually constant and so convergent.

IT. The real line is complete. This is a fundamental property which will be
familiar from a course on elementary analysis.

ITI. Tt follows easily from the completeness of the real line that the higher
dimensional spaces R? are complete (with respect to any of the three metrics
dy,dy, dy introduced above). For a sequence in R? is Cauchy resp. conver-
gent if and only if the same is true of each of its components.

IV. Any closed subset of R? is complete. For if (x,,) is a Cauchy sequence in
such a set B, then this sequence has a limit in R, which, by the closedness,
must lie in B.

V. An example of a space which is not complete is the open interval |0, 1] in
the line. This fails to be complete since the Cauchy sequence (%) there is not
convergent. (Note that this space is homeomorphic to the real line which is
complete).

The above examples suggest the following simple facts:

a) if X is a complete metric space, then each closed subset thereof is complete
under the induced metric;

b) If a subset X; of a metric space X is complete for the induced metric,
then X is closed in X.

We now consider the completeness of some infinite dimensional spaces:
The space £ is complete, as are ¢! and ¢2. More generally, if S is an arbitrary
space, we can define a natural generalisation ¢>°(S) of the former space as
follows. This space is also complete.

The space C([0,1]). This is complete with respect to the supremum
norm since it is a closed subspace of the complete space ¢>°(S) (this is just
a restatement of the well-known fact that the uniform limit of continuous
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functions is continuous). We remark here that the space C([0,1]) is not
complete for the metrics d; and d».

Recall that a function f : X — X; where (X, d) and (X, d;) are metric
spaces is Lipschitz continuous if there is a K > 0 so that

di(f(x), f(y)) < Kd(z,y)

for each x,y € X. The smallest such K is then called the Lipschitz con-
stant of f. If the latter is strictly smaller than 1, then f is called a contrac-
tion. Lipschitz continuous functions enjoy an important property which is
described in the following Proposition:

Proposition 23 Let (X, d) and (X1,dy) be metric spaces where X, is com-
plete and suppose that Xy is a dense subset of X. Suppose that f : Xqg — X3
is a Lipschitz-continuous function. Then it can be extended to a Lipschitz-
continuous function ffrom X into X1. Furthermore, this extension is unique
and has the same Lipschitz constant as f.

Proor. The proof is based on the simple observation that the image of a
Cauchy sequence under a Lipschitz mapping is also Cauchy. Suppose that z
is a point of X. It is then the limit of a sequence (z,,) in Xy. The latter is then
Cauchy in X, and hence the image sequence (f(z,)) is Cauchy in X;. By
the completeness of the latter there is a y in X; to which (f(z,)) converges.
The remainder of the proof consists of the verification of the following facts:
1) y depends only on x (and not on the choice of the sequence (z,)). For
if (z,) is a second sequence in Xy which tends to x, then d(z,, z,) tends to
zero. It follows from the Lipschitz condition that d(f(x,), f(z,)) also tends
to zero. Hence (f(z,)) and (f(z,)) have the same limit. 2) The function f
which maps x to the above z if x is not in Xy (and agrees with f on Xj)
is Lipschitz. For if K is the Lipschitz constant of f and (x,) resp. (y,) are
sequences in Xy which tend to x resp. y, then the inequality

d(f(wn), f(yn)) < Kd(2n, yn)

tends in the limit to the desired inequality

d(f(x), f(y)) < Kd(z,y).
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Remark: In this proof we have tacitly used the fact that if x, — x and
Yn — y, then d(z,, y,) — d(z,y). The reader should check that this holds.

In the light of the above proposition, it is an important fact that every
metric space can be completed in the sense that it can be imbedded as a
dense subset of a complete space. We prove this by means of the following
Lemma. Before stating it, recall that an isometry between two metric spaces
(X1,dy) and (Xs, ds) is a bijection f so that do(f(x), f(y)) = di(x,y) for each
pair z,y in X;. If such an f exists, X; and X, are said to be isometric or
isometrically isomorphic.

Proposition 24 Let (X,d) be a metric space. Then X is isometric to a
subspace of the metric space (*°(X).

PROOF. Choose a fixed zy in X (we are assuming that X is non-empty). If
x € X, let f, be the function

fo:y = (d(x,y) — d(z, o).

Then |f.(y)| < d(x,xg) for each y and so f, € £*°(X). The mapping = — f,
is the required isometry.
]

Proposition 25 Let (X,d) be a metric space. Then X is isometric to a
dense subset of a complete metric space.

ProOOF. The closure of the image of X in ¢*°(X) as in the above Lemma is
the required space.
n

We note the following properties of this embedding which follow imme-
diately from the above results:
I. Consider the embedding j from X into the above complete space which
we denote by Y. Then if f is a Lipschitz continuous mapping from X into
a second complete space Z, there is a unique Lipschitz mapping f from Y
into Z so that f = foj. (This is just a rather abstract and pedantic way of
saying that f is an extension of f if we regard X as a subspace of Y via the
isometry j).
IT. Any two complete spaces which contain X as dense subspaces in the above
way are isometrically isomorphic. More precisely, if Y] is a second space into
which X is isometrically embedded as a dense subspace via a mapping ji,
then there is an isometric isomorphism /I from Y onto Y; so that [ o j = 7;.
The proof is simple. The mapping j; from X into Y] extends to a mapping [
from Y into Y; by the above extension property. I has the required properties.
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This result implies that the space Y constructed above is essentially
unique and so independent of the method of construction. Hence we can
simply refer to it as the completion and denote it by X.

3.3 Products of metric spaces:

If (Xy,dy),...,(X,,d,) are metric space, there are various natural ways of
defining a metric on their product X; x ---x X,,. As in the case of R", there
are three particularly simple ones:

r,y) = di(w,y)
(z,y) = /2 di(zi, y)?

(z,y) + max(d;(w;,y;))

where = = (z;),y = (v;).

Since these metrics are equivalent in the sense that they define the same
notions of convergent resp. Cauchy sequences, we are free to use any one of
them — it will be convenient to use the third one.

In the case of countable products [], . X, of metric spaces, we shall
assume at first that each metric is bounded by 1 i.e. that d,(z,y) < 1 for
each pair z,y in X,,. Then we define a metric d on the Cartesian product as
follows: if x = (z,,) and y = (y,), then

Ar.) = 3 gl ).

The properties of the product which we shall require are as follows:

e a sequence 7 = (z¥) in the product is Cauchy if and only if for each n

the sequence (%)%, in X, is Cauchy.

e a sequence (1) as above converges to x = (z,,) if and only if 2¥ — =,
in X,, for each n.

e ] X, is complete if each X, is.

PROOF. We prove the first statement. The proof of 2) is almost identical
and 3) follows from 1) and 2). Firstly, the natural projection from IT1X,
onto X, is clearly Lipschitz (with constant 2) for each m. This implies the
necessity of the above condition.
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Now suppose that each sequence (z%) (as k varies) is Cauchy. We shall

show that (z*) is Cauchy. Given a positive €, choose N so that 27V < < and

a K € N so that if k,1 > K, then d,(«f,2!) < £ forn =1,...,N. Then
d(zF 2') <eif k1 > K.

We remark now that if (X,d) is an arbitrary metric space, then e :
(z,y) — min(1l,d(x,y)) is a metric on X which has the same Cauchy se-
quences resp. convergent sequences as d. Hence we can define a countable
product of arbitrary metric spaces by replacing their metrics by ones which
are bounded as above and then using this construction.

We shall be interested in the following examples of products of the form
XN where X is a fixed metric space. This is the special case of a product
where each of the components is the same.

I IN — a product of countably many copies of the unit interval. This space
is essentially the Hilbert cube. More precisely, the mapping (&,) — (2&,) is
a homeomorphism from IN onto the Hilbert cube.

II. NN — the product of countably many copies of the natural numbers.
(the latter regarded as a metric space with the discrete metric). Strangely
enough, this space is homeomorphic to the irrational numbers and, from a
topological point of view, is their most convenient representation. The exact
proof of this requires some elementary number theory. Since we shall not
require this identification directly, we shall be content with the remark that
each sequence (&,,&,,...) in N~ defines an irrational number by means of a
continued fraction.

This defines a mapping from N™ into the irrationals which is, in fact,
a homeomorphism onto. This fact can also be proved without recourse to
number theory as follows. We list the rationals as a sequence r1,7s,... and
construct a countable family 7\ of partitions of the irrationals into countable
collections of intervals so that the length of each interval in Z\ is at most
27" and so that r, is the endpoint of one of the intervals of Z\ but not of
any previous partition. Then each irrational number z is in precisely one
intersection of the form

I NI NIoN...

where I! _ denotes the n;-th interval in Z,, etc. The mapping
T (ny,na,...)

is the required homeomorphism from the irrationals onto N™.
I11. The space {0,1}N, i.e. the infinite product of countably many copies
of the discrete space {0,1}. This space is homeomorphic to the Cantor

set. In fact, if 2 = (&,) € {0,1}N, then f(z) = > 7, 23% is an element of
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[0,1] — indeed, of the Cantor set. Once again, the mapping x — f(x) is a
homeomorphism from the product space {0, 1}N onto Can.

For future reference, we note the following fact which follows immediately
from this description of the Cantor set. There is a continuous surjection from
the Cantor set onto the unit interval I. Indeed

e s

is such a mapping.

Now this implies that there is a continuous surjection from Can™ onto
IN. But IN is the Hilbert cube and Can™ is ({0, 1}™)N and it should come
as no surprise that the latter space is once again the Cantor set. In fact, we
have:

Proposition 26 If X is a metric space, then XN and (XN)N are homeo-
morphic.

PROOF. An element of the second set is a sequence of sequences in X and so
can be regarded as a double sequence of such elements i.e. X = (X,,) where
X, = (a). Now the latter double sequence can be straightened out into
a single sequence e.g. as the sequence (z1,z% 23, z3, z1,...). This defines a
homeomorphism from (X™N)N onto XN,

[
Putting this together, we see that there is a continuous mapping from
Can onto the Hilbert cube.
We now bring some results on metric spaces in which the completeness
plays an essential role. Firstly, if A is a subset of a metric space, then its
diameter is the number

diam (A) = sup{d(z,y) : x,y € A}.
(This can of course be infinite).

Proposition 27 Let (A,) be a sequence of non—empty, closed subsets of a
complete metric space (X, d) so that A1 C A, for each n and hboxdiam A, —
0. Then the intersection NA,, is non-empty (and in fact consists of a single
point).

38



PrOOF. We choose for each n an z,, € A,. Then of course d(z,,x,) <
diam Ay whenever m,n > N. Hence (z,,) is Cauchy. Let = denote its limit.
Then z,, € A, for m > n and so in the limit x € A,, since the latter is closed.
Since this holds for each n, we have that z is in the required intersection.
Suppose now that there were a second element y in this intersection, with
y # x. There is an n € N with oxdiam A,, < d(z,y). y cannot be an element
of A, (since x is in the latter). This provides a contradiction.

]

The next result is the basis of countless existence theorems in analysis.

Proposition 28 Let (A,) be a sequence of closed subsets of a complete met-
ric space (X, d) whose union is X. Then | J A is dense in X.

PROOF. Suppose, if possible, that the conclusion is not valid. Then there
is a non-empty, open set U; with U; N (U, An) = 0. Since U; is not a
subset of A;, the difference U;\ A; is non-empty (and open) and so contains
an open ball V; of radius ¢ > 0. Since V] is not a subset of Ay, V1\ A,
contains an open ball V5 of positive radius €;. Continuing inductively, we
obtain a decreasing sequence (V,,) of open balls, whereby V,, has radius ¢,.
Furthermore, V,,,1 C V,,\A,. We can arrange for the radii €, to converge to
zero. Then by Cantor’s result the intersection of the V,, contains a point z.
It is clear that x is in none of the A,, which is a contradiction.

Exercise: In the above proof we committed the crime of applying the result
of Cantor to a decreasing sequence of open balls. Use the fact that each open
ball contains a smaller, closed one to correct the proof.

Corollar 1 If X and (A,) are as above and X is supposed to be non-empty,
then there is an ng so that A,, has non-empty interior.

The above result is known as Baire’s theorem. Almost the same proof demon-
strates the following version of this result:

Proposition 29 If X is as above and (A,) is a sequence of closed subsets
so that the interior (| A,)° of their union is non-empty, then there is an ng
so that the interior of Ay, is non-empty.

The above results can be usefully reformulated by using the following

concepts. A subset A of a metric space is nowhere dense if the interior of
its closure is empty. It is of first category if it is expressible as a countable
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union of nowhere dense sets. It is of second category if it is not of first
category i.e. if whenever A is expressed as the union J A, of a countable
family of sets, then at least one A, fails to be nowhere dense. Thus the
theorem of Baire states that each non-empty, complete metric space is of
second category.

Examples: Q is a set of first category in R. In fact, any countable subset
of a metric space in which singletons are open is of first category. Of course,
Q is not nowhere dense. The Cantor set, regarded as a subset of [0, 1], is
a non-trivial example of a nowhere dense set (i.e. it is nowhere dense and
uncountable).

Definition: A subset of a metric space is a G- set if it is an intersection of
a sequence of open sets. Before stating the next version of Baire’s theorem,
we note that the intersection of two dense subsets of a metric space need not
be dense — a typical example is the pair Q and R\Q of dense subsets of the
line whose intersection is empty. However, the intersection of two open, dense
subsets is dense (easy exercise). (In fact, the intersection of an open dense
subset with any dense subset is dense). Our next version of Baire’s theorem
is a significant strengthening of this result for complete metric spaces:

Proposition 30 Let (X, d) be a complete metric space. Then an intersection
of a sequence of open, dense subsets is dense (and so a dense Gg-set).

ProOF. The proof is based on the simple fact that a subset of a metric space
is open and dense if and only if its complement is a closed, nowhere dense
set. Hence if each of the sequence (U,) is open and dense and if A is their
intersection, then the complement of A is the union of the complements of
the U,. Hence if the latter set contains a non-empty, open set, then so must
one of the sets (X'\U,) by Baire’s theorem and this would contradict U,’s
status as an open dense subset.

]

Proposition 31 If (G,) is a sequence of dense Ggs-subsets of a complete
metric space, then their intersection is also a dense Gg-subset.

As an example of an application of the theorem of Baire, we bring the fol-
lowing result on boundedness of sequences of functions (it is the basis of a
number of famous results of Banach in functional analysis - notably of the
Banach Steinhaus theorem):
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Proposition 32 Let M be a subset of the space C(X) of continuous real-
valued functions on a complete, non-empty metric space X which is pointwise
bounded i.e. such that for each t € X there is a K > 0 so that |z(t)] < K
for each x € M. Then there is a non-empty, open subset U of X so that M
is uniformly bounded on U (i.e. there is an L > 0 so that |z(t)| < L for each
r€MandteU).

Proor. This is a simple application of Baire’s theorem using the sets
A, ={te X :|z(t)| <n for each x € M}.

Another result which uses the completeness of the metric space is the
famous fixed point theorem of Banach. We have already met an example
of fixed point theorem — namely that of Brouwer which states that each
continuous mapping on B? has a fixed point. In fact, the same result holds
in higher dimensions and we shall prove this in a later chapter. The Banach
fixed point theorem has an entirely different character. It is true for a much
wider class of spaces (in fact, for any complete metric space) but requires
a condition on the mapping which is much stronger than continuity. In
return, the fixed point is unique and the proof provides a method of finding
it, respectively good approximations to it.

Proposition 33 Let (X, d) be a non-empty complete metric space and let f
be a contraction on X. Then f has a fixed point.

PROOF. We choose any point xg € X and define a sequence (x,,) recursively
as follows:

T = f(.ﬁl]()), To = f(.Tl), cees Tpa1 = f(.]j‘n), e

We shall show that this is a Cauchy sequence and hence convergent. Its limit
x is then a fixed point since

r =lim z,, = lim z,,; = lim f(z,) = f(x).
Firstly, we have the estimate:
d<xn7 xn+1) = d<f<xnfl)7 f(xn)) S )\d(xnfh xn) S T S )\nd<x07 xl)

where \ < 1 is such that

d(f(x), f(y)) < Ad(z,y)
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for z,y € X. This implies that

d(:En, xn-i—p) < d(:En, xn-i-l) +o At d(xn—i—p—la xn-i—p)
< lnd<l’0, .Tl) + -+ )\n+p_1d(370, 1’1)

S f\Tnd(lba :L‘l)

which tends to zero as n tends to infinity.
]

The reader will have observed that this proof provides a theoretical basis
for the simpler iteration methods used for solving equations numerically.

In the above situation, the fixed point is unique as the reader can easily
verify.

One consequence of this theorem is the so-called Lipschitz inverse function
theorem, which we state for functions on R".

Proposition 34 Let A : R" — R" be an invertible, linear operator and
f: R" — R" be a Lipschitz-continuous mapping whose Lispchitz constant
satisfies the inequality oxLip f < |A7Y™. Then A + f is a bijection and
its inverse (A + f)7! is also Lipschitz-continuous, with constant at most

(1A= = Lip (f)) ™"

PROOF. The fact that A+ f is injective and that its inverse has the required
Lipschitz constant follows from the estimate:

[(A+ [z —(A+ fy = [A(z —y) + f(z — )]
> |A(z —y)| — (Lip ((f))|z — y]
> |AH o =yl = (Lip (f))]z — y|
> (JA7H7! = (Lip (f))]= — yl.

The surjectivity follows from the fact that the equation (A+ f)z = y can be
rewritten as a fixed point equation as follows:

v=A1y— Ao f(x)

It follows from the Banach fixed point theorem that this equation has a
solution.
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We have seen above that a closed subset of a complete metric space is
itself complete. On the other hand, a subset of a metric space which is
itself complete with respect to the induced metric is automatically closed.
A rather more subtle question is the following: which subsets of a given
complete metric spaces are topologically complete i.e. such that there is an
equivalent metric on the subset for which it is complete? Another way of
saying this is that the subset be homeomorphic to a complete metric space.
For example, the open subset | — 1, 1] of the space [—1,1] is not complete
but it is topologically complete, being homeomorphic to R. This is a special
case of the following result:

Proposition 35 Let U be an open subset of a complete metric space (X, d).
Then U 1is topogically complete.

PROOF. We define a new metric d on the space U as follows:

d(z,y) = d(z,y) + [6(x) — ¢(y)]

where ¢(z) = d(z, X\U)™!. The proof consists of the verification of the
following two facts:

a) d is equivalent to the original metric d on U,

b) (U, d) is complete. We prove the second statement and leave the (sim-
ilar) proof of the first to the reader. Let (z,) be a d-Cauchy sequence. Then
it is certainly d-Cauchy and so d-convergent, say to x. It suffices to show
that z lies in U and d(z,, ) — 0. If = does not lie in U, then ¢(z,) — oo.
This implies that d(z,,z;) — oo. But this is obviously incompatible with
the fact that the sequence is (j—Cauchy. Since x € U, then 9, the distance of
x from X\U, is positive. z,, — = (for d) and so there is an N in N so that
d(z,,z) < $if n > N. Hence ¢(z,,) < 2 for such n. If we now piece together
the three pieces of information:

d(zp, z) — 0;

d(z,, X\U)) = d(z, X\U);

{¢(x,)} is bounded, then we can deduce that d(z,,z) — 0.

"

Recall the definition of a Gs-subset of a metric space. These are subsets
which are describable as countable unions of open sets. Dually, we define the
notion of an F,-set which is a countable union of closed sets.

Examples: Each closed subset C of a metric space is trivially an F,-set but

it is also a Gs. For the set U, = {z € X : d(z,C) < 1} is open (as the union
of the open balls U(y, 1) as y ranges through C). C'is clearly the intersection
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of the U,,. By taking complements, we see that every open set also has both of
these properties simultaneously. A non-example is provided by the rationals
which form an F-subset of the reals but not a Gs5. For suppose that () has a
representation as the intersection of a sequence (U, ) of open (dense) subsets.
Then the complement of each of the U, is nowhere dense. But if (r,) is an
enumeration of the rationals, we can write R = |, (X\U,) U (U{rn}) as a
countable union of nowhere dense sets which contradicts Baire’s theorem.

In a certain sense, GGs-subsets of metric spaces are the natural domains
of definition of continuous mappings. For suppose that f is a continuous
mapping from a subset A of a metric space X into a complete metric space
Y. If x is in the closure of A, we define

oxosc (f;x) = i%fsup {d(f(y), f(2) :y,z € U(x, %) N A}

Then if hboxosc(f;x) = 0, (f(x,)) is a Cauchy sequence whenever (z,) is
a sequence in A which converges to x. For if € is a given positive number,
there is a K € N so that d(f(y), f(z)) < e for y,z in U(z, +) N A. Hence if
we choose N € N so that d(z,z,) < & for n > N, then d(f(z,,), f(zn)) < €
for m,n > N. Hence if we set Ay = {x € A : hboxosc(f;x) = 0}, we can
extend f to a function f from A, into Y by defining f(x) to be the limit
of the sequence (f(z,)). One then checks that this extension is well-defined

(i.e. the value of f(x) is independent of the choice of the sequence (z,)) and

the intersection of the sequence of subsets (A,) where A, is the set of those
z in the closure of A for which hboxosc(f;x) < = and the latter is an open
subset of A as can easily be checked. Hence Ay is a G5 in A and so in X.
(For Ais a G5 and it is easily seen that Gj-subsets of Gs-sets are themselves

Gs). We have thus proved the following result:

Proposition 36 Let f be a continuous mapping from a subset A of a metric
space X into a complete metric space Y. Then there is a Gs-set Ay between
A and its closure so that f can be extended to a continuous function f from
Ag into Y.

From this we can quickly deduce the following result:

Proposition 37 Let X and Y be complete metric spaces and let f : A — B
be a homeomorphism between subsets of X andY . Then there are Gs-subsets
Ay and By containing A and B respectively (and contained in their closures)
so that f extends to a homeomorphism from A; onto Bj.
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PROOF. We can extend f to a continuous f from Ay into Y and g = f~!
to a continuous ¢ from By into X where Ag and By are suitable Gs’s. Then
Ay =AgN f7Y(By) and By = By N §~'(Ap) are the required sets.
]

We remark here that in the above proof we used the simple fact that the
pre-image of a Gs-set under a continuous mapping is also a Gs.

We are now in a position to describe those subsets of a complete metric
space which are topologically complete. First we show that Gs-subsets have
this property:

Proposition 38 A Gs-subset of a complete metric space X is topologically
complete.

PROOF. A is the intersection of the sequence (U,) of open subsets of X.
We know that each U, is topologically complete. Hence so is their product
[1U,, (since products of sequences of complete metric spaces are themselves
complete metric). Now A is homeomorphic to a closed subset of the latter
product (see the exercise below) and this finishes the proof.

Exercise: Show that the mapping = — (z,z,z,...) is a homeomorphism
from A onto a closed subset of the product of the U,.

We can now complete our characterisation of topologically complete sub-
sets.

Proposition 39 A subset A of a complete metric space (X,d) is topologi-
cally complete if and only if it is a Gs.

ProOOF. We have already seen above that this condition is sufficient. We
shall now verify the necessity. Suppose that d; is a metric on A which is
equivalent to d there and is such that (A,d;) is complete. We now apply
the above extension result to the identity from A (as a subset of X) into
the complete metric space (A, d;). We can extend this to a homeomorphism
from a Gs-set Ay (containing A and contained in A). But a homeomorphism
is a bijection and there is no non-trivial extension of the identity on A to a
bijection. Hence A is itself a Gs.
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4 Topological spaces:

As we have seen, in many of the definitions of the last section, the open sets
play a more fundamental role than the metric. If we recall the basic stability
properties of the family of open sets in a metric space, we are led naturally
to the following definition:

Definition: Let X be a set. A topology on X is a family 7 of subsets
which satisfies the following conditions: a) ) and X are in 7; b) the union of
a subfamily of 7 is a set of 7; ¢) the intersection of a finite subfamily of 7 is
in 7.

A topological space is a set X, together with a topology thereon. We will
refer then to the topological space (X, 7) or simply X if it is clear from the
context which topology we are dealing with. We now reformulate some of
the definitions of the last chapter in this context.

If (X,7) is a topological space, we refer to the sets in 7 as the open
sets (or, more precisely, the T-open sets). A subset A of X is closed if its
complement is open.

If 77 and 7 are topologies on X, we say that 7 is finer than » (alterna-
tively, that 7, is coarser than 7,), if 71 D 75. Two topological spaces (X1, 71)
and (Xs, ) are homeomorphic if there is a bijection f from X; onto X,
so that a subset U of X, is open if and only if f(U) is open in X5. Such an
f is called a homeomorphism.

A mapping f : X7 — X5 is continuous if for each open subset U of Y
the pre-image f~1(U) is open in X;. Hence a bijection is a homeomorphism
if and only if both it and its inverse are continuous.

We note without proof that most of the simple facts about continuous
functions on subsets of the line translate without difficulty to the more gen-
eral situation. These the sum and product of two continuous, real-valued
functions are continuous as is the composition of two continuous functions.
If a sequence of continuous, real-valued functions on a space X converges
uniformly, then the limit function is also continuous.

If A is a subset of a topological space, we define its interior A° to be the
union of all open subsets which are contained in A. Clear A° is open and in
fact is the largest open set which is contained in A. Furthermore, A is open
if and only if A = A°.

Similarly, we define the closure A of A to be the intersection of all closed
subsets C' which contain A. It is the smallest closed set containing A and
the latter is closed if and only if A = A.
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Examples: If X is a set, then in 7p, every subset is closed and hence equal
to its closure. On the contrary, the closure of every subset of (X, 77) (with
the exception of the empty set) is equal to X. In (N, 7.y, every finite subset
is closed and so equal to its closure, while the closure of any infinite subset
is the whole of N.

We remark here that one can use the concepts of closure and closedness
to characterise the continuity of a function. Thus for a function f: X — Y
between topological spaces, the following conditions are equivalent to the
fact that f is continuous: a) if C C Y is closed, so is f71(C);  b) for
each A C X, f(A) C f(A).

We list some simple properties of interiors and closures: If A and B are
subsets of a topological space X, then

a) x € A° if and only if there is an open subset U with z € U and U C A;
r € Aif and only if every open set U containing = meets A.

b)
)) A=X\(X\A)°%
¢)

(A°)° = A°, A= A
if AC B, thenAOCBOandACB

fy AUB=AUB and (AN B)° = A°N B.

Note that it is not true that (AU B)° = A°U B° or that AN B=ANDB
as the following examples show. Firstly, we take A = [0, 1], B = [1,2]. Then
the equality (AU B)° = A°U B° is violated. On the other hand, if A =]0,1]|
and B =|1,2[, then AN B # AN B.

Suppose now that A is a subset of a topological space X. Then x € X is
called a limit point of A if it lies in the closure of A i.e. if every open set U
containing x meets A; a cluster point of A if every open set U containing
x meets A in a point other than x (i.e. if = is a limit point of A\{z}); an
isolated point of A if it is in A but is not a cluster point thereof i.e. there
is an open set U so that U N A = {z}.

The set of all cluster points of A is called the derived set of A and
denoted by A?. Then A = AUA?. A is said to be dense in itselfif A = A%

A subset A of a topological space X is dense in X if A = X (i.e. if every
non- empty subset of X meets A). X is separable if it has a countable dense
subset. The classical example of a dense subset is the rational numbers as a
subset of the real line. This shows that the latter space is separable.

If A is a subset of a topological space, then we define its boundary 0A to
be the set AN X\A. Thus z is in the boundary of A if and only if each open
subset U which contains x meets both A and its complement. The reader
will easily check that for domains (i.e. open sets) in R", this coincides with
the intuitive notion of a boundary.

Note that x is in the boundary of A if and only if it is a limit point of
both A and its complement.
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The boundary of a set A is closed and we have the inclusion 9(0A) C JA.
However, we do not always have equality as the example A the subset of [0, 1]
consisting of the rational elements of the latter shows. (Here the boundary
of A is the interval [0, 1] and the boundary of the latter is the two-point set
{0,1}).

The reader can verify the following simple facts:

A° = A\0A
A =AU0A
J(AUB) C 0AUOB
J(ANB) C 0AUOB
J(X\A) =0A
ou = U\U if U is open

0A = if and only if A is both open and closed.

A subset U of a topological space X is regularly open if it is equal to
the interior of its closure. Dually, it is regularly closed if it is the closure
of its interior. The subset | — 1, 1[\{0} of the real line is an example of an
open set which is not regularly open. Note that if A is an arbitrary subset of
a topological space, then the interior of its closure is regularly open. Also if
U and V are regularly open, then so is their intersection (but not necessarily
their union as the above example shows). Corresponding results hold for
regularly closed sets and are obtained by complementation.

In specifying a topology resp. in interpreting various topological concepts,
it is often sufficient to consider only open sets of a special type. For example,
for a function f between metric spaces, it suffices for f to be continuous that
the pre-images of open balls under f be open as the reader can easily verify.
The appropriate concept in the case of a general topological space is that of
a basis i.e. a subfamily B of a topology 7 so that each open set U is the
union of sets in B. More generally B is a subbasis if the family B consisting
of the sets which are intersections of finite collections from B forms a basis

For example, the family {z}.cx of singletons in X forms a basis for the
discrete topology. The set of pairs {z,y} (z,y € X,z # y) forms a subbasis
(if the cardinality of X is at least three), but not a basis. In the real line,
the family of open intervals is a basis for the usual topology, whereas the
family of open intervals of length 1 is merely a subbasis. As indicated by
the introductory remarks above, the family of open balls in a metric spaces
forms a basis for the metric topology.

It is often more convenient to specify a topology by describing a basis
rather than all open sets and we shall take advantage of this in the following.
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Of course, a given family can be a basis for at most one topology so there is
no ambiguity in specifying a topology in this way.

We recall here that a topological space is defined to be separable if it
has a dense countable subset. This condition is satisfied by most of the
spaces which arise in applications. However, as we shall see, it has certain
disadvantages and it is often useful to replace it by the following stronger
condition:

Definition: A space X is said to be countably generated (or to satisfy
the first axiom of countability) if it has a countable basis. Any such space
is separable since a sequence with one element from each set of a countable
basis is easily seen to be dense. Conversely, if (X, d) is a separable metric
space, then it has a countable basis. In fact, if (z,,) is a dense sequence, then
the countable family {U(x,,27") forms a basis.

As remarked above, our list of metric spaces supplies us with a variety
of topological spaces, including most of those which are useful in analysis
or geometry. Here we shall concentrate on more pathological spaces whose
topologies cannot be defined by a metric. We begin with a series of topologies
which are defined on any set X and are independent of any structure which
the latter may have.

4.1 Examples of a topological spaces

I. The cofinal topology 7.; on X has as open sets the empty set and those
subsets of X whose complements are finite. Similarly, the co-countable
topology 7.. consists of the empty set, together with those subsets whose
complements are countable.
IT. If X is a set and xq is a distinguished point in X, then the particular
point topology has as open sets all subsets of X which contain zy (plus
the empty set of course). The special case where the cardinality of X is 2
is called the Sierpinski space. It can be represented schematically as in
figure 1.

We now turn to a series of topologies which are related to specific struc-
tures on the underlying spaces:
ITII. The Niemitsky half-plane: The underlying space is the upper half-
plane

Hy ={(&,&) e R*: & > 0.

It is generated by the set of all open balls in the open half-plane (i.e. those x
in H, with & > 0) plus sets of the form U U {z} where U is an open ball in
the upper half-plane which touches the z-axis at the point x (cf. figure 2).
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IV. Topologies defined by orders The topology of R is intimately related
to its order structure and it can be conveniently generalised as follows. Sup-
pose that a set X has a partial ordering <. Then the open intervals i.e. the
sets of the form

le,y[={ze X 1z <z <y}

form a basis for the order topology on X.

Particularly interesting among the ordered topologies are those on the
so-called ordinal spaces. Suppose that I' is a limit ordinal. Then we can
regard the intervals [0, '] and [0, '] as topological spaces in the above way.
The most interesting case is where I' is the smallest uncountable ordinal.
This is a useful source of counterexamples.

A further example of a topological space which arises from an order struc-
ture is:

V. The Sorgenfrey line: This is the real line, provided with the topology
Tsorg generated by the family

{[z.yl: v,y e R, x <y}

of half-open intervals as basis. This topology is finer than the natural one.
Closely related are the topologies 7 and 7, on R (R and L for right and
left) which are generated by the families

{Jz,00[: z € R}

resp.
{l] —oo.yl:y € R}.

For applications of topology to analysis, two concepts are of crucial im-
portance — convergence (of sequences) and continuity (of functions). That
of convergence allows one to provide a framework for the rigorous treatment
of questions of approximation. There is a close connection between them.
Thus for metric spaces we can define continuity in terms of convergence as
follows: a function between metric spaces is continuous if and only if it maps
convergent sequences onto convergent sequences, more precisely, if whenever
z, — x in X, then f(z,) — f(z) in Y. On the other hand, we can charac-
terise convergence in terms of continuity as follows. Let (z,) be a sequence
in a metric space X, x a point of X. Then x,, — x if and only if the following
function is continuous. We denote by Y the subspace of R consisting of the
origin and all points of the form % where n runs through the set Ny. Then
the sequence converges to x if and only if the function f from Y into X which
maps % onto z,, and 0 onto x is continuous.

The definition of convergence for sequences in metric spaces can be given
in the following version which carries over to the case of general topological
spaces:
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Definition: A sequence (z,) in a topological space (X, 7) converges to a
point x if and only if for each open set U containing z there is an N € N, so
that x,, € U for n > N.

However, the following examples show that some rather peculiar things
can happen with respect to convergence in general topological spaces and
this will lead us to generalise the notion of convergence shortly:

This last example shows that two distinct topologies on a set can induce
the same notion of convergence of sequences. As mentioned above, this fact
makes it necessary to consider convergence for a more general class of objects
than sequences. One possibility is the use of filters:

Definition: A filter on a set X is a non-empty collection F of subsets of
X so that

a) each A € F is non-empty;

b) if A and B belong to F, then so does their intersection A N B;

c) if A € F, then every superset of A is also in F.

The most important example of a filter is the neighbourhood filter
N (8) of a point in a topological space i.e. the set of all subsets A of X which
contain an open U with x € U (such sets A are called neighbourhoods of

Filters are often conveniently specified by the use of so-called filter bases
which we define as follows: A collection F of non-empty subsets of a set X
is called a filter basis if it satisfies condition a) above and, in addition, the
condition

b’ ) if A and B belong to F, then there is a C' € F with C € AN B.
Then the collection

]:":{BCX:there is an A € Fwith A C B}

is a filter on X. It is called the filter generated by F.

Further examples of filters are:
L. If A is a non-empty subset of a set X, then F(A), the family of subsets of
X which contain A, is a filter. It is generated by the filter basis {A}.
I1. The following filter on N is of fundamental importance. It is called the
Fréchet filter. The family of sets

N, ={neN:n>m}

forms a filter basis in N. The filter that it generates is the Fréchet filter. In
other words, the Fréchet filter consists of those subsets which contain almost
all positive integers.
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II. If F is a filter on a set X and f is a mapping from X into Y, then, as
the reader will have no trouble in verifying, the family

f(F)={ACY:{"™(A) e F}

is a filter on Y. It is called the image of F under f. Note that this is not,
in general, the same thing as the family of images of the sets of F. However,
the latter family is a filter basis which generates the above filter.

One example of this construction is as follows: suppose that we have a
sequence (x,) in a set X. Then we can regard this as a mapping from N into
X and so we can define the Fréchet filter of the sequence to be the image
of the corresponding filter in N which we defined in II.

We are now ready to introduce the notion of convergence for filters. A
filter F on a topological space X converges to a point x there if it contains
the neighbourhood filter of z. In terms of a filter basis G which generates F
we can restate this as follows: for each U € N (§), there exists an A € G so
that A is contained in U.

If we apply this to the Fréchet filter of a sequence (z,), we see that the
latter converges to x in the sense defined above if and only if its Fréchet filter
converges.

All topological notions can be expressed in terms of filters. As an ex-
ample, we consider the closure of a set. In contrast to the case of a metric
space, it is not true in general that a subset is closed if it contains the limits
of all sequences therein as we have seen above. However, we do have a cor-
responding and valid version of this result if we replace sequences by filters.
Suppose that A is a non-empty subset of X and F is a filter on A. Then A,
while it need not be a filter on X, s a filter basis and so generates a filter on
X. (This filter is just the image of F under the embedding of A in X in the
sense of IIT above).

Proposition 40 Let A be a subset of a topological space X. Then a point
x of X lies in the closure A of A if and only if there is a filter on A which
is such that the filter it generates in X converges to x. Hence A is closed if
and only if every filter on A which generates a convergent filter in X is such
that the limit is in A.

Proor. We show that if x is in the closure of A, then there is a filter

in A which generates one on X which converges to x. But it is clear that
{ANN : N € N(§)} has the required property.
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If F is a filter, a cluster point for F is a point x so that each neigh-
bourhood of = meets each A € F (i.e. the set of cluster points is just the

intersection () .7 A). Cluster points can be characterised as follows:

Proposition 41 x is a cluster point of the filter F if and only if there is
a finer filler G which converges to x. (G is finer than F means simply that
FCg).

Proor. It is clear that if G converges to x, then z is a cluster point of G
and so of F (a limit of a convergent filter is clearly a cluster point). On the
other hand, if x is a cluster point, then each neighbourhood of x meets each
A € F. Hence

{CNN:CeFNeN®B)}

is a filter base and so generates a filter F which is finer than both F and
N(§).

Recall that a mapping f between topological spaces was defined to be
continuous if inverse images of open sets are open. This is equivalent to each
of the following conditions (where f maps X into Y and B, resp. Bc are
bases for the topologies of X and Y respectively).

for each U € Be, f~1(U) is open in X;

for each x € X and U € B¢ containing f(x), thereis a V' € B, containing
x with f(V) contained in U.

We now display a natural characterisation of continuity which involves
convergence of filters:

Proposition 42 Let f : X — Y be a function between topological spaces.
Then

a) f is continuous at xo if whenever F — §, in X, then f(F) — {(§) in
Y;

b) f is continuous on X if whenever a filter F converges to a point x in
X, the image f(F) converges to f(x).

Another possibility for generalising the concept of convergence is the use
of nets. A net in a set X is a family which is indexed by a directed set A i.e.
it is a mapping from A into X (written (z,)aca). Such a net converges to a
point x if for every open set U containing x there is a § € A so that x € U
for a > (. Then the following characterisations of closedness and continuity
hold: z lies in the closure of A if and only if it is the limit of a convergent
net in A; f : X — Y is continuous if and only if x, — 2z in X implies
f(zs) — f(z) in Y. This result and similar ones can be proved by using the
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following correspondence between nets and filters. If (z,) is a net, then just
as in the case of sequences, the set {Fj : § € A} where Fjg = {2, : a > [}
is a filter basis and we see that the corresponding filter converges to x if and
only if the original net does. On the other hand, if F is a filter, then we can
construct a net as follows: we define the index set A to be the set

{(z,B): B € F and § € B}.

This is directed under the ordering defined by specifying that (z, B) <
(1, By) if and only if B D B;. Then we can define a net (z,) where z, =z
whenever o« = (z, B). This net converges to a point xy if and only if the
original filter does.

4.2 Special types of subsets of a topological spaces:

We now introduce some special classes of subsets of topological spaces. The

first few are repetitions of definitions which we have already considered within

the context of metric spaces. A subset A of a topological space X is
nowhere dense if the interior of its closure is empty;

of first category if it is the union of countably many nowhere dense sets;

of second category if it is not of first category.

We make some simple remarks on these definitions. Thus a set is nowhere
dense if and only if its complement contains an open, dense set. Equivalently,
if it is equal to its own boundary. Examples of nowhere dense sets are single
points (if they are not isolated), the boundary of an open or closed set and
the Cantor set (as a subset of the unit interval). Of course, finite unions of
nowhere dense sets also enjoy this property.

The family of subsets of a given space which are of first category is closed
under the formation of subsets and countable unions. A space is of second
category if and only if whenever it is written as a countable union of closed
sets, then at least one of these has non-empty interior. A space is said
to be a Baire space if each non-empty open subset is of second category.
Thus Baire’s theorem can be interpreted as the statement that each complete
metric space is a Baire space. It follows immediately from the definition that
open subsets of Baire spaces are also Baire. Also being Baire is a local
property i.e. if every x in X has an open neighbourhood which is Baire, then
so is X. The definition of being a Baire space can usefully be reformulated
as follows: the intersection of each countable family of open, dense subsets
is itself dense.

The definitions of F,- and Ggs-sets carry over directly from the case of
metric spaces i.e. a subset of a topological space is an F, if it is the union
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of countably many closed sets. It is a Gy if it is an intersection of countably
many open sets. Thus the class of F,-sets is closed under the formation of
finite intersections and countable unions.

A subset of a topological has the Baire property (or is a Baire Property
set, abbreviated to BP-set) if it has the form UAF where U is open and F'
is of first category (Here A stands for the symmetric difference i.e. UAF =
(U\F) U (F\U). This is equivalent to the fact that it has a representation
CAF where C is closed and F is of first category (for if U is open, then U\U
is nowhere dense and so of first category). From this it follows immediately
that if A is a BP-set, then so is its complement.

The family of BP-sets is stable under the following operations:

formation of countable unions;

formation of countable intersections.

In particular, it follows from the above that the BP-sets form a o-algebra.

We have the following useful characterisation of sets with the Baire prop-
erty.

Proposition 43 A set has the Baire property if and only it has a represen-
tation as the union of a Gs-set and a set of first category (or, dually, as an
F,-set minus one of first category).

A particularly important o-algebra associated with a topological space is the
Borel algebra. This is, by definition, the o-algebra generated by the open
sets (i.e. the smallest o-algebra which contains the family of open sets). Since
each open set is a BP-set and the family of all sets with the Baire property
is a o-algebra, it follows immediately that each Borel subset of a topological
space is a BP-set.

4.3 Semi-continuous functions:

In certain arguments, particularly those which arise in optimisation, the prop-
erty of continuity can be replaced by a weaker one, that of semi-continuity.
Since many functionals on infinite dimensional spaces possess the latter prop-
erty while failing to be continuous, this generalisation of continuity is of some
importance.

Definition: A real-valued function on a topological space X is lower semi-
continuous (abbreviated l.s.c.) if it is continuous when regarded as a map-
ping into the real line, where the latter is provided with the topology 7g.
This means that for each a € R, the set {f > «a} is open. Dually, f is
upper semi-continuous (u.s.c.) if —f is Ls.c. i.e. if f is continuous as a
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function with values in (R, 77). For example, if A is a subset of X, then the
characteristic function y 4 of A is lower-semi-continuous if and only if A is
open and upper semi-continuous if and only if A is closed.

It is easy to see that if f and ¢ are l.s.c. then so are the functions
min (f, g), max (f,g) and f + g. If both function are non-negative, then fg
is also l.s.c. More generally, we have:

Proposition 44 If (f,) is a family of l.s.c. functions which is such that
for each x in X, the set {fo(x)} of real numbers is bounded above, then the
function

frzm sup (fa(x))

1s also l.s.c.

In particular, any supremum of a family of continuous functions is l.s.c.
(of course, it need not be continuous). Generally the converse is true i.e. a
function is l.s.c. if and only if it is the supremum of a family of continuous
functions. (Precisely when this is the case will be dealt with in the chapter
on separation properties). We remark here that a stronger version holds in
metric spaces:

Proposition 45 Let f be an l.s.c. function on the metric space X. Then
there is a sequence (f,) of continuous real-valued functions on X such that
f is the supremum of the f,.

If f is a function on a topological space X, we define
f“=inf{h: f < handhis us.c.}

and
fi=sup{h: f>handhis Ls.c.}.

Then f; < f < f* and all three function agree at a point xy if and only if
f is continuous at zy. This means that the set of discontinuities of f is the
union of the sets A,, where

S|

A ={S"=fiz -}

and so is an F.
We conclude this section with a brief mention of some further classes of
functions between topological spaces, namely open and closed mappings.
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Definition: A continuous mapping f : X — Y between topological spaces
is  openif f(U) is open in Y whenever U is open in X;  closed if f(C)
is closed in Y whenever C'is closed in X.

These two notions are distinct as the following examples show. Firstly,
the mapping from R into R whose graph is shown in figure 777 is closed,
but not open sind the image of the real line is a closed interval. On the
other hand, the natural projection of the Niemitsky half-plane onto the z-
axis (with the natural topology) is open, but not closed. We list some simple
properties of open and closed mappings which follow immediately from the
definitions:

a) if f and g are open, so is the composition g o f;

b) if g o f is open and f is onto, then g is open;

c) if go f is open and g is injective, then f is open. Corresponding results
hold for closed mappings

If f is an open mapping from X into Y and Yj is a subset of Y, then the
restriction of f to f~1(Yp) is also open. The same holds for closed mappings.

5 Construction of topological spaces:

In order to enrich our collection of examples of topological spaces, we now
describe some simple ways of constructing new spaces from old ones. Firstly
we note that any subset of a topological space has itself a natural topology.
As open sets in A we take the intersections of A with open subsets of X.
More formally, the family

Ta={UNA:Uer}

is a topology on A — called the topology induced on A by 7. A with this
topology is called a topological subspace of X. We make the following
simple remarks about induced topologies: 1. If B is a basis (resp. a subbasis)
for 7, then

BA:{UQA:UEB}

is a basis (subbasis) for 74.

I1. On a subset A of a metric space (X, d), the topology induced by the metric
topology coincides with that defined by the restriction of the metric to A.
This follows easily from the fact that if € A, then the e-ball in A with z as
centre (defined by the restriction of the metric to A), is just the intersection
of the e-ball in X with A.

III. If we regard R™ as a subspace of R? in the natural way (for m < p), then
the usual topology on the latter induces the usual topology on the former.
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IV. If f: X — X; is a mapping between topological spaces which takes its
values in a subset A of X, then f is continuous (from X into X;) if and only
if it is continuous from X into A (the latter with the induced topology).

V. A subset C of the subspace A of X is closed for the induced topology if
and only if it has the form C; N A for a closed subset C; of X.

VI. If we regard the z-axis as a subset of the Niemitsky half-plane, then the
induced topology is the discrete topology. This provides an example of a
separable space with a subspace which is not separable.

VII. Suppose that f is a mapping from the space X into Y and that A is
a subset of X. Then the restriction of f to A is continuous for the induced
topology. If F is a filter in A which converges to a point z in A, then the
filter generated by F in X converges to x there (and conversely).

A topological property is called hereditary if each subspace of a space
with the property also enjoys the property. For example, we have seen that
the property of being separable is not hereditary, whereas that of being count-
ably generated is.

5.1 Products:

We now show how to regard Cartesian products of topological spaces as
topological spaces. For the sake of simplicity, we begin with finite products.
Later, we shall show how to deal with infinite products. Suppose that X is
the product [[,_, Xy where each X is provided with a topology 7. Then
the sets of the form

U1XU2X"'XUn

where U; is open in X; form a basis for a topology on X. We call it the
product topology. Its characteristic property is summarised in the next
result:

Proposition 46 The projection mappings 7y : X — X are all continuous
and if f maps a topological space Y into X, then f is continuous if and only
if for each k, m, o f is continuous from Y into Xj.

A less formal way of stating this result is as follows: a continuous function
from Y into X is just a system (f,..., f,) of continuous functions where fj
takes its values in Xy. (fy is the mapping m; o f).

A similar criterium for convergence is valid and can be derived immedi-
ately from the above result by using the trick mentioned on p. 7777

Proposition 47 If (x,) is a sequence in the product space, then it converges
to x there if and only if m(x,) — mx(z) for each k.
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In other words, convergence is determined by that of components.

Another simple fact about products which is useful to remember is that
if Ay, is a subspace of X}, then the product [[ Ay is a topological subspace of
the product of the X}, (i.e. the product topology on the latter induces the
product topology on the former).

We have already met a number of examples of products. For example,
the n-torus tT™ is just the product of n copies of the circle.

5.2 Quotient spaces:

This method of constructing topological spaces can be illustrated by the
following simple example: if we take a copy of the unit interval and bend
it round so that we can join the end-points, then we obtain a copy of the
unit circle. We can say that S! is the space obtained from a closed interval
by identifying the endpoints. The general construction is as follows: X is a
topological space and f is a surjection from X onto a set Y. Then we can
define a topology 71 on Y as follows. A subset of the latter is defined to be
open if its inverse image under f is open in X.

In our applications, the function f will arise in the following way. We
have an equivalence relationship on X and Y is the set of equivalence classes,
f being the natural surjection which maps an element to the equivalence class
to which it belongs.

The decisive property of the above topology is as follows: a mapping g
from Y into a topological space Z is continuous if and only if the composition
g o f is continuous.

Examples: We begin with three spaces which are useful as counterexam-
ples and which can be most easily defined as quotient spaces:

[. The line with two origins (figure 1). This is the quotient of the union of
two copies X7 and X, of the real line whereby we identify the points in pairs,
with the exception of the origin. More formally, consider the following two
subsets of the plane:

X1 ={(£,0): &L eR} Xo={(&,1): &6 € R}

and put X = X; U Xy and Y = X |. where

x~yifand only if x =y orz = (&,n), y = (&,n) with n # 0.

II. The interval with three endpoints (figure 2). This is X |. where
X ={(6,0): & € [0,1]} U{(&2,1) : & € [0, 1]}
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and
x ~yif and only if x =y or x = (£1,0) and y = (£, 1) with & > 0.

ITI. The pinched plane. This is an example of a quotient of a metrisable space
which is not metric. It is typical in the sense that many desirable properties
of topological spaces can be lost in the passage to a quotient space. The
pinched plane is obtained from the plane by shrinking a line down to a point.
More formally, it is R? | where x ~ y if and only if 2 = y or z and y lie on
the real axis. (The quotient space is not metrisable since the special point
in the pinched plane fails to have a countable neighbourhood basis).

The above examples illustrate two special types of quotient space which
arise frequently, especially in geometric topology, namely spaces obtained by
shrinking subsets to points resp. by pasting spaces together along suitable
subsets. Because of the frequency of their occurrence, it is worth describing
such constructions in their natural generality.

. Spaces obtained by shrinking subsets to a point. Here X is a subset of a
topological space X and the equivalence relation is defined as follows:

x ~ gy if and only if = =y or x and y are in Xj.

Of course, example III above is a special case of this construction.

IT. Spaces obtained by pasting. Here X and Y are topological spaces which
we suppose to be disjoint (as sets) and X resp. Yy are homeomorphic subsets,
ho being a suitable homeomorphism from X, onto Yy. Then we can paste
X onto Y along this “common” subset as follows: we consider the quotient
space of the union X UY under the following equivalence relationship:

x~yifand only if x =y or z € Xy, y € Yy and y = h(x).

For example we obtain the Bretzel by taking two tori, cutting a hole in
each of them and pasting the spaces together along the edges of the hole
(see figure 3). Perhaps the simplest examples of this construction are those
which involve joining two spaces at a point. Here we have two topological
spaces X and Y, with distinguished points zy and ¥, resp. The space X VY
is then the quotient of the disjoint union X IT'Y obtained by identifying x,
and go. Thus S* v S* is the figure of eight (see figure 4). (Strictly speaking,
this wedge product depends on the particular choices of the distinguished
points and this should have been incorporated in the notation. However, in
the cases we are interested in, the choice of points is irrelevant so that this
pedantry is unnecessary). We remark that the wedge product of X and Y
can also be identified with the subset X x {yo} U {zo} x Y of the product
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space X x Y. For example, when both spaces are the circle, this means that
we are identifying the figure of eight with the subset of the torus indicated
in the diagram 5.

Example: The cone over a space. If X is a topological space, the cone
over X is the quotient of the product X x I of X with the unit interval which
is obtained by identifying the points of the form (z,1) i.e. we pinch the top
of the cylinder over X together. Thus the cone over S' is just the classical
form of a conical dunce’s cap (figures 6,7). The following more exotic cones
are often used as counterexamples.

I. The cone over Z. II. The cone over the space {1 :n €} U{0}.

We can picture both of these spaces as subsets of the plane (see figures
8 and 9) but the reader is warned that the quotient topologies described
above do not coincide with the topologies induced from the natural one of
the plane.
Example: The suspension of a space. This is defined as the quotient of the
product of X with the unit interval under the equivalence relationship

(x,s) ~ (y,t) ifandonlyif z=y and s=¢ or s=1 and t=1

In other words, we pinch together both the top and the bottom of the cylinder
as in figure (10). For example, the suspension of S is S?. More generally,
the suspension of 8" is 8" for each n.

5.3 Quotient topologies on subspaces

Suppose that f : X — Y is a surjection and that Y has the corresponding
quotient topology. Then this need not apply to subspaces of Y. More pre-
cisely, if A is a subspace of Y and if B is a subset of X with f(B) = A, then
the topology induced on A from Y need not coincide with the quotient of
the subspace topology on B. An example where this fails is the following:
we take for X the interval I, for Y the circle and for B the interval ]0,1]. It
is easy to see, however, that the quotient topology is always finer than the
subspace topology.

We remark here that if f: X — Y is a quotient mapping, then it is not
necessarily open or closed. On the other hand, any open or closed contin-
uous surjection is automatically a quotient mapping. Just when a quotient
mapping is open or closed can be simply characterised as follows:

Proposition 48 A surjective mapping f : X — Y from the topological space
X to the set 'Y is open (resp. closed) when Y is provided with the quotient
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topology if and only the following condition holds: for each open subset
U, f~Yf(U) is open resp. for each closed subset C of X, f~1(f(C)) is
closed.

The set f~'(f(A)) which occurs in the above formulation is called the
saturation of A. It has the following more intuitive description. f~!(f(A))
is the union of all those equivalence classes which have non-empty intersection
with A.

However, the reader can verify that this is the case if any of the following
conditions are met:

a) A is open or closed;

b) f is open or closed.

As a further example of pathology which can occur in the case of quotient
spaces, we note that if X and Y are product spaces, say X = [[ X, ¥ =
[1Y), and if fy is a quotient mapping from X onto Y, for each A, then this
need not be true of the product mapping from X onto Y. However, if each
fx is open, then it is a quotient mapping (in fact an open mapping).

We now consider two very general constructions which contain all of the
previous methods as special cases:

5.4 Initial and final topologies:

Let X be a set, {(Xa, 7o) }aca be a family of topological spaces and, for each
a € A, let f, be a mapping from X into X,. Then B, the set of those
subsets of the form f,!(V) for some o € A and some open set V in X,, is
a subbasis for a topology 7 on X. The latter is called the initial topology
on X induced by the f,. It can be characterised as the coarsest topology
on X for which each f, is continuous.

Dual to the above is the construction of final topologies. Here X and the
X, are as above but now the f, are mappings from X, into X. Then the
set of those subsets U of X which have the property that f,!(U) is in 7, for
each a forms a topology on X — the final topology induced by the f,. It
is the finest topology so that each f, is continuous.

An important aspect of the above topologies is the following description
of continuous mappings: if X is a topological space with the initial topology
induced by the mappings f, : X — X,, then a mapping f from a further
space Y into X is continuous if and only if f,o f from Y into X, is continuous
for each «; if X has the final topology induced by the mappings f, from X,
into X, then a mapping f from X into a further space Y is continuous if and
only if f o f, is continuous for each a.
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These characterisations follow immediately from the descriptions of the
open subsets of X.

Examples: Examples of initial topologies are subspaces and products. More
precisely, if A is a subset of a topological space X, then the topology induced
on A from X is precisely the initial topology corresponding to the inclusion
mapping from A into X. Similarly, if X is the product [[,_,; X} of a finite
number of topological space, then the product topology on X is just the
initial topology induced by the mappings m1,...,m,.

Examples of final topologies are quotient spaces. A further example is
that of disjoint unions. Let (X,,7,) be a family of topological spaces and
let X be the (set-theoretical) disjoint union of the X,. Then we can regard
X as a topological space, by providing it with the final topology induced
by the natural embeddings of the X, in X. In other words, a subset U of
X is open if and only its intersection with each X, is open for 7,. Thus a
mapping f from X into a second topological space is continuous if and only
if its restrictions to the X, are continuous. X with this topology is called
the topological disjoint union of the X,. We note in passing that each
X, is then a clopen subset of X and that a subset C' is closed if and only if
C' N X, is closed in X, for each a.

Infinite products: The above description of finite products as initial struc-
tures should make it clear how we shall define infinite products. Suppose that
we have an arbitrary family (X, 7,)aca of topological spaces and that X is
their set-theoretical product. Then for each « there is a natural projection
7o from X into X,. Then we regard X as a topological space with the
corresponding initial topology. Suppose that Upg is open in Xj3. Then the
pre-image of this set under mg is the product Ug x [], 25 Xa. Hence the sets
of this form are a sub-basis for the product topology. From this it follows
that a basis consists of all sets of the form Hae 4 Ua where each U, is open
in X, and all but finitely many of the U, are equal to the whole space X,.
Using this description of the open sets it is not difficult to prove that the
product topology has the natural properties, of which we mention explicitly
two:

a) a function f from a space Y into X is continuous if and only if 7, o f
is continuous into X, for each «;

b) a filter F in X converges to z if and only if 7, (F) converges to m,(x)
for each a.
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Projective limits: One of the most ubiquitous constructions in mathe-
matics is that of projective limits. It is based on the following set-theoretical
construction. Suppose that we have a family (X,)aca of sets which are in-
dexed by a directed set A. In addition we have, for each pair «, f in A with
a < 3, a mapping mg, from Xp into X, so that the following compatibility
conditions are satisfied:

a) Moo = 1d;

b) Tga 0 Tyg = Tya (@ < B < 7). Such a family is called a projective
spectrum. From now on we shall assume that the directed set is N in order
to simplify the notation but the reader will have no difficulty in seeing that
most of our considerations are equally valid in the general situation. In the
case of spectra indexed by N, it suffices to know the linking mappings 7,11,
for each n since condition b) implies that

Tmn = Tn41,n © Tn42n+1 C O T m—1-
Suppose then that we have a projective spectrum
{Tmn : X — Xy :n < m}.

Its projective limit is then defined to be the family of threads in the
Cartesian product [[ X, i.e. the set of those sequences (x,) for which
Tnt1n(Tn + 1) =z, for each n.

We begin with an example to display the motivation for this construction.
We consider the space of continuous functions on the real line which we
display as a projective limit in the following way. For each n € N, we let X,
denote the space of continuous real-valued functions on the interval [—n,n].
and define 7,41, to be the natural restriction mapping. Then the (X,,)
form a projective spectrum and we identify its limit as follows: a typical
element of the latter is a thread (z,) of continuous function where z, is
defined on [—n,n]. Further these functions are compatible in the sense that
if n < m, then z, is just the restriction of z,,. Clearly, this implies that
the functions can be combined to define a continuous function on the whole
line. Conversely, the restrictions of a continuous function on the line to the
appropriate intervals defines a thread. Thus we can identify the projective
limit with the space of continuous functions on the line.

This example can be generalised to arbitrary topological spaces, in which
case we are forced to use directed sets of arbitrary cardinality. We shall
return to this topic later.

We now turn to the situation where each of the X, is a topological space.
We then provide the projective limit of the spectrum, which we denote by
lim X,,, with a topology as follows. By definition, the limit is a subspace of
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the Cartesian product and so we simply regard it as a topological space with
the induced topology.

We remark that there is a natural mapping from the projective limit X
into X,, which we denote by m,. It is simply the restriction of the projec-
tion from the product into the component X,,. Of course, this mapping is
continuous and the reader will recognise from the above description of the
topology that it is precisely the initial topology induced on X by the family
of mappings (7).

Examples of projective limits: 1. Intersections: Suppose that (X,,) is a
decreasing sequence of subsets of a topological space X . Then the intersection[ ] X,
can be identified in a natural way with the projective limit of the spectrum

{imn : X = Xp,m < n}

(where i,,, is the natural inclusion).
I1. The following type of space, which is most naturally defined as a projective
limit, is of importance in descriptive topology. These are spaces which have
a representation as the projective limit of a spectrum {m,,, : X,,, = X,,,n <
m} where each X, is countable and discrete (i.e. is homeomorphic to N).
Such spaces are then complete metric spaces. In fact, they are homeomorphic
to closed subspaces of N™ by the very definition of the projective limit.
Projective limits can degenerate into triviality as the following examples
show.

Examples: 1. We consider the sequence ([n, oo[) of subsets of the real line.
If we regard them as a projective spectrum as in [ above, then their projective
limit is equal to their intersection, which is, of course, the empty set.,

IT. A rather more interesting example is the following. Let S be an uncount-
able set and consider the system {X, : A € F(S)} which is indexed by the
family F(S) of finite subsets of S (of course, this is an uncountable indexing
set — it is ordered by inclusion). X4 denotes the family of all injective map-
pings from A into N. This forms a projective system (with the restriction
mapping from Xp into X4 where A C B as linking mapping). Since the
only possible members of the projective limit are injective mappings from S
into N and there are no such mappings, the projective limit is empty. This
example is interesting because, in contrast to example I above, the linking
mappings are all surjective but the mappings from the projective limit to the
components are far from being surjective. We shall see below that this can
only happen for indexing sets which are more complicated than N.
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It is important in some applications to know a priori that a given pro-
jective limit is non-empty. We cite here a result that ensures that this will
be the case under certain special conditions. Its proof can be regarded as an
abstract version of that of the classical theorem of Mittag-Leffler on the exis-
tence of meromorphic functions with pre-ascribed principal parts at its poles
and for this reason the result is often referred to as the abstract Mittag-Leffler
theorem.

Proposition 49 Let (X,,) be a projective system of complete metric spaces,
whereby the linking mapping m,41, are supposed to be Lipschitz continuous.
If for each n my41, is dense in X,,, then the image of the projective limit X
m X, under m, 1s also dense.

This is a case of a theorem which has no useful generalisation to the case
where the index set is uncountable.

For the sake of completeness, we include the much more shallow result
referred to above. (It is of purely set-theoretical nature):

Proposition 50 If {m,, : X,, = X,,n < m} is a projective system of
sets indexed by N whereby the linking mappings m,,, are all surjective, then
the corresponding mappings from the projective limit to each X, are also
surjective.

We leave the simple proof to the reader.

Dual to the construction of projective limits is that of inductive limits.
In this case, we have a sequence (X,,) of topological spaces and, for each n,
a mapping ¢,, from X,, into X,,;1. We can then define, for m < n a mapping
tmn from X, into X,,. The inductive limit X of this spectrum is defined
to be the quotient of the disjoint union X, under the following equivalence
relation: x ~ y if and only if there are m, n, p with p larger than both m and
n so that z is in X, y is in X, and i, (2) = in,(y).

The main property of the space constructed in this manner is that a con-
tinuous mapping from X into a topological space Y is defined by a sequence
(fn) of continuous mappings, where f, maps X,, into Y and f, 0 ipp = fin
whenever n < m.

Examples: We begin with the following remarks about this construction.
In most of the application, the mappings i, are homeomorphisms from X,
into X, 1. Thus we have the case of unions.

We close this chapter by bringing applications of the quotient structure
to two branches of geometrical topology — graphs and surfaces.
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5.5 Graphs:

A graph is a topological space G which is a quotient of a disjoint union
X of a finite number of copies of the unit interval under an equivalence
relationship of the following simple type. Suppose that the intervals I, ..., I,
have endpoints (P;, Q);) and further that we have a partition Sy, ..., S, of the
finite set {Py,..., P, Q1,...,Q,}. Then points z and y from X are defined
to be equivalent if they are equal or if they are endpoints which belong to
the same element S of the partition.

Examples: see figure 11.

The equivalence class of an endpoint is called a vertex of the graph and
the copies of the interval are called its edges. The order of a vertex is
defined to be the number of edges which have this vertex as an endpoint
i.e. it is the cardinality of the set S; of the partition to which the endpoint
belongs. The vertex is odd or even according as its order is odd or even. A
basic fact about graphs is that the number of odd endpoints is always even.
PrROOF. Let n; denote the number of vertices of order . Then the number
of vertices is clearly

N=ni+ny +...

while the number of odd vertices is
Noga =n1+ns+...
Now the number of original endpoints in X (before identification) is
Nigt = N1+ 2n9+3n3 + ...
Of course, the latter number is even. Now the difference Nyo; — Nogq is
2n9 + 2n3 +4ng + ...

which is also even. Hence N,qq 1S even.
| ]

A path in a graph is a finite sequence (v, ..., v,) of vertices which are
such that for each i there is an edge from v; to v;;1. vg is called the initial
point of the path, v, the endpoint. If these coincide, then the path is
closed. A cycle is a path with vg = v,. A circuit is a trail with vy = v,,.
A Hamiltonian path is one which contains all vertices. A Hamiltonian
cycle is a cycle which contains all vertices. An Eulerian circuit is a circuit
which contains all edges and a Eulerian trail is one which contains all edges.

Then we have the following result:
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Proposition 51 A non-trivial connected graph has a Eulerian circuit if and
only if each vertex has even degree. A connected graph has an Eulerian trail
from a vertex v to a vertexr w (whereby these vertices are distinct) if and only
if v and w are the only vertices with odd degree.

Example: The question whether the graph (figure 7777) has an Eulerian
path is the question whether there is a closed walk in the above configu-
ration (figure 77?7) which involves crossing each bridge exactly once (the
Koenigsberg bridge problem).

5.6 Surfaces as quotient spaces:

In the first section we defined the torus as the product of two circles. It can
also be described as a quotient of a square in the following simple manner.
Consider the following equivalence relationship on I?.

(s,t) ~ (&', ¢)if and only if s = s'andt = t'or
s =0,s = landt = t'or
s =1,s" = 0andt = t'or
s = ¢, t = 0andt’ = lor

s=s',t = landt’ = 0.

Instead of this hopelessly unwieldy description, the above relationship can
be displayed graphically as in figure (13). Here the fact that opposite sides
are labelled with the same letter means that they are to be identified, while
the arrows indicate that points are to be identified with their mirror images
in the lines parallel to the appropriate sides which bisect the square. In the
following examples, we shall use this more informal method of describing
such equivalence relationships.

The cylinder: This is the quotient of I? displayed in figure 14.

The Mobius band: Figure 15. Here the fact that the arrows point in
different directions indicates that the points on the appropriate sides are
identified with their mirror images in the centre.

The Klein bottle: Figure 16

Note that in the above representation of the Klein bottle as a subset
of three-dimensional we have cheated in the sense that the bottle is self-
intersecting. This is unavoidable since there is no subset of R* which is
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homeomorphic to the Klein bottle. One has to go into the fourth dimension
to obtain a representation of it.

The projective plane: Figure 17

As in the case of the Klein bottle, the projective plane cannot be realised
in space without introducing a self-intersection. We can visualise it as a
“sphere with cross-cap”.

We now introduce a convenient algebraic notation for describing such
representations of surfaces as quotients of squares. Consider the concrete
case of the torus with the above representation (figure 13).

We denote this by the symbol ab~ta~1b which is obtained as follows. We
start at an arbitrary side (in this case the top a) and traverse the circum-
ference of the square (say in the clockwise direction, although this does not
matter), writing down successively the symbols for the sides. If the arrow
on a side points in the direction in which we are travelling, we write down
the letter of the alphabet with which it is labelled. If the arrow points back-
wards, we add the index —1. Thus the Mobius band has symbol 777 the

Exactly the same method can be used if we replace the square by any
regular polygon. This allows us to construct more intricate surfaces. For
example, the handle is the quotient of the regular pentagon indicated in
figure 18. Tt has symbol acb~ta='b. (Here the letter ¢ occurs only once to
indicate that this side of the pentagon is not identified with any other one. It
then forms part of the boundary of the resulting surface. By the way, we are
now using the word “boundary” in its everyday sense, not in the technical
sense introduced in 1.3)

With this convention any string of symbols of the form

aj' ...ay

where the indices ¢; are either 1 (in which case we do not reproduce it) or —1
represents a surface, provided that each letter appears at most twice. The
surface is uniquely determined by this string of symbols (although a given
surface can have several such representations, depending, for example, on the
edge at which one starts).

Using the symbolic representation, we can distinguish between certain
types of surfaces. A surface is closed or without boundary if each letter
appears exactly twice. Otherwise, we have a surface with boundary. For
example, the torus, the Klein bottle and the projective plane are closed
surfaces, whereas the Mobius band and the cylinder are with boundary.

We also distinguish between two-sided (or oriented) surfaces and one-
sided (or non-oriented) surfaces. Examples of the former are the torus and
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the cylinder and of the latter the Mobius band, the Klein bottle and the
projective plane. The nomenclature one- or two-sided is self-explanatory
(try to find a second side on a Mdobius band!). The term oriented or non-
oriented comes from the fact that on a surface like the M6bius it is possible to
change the orientation of a coordinate frame by traversing the surface. This
is impossible to do on an oriented surface such as a cylinder or the sphere.

One can determine whether a surface is orientable or not from its algebraic
symbol as follows. The surface is non-orientable if one symbol occurs twice
with the same index. Otherwise it is orientable.

Representations of surfaces as quotients of polygons can be used to decide
the results of simple experiments involving cutting up surfaces which often
crop as party games. Consider, for example, the well-known parlour trick of
cutting a Mobius band along a central line. This can be carried out without
scissors and paper as in figure 19. Hence the result is a cylinder. In fact, if
actually carried out with a real Mobius band, what one obtains is a Mobius
band with two twists. This is homeomorphic to the cylinder (but is not
embedded in space in the same way).

As a further example, consider figure 20 which shows that the projective
plane is obtained by “closing” the Mobius band with a disc. In other words,
if we cut a disc out of the projective plane, we get a Mobius band.

We can construct new surfaces by means of the exotically named con-
struction of the smash product. This is defined as follows. We cut discs
out of each of the surfaces X and Y and paste them together along the edges
of the wholes (which are homeomorphic to S'). (see figure 21) The resulting
manifold is denoted by XfY. As in the case of the wedge product, for those
surfaces which we consider the resulting surface is independent of exactly
where and how we cut out these discs.

For example, the smash product of two copies of the sphere is again the
sphere. More interestingly, the smash product of two tori is the Bretzel
(figure 23)

We can determine the algebraic symbol of a smash product from the
symbols of the components. We do this for the Bretzel as the smash product
of two tori but the method is completely general.

The smash product of two projective planes is the Klein bottle. This
is rather difficult to visualise directly, but we can also see it formal manip-
ulations with the polygon representations as follows. We begin with two
projective planes as in figure 24.

The spaces which we have been discussing are examples of what are called
two-dimensional manifolds (or just 2-manifolds). The fact that they are two-
dimensional can be expressed mathematically by noting that each point on
them has a neighbourhood which is homeomorphic either to
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a) the open disc in R?; or

b) half of this disc (together with the bounding diameter. (figure 25)
The handle, for example, has points of both types (figure 26). Points of the
second type are just those on the boundary as described above i.e. they lie
on edges of the polygon which are not identified with a second edge.

The surfaces which we obtain by our constructions have two topological
properties which will be discussed in detail in later chapters. They are com-
pact and connected. For our present purposes, the first conditions means that
they are homeomorphic to closed, bounded sets in some euclidean space. The
second means that each pair of points can be joined by a continuous curve
which lies on the surface (figure 27). The first condition excludes surfaces
such as that in figure 28, the second surfaces which are composed of several
pieces.

Using the concept of smash products, we can describe all compact, con-
nected surfaces as follows:

a) each oriented compact, connected surface is homeomorphic the sphere
or a smash product of tori;

b) each non-oriented compact, connected surface is a smash product of
a finite number of tori with a copy of the projective plane or of the Klein
bottle. (This is a deep result of topology which we shall not prove here).

For this reason it is convenient to introduce the following notations:

nI" denotes a space which is homeomorphic to the smash product of n
tori;

(nT, P) is a smash product of n tori with a copy of the projective plane;

(nT, K) is the smash product of n tori with a copy of the Klein bottle.

The Euler characteristic: The Euler characteristic of a surface is an
example of a so-called topological invariant and is calculated as follows.
Consider a closed surface, such as a sphere. On the sphere we draw a network
as in figure 29 and calculate the number V' — E + F where V' denotes the
number of vertices, E the number of edges and F' the number of faces. It
turns out that for a given surface (up to homeomorphism) this number is
invariant i.e. independent of the network. It is called the Euler characteristic
of the surface and denoted by the symbol x(X). Such topological invariants
will be discussed in some detail in Chapter III. Here we note that it can be
calculated in terms of the surface’s polygonal representation as the number
m —n + 1 where the surface is represented by a 2n-gon (the number of faces
must be even since we are considering closed surfaces) and m is the number
of distinct points represented by the vertices of the polygon.
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Examples: The method of representing the smash product of two surfaces
can be used to show that we have the following formula for the Euler char-
acteristic of XfY:

X(XY) = x(X) + x(Y) = 2.

Using this formula, we can calculate very simply the characteristics of the
surfaces listed above. We have the following result:

x(n, T) =2 —2n;

x(nT, K) = —2n;

x(nT, P) = 1—2n. From these we can deduce the following criterium for
the equivalence of compact, connected surfaces. Two surfaces X and Y are
homeomorphic if and only if

a) they have the same orientability properties. and

b) they have the same Euler characteristic.

6 Connectedness

In the introductory chapter on geometrical topology, we noted that the topo-
logical difference between the unit interval I and the circle S* could be pin-
pointed by using the fact that the removal of a point from I splits the space
into two parts (provided that we do not remove an endpoint). We shall study
the corresponding topological notion in this chapter.

Definition: A topological space (X, 7) is connected if it has no represen-
tation X = AU B where A and B are open and disjoint. An equivalent
condition is that the only subsets of X with are clopen are X and (). More
generally, a subset A of X is connected (in X) if it is connected in the in-
duced topology. This means that if U and V' are disjoint open subsets of X
whose union contains A, then either AC U or A C V.

For example, a space with the indiscrete topology is connected (since X
and are the only open sets). On the contrary, no space with the discrete
topology is connected (with the trivial exceptions of the empty set or a one-
point set). An infinite set with the co-finite topology is connected. The set
of irrationals (with the natural topology) or the real line with the Sorgenfrey
topology are not connected. For example, if « is an irrational number then

]—OO,Q[HQZ]—OO,&]HQ

is clopen in Q. On the other hand, R with the natural topology, is connected.
In fact, the connected subsets of the real line are just the intervals as we shall
see shortly. We begin with a simple Lemma:
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Proposition 52 Lemma Suppose that A is a connected subset of a topolog-
ical space X. Then the closure A of A is also connected. (More generally,
any set which lies between A and A is connected).

PRrOOF. We suppose that A is contained in the union U UV of two disjoint,
open subsets of X. Then since A is connected, we have either A C U or
A C V. In the first case, A is a subset of the closed set X\V and hence so
is A. ie. ACU.

Proposition 53 A subset of the real line is connected if and only if it is an
interval.

Proor. We show firstly that intervals are connected, beginning with the
line itself. Let U be a clopen subset of R, which we suppose to be neither
the whole space or the empty set. Then it is the disjoint union of at most
countably many disjoint intervals. (This is a standard result from an ele-
mentary Analysis course). At least one of the endpoints of these intervals is
finite (otherwise U is R). Such an endpoint is clearly in the closure of U but
not in U which contradicts the fact that U is closed.

]

Once we know that the line is connected it follows that any open interval
has the same property since it is homeomorphic to R and connectedness is
clearly a topological property. We can then deduce the connectedness of any
interval, since each interval is the closure (in itself) of its interior (in R).

We now show that the only connected subsets of the line are intervals.
Suppose that A is connected and put

f=sup{zr:xz € A}, a=inf{zr:x € A}

(of course, these can be infinite). Now use the simple remark that if @ and b
are in A, then the interval [a,b] is a subset of A (for if £ €]a, b were not in
A, then the disjoint sets U =] — 00, &[ and V' =], oo[ cover A). In order to
be concrete, we suppose that « and 3 are not in A and that both are finite.
Then we claim that A is the open interval |o, 8]. For if x €]a, §[, there are
a,bin A with @ <z < b and so x € A. Hence |o, 5[C A and so is equal to
A. (For the closed interval contains A and neither endpoint is in A). The
remaining cases are dealt with in a similar fashion.

In order to extend our list of examples of connected spaces, we establish
some simple stability properties. Firstly, it is clear that the union of con-
nected sets need not be connected. However, if we can pin them down with
a fixed set as in the next proposition, then we do obtain connectedness:
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Proposition 54 Let A be a non-empty connected subset of X and A a family
of connected subsets, each of which intersects A. Then AU(|J.A) is connected.

PROOF. Suppose that U and V' are disjoint open sets whose union covers
the relevant set. Then it also covers A and so we can assume, without loss of
generality, that A is contained in U and disjoint from V. Now each B € A
must, for the same reason, also lie either in U or in V. But the fact that B
intersects A rules out the second possibility. Hence all of the relevant sets
are contained in U and therefore so is their union.

[

In most applications, A is a singleton. For example, we can deduce im-
mediately from this result that R"™ is connected as the union of the family
of all lines which pass through the origin. More generally we can prove that
products of connected spaces are connected, but in this case we have to use
the general form of the result. We prove this for the product X x Y of two
spaces but the result holds for arbitrary products. Without loss of generality
we can assume that X and Y are non-empty (the case where one of them is
empty is trivially true). Suppose then that b is an element of Y. The subset
A = X x {b} of the product is homeomorphic to X and so is connected. Now
X x Y is the union of A and the sets of the form {z} x Y (z € X) and the
conditions of the above result are fulfilled.

We remark that it follows from a result which we shall prove below
(Proposition ?77) that the converse is valid i.e. a product can only be
connected if each component is connected. (However, in this case we must
assume that all of the spaces are non-empty).

A further consequence of the above result is that if X has the property
that for any pair x, y of points therein, there exists a connected subset which
contains x and y, then X is connected., For if we fix  and choose for each
y in X a connected set C, which contains both = and y, then X = Uy€ Oy
is connected. This implies, for example, that convex subsets of R" are con-
nected. For any two points in such a set lie on the segment joining them and
this is connected (being homeomorphic to an interval).

Another consequence of the Proposition is the following: suppose that we
have a sequence (A,,) of connected subsets so that for each n, A, N A, is
non-empty. Then their union is connected.

If x is a point in a topological space, then we define the component
C(z) of x to be the union of those connected subsets which contain z. Note
that this is connected and so is the largest connected set containing x. It is
closed since its closure is connected and so cannot be larger.

A further simple stability result is the
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Proposition 55 Suppose that Y 1is the continuous image of a connected
space. Then'Y s also connected.

Proor. The hypothesis means that there is a connected space X and a
continuous f : X — Y with f(X) = Y. Suppose then that Y = UUV
where U and V' are open and disjoint. Then X = f~}(U)U f~1(V) and these
pre-images are clearly open and disjoint. Hence one of the latter sets, say
the first one, is the whole of X. Then U =Y since f is surjective.

]

If we apply this result to a real-valued, continuous function on a con-
nected space X, we see that its image f(X) must also be connected and so
is an interval. This can be restated as the following abstract version of the
intermediate-value theorem from elementary calculus: if x and y are in X
and c is a real number which lies between the values of f at x and y, then
there is a z in X for which f(z) =c.

We remark further that it follows from the above proposition that a quo-
tient of a connected space is itself connected. Thus the torus, Klein bottle
and the Mobius band (more generally, all of the surfaces which we described
as quotients of polygons) are connected.

We now consider some variants of the concept of connectedness:

Definition: A space X is locally connected if each point has a neigh-
bourhood basis consisting of open, connected sets. The properties of being
connected or locally connected are not comparable, as the following examples
show:

Examples: Firstly it is easy to find a space which is locally connected but
not connected. For example, a disjoint union of two copies of the interval is
locally connected, but not connected. The following is an example of a space
which is connected, but not locally connected. it is called the topologist’s
sine curve. One takes the subset of the plane which consists of the closure
of the graph of the function z ~— sin = (defined on the interval ]0,1[). (in
other words, it is the union of this graph with the interval [—1,1] in the
y-axis). This space is connected (since the above graph is homeomorphic to
the real line. Hence so is its closure). However, a glance at figure 777 shows
that it is not locally connected. We remark that if X is locally connected,
then C(z) is open for each x (and hence clopen). The converse is also true
i.e. if C'(z) is always open, then X is locally connected.

Definition: X is arcwise connected if any two points can be connected
by a continuous curve i.e. for each z,y in X, there is a continuous function
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¢ :[0,1] = X with ¢(0) = x,¢(1) = y. It follows from the criterium for
connectedness in 777 that this implies connectedness, but the converse is not
true. For example, the topologist’s sine curve is connected but not arcwise
connected since it is impossible to joint any point on the graph of sin% to
the point (0,1) say.

There is also a local version of the above property, called local arcwise
connectedness. This means that each point has an open neighbourhood
basis consisting of arcwise connected sets. The following is an example of a
space which is arcwise connected, but not locally arcwise connected.

Example: Consider the subset of the plane indicated in figure 777 i.e. the

union of the collection of segments from (0, 1) to the points {0,1,%,5,...}
on the z-axis. Then this is arcwise connected, but not locally arcwise con-
nected).

Typical examples of locally arcwise connected spaces are open subsets
of R". For such spaces, the difference between connectedness and arcwise
connectedness vanishes:

Proposition 56 If X is locally arcwise connected, then it is connected if
and only if it is arcwise connected.

Proor. We need only show that if X is connected and locally arcwise
connected, then it is arcwise connected. In order to do this, we fix a point x
in X and define U to be the set of points which can be joined to x by an arc
in X, resp. V to be the complement of U. We wish to show that X = U.
Since X is connected and U is non-empty (z is a member), it suffices to show
that U and V are open. But this follows from the fact that X is locally
arcwise connected.

]

We remark that this result implies that for open subsets of R", the con-
cepts of connectedness and arcwise connectedness coincide.

Paradoxical as it may seem, there are situations where bad connectedness
properties are useful. We discuss some of these briefly:

Definition: A topological space X is totally disconnected if for each = €
X, C(z) = {x} (i.e. the only connected subsets of X are the singletons. X is
zero-dimensional if it has a basis of clopen sets. Finally it is extremally
disconnected if the closure of each open set is open.

Examples of totally disconnected spaces are
a) any set with the discrete topology;
b) Q with the usual topology;
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c) the Sorgenfrey line.

Products of totally disconnected spaces are easily seen to be totally dis-
connected. Hence the Cantor set, for example, is totally disconnected.

Since intervals with irrational endpoints are both open and closed, Q is
zero-dimensional.

Any discrete space is extremally disconnected. We shall give less trivial
examples later.

We shall see later that there is a close connection between the concepts of
total disconnectedness and zero dimensionality. Nevertheless, the two con-
cepts are distinct. For instance, we give an example of a totally-disconnected
metric space which is not zero-dimensional.

Example: Consider the Cantor set as a subset of [0, 1], together with the
11

auxiliary point A = (3, 3) in the plane. For each x in the Cantor set, we
write L, for the line from x to A and we define M, to be the set of points
in L, whose y- coordinate is rational provided that z is an endpoint of one
of the intervals eliminated in the construction of the Cantor set, resp. to he
the set of points in L, whose y-coordinate is irrational otherwise. Then if X
is defined to be the union of the M, (x from the Cantor set minus A), it is
totally disconnected, but not zero-dimensional.

Disjoint unions of totally disconnected spaces, resp. products and pro-
jective limits of such spaces are also totally disconnected. The property of

being zero-dimensional enjoys the same stability properties.

7 Separation properties

As we saw above, in a general topological space a sequence can have more
than one limit. We now discuss a number of conditions (which are known
as separation properties) which ensure that such pathological behaviour
cannot occur. Topologies are very general structures and this generality is
paid for by the lack of depth of the results which can be proved and by
the number of pathologies which can arise. The conditions which we shall
introduce in this chapter can be seen as a means of reducing the possible
types of space which we consider in order to arrive at a more coherent and
richer theory.

We start with three simple separation axioms. In fact, for our purposes
only the third will be of any importance but we bring the first two for the
sake of completeness. Definition: A topological space (X, 7) is

e Tj if whenever z and y are distinct points, then there is an N € N (§)
with y ¢ N or an N € N (}) with x ¢ N; T} if whenever z and y are
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distinct points, there is an N € N (§) with y ¢ N; Ty if whenever x and
y are distinct points there is an Ny € N (§) and an Ny € N (§) with
N1 N N2 - @

(See figure 1). Of course, these three conditions are in increasing order of
restrictiveness.

The following examples show that they are in fact distinct. An indiscrete
space (with more than two elements) is not 7y. The Sierpinski space is Tj
but not 77. If X is an infinite set, then (X, 7.) is 71 but not 7. Finally,
any metric space is 7T5.

Another trivial but useful fact is that if X is a topological space with
one of the above T-properties, then any finer topology on X also possesses
it. They are also preserved by subspaces and products. For example to see
that the product of a family of T5 spaces is again T5, we proceed as follows.
if © = (z,) and y = (y,) are distinct elements of the product [] X,, then
there is a f € A with xg # ys. Hence there are disjoint N; € N (§5) and
Nz € N(t5). Then Ny = ([[,.5 Xa) x N1 resp. Ny = (J[,.5 Xa) X Nz resp.
are the required neighbourhoods.

The Ti-property can be usefully characterised in the following ways:

Proposition 57 Let X be a topological space. Then the following are equiv-
alent: a) X s Ty; b) for each x € X, the singleton {z} is closed; c) T is finer
than 7p; d) for each v € X, {x} = (\yepr V-

These are simple reformulations of the definition. It follows immediately
from b) or ¢) above that there is precisely one T} topology on a finite set —
the discrete topology.

If x is an element of the Ti-space X and ¥4, ..., y, are points of X which
are distinct from x, then it is clear that there is a neighbourhood N of z
which does not contain any of the y’s. From this it follows that if = is a
cluster point of a subset M of a Tj-space, then every neighbourhood of z
contains infinitely many points of M. For suppose if possible that U is a
neighbourhood of x which contains only finitely many points of M — say
{¥1,...,yn}. Then there is a neighbourhood V' of x which fails to contain
any of the y’s. U NV is a neighbourhood of z and so contains a point in M
which is distinct from x. This is a contradiction.

We now turn to the T5-spaces and show that these are precisely those ones
in which convergent filters have unique limits. Almost all of the interesting
topological spaces have this property.

Proposition 58 The following conditions on a topological space X are equiv-
alent: a) X is Ty; b) for each x in X, {x} = (\yeps) Vi ¢) if a filter F on
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X converges simultaneously to two points x and y, then x and y coincide; d)
the diagonal set A = {(x,x) : x € X} is closed in the product X x X.

PROOF. Once again, these are all simple manipulations of the definition.
We prove the equivalence of a) and ¢). a) implies ¢): Suppose that F —
§ and F — f. If these two points were distinct, there would be disjoint
neighbourhoods N; of z and N, of y. But this contradicts the fact that both
of these sets are in F. c¢) implies a): Suppose that X is not 75. Then there
are distinct points z and y so that Ny N Ny # () for each pair Ny, Ny where
the first set is a neighbourhood of x and the second one a neighbourhood of
y. Then the union of the families N'(§) and N (f) forms a filter basis and the
filter which it generates clearly converges to both x and y.

]

Condition d) above implies the following simple fact which is the basis
of many uniqueness proofs: if two continuous functions agree on a dense set,
then they agree everywhere (i.e. are identical functions). We remark that it
is rather easy to forget that the range space must satisfy the T,-condition for
it to hold):

Proposition 59 Let f and g be continuous mappings from a space X into
a Ty-space Y. Then the set {x € X : f(x) = g(x)} where f and g coincide is
closed. In particular, if f and g coincide on a dense subset of X, then they
are equal.

PROOF. The above set is the pre-image of the diagonal set in Y x Y (which
we know to be closed) under the continuous mapping = — (f(z), g(z)) from
X into Y x Y and hence is closed.

]

A typical example of an application of this theorem is the following:
suppose that we have a projective spectrum {7, : X, — Xp,n < m}
of topological spaces. Then, by the very definition, the projective limit is
homeomorphic to a subspace of the product [[ X,,. Then we claim that in
the case where the X, are Th-spaces, then it is actually homeomorphic to a
closed subspace of the product. This is because the image of the projective

limit under the homeomorphism is the set (), ., Vinn wWhere

Vi = {(x) € HX"  Ton (Tm) = X }

and this is the coincidence set of two continuous functions with values in the
Th-space X,,.
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7.1 Further separation axioms:

We now discuss some more sophisticated separation axioms.

Definition: A topological space (X, 7) is

regular if whenever x € X and A is a closed subset of X which does not
contain z, there are disjoint open sets U and V with x in U and A C V;
completely regular if whenever x and A are as above, there is a continuous
function f from X into [0,1] so that f(z) =1 and f =0 on A;

normal if whenever A and B are disjoint, closed subsets of X, there are
open, disjoint sets U and V' so that AC U and B C V.

Further we say that X is Ty if it is 77 and regular, T3% if it is 77 and
completely regular and Ty if it is 77 and normal. As the notation implies,
these conditions become successively more restrictive. Indeed it is trivial that
a Ty 1-space is T5. The implication: T implies T4 1 is true but less trivial
and will be proved below. We remark that no such simple implications exist
between the properties of being regular, completely regular and normal. For
example, a set X with the indiscrete topology is normal but not even Tj (if X
has at least two points). The Sierpinski space is normal but not completely
regular (it is normal for the rather trivial reason that there are no disjoint
pairs of closed sets other than the obvious one (X, )).

It is clear that 73 implies 75 and that complete regularity implies regular-
ity. We now bring an example of a T-space which is not T5. Consider the real
line with the following topology. We write K for the set {+ : n € Z\{0}}.
Then 7 is the topology generated by the sets

1 1 11

{lo = — 2+ ~[Jozonen ULl = =~ [\K }nen.
This is T3 since it is finer than the natural topology but it is not T3 since the
closed set K cannot be separated from the origin.

In order to simplify the statements of the next results we introduce some
more terminology. We say that two subsets A and B of a topological space
are
weakly separated if there exist disjoint open sets U and V with A C U
and B C V;
strongly separated if there is a continuous function f from X into [0, 1]
which vanishes on A and takes on the value 1 on B.

Of course, if A and B are strongly separated (by f), they are weakly
separated (take U = f1([0,1[) and V = f7'(]3,1])).

We can then formulate the separation axioms as follows:
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X is Ty if distinct points can be weakly separated, regular if closed sets
can be weakly separated from disjoint points, completely regular if closed sets
can be weakly separated from disjoint points and normal if disjoint closed
sets can be weakly separated.

In the spirit of the reformulation of the lower T-conditions, we can recast
the definitions of regular and completely regular spaces as follows:

Proposition 60 A topological space X s reqular if and only if every neigh-
bourhood of a given point x of X contains a closed neighbourhood (in other
words, the collection of closed neighbourhoods of x is a basis for N(§)).

PROOF. Suppose that X is regular and that U is an open neighbourhood
of . Then X\U is closed and so we can find disjoint sets W and V' with =
contained in V and X\U C W. Then V C U.

In order to formulate the next proposition, we introduce some notation.
If X is a topological space, then C'(X) denotes the space of continuous, real-
valued functions on X. If z € C(X), put

Z(f) ={r e X : f(z) = 0}
Clf) ={z e X : f(z) # 0}

(the zero-set and cozero-set of f respectively). Note that it follows from
the definition of initial topologies that the sets {C(f) : f € C(X)} form a
basis for the initial topology on X generated by the functions f in C'(X).

Proposition 61 X is completely regular if and only if its topology coincides
with the initial topology induced by C(X) (i.e. if and only if the sets {C(f) :
f e C(X)} generate the topology).

Once again, this is just a restatement of the definition.

In the same way we can recast the definition of normality. X is normal
if and only if whenever a closed set C' is contained in an open set U, there is
an open set V with C c VcV cU.

Our main result will be the statement that in the definition of T)-spaces
the notion of weak separation can be relaced by that of strong separation.
In the proof , we shall use some simple facts about rational numbers which
we now recall. A dyadic rational is one of the form k.27" with £ € Z and
n € N. We denote the set of such numbers by Q,. Then of course, Q, is
dense in the real numbers and the set of half-intervals of the form |z, co| resp.
| —o00,y[ (z,y € Q) is a subbasis for the natural topology on the real line.

Proposition 62 (Urysohn’s Lemma) Let A and B be closed, disjoint subsets
of a normal space. Then A and B are strongly separated.
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PROOF. For each dyadic rational r = 2% we define an open set U(r) so that

on s
these have the following properties:
AcCcU0)cU((r)cU() c X\B

for each r and furthermore

U(r) Cc U(s)

whenever r < s. We shall show how to do this below. Before doing so, we
proceed with the proof by defining the function f as follows:

f(x) = sup {zeU(r)}.

Then f =0on A and f =1 on B. Also f is continuous since {f(z) < a} =
U, U(r) and {f(z) > a} = J,., X\U(r) and both are open.

We now turn to the construction of the U’s where we proceed as follows.
We first choose an open set U(1) so that

Ac U(%) c U(%) C X\B.

We then choose U(%) and U(2) so that

1
4

Ac U(i) c U(i) c U(%) c U(%) c U(Z) c U(Z) C X\B

and continue in the obvious way.
It follows immediately from this Lemma that a Ty-space is T51.

We can refine the above proof to get the following result which is often
useful.

Proposition 63 Suppose that A and B are subsets of a normal space X,
whereby A is an F, and B is a Gs. Suppose further that A is contained in
B and the interior of B contains A. Then there is an open F,-set W so that
ACW cCW CB.

PROOF. Suppose that A is the union of the sequence
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Using this separation theorem, we can prove the following result which
contains Urysohn’s Lemma and a second deep result — the Tietze extension
theorem — as special cases.

Proposition 64 Let X be a normal topological space and let g and h be
real-valued functions on X whereby g is u.s.c., h is l.s.c. and g < h. Then
there is a continuous function f on X which lies between g and h.

Notice that if we apply this result with ¢ = 1 — x4 and f = xp in the
situation of Urysohn’s Lemma, then we obtain another proof of the latter.
In addition, it immediately implies the following result:

Proposition 65 (The Tietze extension theorem) Let C' be a closed subset of
the normal space X and let f be a continuous function on C'" with values in
[—1,1]. Then there is a continuous extension f of f to a function from X
into [—1,1].

Of course there is nothing sacred about the interval [—1, 1] and the result
applies to any bounded, continuous real-valued function on C.

We now consider hereditary behaviour of the separation properties.

It is clear that any subset of a regular (resp. completely regular) space
has the same property. Hence the T3- and T3%—properties are hereditary.
Closed subspaces of T} spaces are clearly also T; but an arbitrary subspace
of a normal space need not be normal as the following example shows.

As regards products, we have the following result: products of regular
and completely regular spaces have the same properties. Hence this is also
true of T5- and T} 1-spaces.

Examples of Ty-spaces are provided by metric spaces. For if A is a sub-
space of a metric space, the mapping

dy:z— infl{d(z,y):y € A}

is continuous (in fact, Lipschitz continuous with constant 1). Also x € A if
and only if d(x, A) = 0. Hence if A and B are disjoint, closed sets, then the

mapping

da(x
frx— A()
d A (SL’) +d B (:1:)
is well-defined, continuous and separates A and B. The same argument shows
that pseudo-metric spaces are normal. We conclude this section with a so-
called embedding theorem. This characterises T} 1-spaces as those which can
2
be embedded into products of the real line.

Proposition 66 A topological space (X, T) is Tsé if and only if it is home-

omorphic to a subset of a product R for some index set A.
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PROOF. We note first that the condition is sufficient since R is T3 1 and this
property is preserved by products and subspaces. Conversely,
]

We remark that since I is a subset of the real line while the latter is
homeomorphic to a subset of I (for instance, the open unit interval), we can
replace R by [ in the above result i.e. Tj 1-spaces can be characterised as
subspaces of products of the unit interval.

A further useful remark is that if the T3% is countably generated, then
one can refine the above proof to show that we can embed X into the Hilbert
cube (i.e. we can take N as the indexing set).

Once again, the converse to this result is trivially true — subspaces of
the Hilbert cube are countably generated. Later we shall see that a count-
ably generated Ts-space is automatically 751 (even T}) so that we can relax
the separation condition to 73. This providzes the following purely internal
topological characterisation of separable metrisable spaces:

Proposition 67 A T3-space is separable metrisable if and only if it is reqular
and countably generated. It is then homeomorphic to a subspace of the Hilbert
cube.

7.2 Still more separation properties:

The list of separations can be extended to still higher forms. We conclude
with some brief remarks on the Ts- and Tg-properties.

As we have seen above, not every subspace of a normal space is normal.
A normal space is defined to be hereditarily normal if each subspace is
normal. (In fact, it suffices to demand that each open subspace be normal).
This can be reformulated as follows: if A and B are disjoint subsets of X so
that

ANB=ANB=0,

then A and B are weakly separated.

A Tx-space is a hereditarily normal space which is also T}.

In order to motivate the next definition, we remark that not every closed
subset C' of a topological space is the zero-set of a real-valued function. A
necessary condition for this to be the case is that C' be a Gs-set. For if C' is
the zero-set of f we have the representation C' = () f~*([0, £]). In a normal
space, the converse is true i.e. every closed Gg-subset is a zero-set. For in this
case we can write its complement X \ C' as a union | J C,, of closed sets. Then
for each n we can find a continuous function f, with values in [0, 1] so that
fn vanishes on C' and takes on the value 1 on C,,. Then f =) 27"f, clearly
has C as its zero-set. This is the motivation for the following definition:
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Definition: A space is perfectly normal if every closed subset is a G.
This condition can be restated in the form that the following sharper version
of Urysohn’s Lemma hold: if A and B are disjoint closed sets, then there is a
continuous function f from X into [0, 1] so that A = f~1(0) and B = f~1(1).
This definition is also equivalent to the conditions that each open set be a
co-zero set or that each closed set be a zero-set.

A perfectly normal space which is 77 is called a Ts-set.

8 Compactness

This is one of the most fundamental notions of analysis. The original ex-
ample of its use is in the proof of the fact that a continuous function on a
bounded, closed interval is bounded and attains its supremum and infimum.
The abstract definition may at first glance hardly seem connected with this
proof but the relationship will become clear in the course of the chapter.

A covering of A (in X) is a family U of subsets of X whose union contains A.
A subcovering of U is a family V C U which also covers A. If, in addition,
X has a topology, then the covering is said to be open if each set therein is
open.

A subset A of a topological space X is quasi-compact if each open
covering of A has a finite sub-cover. In particular, X is quasicompact if it
is quasi-compact as a subset of itself. We remark that quasi-compactness
is an intrinsic property of a space i.e. if A is a subspace of X, then A is
quasi-compact in X if and only if the space (A, 74) is quasi-compact.

X is compact if it is quasi-compact and T5.

We note some simple properties of these notions. The definition can be
reformulated as follows: X is quasi-compact if and only if each family C of
closed subsets of X with the finite intersection property has non-empty in-
tersection. (The finite intersection property means that each finite subfamily
of C has non-empty intersection). This follows immediately from the original
definition by taking complements.

The union of finitely many quasi-compact sets is quasi-compact. Hence
finite sets, for example, are quasi-compact. It follows that in a Ts-space,
finite unions of compact sets are compact. This is not true in the absence of
the separation property as the example of the interval with three endpoints
shows (it is not 75 and therefore not compact but it is the union of two copies
of the unit interval).

Examples of compact sets are closed, bounded subsets of R™ (this is es-
sentially the Heine-Borel theorem of elementary Analysis). We shall prove
below a more general result from which this follows. A space with the indis-
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crete topology is always quasi-compact but it is not compact if it has more
than one point. A discrete space is compact if and only if it is finite.
In order to produce less trivial examples, we shall require some theory.

Proposition 68 Let A be a compact subset of a Ty-space X, x a point of X
which does not lie in A. Then we can separate x from A in the sense that
there are disjoint open sets U and V with x €e U A C V.

Proor. Since X is T3, we can find, for every y € A, disjoint open sets U,
and V,, with x € U, and y € V,,. Then {V, : y € A} is an open cover of A
and so we can find a finite subcover {V,,,...,V,, }.

Then

U= ﬁin and V:O%i
i=1

n=1

are the required sets.

Proposition 69 Let A and B be disjoint, compact subsets of a Ty-space X .
Then there are disjoint open sets U and V in X with A C B and B C V.

PROOF. We repeat the method of the proof of the Lemma. For each x € A,
we find open disjoint sets U, and V, with x € U, and B C V,. The proof
then proceeds in the same way, using the cover {U, : x € A} of A.

]

Proposition 70 Let A be a subset of a topological space X. Then a) if X is
Ty and A is compact, A is closed; b) if X is quasi-compact and A is closed,
A is quasi-compact.

PROOF. a) follows immediately from the Lemma above since if x is not in
A, we can find an open neighbourhood of x which is disjoint from A. b) If U
is an open cover of A in X, then & U {X\ A} is an open covering of X and
so has a finite sub-covering. This clearly provides a finite subcovering of U
for A.

Of course, these results imply that quasi-compact spaces are normal and
that compact spaces are Ty. They also imply that a subset of a compact
space is closed if and only if it is compact (this is important since it provides
an intrinsic characterisation of closedness in this situation).

We now investigate the behaviour of quasi-compactness under continuous
mappings.

Proposition 71 If f : X — Y s a continuous, surjective mapping and X
1S quasi-compact, then so is'Y .
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PROOF. If U is an open covering of Y, then f~'(U) = {{~WU) : U e U} is
an open covering of X and so has a finite subcovering. The images of these
form the required subcovering of U.

]

This simple result has a number of interesting corollaries. Firstly note
that it implies that quotients of quasi-compact spaces are quasi-compact.
Thus the Klein bottle and other surfaces, which we described as quotients of
polygons, are quasi-compact (and hence compact).

A further consequence of this result is that a continuous mapping from
a compact space X into a Ty-space Y is closed. For if A is a closed subset
of X, then it is compact and hence so is its image. This implies that f(A)
is closed. The following special case of this result is important enough to be
quoted as a Proposition:

Proposition 72 If f : X — Y s a continuous bijection from a compact
space onto a Ty-space, then f is a homeomorphism.

In other words, it is impossible to weak a compact topology on a set
without losing the T5-property.

The connection between our abstract definition and more classical con-
cepts of compactness is provided by a rather deep characterisation of com-
pactness in metric spaces which we now consider.

8.1 Characterisations of compactness in a metric spaces:

Definition A metric space (X,d)) is precompact (or totally bounded)
if for every positive e there is a finite subset {zi,...,z,} so that X C
U?:l U(ZE“ 6)'

It is clear that any compact metric space is precompact (consider the open
covering {U(z,€) : x € X }). The converse is not true since, for example, the
open interval ]0, 1] is precompact but not compact.

We note that precompactness is not a topological concept. The following
are:

Definition: A topological space (X, 7) is sequentially compact if every
sequence in X has a convergent subsequence. It is countably compact if
every sequence has a cluster point i.e. a point x so that every neighbourhood
of x contains infinitely many elements of the sequence (more precisely, for
each open neighbourhood U of x and each N € N, there is an n > N with
x, € U).
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We note that a compact topological space is countably compact and that a
sequentially compact space is also countably compact. In general, there is no
other relationship between these notions. (In order to prove that a compact
space is countably compact, consider the closed sets By, = {Zm, Tmi1,--- }-
This family has the finite intersection property and so its intersection is
non-empty. But this intersection is precisely the set of cluster points of the
sequence).

Our main result shows that the situation is quite different for metric
spaces:

Proposition 73 Let (X, d) be a metric space. Then the following conditions
are equivalent: a) (X, 14) is compact; b) (X, d) is precompact and complete;
c) (X, 714) is sequentially compact; d) (X, 1) is countably compact.

The proof will be divided up into a series of Lemmata, several of which
are of interest in their own right. At this point we note that the above result
contains the fact that a subset of R" is compact if and only if it is closed
and bounded. For we already know that completeness is equivalent to the
fact that it is closed and the reader can verify for himself that for subsets of
R" total boundedness is equivalent to boundedness. (Needless to say, this
fact is not valid for general metric spaces. The typical example is provided
by any infinite dimensional Banach space).

Proposition 74 If X is a sequentially compact metric space, then it is sep-
arable.

PROOF. For each positive € we find a maximal set A, so that for each pair z, y

we could extract a sequence (z,,) of distinct elements from A, — this has the
property that d(x,,,z,) > € if m # n. Of course, any subsequence has the
same property and so cannot be Cauchy). We claim that the union B of the
A 1 (which is of course countable) is dense in X. For if x were a point of
X which does not lie in the closure of B, there is an n € N so that Uz, %)
is disjoint from B and so from A 1. This contradicts the maximality of the
latter.

Proposition 75 If X is sequentially compact, then it is compact.
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Proor. We know that X is separable. Hence it has a countable basis
B = {U\ : \ € N}. Now suppose that ¢/ is an open covering. Then we can
reduce it to a countable cover as follows: for each x € X, thereis a U € U
with z € U. Since B is a basis, there is an n, so that x € U,,, and the latter
is a subset of U. The family V of all U, which arise in this way is a basis
and, of course, countable. Hence it suffices to show that every countable
open cover V = (W) has a finite subcover. Suppose that this is not the case.
Then for each positive integer n there is an x, which is not in the union of
the first n V,’s. Consider the sequence (z,). By the hypothesis, this has a
convergent subsequence (z,, ). Let z be the limit of this sequence. There is
an N € N so that x € Viy. Then almost all of the z,, are in Vx and this
clearly contradicts the construction of the sequence (x,).

Proposition 76 If X is compact, then it is sequentially compact.

PRrOOF. Notice first that if (x,,) is a sequence in X, then it has a limit point as
we remarked above. We can now find a subsequence of (x,,) which converges
to z as follows. We choose n; so that z,, is in U(z,1). We then choose
ne larger than ny so that z,, is in U(z, %) Continuing in this manner, we
can construct a subsequence () with z,, € U(z, 1) and this subsequence
converges to .

Proposition 77 If X is a compact metric space, then it is precompact and
complete.

PrOOF. We already know that it is precompact. Suppose now that (z,)
is a Cauchy sequence. Then there is a subsequence (z,,) which converges,
say to z, since X is sequentially compact. We now show that x, — . For
€ positive there is an integer N so that d(x,,,z,) < € if m,n > N. Hence
d(xp, xy,) < €eif m > N,ny > N. If we now let ny tend to infinity in this
inequality, we have that d(x,,,z) < € if m > N which shows that the original
sequence converges to .

[

Proposition 78 If the metric space X is precompact and complete, then it
1§ compact.
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PrOOF. First note that if X is precompact, then every sequence (z,) has
a Cauchy subsequence. For we can cover X by finitely many balls of radius
at most 1. Then there must be one of these balls, say U;, which contains
infinitely many terms of the sequence. Hence we can find a subsequence in
U, which, for reasons which will soon be apparent, we denote by (z}). Pro-
ceeding in exactly the same way we find a subsequence (z2) of this sequence
which lies in a ball U, of radius at most % which is contained in U;. In
this manner, we can construct a decreasing sequence (Uy) of balls, where Uy,
has radius at most 27%, and, for each k, a subsequence (z%) of the original
sequence which lies in Uy. Further (z¥) is a subsequence of (z%71). We can
display this sequence of sequences as a square array and form the diagonal
sequence (x!') which consists of the circled terms. This has the property that
it is a subsequence of each of the subsequences constructed above, up to the
first k£ terms. In particular, this sequence lies in each Uy, (again up to a finite
number of terms). This clearly implies that it is Cauchy as claimed. Now
this Cauchy sequence converges since X is complete and we have thus shown
that X is sequentially compact and hence compact by the previous Lemma.

The proof of this Lemma completes that of the main result as the reader
can verify.
As a Corollary to the final Lemma, we have the following:

Proposition 79 Let X be a metric space. Then it is precompact if and only
if its completion is compact.

PRrROOF. If the latter is compact, then it is precompact and hence so is X (as
a subspace of a precompact space). On the other hand, the precompactness
of X implies that of the completion as can easily be verified and so the latter
is compact by the last Lemma.

]

As a final contribution to this circle of ideas we mention the following
property of compact spaces which is exactly the one required to make rigorous
the compactness arguments employed in the first Chapter.

Proposition 80 Let U be an open covering of a compact metric space X .

Then there is a positive ) so that each subset of X of diameter less than 1 s
contained in a set of U.
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ProoOF. It suffices to prove the result for a finite covering Uy, ..., Uy (since
U possesses a finite subcovering). If the claim were false, we could find for
each n a set A, of diameter at most % which is not contained in any Uy.
Choose z,, € A,,. By going over to a subsequence, we can assume that (z,,)
converges, say to x. Then x belongs to one of the U’s, say U;. Choose
positive € so that U(z,¢€) is a subset of U; and n so large that d(z,z,) <
resp. diam A, < §. Then it is clear that A, is contained in U; which is
contradiction.

a
£
3
a

The positive number 1 whose existence is ensured by the above Lemma
is called a Lebesgue number for the covering U.

We indicate briefly how this result can be used to stop the holes in the
proofs given in Chapter 1.

We conclude this section with the remark that the above lemma can be
restated as follows:

Proposition 81 Let C,...,C, be closed, non-empty subsets of a compact
metric space and suppose that their intersection is empty. Then there exists
a positive € so that any subset of X which meets each C; has diameter at
least .

As a Corollary, we have that if C, ..., C,, is a closed covering of a compact
metric space, then there is a positive € which is such that if any set A of
diameter ¢ meets the sets Cj,, ..., C; , the intersection of the latter is non-
empty.

8.2 Tychonov’s theorem:

We now turn to one of the most important results on compact space, the
theorem mentioned in the paragraph title which states that products of com-
pact spaces are compact. In order to prove this, we introduce the concept of
an ultrafilter:

Definition: An ultrafilter on a set X is a filter F which is maximal in
the sense that if G is a second filter which is finer than F, then F and G
coincide.

It follows immediately from Zorn’s Lemma, applied to the family of all
filters on a set which are finer than a given one (ordered by inclusion), that
every filter can be refined to an ultrafilter.

Ultrafilters can be characterised as follows:
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Proposition 82 A filter F on a set X is an ultrafilter if and only if the
following condition is satisfied: for each subset A of X, either A or its com-
plement is in F.

PROOF. Suppose firstly that the filter is an ultrafilter and that there is a
subset A for which the above condition fails i.e. neither A nor X \ A are in
JF. Then we can define a filter G which is finer than F as follows:

G={BCX:AUBec F}.

This is strictly finer since X\ A € G. This contradiction shows that ultrafilters
have the above property.

Suppose on the other hand, that F is not an ultrafilter. Let G be a filter
which is strictly finer than F. Then there is a subset A which is in G but
not in F. This A fails the above condition. For if its complement were in F
it would also be in G. Then both A and its complement would belong to the
same filter.

[

If a is a point in a set X, then the filter generated by the one point set {a}
is easily seen to be an ultrafilter,. Such filter are called fixed ultrafilters.
Of course, an ultrafilter is fixed if and only if the intersection of its elements
is non-empty. Such ultrafilters are not very interesting. Filters whose in-
tersections are empty are called free. Free ultrafilters are “constructed” by
applying the above existence statement to free filters, the typical example
being an ultrafilter which is finer than the Fréchet filter on the integers. The
relevance of ultrafilters for the proof of Tychonov’s theorem is based on the
following facts:

[. if F is an ultrafilter on a topological space and z is a cluster point of F,
then F — §. For we know that the fact that x is a cluster pint of F means
that a finer filter converges to x. But, apart from F itself, there is no finer
filter than F.

IT. A topological space X is quasi-compact if and only if every ultrafilter
on X converges. This is essentially a restatement of the definition of quasi-
compactness (in terms of the finite intersection property). For example, we
shall show here that if X is quasi-compact then every ultrafilter F converges.
Note that the family {A : A € F} has the finite intersection property and so
its intersection is non-empty. Hence F has a cluster point to which it must
converge by 1.

ITI. The same proof provides the following characterisation: a space X is
quasi-compact if and only if every filter on X has a cluster point.

We are now in a position to state and prove Tychonov’s theorem. Due
to its importance in analysis, it is perhaps worth mentioning that its proof
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uses the Axiom of Choice in an essential way (in the form of the existence
of ultrafilters). In fact, it is known that the result stated here implies this
Axiom and so its use is unavoidable.

Proposition 83 Let (X,)aca be a family of quasi-compact spaces. Then
their Cartesian product is quasi-compact. (Of course, the corresponding result
for compact spaces holds also).

PRroOOF. Let F be an ultrafilter on the product. Then for each o the image
filter 7, (F) has a cluster point z,. The reader will have no difficulty in
verifying that = (z,) is then a cluster point for F.

Projective limits of compacta: We mentioned previously that general
projective limits of sets can be trivial. However, as we shall now see, in
the case of compact components such pathologies cannot occur. A typical
example is the fact that the intersection of a decreasing sequence of non-
empty, compact subsets of a given space is non-empty. This follows from the
characterisation of compactness using the finite intersection property. The
latter is a special case of the following more general result which we state for
a general projective limit indexed by an directed set A which need not be
the integers:

Proposition 84 Let
{Tap : Kg = Koo < B,a,8 € A}

be a projective spectrum of compact sets. Then the projective limit K is
compact and we have the formula

Ta(K) = ) mga(Kp)

Bza

for each o« € A. In particular, if the K, are non-empty, then so is K and if
each of the mg, is surjective, then so are the m,.

PROOF.
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We remark that the above theorem is also true under the weaker assump-
tion that for each o < 3 and each z, € K,, the pre-image WB_; (xq) of 2, in
Kp is compact.

We can also give a version of this theorem which relates to suitable families
of mappings between the components of projective spectra: Suppose that we
have two such spectra:

{780 : X = Xo,a < B,a,5 € A}

and
{Tha 1 Y5 = Ya,a < 3,0, € A}.

Suppose further that we have a collection (f,) of mappings, where f, is
continuous from X, into Y, and where the f,, are compatible with the linking
mappings in the sense that f, o 75, = 7j, o fz whenever a < 3 (see the
commutative diagram 77777). Then we can define in a natural way a mapping
f from the projective limit X of the first spectrum into Y, the limit of the
second one, by defining the image of a thread (z,) in X to be the thread
(fa(za)). (That this is a thread follows from the compatibility condition).

In general, we cannot deduce interesting properties of f from those of f,
for the simple reason that, as we have seen, one or both of the limits can
trivialise. However, in the presence of compactness, we have, for example,
the following result:

Proposition 85 If the spaces X, and Y, are all compact and the f, are
surjective, then so is f.

8.3 Locally compact spaces:

Despite the importance of the concept of compactness in analysis, the ba-
sic space for the latter (namely, the real line) does not enjoy this property.
However, it does satisfy the condition that every point has a compact neigh-
bourhood and this suffices to allow one to use compactness arguments for
many purposes. This is formalised in the following

Definition: A T5-space is locally compact if each point has a compact
neighbourhood.
This is equivalent to either of the following

e every point has a closed, compact neighbourhood (for X then is auto-
matically Ts);
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e X is T, and every neighbourhood of a point x of X contains a compact
neighbourhood of .

Of course R", with its usual topology, is locally compact, as is any discrete
space. @Q is clearly not locally compact. The interval with two endpoints is
a space which is not locally compact despite the fact that every point has
a compact neighbourhood (this shows that the closedness condition in (1)
above is essential).

Subsets of locally compact spaces need not be locally compact (as the
rationals as a subset of the reals shows). However, we de have the following
result:

Proposition 86 Let U be an open (resp. C a closed subset) of the locally
compact space X. Then U and C' are themselves locally compact.

PROOF. We prove this for U and leave the (easier) case of closed subsets to
the reader. If x is a point of U, then U is a neighbourhood of x in X and
so there is a closed neighbourhood V' of = contained in U. There is also, by
definition, a compact neighbourhood W of x in X. Then W NV is a compact
neighbourhood of = in U.

]

As a Corollary, we note the fact the every subset of the form CNU (i.e.
the intersection of a closed and an open set) is locally compact, being an
open subset of the locally compact space C'. A subset of the above form is
called locally closed. In fact, if a subset of a locally compact space is itself
locally compact, it must be locally closed (Exercise).

It is clear that a disjoint union of locally compact spaces is locally com-
pact. On the other hand, a product [[ X, of non-trivial locally compact
spaces can only be locally compact if all of the constituent spaces are locally
compact and all but a finite number are compact.

Another stability property is that if a continuous function maps a locally
compact space onto a Ty-space Y and the mapping is open, then Y is locally
compact.

A locally compact space X is said to be o-compact if it can be expressed
as a union of countably many compact subsets. We can then find a sequence
(K,) of compacta in X whose union is X and which is such that each K,
is contained in the interior of its successor K, ;. In this case, any compact
subset of X is contained in some K,,.

PROOF.
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We remark that a closed subspace of a o-compact locally compact space
is of the same type. However, this is not true of open subsets since any locally
compact set is an open subset of a compact one, as we shall now show.

8.4 The Alexandrov compactification:

If X is a locally compact space, there is a standard method of embedding it
into a compact space by adding one point. As a model for this construction,
recall the usual method of “compactifying” the real line by adding a point
at infinity. The resulting space is then homeomorphic to S'. The abstract
construction is as follows. Let (X, 7) be a topological space (at this point
we shall not assume that it is locally compact). We introduce a new set X,
which is X together with a point which we shall denote by oco for obvious
reasons. On X, we define a topology 7., as follows: U € 7 if and only
if U C Xand U € 7 or o € U and X\U is compact in X. It is clear
that (Xo, 7o) 1S a topological space which contains X as a subspace. It
is quasi-compact and is 77 provided that X is. The important point to
note is that it is 75 (and so compact) precisely when X is locally compact.
This construction shows that each locally compact space is homeomorphic
to an open subspace of a compact space. In fact, the latter condition is a
characterisation of local compactness since we saw above that it is necessary.
A simple consequence is that each locally compact space is T} 1 (since each

compact space is T and the T} 1-property is hereditary).

8.5 Further compacness properties:

We now turn to some weaker properties which are related to compactness in
that they are defined by covering properties: In order to avoid pathologies,
we will incorporate the Th-property in the definition.

Definition: A T)-space X is called

countably compact if each countable open covering of X has a finite
subcover;

Lindelof if each open covering has a countable subcovering.

It is immediately clear that compactness is equivalent to countable com-
pactness plus the property of being Lindelof. In other words, we have split
compactness into the combination of two weaker properties.

We note some simple properties of such spaces:

e a closed subspace of a countably compact space (resp. a Lindel6f space)
is countably compact (resp. Lindeldf);
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a countably generated space is Lindelof;

e the following condition on a Tj-space is equivalent to countable com-
pactness: countable families of closed sets with the finite intersection
property have non-empty intersections;

e continuous images of countably compact (resp. Lindeldf) spaces are
countably compact (resp. Lindelof).

e a continuous, real-valued function on a countably compact spaces is
bounded and attains its supremum,;

e the property of being Lindelof for a Ts-space is equivalent to the fol-
lowing: every family of closed subsets with the countable intersection
property has a non-empty intersection.

We now turn to an important result on countably generated spaces. As
we have remarked above, these are automatically Lindelof and we shall now
show that we can lift the T3 property to Tj.

Proposition 87 A countably generated Ts-space is Ty.

PRroOF. Let A and B be disjoint, closed subsets of X. For each x in A there
is an open neighbourhood U, of x whose closure has empty intersection with
B. The family of all such U, is an open covering of A and the latter is Lindelof
as a closed subset of X. Hence we can find a countable subcovering which
we denote by (U,). Similarly, we can find a countable open covering (V},) of
B which is such that the closure of each element has empty intersection with
A. We now replace the U’s and V’s with new sequences (U/) and (V) which
have the same properties and, in addition, are such that each U/ is disjoint
from V{,...,V_, and each V! is disjoint from U,,...,U). These sets are
defined recursively as follows

Ui =Ur  VI=W\(Vinl)

U, =U\ (UynVh) V3=V \ (Van (U1 U D))

U, =U\U0 (U V) Vi=Va\(Van (U7 (U))

By their very definition, the U], and the V! are open and hence so are U' =
JU! and V' = [J V. By the disjointness condition, U’ and V' are disjoint.
Also A € U’ and B C V' since at no point of the construction have we
removed an element of A from the U,,’s.

97



From this we can easily deduce that a countably generated T3-space is
homeomorphic to a subspace of the Hilbert cube and so is metrisable.

A further weakening of the notion of compactness is contained in the next
definition:

Definition: A Ts-topological space X is said to be paracompact if each
open covering U of X has a locally finite refinement i.e. a refinement ) such
that each point in X has a neighbourhood which meets only finitely many
sets of V.

Exactly as in the proof of the fact that closed subsets of compact spaces
are compact, one can show that closed subsets of paracompact spaces are
paracompact. The disjoint union of a family of paracompact spaces is clearly
paracompact. This immediately provides a large supply of paracompact
spaces which are not compact. Of course the converse is always true i.e.
compact spaces are paracompact.

It is not true in general that products of paracompact spaces are para-
compact. However, we do have the result:

Proposition 88 The product K x X of a compact space and a paracompact
space is paracompact.

PROOF.
| |

An example of a space which is not paracompact is the ordinal space
[0,0]. This can be seen as follows: for each = we define a neighbourhood U,
as follows. If x is not a limit ordinal, we define U, to be {z}. If z is a limit
ordinal, then U, is |y, x + 1] where y is any ordinal strictly less than x. Then
the open covering {U,} has no locally finite refinement.

In many cases we can replace the definition of paracompactness by one
which is formally weaker. This will be useful in verifying that certain types
of spaces (notably metric spaces) are paracompact.

Definition: A cover of a space X is said to be o-locally finite if it can
be expressed as a countable union of a sequence (U, ) of subfamilies, each of
which is locally finite. (Of course, the ¢4 will not, in general, be coverings.

Proposition 89 A T3-space is paracompact, provided that each open cover
has a o-locally finite refinement.
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PROOF.
| |

The following result describes two classes of spaces which are automati-
cally paracompact:

Proposition 90 Fach metric space is paracompact as is each o- compact
locally compact space

It follows immediately form the second part of the above result that dis-
joint unions of o-compact, locally compact spaces are paracompact. In fact
this is a characterisation of locally compact, paracompact spaces:

Proposition 91 A locally compact space is paracompact if and only if it is
the disjoint union of o-compact, locally compact spaces.

Proor. It suffices to show that a paracompact, locally compact space is a
disjoint union of o-compact spaces. For each x in X, we choose an open,
relatively compact neighbourhood U,. Let V be a locally finite, open refine-
ment of the covering {U,}. Of course, each V in V is relatively compact. It
is also clear that each relatively compact subset of X meets at most finitely
many sets of V. We now define an equivalence relationship on X as follows:
x ~ y if and only if there is a finite collection Uy, ..., U, of sets of V so that
x € Uy, y € U, and for each i, U; and U, intersect.

It is clear that this is an equivalence relationship. It is also clear that
the corresponding equivalence classes are open (for if = is in an equivalence
class, then so is V' where V' is a member of V which contains z). Hence we
can complete the proof by showing that the equivalence class which contains
a given point x is o-compact. We do this by defining a sequence (V},) of
relatively compact open subsets of X as follows:

V] is the union of those sets of C'alV which contain x;

V5 is the union of those sets of V which meet V; and so on (note that at
each step we only have a finite union by the local finiteness of V). It is clear
that the equivalence class which contains x is the union of the V;,.

]

The main importance of paracompact spaces lies in the fact that they
possess so-called partitions of unity which are defined as follows: if X is a
topological space, then a partition of unity for X is a family (fa)aea of
continuous functions from X into the unit interval which sum to one and are
such that the open covering (U,) of X is locally finite, where U, = {t € X :
fa(t) > 0}. Such a partition is said to be subordinate to a covering U of
X if (U,) is a refinement of U.
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It is clear that if a space X has the property that each open covering has
a partition of unity subordinate to it, then it is paracompact. We shall now
show that, conversely, each paracompact space has this apparently stronger
property.

We begin with the result that paracompact spaces are T3%. (Recall that
they are T, by definition).

Proposition 92 A paracompact space is normal (and so Ty).

PRroOF. This is very similar to the proof of the normality of compact spaces,
the finiteness argument being replaced by local finiteness which suffices to
carry through the proof. We shall only prove the first step, that the above
hypothesis implies regularity. The second step is almost identical.

Suppose then that C' is closed and x lies outside of C'. For each y in C' we
find an open set V,, which contains y but does not contain x in its closure.
The covering (V,),ec of C has a locally finite refinement ¢/. It is then routine
to check that the union of U is a neighbourhood of C' whose closure does not
contain x.

]

We now show that locally finite open coverings of normal spaces admit
subordinate partitions of unity.

Proposition 93 If (U;) is a locally finite open covering of a normal space
X, then there is a partition of unity subordinate to U.

PROOF. We know that we can find a second open covering (V;) so that
V; C U, for each i.

By the normality we can find further open sets W; with V; ¢ W; C W; C
U;. Now we use Urysohn’s Lemma to construct continuous functions g; from
X into the unit interval so that g; takes on the value 1 on V; and 0 outside
of W;. Consider the sum g = > ¢;. This is positive on X (since (V;) covers
the latter) and is continuous since (W;) is locally finite. We now define the
functions (f;) by specifying

fi(t) = g:(t)/9(t).

If we combine the last two result we have the promised sharpening of the
definition of paracompactness:

Proposition 94 A space is paracompact if and only each open covering ad-
mits a subordinate partition of unity.
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9 Uniform spaces

We now investigate a structure which occupies an intermediate position be-
tween a metric and a topology. Spaces with this structure are called uniform
spaces because they are the natural context for the concept of uniform con-
tinuity. Roughly speaking, they are spaces whose structure is induced by a
family of metrics (more precisely , of pseudo-metrics).

Definition: A pseudo-metric on a set X is a mapping d from X x X into
R™ so that

a) d(z,x) =0 (x € X);

b) d(z,y) =d(y,x) (z,y € X);

c) d(z,z) < d(z,y) +d(y,z) (z,y,z € X). In other words we omit the
condition of positive definiteness in the definition of a metric.

If X is a set, a collection D of pseudometrics on X is called  a) a cone
if for each pair dy,dy of elements of D and each positive [, ld; € D and
max (dq,ds) € D. b) separating if for each x # y in X, thereis ad € D
with d(z,y) # 0.

If D is a separating cone on X, then a pseudo-metric d on X is uniformly
continuous with respect to D if for every positive € there is a d; € D so
that d(z,y) < € whenever d(x,y) < 1. We denote by D the set of all such
pseudo-metrics. A separating cone D is said to be saturated if D=D. A
uniformity on a set X is a saturated family of pseudo-metrics thereon.

If D is a separating family of pseudo-metrics on X, there is a smallest
saturated family containing D. This consists of the following pseudo-metrics

This is called the uniform structure generated by D and D is a
subbasis for it. If D is in addition a cone, it is called a basis for the
uniformity.

If (X, d) is a metric space, then it has a natural uniform structure, induced
by the separating family {d}. Thus each metric space is a uniform space.
We shall now show that each T 1-space carries a natural uniformity. Recall

that if X is such a space, then C(X) resp. C°(X) denotes the space of
continuous, complex-valued functions (resp. bounded, continuous, complex-
valued functions) on X. If f is an element of C'(X), then

dy - (x,y) = [f(x) = f(y)]

is a pseudo-metric on X. The families {d; : f € C(X)} resp. {dy : f €
C®(X)} define uniform structures on X which are called the C-uniformity
resp. the C’-uniformity.
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If (X,D) and (Y, Dy) are uniform spaces, a mapping f from X into Y is
said to be uniformly continuous if for each d € Dy, [ o ({ x {) € D. In
terms of bases or subbases, this definition must be reformulated as follows:

A uniform isomorphism between two space is a bijection which, to-
gether with its inverse, is uniformly continuous.

If D and D, are two uniformities on a set X, we say that D, is finer
than D if D C D,. (This means that the identity on X is uniformly
continuous as a mapping from (X, D) into (X, D)).

For example if X is a discrete uniform space i.e. is provided with the uni-
formity induced by the discrete metric, then any mapping from X into a sec-
ond uniform space is uniformly continuous. If X and X; are two T} 1-spaces,
then any continuous mapping f from X into X; is uniformly continuous
both for the C- uniformity and for the C*-uniformity. However, the identity
function on X is not uniformly continuous from the C-uniformity into the C°-
uniformity unless C'(X) = C®(X) i.e. every continuous real-valued function
on X is bounded (spaces with this property are called pseudo-compact).

The topology of a uniform space: Analogous to the case of metric
space, uniform spaces carry a natural topology which is defined as follows:
for each pseudo-metric d, we define

Ug(x) ={y € X : d(z,y) < 1}

(r € X). The family of all such subsets forms a basis for a topology on X
which we denote by 7p (the topology associated with D). Naturally, every
uniformly continuous mapping between uniform spaces is continuous for the
associated topologies.

The topology described above is always T; 1 as can be seen as follows:

If we combine this with the fact noted above we see that a topological
space is uniformisable (i.e. its topology is induced by a uniformity) if and
only if it is T3%.

Completeness: We now discuss briefly the concept of completeness for a
uniform space. The definition of a Cauchy sequence can be carried over to
uniform spaces ion the natural way. However, the more general situation
requires a more general concept to define a suitable form of completeness.
We shall cast our definition within the framework of nets. A net (z4)aea in
a uniform space (X, D) is Cauchy if for each d in D there is a v so that if
a,f > 7, then d(x,,x3) < 1. The space is complete if each Cauchy net
there converges. We remark that in the above definition, it suffices to verify
the condition for each d from a basis for the uniformity. In fact, it suffices
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to use a subbasis D, but in this case the condition must be modified as
follows: for each € > 0 and each d € D, there exists a 7 € A so that
d(za,25) < €if o, B > 7.

9.1 Constructions of uniform spaces:

Not unexpectedly, we can carry over the constructions which we discussed
within the context of topological spaces to uniform spaces. We begin with
initial and final structures:

Definition: It follows almost immediately from the definition that if D is
the initial uniformity defined by the family (D,), then the corresponding
topology 7p is the initial topology defined by the 7p_ . Also a mapping f
from a uniform space Y into X is uniformly continuous if and only if f, o f
is uniformly continuous for each «.

Examples of initial uniformities: 1. The C- and CP’-uniformities on a
topological space are the initial uniformities defined by the mappings of C'(X)
resp. C°(X).

II. Subspaces: if (X,D) is a uniform space and X is a subset, then the
restrictions of the elements of D to X; generate a uniform structure. This
is just the initial uniformity induced by the natural embedding of X; in X.
We denote it by Dy . We remark that 7p induces on X; the topology which
is defined by the induced uniformity.

III. Products: On a product [ [ X,, of a family of uniform spaces, we define a
uniformity simply by taking the initial uniformity induced by the projection
mappings 7, from X onto X,. Once again, this construction is compatible
with the corresponding one for topologies.

IV. Projective limits: Let

{T80 : Xpg = Xo,a,0 € A, a < 5}

be a projective spectrum, where the X,’s are uniform spaces and the mg,’s
are uniformly continuous.

Just as for metric spaces, we can prove the following simple facts about
completeness in relation to these constructions. A subset X; of a complete
uniform space (X, D) is complete for the induced structure if and only if it is
closed. A product of a family of complete spaces is itself complete. It follows
from these two facts that a projective limit of a spectrum of complete spaces
is complete (as a closed subspace of their product).
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9.2 The spectrum of a uniform space:

We shall now show that each uniform space has a natural representation
as a projective limit of metric spaces (more precisely, a complete uniform
space has such a representation.) This allows a reduction of many results
on uniform spaces to the case of a metric space. We begin with the simple
remark that each pseudo-metric d on a set X defines a metric on a quotient
space in a natural way. We simply define the equivalence relationship ~,; by
setting « ~g y if and only if d(z,y) = 0. We denote by X, the corresponding
quotient space of X. Then it is clear that d induces a metric on this quotient
space which, by an abuse of notation, we also denote by d. Finally, (Xd, (i)
denotes the metric completion of this space.

We now suppose that (X, D) is a uniform space. If d and d; are elements
of D so that d < dy, then there is a natural mapping (with Lipschitz constant
< 1) from Xdl into X’d which we denote by 7,4, 4 and which is constructed as
follows.

The system A R

{7Td1,d : Xd1 — Xg,d,d € D, |_ < I_oo}

is a projective spectrum. We denote by ()g' ,25) its projective limit. Then
there is a natural mapping ix from X into X defined by mapping = onto the
thread (m4(z))gep-

Proposition 95 ix is a uniform isomorphism from X onto a 75-dense sub-
space of (X, D). If X is complete, then ix is onto.

Now we know from the above that the space (X , 25) is complete. Hence
we have shown that every uniform space is uniformly isomorphic to a dense
subspace of a complete one. The latter enjoys the following extension prop-
erty: if f is a uniformly continuous mapping from X into a complete uniform
space Y, then f has a (unique) extension to a uniformly continuous mapping
f from X to Y. The proof is almost exactly as in the metric case. In view
of this analogy it is natural to call the space X the completion of X.

We remark that in defining the natural projective representation of X
and hence of its completion, it suffices to use a basis for the uniformity.

We turn now to the topic of compactness for uniform spaces: (X, D)
is said to be compact if it is compact for the associated topology. It is
totally bounded if for each d € D, there is a finite subset A of X so that
X C U eaUa(z). It is precompact if its completion X is compact.

Proposition 96 For a uniform space, (X, D), the following are equivalent:
a) X is totally bounded;  b) for each d € D, (Xg4,d) is a totally bounded
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metric space;  c¢) for each d € D, (Xy,d) is compact;  d) X is precom-
pact.

PROOF.
| |

Proposition 97 If K is a compact space, then there is a unique uniformity
on X which induces the topology.

Proor. We already know that such a uniformity exists since X is 7). We
now demonstrate its uniqueness.
]

A simple Corollary of this result is that ever continuous function f from a
compact space K to a uniform space Y is automatically uniformly continuous.

9.3 The Samuel compactification:

If (X, D) is a uniform space, there is a finest precompact uniformity D on
X which is coarser than the original one. D is the uniformity generated

by all those pseudo-metrics d in D for which the associated metric space Xy
is totally bounded. We remark that if f is a function in C*(X), then dj
is in D . This implies that D\/ separates X (since it is finer than the C°-

uniformity). (We are regarding X as a topological space with the topology
7p). The completion (X, D,) of (X, D\/) is compact. This space is called the

Samuel compactification of X and denoted by ¢X. It has the following
characteristic property: if f is a uniformly continuous mapping from X into
a compact space Y, then there is a unique continuous extension f of f to a
function from the Samuel compactification of X into Y.

9.4 The Stone-Cech compactification:

We shall now consider the completion of a T3%—Space with respect to the

Ct-uniformity. It follows immediately from the description of the Samuel
compactification that this is also the Samuel compactification of X, pro-
vided with the C-uniformity. The space which is obtained in this manner
is called the Stone-Cech compactification of X and is denoted by X. It
has the characteristic property that every continuous function f from X into
a compact space K has a (unique) continuous extension to a mapping from
BX into K. In particular, every bounded, continuous, real-valued function
on X extends to 3X. This means that the spaces C°(X) and C(SX) are
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essentially the same. In particular, the natural embedding of X into 5X is
a homeomorphism (since both spaces have the initial topology induced by
C*(X) = C(BX)). Thus we have proved the following characterisation of
T3 1-spaces: a topological space is T3 1 if and only if it is homeomorphic to a
subspace of a compact space.

The above extension property implies, as in the case of completions, that
the Stone-Cech compactification of a space is unique. More precisely, if X is
embedded as a dense subspace of a second compact space K in such a way
that the corresponding extension property holds, then there is a homeomor-
phism between K and SX which fixes X, regarded as a subspace of K and
£X. Tt follows immediately that if Y is any subset of 5X which lies between
X and X, then BX is also the Stone-Cech compactification of Y. For the
extension property of X clearly carries over to Y.

We remark that if A and B are disjoint zero sets of X, then their closures
in BX are also disjoint. For there is a function f € C®(X) which takes on
the value 0 on A and 1 on B (easy exercise). Let f be an extension of f to
a continuous function on SX. Then the closure of A lies in the set of zeros
of f while that of B lies in the set of zeros of f — 1.

A subset X of a topological space X is said to be C*~-embedded in X
if each bounded continuous real-valued function on X, has an extension to
a bounded, real-valued continuous function on X. Thus we have just seen
that the characteristic property of 58X is that X is C’-embedded there as
a dense subspace. The theorem of Tietze can be regarded as stating that
each closed subset of a Ty- space is C’-embedded. We combine these facts to
deduce that every compact subset K of a T3 1 -space X is C?-embedded. For
we can regard the compact subset as a subset of £X where it is still compact
and hence closed. By Tietze’s theorem, K is C’-embedded in X and so, a
fortiori, in X.

Suppose now that Xy is a subset of a T} 1-space X. An obvious candidate
for the Stone-Cech compactification of Xy is its closure in SX. Just when
this is the case is the content of the next Proposition:

Proposition 98 Let X, be a subset of the Tgé-space X. Then the closure

of Xy in X is the Stone-Cech compactification of X, if and only if Xy is
C*-embedded in X .

ProOOF. If X is C’-embedded in X, then it clearly C°- embedded in X and
hence a fortiori in its closure in X . Hence the latter is its compactification
by the above remarks. On the other hand, if the closure of X in SX is the
Stone-Cech compactification, then Xj is C’-embedded in its closure which
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is, in turn, C’-embedded in SX by Tietze’s theorem. This implies that X
is C’-embedded in SX and hence in X.

We remark here that the existence of the Stone-Cech compactification
can be used to give a short proof of Tychonov’s theorem on the compactness
of products. Suppose that (K,) is a family of compact space and let X
be its Cartesian product. The latter is, of course, T3 1. Now the natural
projections m, from X onto K, can, by the defining property of the Stone-
Cech compactification, be extended to mappings 7, from X onto K,. These
mappings in turn define one from SX onto X. Hence X, as the continuous
image of a compact space, is itself compact.

9.5 The real-compactification:

This is, by definition, the completion of a T: 3 1-space under the C'(X)- uni-
formity. It is denoted by the symbol v.X, the Greek “upsilon” being used
to suggest the adjective “unbounded” because of the role of the space of un-
bounded (more exactly, not necessarily bounded) continuous functions on X.
X is realcompact if it is complete for the above uniformity i.e. if X = v.X.
If we recall the construction of the completion as a closed subspace of a
product and note that for the above uniformity the associated metric spaces
are all subspaces of copies of R, we obtain the following characterisation of
real-compact spaces:

Proposition 99 A topological space is real compact if and only if it is home-
omorphic to a closed subset of a product of copies of the real line (i.e. a space
of the form Ry for some indexing set A).

The reader should compare this to the characterisation of T31 spaces as
general subspaces of such products.

The property of real-compactifications which corresponds to the extension
property of X is the following: for every continuous mapping f from
X into a real-compact space Y (in particular into R), there is a unique
continuous extension f of f to a function from vX into Y.

This implies that C(X) and C'(vX) are naturally isomorphic. If we define
a subset Xj of a space X to be C-embedded whenever each continuous, real-
valued function on X, has a continuous extension to a function on X, then
the real-compactification can be characterised as a real-compact space which
contains X as a dense, C-embedded subset.

We list some simple properties of real-compact spaces which can be de-
duced easily from the above remarks:
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e let X be a real-compact space. Then each closed subspace is also real-
compact;

e If X is C-embedded in a real-compact space X, then the closure of X
in X is the latter’s real-compactification;

e an arbitrary product of real-compact spaces is real-compact;
e the projective limit of a spectrum of real-compact spaces is real-compact;

e if (X,) is a family of real-compact subsets of a given space X, then
their intersection is also real-compact;

o if f: X — Y is a continuous mapping between T3%—spaces, whereby X

is real-compact and Yj is a real-compact subset of Y, then f~!(Y}) is
also real-compact.

9.6 Alternative approaches to uniform spaces:

In our treatment we have regarded uniform spaces as generalised metric
spaces since this appears to be the simplest and natural approach. How-
ever, many of the standard texts use alternative, but equivalent, approaches
which we discuss briefly.

Uniformities defined by entourages: If (X, D) is a uniform space, then
we define a family U of subspaces of X x X as follows:

UelU ifand only if there is a d € D with  {(§,1) € XxX : [(§,T) < o0} C U.

The sets in this family are called entourages. It is easy to see that the
family of entourages is a filter and, further, that the following conditions are
satisfied;

e cach U € U contains the diagonal set A;

o if Vel thereisalU € U with UoU C V. (Here U o U denotes the
set

{(z,2) € XxX : there exists y €U with (z,y) €U and (y,z)€ U}).

o if x # y in X then there exists an entourage which does not contain
(z,y). (In other words, the diagonal set is the intersection of the family
of entourages).

Then an alternative definition of a uniform space is to define it as a set pro-
vided with a filter U of subsets of its square which satisfies these conditions.
We shall show below that this definition is equivalent to our one.
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Uniformities via uniform coverings: If (X,d) is a metric space, then
we recall that a Lebesgue number for an open covering is a positive € so that
each subset A of X which has diameter at most € is contained in a set of the
covering. This is equivalent to the fact that there is a positive € so that for
each point x, U(x,¢€) is contained in some set of the covering as the reader
can verify. (However, the precise value of the e may depend on which version
of the definition one uses). As we know, every open covering of a compact
metric space has a Lebesgue number. We define an open covering U of a
metric space to be a uniform cover if it has a Lebesgue number. More
generally, if (X, D) is a uniform space then an open covering U is defined to
be uniform if there is a d € D for which the cover has a Lebesgue number.
The set of all uniform covers satisfy the following conditions:

In order to verify the equivalence of the three definitions of uniform spaces,
we shall develop a method of constructing pseudo-metrics on topological
spaces out of coverings. This has applications in many situations of general

topology.

Definition: If U/ is a cover of a space X and A is a subset, then the star
of A with respect to U (written st(A;U)) is defined to be the union of all
subsets of U whose intersection with A is non-empty. If &/ and V are two
coverings of X then we say that )V star refines U (or is a star-refinement
of U) if for each U € U there is a V in V so that st(V;V) C U. A normal
sequence in X is a sequence (U, ) of open covers so that for each n, U
star refines U\. The example of such a sequence is the case where U\ is the
family of open balls with radius 27" in a metric (or pseudo-metric) space.
We shall now show that this is essentially the only case by showing how to
use such a sequence to construct a pseudo-metric.

10 Compactology

We now discuss briefly a class of spaces whose relationship with the com-
pact spaces is dual to that between the uniform spaces and metric spaces.
Although the definition may seem rather artificial at first sight, there are a
number of good reasons for regarding these spaces as the natural framework
for many applications of point set topology.

Definition: A compactology on a set X is a family K of subsets whose
union is all of X and which is closed under the formation of finite unions. We
also assume the existence of a family {7x : K € K}, where 7x is a compact
topology on K so that the following condition is satisfied:

109



if K is a subset of L, (K, L € K), then 7 induces 75 on K.

It is no loss of generality then to assume that if K is in C, so is each closed
subspace of K. A compactological space is a set X together with a com-
pactology K. If (X, K) and (Y, £) are two such spaces, a mapping f from X
into Y is continuous if for each K € K, there is an L € £ so that f maps
K into L and its restriction to K is 7x — 77, continuous. The concept of a
(compactological) homeomorphism is defined in the natural way.

Of course, each Hausdorff space (X, 7) carries a natural compactological
structure. One simply takes the family of all compact subsets. On the other
hand, if (X, K) is a compactological space, we can define a topology on X
as follows: the family {K : K € K} forms an inductive system of topological
spaces (ordered by inclusion) whose set-theoretical inductive limit is just X.
Hence we can regard the latter as a topological space with the corresponding
inductive limit structure. More concretely, we define a subset U of X to be
open if U N K is Tx-open for each K € L.

These two constructions show that there is a close connection between
the concepts of topological spaces and compactological spaces and that we
can go back and forth between the two types of structure with comparative
ease. Nevertheless, they are not identical and the following points should be
noted:

e if we start with a compactological space, the corresponding topological
space need not have good separation properties, in particular, it need
not be T5.

e the constructions topological space — compactological space — topo-
logical space will not necessarily lead back to the original topology.

e if we consider two compactological spaces X and Y with a mapping f
between them, then f is continuous (in the sense of the compactologies)
if and only if it is continuous for the associated topologies. However,
if we start with two topological spaces, then it will be easier for f
to be continuous in the compactological sense than in the topological
one. (Namely it suffices for the former that the restrictions of f to the
compacta of X be continuous).

If we wish to rule out such pathologies we need only have recourse to the
following definitions:

Definition: A topological space (X, 7) is called a Kelley space if its topol-
ogy coincides with the topology induced by its natural compactology, in other

word, if a set U is open if and only if U N K is relatively open in K for each
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compact subset K of X. Such spaces are also called k- spaces, or compactly
generated spaces.

A compactological space (X, K) is said to be regular if the space C'(X)
of continuous real-valued functions on X separates X. It is easy to check
that this is equivalent to the fact that there is a completely regular topology
7 on X which induces 7k on each K. For if such a topology exists, then the
functions in C'(X) which are continuous for this topology separate X and
hence so, a fortiori, does C'(X). On the other hand if C(X) separates X,
then the initial topology induced by C(X) has the required property.

11 Function spaces and special types of map-
pings

In this section we shall consider structures on function spaces. At first glance,
it is natural to start by looking for topologies on spaces of continuous func-
tions between topological spaces and this has been the classical approach.
However, this soon leads to difficulties and we shall introduce an approach
which might seem rather artificial at first sight. We consider spaces of map-
pings from a uniform space into a compactological one and vice versa. The
former will be provided with a compactological structure, the latter with a
uniform one. We shall find that we can recover all of the useful classical
function spaces from these ones.

We begin with the case of mappings from a compact space K into a metric
space X. The function space which we consider consists of the continuous
or, equivalently, the uniformly continuous functions from K into X. This
space is denoted by U(K;X) and is provided with the natural metric D
where D(f,g9) = sup,cx d(f(x), g(z)) under which it is complete if X is.
Convergence for this metric is just uniform convergence.

We now consider the general situation where X is a compactological space
and Y is a uniform space which we assume to be complete for the moment.
We are interested in the following space of mappings which we shall firstly
define by means of the spectral representations of X and Y. Indeed, if
X =lim(K : K € K)and Y = lim(Yy : d € D), then we define U(X;Y) to
be the projective limit of the spectrum

(UK;Yy) : KeK, ] €D).

Here the linking mappings are the natural ones i.e. if K C K; and d; > d,
then the mapping from U(K7; Yy, ) to U(K;Yy) is defined by the composition

KCK1—>Yd1—>Yd.
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More formally, the linking mappings are

fr=Ta a0 foikk,-

We can identify U(X;Y) in a less formal manner as follows. Each thread
in the projective limit defines in the usual way a mapping from X into Y
and these mappings are such that their restrictions to the compacta of X
are continuous (and so uniformly continuous). On the other hand, any such
mapping from X into Y defines a thread. Hence the space U(X;Y') consists
precisely of all such mappings from X into Y. Of course, these are just the
mappings from X into Y which are continuous for the corresponding topolo-
gies induced by the compactology and the uniform structure respectively. We
resume some of the simple properties of this space in the following:

The more formal definition of U(X;Y') as a projective limit has the advan-
tage of automatically providing it with structure as the limit of a spectrum
of metric spaces. It is then natural (not to say unavoidable) to regard it as a
uniform space with the initial structure. It is then automatically complete.

Remark If one should ever have to deal with spaces of mappings into non-
complete spaces, this can be done easily as follows. The space U(X;Y) is
defined to be the subspace of U(X;Y) consisting of those functions in the
latter which take their values in Y. This then inherits a uniform structure
from U(X;Y).

Suppose now that X is a metric space and that K is compact. We denote
by U(X; K) the space of uniformly continuous functions from X into K. We
commence by regarding this as a topological space, imposing the topology
7, of pointwise convergence on X (sometimes called the simple topology).
Since we intend to regard U(X; K) as a compactological space we begin by
characterising the 7,- compact subsets.

Definition: If X and K are as above, then a family of uniformly continuous
mappings from X into K is equi-uniformly continuous if for each continuous
function f on K, the family f o M of mappings in C'(K) is equicontinuous
i.e. for each positive € there is a 6 > 0 so that if d(z,y) < 9, then |f o g(z) —
fog(y)| < e for each g in M.

Proposition 100 e U(X,K) is a closed subspace of U(X, K);

e a family M C U(X; K) is 75-compact if and only if it is compact in
UX,K);

e a family M C U(X; K) is equi-uniformly continuous if and only if
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Proposition 101 (Ascoli) Let M be a subset of U(X,K). Then M is Ts-
compact if and only if it is closed and equi-uniformly continuous.

Proor. By the Lemma, we can reduce to the case where K = I which is
classical.
]

We are now in a position to define a compactology on U(X; K) as follows;
the compact sets are the closed, equi-uniformly continuous sets, the compact
topology is 7 (or, equivalently, that of uniform convergence on the compact
sets of X). Of course, this is just the natural compactology induced by 7.

For the general case, we suppose that (X, D) is a complete uniform space
and that (Y,K) is a compactological space with X = limgep(Xy,d), ¥ =
limgex(K). Then we define

UX:Y)=1lim{U(Xy; K):deD,Kek)

In other words, a mapping f from X into Y belongs to U(X;Y) if there is a
d €D and a K € K so that f factors as follows:

We compare briefly these structures with some classical ones in the fol-
lowing examples:

Examples: 1. If X is a set and Y is a topological space, then F(X;))
denotes the set of all mappings form X into Y. It is customary to regard this
as a topological space with the topology 7, of pointwise convergence on X i.e.
the simple topology. In terms of nets this means that a net (f,) of functions
converges to a function f if and only if for each z € X, (f,(z)) converges
to f(x). If we suppose that Y is uniformisable, then this corresponds to the
structure U(X;Y") above, when we regard X as a compactological space by
defining its finite subsets (with the discrete topology) to be the compacta.
(Compactological spaces of this type are called discrete). To be more exact,
the above topology is the topology corresponding to this uniform structure
on U(X;Y).

In applications, one works with subsets of F(X’;)). For example, if X is a
topological space, then it is natural to consider the set C'(X,Y") of continuous
functions from X into Y. In general, this will not be complete but we shall see
shortly that some natural “small” subsets of this space are,in fact, complete
with respect to the uniformity which corresponds to 7.

IL. If K is the compact subset {+ : n € N} U {0} of the real line and X is
a metric space, then U(K’; X) can be identified with the space of convergent
sequences in M.

III. The space NN of irrational numbers which has often been referred to
above can be regarded as the function space U(N,NN) where the first N is
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treated as a compactology (with the discrete compactology) and the second
one as a metric space (with the discrete metric). Other spaces which can be
described in an analogous manner are
IV. The space U(I4, I) of all functions (not necessarily continuous) from the
unit interval into itself. (We have used the notation I; to denote I with the
discrete compactology).

Function spaces with the unit interval either as domain or range are
important in applications.
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