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ABSTRACT. The underlying thesis consists of a collection of published journal papers and each
of the Chapers 2-10 corresponds to one article. In Chapter 1 we summarize the results of those
papers and point out their common underlying theme and the interrelations among all of them.
The Bibliography chapter starting on page 13 lists all the references needed in Chapter 1 and
the references corresponding to the included articles can be found at their respective end.
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CHAPTER 1

Introduction

In this work we investigate how well known and established results for martingales carry
over to certain polynomial spline sequences, where the degree of the splines is allowed to be
arbitrary. Here, by splines we mean functions that are piecewise algebraic polynomials. In
particular, we are especially interested in properties that are true for any underlying filtration,
where we will see below what we mean in detail by filtration in the context of splines.

Martingales are a central notion in probability theory and their applications reach far beyond
probability theory to many branches of mathematics and physics. We begin by defining the
notion of a martingale. Let (2, F,P) be a probability space and (F,,) an increasing sequence of
o-algebras (i.e., a filtration) contained in the o-algebra F. We assume here for simplicity that
F is generated by U,F,. A sequence of real-valued integrable random variables (X,,) on € is
called a martingale if each X, is measurable with respect to F,, and, moreover, the consecutive
random variables are connected via conditional expectations as follows

<1) X, = Ean+1,

where E, f := E(f|F,) denotes the conditional expectation of the function f € L' with respect
to the o-algebra F,. It is the unique (up to equality almost surely) F,,-measurable function g
so that

(2) /AngP’:/Afd]P, AeF,.

The operator E, can be seen as local averaging and in the case that F, is generated by the
partition (Aj);-”zl of € into sets of positive probability, it is given by

(3) E.f =) ———1a,

where 14, denotes the characteristic function of the set A;. A standard example for a filtration
is the dyadic one (G,) on [0, 1), and its corresponding orthogonal function system, the classical
Haar system, which both can be constructed as follows: we set Gy = {0,[0,1)} and hg = 1y 1).
By induction, G, is constructed out of G, by dividing the leftmost atom in G, of maximal
length into two intervals I and J of equal length (left-closed and right-open) and defining G,
as the o-algebra that is generated by G, U {1, J}, so for instance G; = o({[0,1/2),[1/2,1)}),
Go = 0({[0,1/4),[1/4,1/2),[1/2,1)}) and so on. We additionally set h,y; := 1; — 1;. The
conditional expectation E(f|G,) is now the projection of f onto the linear span of the first
n + 1 Haar functions (h;)7_,. The fact that taking conditional expectations is tantamount to
taking orthogonal projections is true not only for the dyadic filtration (G,), but for general
o-algebras. In fact the conditional expectation operator E, is characterized by the property
that it is the orthogonal projection with respect to the canonical L?-inner product onto the
space of F,-measurable L2-functions. In the setting of filtrations generated by a finite partition
of © into intervals, as can be seen by (3), the operator E, is an orthogonal projection operator
onto a space of piecewise constant functions. Also note that E, respects positivity, i.e., it maps
non-negative functions to non-negative functions.

An extension of this idea is to consider, on Q = [0, 1] equipped with Lebesgue measure | - |,
orthogonal projection operators onto spaces of piecewise polynomial functions. This setting
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6 CHAPTER 1. INTRODUCTION

can be described as follows: Let (F,) be an interval filtration, i.e. a sequence of increasing
sub-o-algebras of the Borel o-algebra B on [0, 1] so that each F, is generated by a partition of
[0, 1] into a finite number of intervals having positive length. For convenience, we also assume
that (F,) has the properties

L fO = {qu [07 1]}7
e 3 is generated by U, F,,

(4)

e for each n, F,, 1 is generated by F,, and

the subdivision of one atom of F,, into two subintervals.
For any positive integer k, the spline space Si(F;,) of order k (or degree k — 1) is defined by
Se(F) = {f € C*720,1] : f is an algebraic polynomial of order & on each atom of F,,}
and its corresponding orthogonal projection by
P*) = orthogonal projection operator onto S(F,) w.r.t. L*(B).

If k=1, Sp(F,) consists of piecewise constant functions without any smoothness conditions
(interpreting C' 1[0, 1] as the space of all real-valued functions on [0, 1]). Note that the require-
ment f € C*72(0, 1] only means continuity of & — 2 derivatives at the boundary points of each
atom of F,,, since polynomials are infinitely differentiable.

The above restriction to the space € = [0, 1] arises naturally, as we want to be able to talk
about polynomials on €2 and smoothness properties of functions. Additionally, as we will see
in more detail later, in order for a property of the sequence (Pék)) of projection operators to
be true for arbitrary filtrations (F,), we use results that depend on the fact that € is totally
ordered in a way that the ordering admits a crucial relationship with a special local basis of
Sk(F,) that we introduce now. The main difficulty in analyzing properties of the operators

(Pr(Lk)) lies in the fact that for £ > 2, the space Si(F,) does not have a basis consisting of
disjointly supported functions as opposed to the basis (14;)7L, in which E,f is expanded in
equation (3). The substitute for this sharply localized basis in Si(F,,) is called the B-spline basis
(N, ), where each function N has the property that it is non-negative, its support consists
of exactly k neighbouring atoms of F,, and it forms a partition of unity, i.e., ) i Njr = 1. For
a definition of B-splines and further properties we refer to the monograph [33]. There is also a
well known recursion formula, which can also be considered as definition of (NN, ;) and we will
recall it here. Let (¢;) be the increasing sequence of boundary points of atoms in F,,, where
each point occurs once with the exception of the points 0 and 1 which each occurs k times.
Then, we have

(B)  Njxlz) =

T — tj
—N',k—l x) +
tive1 —t; ) vk — tit
with the starting functions Nj; = 1Ly, ,,,) for j = 1,...,m. We observe that the basis (N;)
is localized, but, for k£ > 2, there is a certain overlap among neighboring functions.
Associated to the B-spline basis (N; ;) (we assume the parameter £ to be fixed in the sequel
and we write N; for Nj), we define a dual basis (N}) satisfying N; € Si(F,) for each j and

livk — .
ﬁ—Nj_H’k_l((L’), ] :2—k:,...,m,

1
;N = [N @) Ni(o) de =5

where 0;; denotes the Kronecker symbol which is 1 when ¢ = j and 0 otherwise. Using the
B-spline basis and its dual, we express the projection operator PP as

(6) P = S NN = ST N (NF NG N

J 0,
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We are interested in properties of the sequence of operators (P,(Lk)) that are true for each
filtration (F;,). Most theorems about martingales have this property. As a first example of
such properties for martingales (or rather conditional expectations), we look at the following
contractive inequality on LP for 1 < p < oo, which is easy to see by Jensen’s inequality:

(7) sup [[E fll, < [|fll,, — felf,1<p<oo.

This inequality is true for any filtration (F,,) and it implies that the sequence of martingale
differences d,, :== E,, f —E,_ f forms a monotone Schauder basis in the LP-closure of the linear
span of (d,) for 1 < p < oo (where a collection of vectors (z;)32; in a Banach space X is
called a Schauder basis of X, if each x € X can be expressed uniquely as a convergent sum
x = ) 2, ajx; for some scalars (a;) and the word monotone means that the partial sum
projections on this basis have norm one).

When carrying over (7) to spline projections Pék) instead of conditional expectations E,,,
we cannot hope for a contractive inequality on LP-spaces for p # 2, since by [15, 1], conditional
expectations are the only contractions on LP that preserve constant functions. But it makes
sense to ask whether for every non-negative integer k, there exists a constant C} so that for

any filtration (F,),

(8) sup | fll, < Cillfllp,  feLP,1<p< oo

This question turned out to be very difficult and was known for a long time as C. de
Boor’s conjecture [10], but it was eventually found to be true in this generality by A. Shadrin
[34]. There are many earlier results in this direction. Here we only mention results where the
filtration is allowed to be arbitrary, but the order k of polynomials is assumed to be fixed. For
k = 2, it was shown by Z. Ciesielski [4] that in the above inequality, Co = 3 works, and it
was shown in [28, 29| that this constant is best possible. For k = 3,4, C. de Boor gave upper
bounds for Cy in [9, 11]. In view of the known exact value of Cy, for k = 1 and k& = 2 and by
the lower estimate Cj, > 2k —1 for any k given in [34], it is conjectured there that for any k, the
best constant Cy in (8) should be 2k — 1. For a survey of earlier results specializing also in the
choice of possible filtrations (F,,), we refer to [34, Section 4.1]. We also remark here, that A.
Shadrin’s proof [34] is very long and complicated and M. v. Golitschek [23] gave a shorter and
simplified proof of Shadrin’s theorem. A crucial ingredient in both proofs is the fact that the
matrix ((N;, N7)) has the ’checkerboard’ property, i.e., (—=1)"*7(N;, N5) > 0. This, in turn, is
a consequence of the total positivity (cf. [25]) of its inverse matrix, the B-spline Gram matrix
B = ((N;, N;)), which means, by definition, that any subdeterminant of B is non-negative.

In the analysis of the operator PF — as can be seen from (6) — growth estimates on the
matrix (a;;) = ((NV;, Nj)) are important. In fact, by [5], inequality (8) is equivalent to the
existence of two uniform constants 0 < g, < 1 and C}, < oo so that for all filtrations (F,), the
matrix (a;;) admits the following geometric decay inequality:
qLi*jl

9) |aij| < C :
7V =" supp N;| + | supp N,|

The proof uses Demko’s theorem [13] about the geometric decay of inverse band matrices. For
this, note that (a;;) is the inverse of the banded matrix ((N;, N;)). We also remark that if one
applies Demko’s theorem to the fact that HPék) : L? — L?|| = 1, we only get the following
estimate, which is weaker than (9)

[i—3|
/ qx
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We can now ask for additional convergence properties of spline sequences similar to mar-
tingales and we begin with almost sure convergence. Almost sure convergence is connected to
certain weak-type bounds of associated maximal operators. For martingales (X;), we consider
the maximal function

Xy = max | X;],
Jj<n
which can be estimated by Doob’s inequalities:

(1) weak-type inequality: for all ¢t > 0,
tP(X: > t) < / Xy dP < [ X1,
(x>t}

(2) norm inequality: for all 1 < p < o0,
% p
Xollp < ——|1Xu]lp-
1%l < 271 Xnlly

Using Banach’s principle (see for instance [17, p. 1]), it can be shown that such inequalities
for maximal operators imply that for f € L*,

(10) E.f— f almost surely,

where we recall that we assumed that F is generated by UF,,. We want to extend this version
of the martingale convergence theorem to splines as well and the problem is to show that for

fell,

PTEI“) f—=7f almost surely.
In the special case of piecewise linear splines (k = 2), Z. Ciesielski and A. Kamont [6] proved
that this is true for any interval filtration (F,,) Satisfying (4). The idea for extending this result
to arbitrary order £ is a pointwise estimate of p¥ f by the Hardy-Littlewood maximal function

M defined by
M) =sww o [ 1£0)] .

where the supremum is taken over all intervals I containing the point x. We know from Real
Analysis that this operator satisfies similar inequalities than X7, i.e., we have

tPMf>t) <Cllflh  and  [[Mfll, < C[f[l, for1<p<oo.

In order to carry over such estimates to the spline maximal operator max;<, |Pj(k) f(z)], we

would like to derive a pointwise estimate of the form |P7(Lk) fz)| < CpeMf(x), where Cy is a
constant that depends on the spline order £ but not on the underlying filtration (F,,). The
following short calculation shows that in order to derive such a pointwise inequality, it is
sufficient to have a certain refinement of (9). In this calculation, we denote by conv(A) the

smallest convex set that contains A and we begin by inserting formula (6) for PP

o) = | YU Ny V)| < XX el M)

j  i:x€supp N;

<Z 3 |az-j|-/ F)l dy

i d:x€supp N; supp NV;

< Z S Jayl / )] dy

i i:zesupp N conv(supp N;Usupp N;)

< /\/lf Z Z |a;;| - | conv(supp NV; U supp N;)|.

i t:x€supp N;
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Therefore, using the fact that each point x is contained in supp /N; for exactly k successive
indices ¢, the following estimate on a;;, improving (9), would be sufficient to deduce the desired
pointwise inequality for pw f:

li—jl

dk
(11) Jaij] < Gy :
! *| conv(supp N; U supp N;)|

where, as before, 0 < g, < 1 and C}, are constants that depend only on the underlying spline
order k. The proof of this inequality is content of Chapter 2. This leads to the proof of
pw f — f almost surely for f € L' and any spline order k, independently of the filtration (F,,)
and this proof is also contained in Chapter 2.

Next, we ask the question about unconditional convergence of pw f for f € LP in LP-
spaces for 1 < p < oco. The situation for martingales is the following: Martingales converge
unconditionally in LP, 1 < p < o0, i.e., the result of the sum ) ;dj of martingale differences does
not depend on the order of summation. This fact can be expressed by Burkholder’s inequality

12 1> sl =13l

where (g;) is an arbitrary sequence of values in {41, —1}. By Khintchine’s inequality, we can

p7

phrase this differently using the square function S = (E i ]dj\Q)l/ ? by the inequality

(13) ISl == |3 |

p7

where the implied constants in both (12) and (13) depend only on p. We want to extend
unconditional convergence in LP to spline differences (dEk)). Again, we only mention previous
results that are true for any filtration (F,,). In a series of papers by G.G. Gevorkyan, A. Kamont
and A. A. Sahakian [18, 22, 19], the restriction to special interval filtrations (F,,) was removed

step-by-step to show that piecewise linear spline differences d§-2) converge unconditionally in LP
independently of the filtration (F,,). In Chapter 3, we combine methods used in [19] with new
pointwise and norm estimates for spline differences dg»k) that are a consequence of inequality
(11), to show that for any spline order k, spline differences dg-k) converge unconditionally in L
independently of the filtration (F,,).

The space L'[0,1] does not have any unconditional Schauder basis, but we can substitute
the space L' by H', the atomic Hardy space. This space is defined as the subspace of functions
f € L' having the form

(14) f= icnan,
n=1

where (¢,) is a real sequence satisfying > >° | |¢,| < oo and a, are so called atoms, which are
basic building block functions satisfying either a, = 1 or there exists an interval T',, C [0, 1]
with

1
supp a, C I'y, lanlloo < [Tl ™, / an(z) dz = 0.
0

We equip the space H! with the norm

9]
11l = inf D feal,
n=1

where the infimum is taken over all representations of f of the form (14). For more information
on atomic Hardy spaces and in particular their connection to classical Hardy spaces, we refer
to [8].
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Historically, the classical Franklin system, which are spline differences of order k = 2 with
respect to the dyadic filtration (G,,) defined above, was the second explicit unconditional basis
in H' (after L. Carleson’s construction [3] of a smooth version of the Haar system). This is
a result due to P. Wojtaszczyk [35]. Again, we are interested in how this result generalizes if
we consider different filtrations. For this problem it is not true that basis and unconditional
basis property extends to any filtration, but we can give a necessary and sufficient condition
on (F,) for either property. In fact, in the case k = 2, this was settled by G. Gevorkyan and
A. Kamont in [20] by giving a simple geometric criterion on the interval filtration (F,,) for basis
and unconditional basis property of (dg)) in H', which we will describe now.

Let G be a o-algebrain [0, 1] that is generated by a partition (A;)", of [0, 1] into a sequence of
intervals with sup A; = inf A;,; fori =1,...,m—1. Additionally, set A; = () fori ¢ {1,... ,m}.
Then, let (for £ > 1)

i+0—1

(51@) = ‘ U A,
j=i

be the length of the union of ¢ neighbouring atoms of G. Finally, define

, 1=2—40,....m

5O 5O

R 7 i+1
(15) T@(g) = i:2—rrﬁl,‘.{:,l.}7(m—1 max (5(6) ; 5(5) )
i+1 i

as the maximal ratio of those neighbouring lengths. Note that by a simple calculation, r,41(G) <
T g<g) + 1.

Combining the results from [20] (k = 2) and [21] (general k), we state that for any positive
integer k and any interval filtration (), we have the following equivalence: there exists a
constant C' so that

sup | P fllan < Cllf s f € HY,

if and only if sup,, 74 (F,) < co.

Moreover, concerning unconditional convergence of spline projections, combining the results
from [20] (k = 2) and Chapter 4 (general k): Let k > 2 be an integer and (F,,) an interval
filtration. Then, spline differences converge unconditionally in H' if and only if sup,, r_1(Fy,) <
00.

Now, we switch our viewpoint slightly and instead of considering

Se(F) = {f € C*72[0,1] : f is a polynomial of order k on each atom of F,},
we now consider its periodic version
Si(Fn) = {f € C*2(T) : f is a polynomial of order k on each atom of F,},

where T denotes the unit circle. Measure theoretically, there is no distinction between the
unit interval [0,1] and the unit circle T, i.e. if we are considering martingales, there is no
difference between [0, 1] and T. The situation is different if we consider orthogonal projections
P onto Sy (Fn) because of additional smoothness conditions in the space Sg(F,). Similarly to
the interval case, we can define a periodic B-spline basis (N]) of Si(F,) so that it has the same
basic properties that the interval B-spline basis, i.e., for each j, K/j is a non-negative function,
has local support and the collection (N ;) forms a partition of unity.

If we consider a fixed interval representation of T, in contrast to the interval case, the
periodic B-spline Gram matrix ((/V;;, Nﬁ) is not totally positive anymore. This difference is
already present when considering piecewise linear splines: it is shown in [7] that for £ = 2 and
the dyadic filtration (G,) on the unit interval [0, 1], the so called Lebesgue constant of the class
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of operators (Pﬁz)), which—by definition—is given by
sup [|[P@ : 1> — L™,

has the exact value 2 4+ (2 — \/3)2 ~ 2.0718, whereas if we consider the same filtration on the
unit circle T, we get the different answer [30]
~ 33 — 18v/3
sup|[|[PP 1 L® — L =2+ 1—3[ ~ 2.1402.
In Chapter 5, we show that also for the periodic projection operators (]Bék)) and arbitrary
filtrations (F,,) as in (4), we have, for f € L

é&k) f—=f almost surely.

We also give a new proof of the fact that the operators (Igék)), as operators acting on L7,
1 < p < o0, are uniformly bounded, which proceeds by relating periodic spline spaces to spline
spaces on the interval in a delicate way. It should be noted that by looking at [4], the proof of
this fact for £ = 2 can be done exactly in the same manner than in the non-periodic setting.
The already existing proof of this fact for general spline orders k, unfortunately, is unpublished
and can be deduced by generalizing A. Shadrin’s proof [34] for the interval [0, 1] first to spline
projections on the real line (which is done in [12]) and then by viewing periodic functions as
defined on the whole real line.

In Chapter 6, we also extend the result contained in Chapter 3 about the unconditionality
of spline differences dgk) in LP-spaces in the reflexive range 1 < p < oo to periodic splines, i.e.,
we show that the periodic spline differences d® = p f— ﬁ,(i)l f also converge unconditionally
in this range of LP-spaces for all filtrations (F,,). This also extends the earlier piecewise linear
periodic result in [26]. One main difficulty to overcome in the course of this proof was that
despite the fact that an estimate of the type (9) also holds in the periodic setting, estimate
(11) does not extend to the periodic setting.

In Chapter 7, we show that the result for almost sure convergence for L!-functions f on the
unit interval [0, 1]

Pék) f—=1, almost surely,

extends to tensor product spline projections on [0, 1]¢
k k
(16) P - @Bl f — ],

provided that f is contained in the Orlicz space L(log L)*!, i.e. [|f](log™ |f])*" < co where
log™ # = max(0,log z). On the one hand, this result is in the spirit of the theorem by Jessen,
Marcinkiewicz, Zygmund [24] that shows for f € L(log L)1, almost every point in [0, 1]¢ is a
strong Lebesgue point of f. We recall that a point z € [0, 1]¢ is called a strong Lebesgue point

of the function f, if
1
= [ |f(s) = f(z)| ds =0,
|Qm’ Qm

where (@Q,,) is a sequence of rectangles parallel to the coordinate axes containing the point
r with diam @,, — 0. On the other hand, we can compare it to the martingale result by
Cairoli [2], who showed that multiparameter conditional expectations of multivariate functions
f € L(log L)?~! converge almost surely. We also show in Chapter 7 that the space L(log L)?~?
in the assertion of almost sure convergence is somehow best possible, i.e., we show that for
any larger Orlicz class A of functions than L(log L)4~!, there exists a function f € A so that
PMg.. . P,E';d)f does not converge almost surely, cf. [32] for the case ky = --- = kg = 1.
We now go back to (10) and consider again almost sure convergence, but in an extended
setting. We begin by noting that for martingales, actually a more general result than (10) is
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true; in fact, any martingale (X,,) with sup || X, |1 < oo converges almost surely, even without
specifying the limit function in advance. One way of identifying the limit of (X,,) proceeds by
using a compactness argument in the space of Radon measures followed by an application of
the Radon-Nikodym theorem on the absolutely continuous part of the limiting measure, whose
density function is the desired a.s. limit of (X,,). We recall that the Radon-Nikodym theorem
states that if for two o-finite measures u,v so that v is absolutely continuous with respect
to u (ie. u(A) =0 = v(A) = 0), there exists a u-integrable function f so that for any
measurable set A, we have

V(A) = /A f du.

When considering martingales, we can also consider vector-valued martingales, where here,
vector-valued means Banach-space-valued. For measures with values in Banach spaces X, the
Radon-Nikodym theorem is not true anymore in general, but if it is true, X is said to have
the Radon-Nikodym property. Examples of Banach spaces with the Radon-Nikodym property
include all reflexive Banach spaces and all separable dual spaces. This property of a Banach
space X in fact is enough so that any martingale bounded in the Bochner-Lebesgue space
L% converges almost surely. Martingale convergence even is a characterization of the Radon-
Nikodym property, i.e., the following statements about a Banach space X are equivalent:

(1) X has the Radon-Nikodym property,
(2) every X-valued martingale bounded in L converges almost surely,

For those results and more about vector measures and vector-valued martingales, see [14, 31].

In Chapter 8 and 9, we generalize this characterization theorem to spline projections. In
order to state this result, we define that a sequence of functions (f,,),>o in L is an (X-valued)
k-martingale spline sequence adapted to (F,) if

Pék)fn+1 :fn: n = 0.

This definition resembles the definition of a martingale with the conditional expectation oper-
ator replaced by a spline projection operator.
Then, the spline version of the above result reads as follows: for any positive integer k, the
following statements about a Banach space X are equivalent:
(1) X has the Radon-Nikodym property,
(2) every X-valued k-martingale spline sequence bounded in L} converges almost surely,
In Chapter 8, we show the implication (1) = (2) and characterize the a.e. limit of every
LY -bounded martingale spline sequence intrinsically. In Chapter 9, we show the implication
(2) = (1) by constructing a non-convergent martingale spline sequence in every Banach space
X that does not have the Radon-Nikodym property.
In Chapter 10, we extend D. Lépingle’s L'(¢?) inequality [27]

(17) |SCEm )| <2 (2. fer

to the case where we substitute the conditional expectation operators with orthogonal projec-

tion operators P onto spline spaces and where we can allow that f,, is contained in a suitable
spline space Si(F;,). This is done provided the filtration (F,,) satisfies the regularity condition
sup,, 7x(Fn) < 0o. Recall that the number ri(F,) was defined in (15) as the maximal length
ratio of neighbouring B-spline supports in F,,. Using similar techniques, we also obtain a spline
version of C. Fefferman’s H'-BMO duality [16] under this assumption.
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Abstract

The main result of this paper is a proof that, for any f € Li[a, b], a sequence of its orthogonal
projections (PA, (f)) onto splines of order k with arbitrary knots A, converges almost everywhere
provided that the mesh diameter |4, | tends to zero, namely

feLlila,bl= Pa,(f.x) = f(x) ae. (|4, — 0).

This extends the earlier result that, for f € L, we have convergence P (f) — f in the L)-norm for
1 < p < oo, where we interpret Lo as the space of continuous functions.
© 2014 Elsevier Inc. All rights reserved.

Keywords: Splines; Inverse Gram matrix; Almost everywhere convergence

1. Introduction

Let an interval [a, b] and k € N be fixed. For a knot-sequence A, = (ti);’:{‘ such that
L =it t < litk,
nh=--=k=a, b=tht1 =" =y,
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let (N;)7_, be the sequence of Lo-normalized B-splines of order k on A, forming a partition of
unity, with the properties

supp N; = [ti. tix]. Ni =0, Y Ny=1.
i

For each A,,, we define then the space Sk (4,) of splines of order k with knots A,, as the linear
span of (N;), namely

n
s €S (A) & s = ZciN,-, ¢ €R,

i=1

so that S (4,,) is the space of piecewise polynomial functions of degree < k — 1, with k — 1 —m;
continuous derivatives at f;, where m; is multiplicity of #;. Throughout the paper, we use the
following notations:

I == ti, ti1], hi == |I;i| == tiy1 — 1,

Ei = [t;, titk], ki = |Ei| = titk — 1,
where E; is the support of the B-spline N;. With conv(A, B) standing for the convex hull of two
sets A and B, we also set

I;j == conv([;, I}) = [tmin(, j)» Imax(, j)+1]

E;j == conv(E;, E;) = [tminG, j)» Imax(, j)+k]-

Finally, |4, | := max; |/;| is the mesh diameter of A,,.
Now, let P, be the orthoprojector onto Si(A,) with respect to the ordinary inner product

(f,e) = [ f()gx) dx, ie.,
(Pa, f.s) = (f.s), Vs eSi(An),

which is well-defined for f € L{[a, b].
Some time ago, one of us proved [12] de Boor’s conjecture that the max-norm of Pn, is
bounded independently of the knot-sequence, i.e.,

sup [ PA, lloo < Ck- (1.1)

n

This readily implies convergence of orthogonal spline projections in the L ,-norm,

FelLyabl= Pa(f)Lf 1<p<oo (12)

where we interpret L, as C, the space of continuous functions. In this paper, we prove that the
max-norm boundedness of P implies also almost everywhere (a.e.) convergence of orthogonal
projections (P, (f)) with arbitrary knots A, provided that the mesh diameter |A,| tends to
zero.

The main outcome of this article is the following statement.

Theorem 1.1. For any k € N and any sequence of partitions (4,) such that |A,| — 0, we have

feLila,bl= Pa (f.x) > f(x) ae. (1.3)
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The proof is based on the standard approach of verifying two conditions that imply
a.e. convergence for f € Ly:

(1) there is a dense subset F of L such that Py (f,x) — f(x) a.e. for f € F;
(2) the maximal operator P*(f, x) := sup, |Pa, (f, x)| is of the weak (1, 1)-type,

m{xe[a,b]IP*(f,X)>t}<C7k||f||1, (1.4)

with mA being the Lebesgue measure of A. The first condition is easy: by (1.2),
a.e. convergence (in fact, uniform convergence) takes place for continuous functions,

f€Cla,bl = Pa,(f,x) = f(x) uniformlyin x. (1.5)

For the non-trivial part (1.4), we prove a stronger inequality of independent interest, namely
that

|Pa, (f; )] < ckM(f, x), (1.6)

where M (f, x) is the Hardy—Littlewood maximal function. It satisfies a weak (1, 1)-type
inequality, hence (1.4) holds too.

The main technical tool which leads to (1.6) is a new estimate for the elements {a;;} of the
inverse of the Gram matrix of the B-spline functions, which reads as follows.

Theorem 1.2. For any A, let {a,-j};‘j:1 be the inverse of the B-spline Gram matrix {(N;, Nj)}.
Then,

jaijl < Ky" It (1.7)
where

hij .= max{hy : Iy C Ej;},
and K > 0 and y € (0, 1) are constants that depend only on k, but not on A,,.

A pass from (1.7) to (1.6) proceeds as follows. Let K 5, be the Dirichlet kernel of the operator
P, , defined by the relation

b
Pa, (f.x) = / Ka () f()dy, Vf € Lila,b]
a
Then, (1.7) implies the inequality

KA, (x, )| <CO 7Y xel, yel,, (1.8)

where C > O and 6 € (0, 1). Now, (1.6) is immediately obtained from (1.8).

With a bit more sophisticated arguments, though still standard ones, estimate (1.8) on K5,
allows us also to prove convergence of Py, f at Lebesgue points of f. The latter forms a set of
full measure, so we derive this refinement of Theorem 1.1 as a byproduct.

Estimate (1.7) is also useful in other applications, for instance in [10] it is applied to obtain
unconditionality of orthonormal spline bases with arbitrary knot-sequences in L ,-spaces for
1 < p< oo

We note that, previously, a.e. convergence of spline orthoprojections was studied by
Ciesielski [3] who established (1.3) for dyadic partitions with any k& € N, and by Ciesielski—
Kamont [5] who proved this result for any A, with k = 2, i.e., for linear splines. Both papers
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used (1.7) as an intermediate step, however our proof of (1.7) for all k with arbitrary knots A,
is based on quite different arguments. The main difference is that the proof of (1.7) for linear
splines in [5] does not rely on the mesh-independent bound (1.1) for || PA,, ||oo, and can be used
to get such a bound for linear splines, whereas our proof depends on (1.1) in an essential manner.

The paper is organized as follows. In Section 2, we show how Theorem 1.2 leads to (1.8)
and the latter to (1.6). We complete then the proof of a.e. convergence of (Pa, (f)) using the
scheme indicated above. In Section 3, as a byproduct, we show that (Pa, (f)) converges at
Lebesgue points, thus characterizing the convergence set in a sense. Theorem 1.2 is proved then
in Section 4 based on Lemma 4.1, which lists several specific properties of the inverse {a;;} of
the B-spline Gram matrix Go := {(N;, N;)}. Those properties are proved in Section 5, and they
are based mostly on Demko’s theorem on the inverses of band matrices, which we apply to the
rescaled Gram matrix G := ((M;, N;)), where M; := K%N,-. The uniform bound |G~ ||s < ¢,
being equivalent to (1.1), plays a crucial role here.

2. Proof of Theorem 1.1

Here, we prove the weak-type inequality (1.4), then recall a simple proof of (1.5), and as a
result deduce the a.e. convergence for all f € L.
We begin with an estimate for the Dirichlet kernel K 5, .

Lemma 2.1. For any A, the Dirichlet kernel K 5, satisfies the inequality

Ko, o0 = COMNI ™ x el y el 2.1
where C > 0 and 6 € (0, 1) are constants that depend only on k.

Proof. First note that, with the inverse {ay,} of the B-spline Gram matrix {(Ng, N,;)}, the
Dirichlet kernel K 4, can be written in the form

n
Kp,(c.y)= Y amNe(x)Nu(y).
£,m=1

Forx € I; and y € I;, since supp Ny = [t¢, te4i] and Y Ny (x) Ny (y) = 1, we obtain

KA, (x, )| = max |agml.
i—k+1<e<i
Jj—k+1<m<j

Next, we rewrite inequality (1.7) for agy, in terms of Eg;, = [tmin(e,m)> fmax(e,m)+k1: @s hep 1s the
largest knot-interval in Ey,,, we have hﬂ_ni < (|¢ — m| + k)| Egn| ™", hence for any real number

0 e (y,l),
laem| < Ky "€ —m| 4+ 5)|Een) ™' < C1O ™ Egu |,
where C| depends on k and 6. Therefore,

K, o0l < Cr max 01" Egy |~
jl:k:lgmglj
For indices ¢ and m in the above maximum, we have I;; C Eyy,, hence |Eq;, -1 < |I,-j|_1 , and
also [£ —m| > |i — j| — k, hence 61t~ < =kgli=jl and inequality (2.1) follows. [
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Definition 2.2. For an integrable f, the Hardy—Littlewood maximal function is defined as

M(f. x) = sup | ]! fl @) dt, 22)

I>x

with the supremum taken over all intervals / containing x. As is known [13, p. 5], it satisfies the
following weak-type inequality

5
m{xe[a,b]:M(f,X)>t}§;I|f||1~ (2.3)

Proposition 2.3. For any A, we have

|Pa, (fs )] < ckM(f, x), x €la,b]. 2.4)

Proof. Let x € [a, b], and let the index i be such that x € [; and |I;| # 0. By definition of the
Dirichlet kernel K 4,

b
Pp,(f x) = / Ka,(x,y) f(y)dy,
a
so using inequality (2.1) from the previous lemma, we obtain
gli—Jl
71

Since I; C I;j and x € I; C I;j, the definition (2.2) of the maximal function implies
Ji 1f D1y < [1 1f )1 dy < [ijIM(f, x). Hence,

|Pa, (f, %)] <Zf K a, (x, y)llf(y)ldy_CZ f |f )1 dy.

n
1P, (f. )| <CY 0 IM(f x),
j=1
and (2.4) is proved. [
On combining (2.4) and (2.3), we obtain a weak-type inequality for P*.

Corollary 2.4. For the maximal operator P*(f, x) = sup,, |Pa, (f, x)|, we have
Ck
m{x € [a,b] : P*(f,x) >t} < - [FAIFE (2.5)

The next statement is a straightforward corollary of (1.1); we give its proof for completeness.
Proposition 2.5. We have
feCla,bl = Pa,(f,x) = f(x) uniformly. (2.6)

Proof. Since P, is a linear projector and || P, [lcc < cx by (1.1), the Lebesgue inequality
gives us

Il f—Pa,flloo < (ck +1)Ea, (f),

where E 5, (f) is the error of the best approximation of f by splines from S (4, ) in the uniform
norm. It is known that

Ep, (f) = ckon(f, 14n)),
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where wy (f, §) is the kth modulus of smoothness of f. Since wi(f, §) — 0as 3§ — 0, we have
the uniform convergence

If = Pa, fllco =0 (I44] — 0,
and that proves (2.6). [
Proof of Theorem 1.1. The derivation of the almost everywhere convergence of Pa, f for
f € L from the weak-type inequality (2.5) and convergence on the dense subset (2.6) follows a

standard scheme which can be found in [8, pp. 3—4]. We present this argument for completeness.
Let v € L'[a, b]. We define

R(v, x) :=limsup Pp v(x) — liminf Pp v(x)
n—oo

n—oo

and note that R(v, x) < 2P*(v, x), therefore, by (2.5),

2¢k
m{x € [a,b] : R(v,x) > 6} < 5 lvlly. 2.7

Also, for any continuous function g we have R(g, x) = 0 by (2.6), and since P, is linear,

R(fv X) = R(f —g,X) + R(g,.X) = R(f —g,X).
This implies, for a given f € Ly and any g € C,

2.7 2¢
mix €la.bl: R(f.x) > 8} =mix €la,b]: R(f —g.x) >4} = —If =gl

Letting || f — gll1 — O, we obtain, for every § > 0,
mi{x €la,b]: R(f,x) > 6} =0,

so R(f,x) = O for almost all x € [a, b]. This means that P f converges almost everywhere.
It remains to show that this limit equals f a.e., but this is obtained by replacing R(f, x) by
|lim,— o~ P, f(x) — f(x)|in the above argument. [

3. Convergence of P, (f) at the Lebesgue points

Here, we show that the estimate (2.1) for the Dirichlet kernel implies convergence of
P, (f, x) at the Lebesgue points of f. Since by the classical Lebesgue differentiation theorem
the set of all Lebesgue points has the full measure, this gives a more precise version of
Theorem 1.1.

We use standard arguments similar to those used in [7, Chapter 1, Theorem 2.4] for integral
operators, or in [9, Chapter 5.4] for wavelet expansions.

Recall that a point x is said to be a Lebesgue point of f if

im_ 117 [ 170 - roldy =0,
I3x, |I|-0 I

where the limit is taken over all intervals / containing the point x, as the diameter of / tends to

zero.

Theorem 3.1. Let x be a Lebesgue point of the integrable function f, and let (A,) be a sequence
of partitions of [a, b] with |A,,| — 0. Then,

Jim P, (f.x) = f(2).
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Proof. Let x be a Lebesgue point of f. Since the spline space Sx(4,) contains constant func-
tions, we have fab KA, (x,y)dy = 1forany x € [a, b], so we need to prove that

b
/ Kp, (x, L) = fNldy =0 (n — o0). (3.1

Forr > 0, set B, (x) := [x —r,x +r] N [a, b]. Now, given ¢ > 0, let § be such that

17 [ 17w = sty < (3:2)
I
for all intervals I with I C Bss(x) and I > x. Further, with 6 € (0, 1) from inequality (2.1), take
m and N = N (m) such that

0" < &4, (m+2)|A,l <8 Vn>N,

and consider any such 4,,.
(I) Let [x —y| > d,and let x € I; and y € I;. Then |i — j| > m and |[;;| > §, hence, by
inequality (2.1) for the Dirichlet kernel K 4,

KA, (x,y)] < CO™s! < Ce.

As a consequence,

b
/ |8IKA,,()C,y)IIf(x)—f(y)ldy§C8/ lf) = fOIdy <2Cel flli.  (3.3)
xX—y|> a

(2) Let |[x — y| < 8,1ie.,y € Bs(x), and let x € I;. Note that if I; N Bs(x) # ¢, then
I; C Bas(x), hence I;; C Bys(x) as well, and again, by inequality (2.1),

/B()|KAn(X,)’)||f(X)—f()’)|dyS 3 /|KA,,<x,y)||f<x>—f<y>|dy
5 (X .

Jj:1iNBs(x)#0 VL
sc Y o (i [ 1w - rola)
Jji1ij CBas(x) lj

By (3.2), since x € I;; C Bas(x), the terms in the parentheses are all bounded by ¢, therefore

/ KA, G @ = fOldy < ceY 0=l < Cpe. (3.4)
x=y|< -

J

Combining estimates (3.3) and (3.4) for the integration over |[x — y| > § and |x — y| < §, respec-
tively, we obtain (3.1), i.e. convergence of Pa (f, x) to f(x) at Lebesgue points of f, provided
|A,| — 0. O

4. Proof of Theorem 1.2

We will prove (1.7) for i < j. This proves also the case i > j, since h;; = hj; and a;; = aj;.
So, for the entries {a;;} of the inverse of the matrix {(N;, N;)}, we want to show that

jaijl < Ky~ hgt (4.1)

where h;; is the length of a largest subinterval of [7;, #;«]. The proof is based on the following
lemma.
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Lemma 4.1. For any A, let {a;;} be the inverse of the B-spline Gram matrix {(N;, N;)}. Then

lais| < K1y max{x;, i) 71, (4.2)
' {+k—2
jaijl < Koy 3" ail, itk <<, (4.3)
u=0—(k—1)
|aiul S K3 max |aiS|’ l < M’ (4'4)

u—(k—1)<s<p—1
where K; > 0 and y € (0, 1) are some constants that depend only on k.
Remark 4.2. All three estimates are known in a sense. Inequalities (4.2) and (4.3) follow from
Demko’s theorem [6] on inverses of band matrices and the fact [12] that the inverse of the Gram
matrix G = {(M;, Nj)};szl satisfies |G oo < ck. Actually, (4.2) was explicitly given by
Ciesielski [4], while (4.3) is a part of Demko’s proof. Inequality (4.4) appeared in Shadrin’s
manuscript [11], and it does not use the uniform boundedness of |G~ !lso. As those estimates

are scattered in the aforementioned papers, we extract the relevant parts from them and present
the proofs of (4.2)—(4.4) in Section 5.

Proof of Theorem 1.2. Let I, be a largest subinterval of [#;, 1], i.e.,
hij = max{h Y 75 = k.
(1) If 1, belongs to the support of N; or that of N;, then
max(k;, kj) > hg = h;j,
and, by (4.2),
laij| < K1y~ (max{i;, ic;H ™" < K Vli_jlh,-__il,

so (4.1) is true.
(2) Now, assume that I; does not belong to the supports of either N; or N, i.e.,

i+k<t<j.

Consider the B-splines (Ns)fzz Sk whose support [, ;4] contains I, = [, tg+1]. Then
ks > hg=hij, £—(k—1)=<s=</L.

Using estimate (4.2), we obtain for such s
jais] < Ky et < Ky < Ky TRy R

i.e.,

max i < €yt R (4.5)
0—(k—1)<s<t

(3) From (4.3), we have

laij| < 2(k — 1)Kyt~ max |ai . (4.6)
L—(k—1)<pu=<l+k—2

Note that (4.4) bounds |a;, | in terms of the absolute values of the k — 1 coefficients that precede
it, hence by induction and with the understanding that K3 > 1,

laie+r] < Ky  max ai|, r=1,2,...,
O—(k—1)<s<f
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therefore
max laip] < KA™2 0 max  agl. 4.7
(—(k—1)<p<t+k—2 —(k—1)<s<{

Combining (4.6), (4.7) and (4.5), gives

jaij| < 2k = DKy K2 h = Ky g
and that proves (4.1), hence (1.7). U
5. Proof of Lemma 4.1

Here, we prove the three parts of Lemma 4.1 as Lemmas 5.5, 5.6 and 5.7, respectively. The

proof is based on certain properties of the Gram matrix G = {{(M;, N;)}} =1 and its inverse
G = {bij l’.’jzl. Here, (M;) is the sequence of L-normalized B-splines on 4,
k itk
M; = — N;, M;(t)dt = 1.
Ki ti

First, we note that G is a banded matrix with max-norm one, i.e.,
(Mi,Nj) =0 forl|i —j|>k—1, 1Glloo =1, (5.1)

where the latter equality holds due to the fact that Zj (M, N;)| = (M;, Zi N;) = (M;, 1)
= 1. A less obvious property is the boundedness of |G ™! s.

Theorem 5.1 (Shadrin [12]). For any A,, with G .= {{M;, Nj>};'1,j=1’ we have

1G™ oo < ek, (5.2)
where cy, is a constant that depends only on k.

We recall that (5.2) is equivalent to (1.1), i.e., the £,-norm boundedness of the inverse G~ !of
the Gramian is equivalent to the L,-norm boundedness of the orthogonal spline projector P
namely, with some constant di (e.g., the same as in (5.15)), we have

n?

1 _ _
=116 oo < 11PA, lloo < 16 loo-
k

Next, we apply the following theorem to G.

Theorem 5.2 (Dembko [6]). Let A = (w;;) be an r-banded matrix, i.e., ajj = 0 for |i — j| > r,
and let |All, < ¢ and |A7 |, < ¢ for some p € [1, 00]. Then the elements of the inverse
A7l = (ozl.(j_l)) decay exponentially away from the diagonal, precisely

|ai(j_l)| = Kyli_jl,
where K > 0 and y € (0, 1) are constants that depend only on ¢’, ¢” and r.

We will need two corollaries of this result.

Corollary 5.3. For any A, with G = {{M;, Nj>};l,j:1’ and G~ =: {bij ?,j:l’ we have

|bij| < Koyl (5.3)

where Ko > 0 and y € (0, 1) are constants that depend only on k.
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Proof. Indeed, by (5.1)—(5.2), we may apply Demko’s theorem to the Gram matrix G, with
=1, " =ck,r =k —1,and p = 00, and that gives the statement. [

Corollary 5.4. For any A,, with G = {{M;, N;) ijl,

Gl < e, IG~ I < ca, (5.4)
where c1, ¢y depend only on k.

Proof. It follows from (5.3) that ||G~!||; = max i > |bij| is bounded, whereas |G ||1 is bounded
since G is a (k — 1)-banded matrix with nonnegative entries (M;, N;) < 1. [

Now we turn to the proof of Lemma 4.1 starting with inequality (4.2).
Lemma 5.5 (Property (4.2)). Let {a;;} be the inverse of the B-spline Gram matrix {(N;, Nj)}.
Then
jais) < K1 y" ™~ (maxfie;, e, }) 7" (5.5)

Proof. As we mentioned earlier, this estimate was proved by Ciesielski [4, Property 6]. Here are
the arguments. The elements of the two inverses {a;;} = G, !and {bij} = G~ ! are connected by
the formula

ajj = bij(k/kj) = bji(k/x;). (5.6)
Indeed, the identity N; = «;M;/k implies that the matrix Go = {(N;, N;)} is related to
G = {(M;, Nj)} in the form

Go = DG, where D = diag[k1/k, ..., kn/k].

Hence, G '= G7'D7!, and the first equality in (5.6) follows. The second equality is a
consequence of the symmetry of Gy, as then G, Uis symmetric too, i.e., a;; = aj;. Then, in
(5.6) we may use the estimate |b;;| < Koy“_j' from (5.3), and (5.5) follows. [

Lemma 5.6 (Property (4.3)). Let {a;;} be the inverse of the B-spline Gram matrix {(N;, N;)}.
Then

k=2
jaijl < Koy " aiul, ik << (5.7)
p=b—(k—1)

Proof. (1) Since a;; = bj;(k/«;) by (5.6), it is sufficient to establish the same inequality for the
elements b;; of the matrix G~ = (b i)

b+k—=2

bjil < Koyt " bl (5.8)
u=L—(k—1)
We fix i with 1 < i < n, and to simplify notations we write b; := b;, omitting i in the subscripts.
So, the vector b = (b, ..., b,)T is the ith column of G~!, hence
Gb = ¢;. (5.9)

(2) The following arguments just repeat those in the proof of Theorem 5.2 used by Demko [6]
and extended by de Boor [2].
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Form > i, set
™ =(0,0,...,0,bm, bysts....b)T.

With r := k — 1, the Gram matrix G = {(M;, Nj)}?j=1 is r-banded, and that together with (5.9)
implies

supp Gb™ C [m —r,m + (r — D).
It follows that G b and G b"*+?") have disjoint support, therefore
IG B[y + G B 27|y = |G b — G b2,
This yields
1G4+ 162711 < 1G 6™y + |G b 27
= Gb™ — G2,

< IG[l1 6™ — pm 20,
= |Gl1 (1IB™ |y — 1671,

1.e.,
1511 4 16200 < 3 (16 1y — 11527 1y), (5.10)
where ¢3 = ||G||1]|IG~ |1 > 1. This gives
c3— 1
BTN <y B, = 2— <1,
c3+1

where )y depends only on k since so does ¢3 = cjc; by (5.4).
It follows that, for any j, m such thati < m < j < n, we have

J—m

. ign I
1691 = yol pom, = e/ I
=t ey

IA

bl

Applying (5.10) to the last line, we obtain

. . m—+2r—1
bjl < cay ™ es (161 = 16 ) = esy T DT byl

n=m
Takingm = € —r = £ — (k — 1), we bring this inequality to the form (5.8) needed:

{+k—2

bil=csy" 1y Y byl
n=~L—(k—1)

Lemma 5.7 (Property (4.4)). Let {a;;} be the inverse of the B-spline Gram matrix {(N;, N;)}.
Then

m—(k—1)<s<m—1

i.e., the absolute value of a coefficient following a;; can be bounded in terms of the absolute
values of the k — 1 coefficients directly preceding that coefficient.
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Proof. This estimate appeared in [11, proof of Lemma 7.1]. To adjust that proof to our notations,
we note that the basis {N;} dual to the B-spline basis {N;} is given by the formula

n
>l<— .. .
Nf =) ajN;j.
j=1

Indeed, from the definition of g;;, we have (N, N;,) = 2?21 aij{Nj, Nm) = dim.
(1) We fix i, write a; := a;; omitting the index i, and for m > i, set

n

n
Ym--1) = Y. ajN; Ym =Y _ajNj. (5.12)
j=m

j=m—(k—1)
Then, since supp N; = [t;, tj 1], it follows that
Um—k—1)(x) = N (x), x € [tn, b].

Therefore, v, (k—1) is orthogonal to span{N; }

n

e in particular to ¥,,. This gives

1Wm—=0) L0101 F 1m0, 51 = 1¥m—e=1) = ¥m 700, 01 (5.13)
(2) Further, we have
Ew = [tm, tmtk] C [tm, b],
whereas the equality ¥, —k—1) — ¥m = Z;f:ni_(k_l) ajN; implies
SUpPP(Ym—k—1) — ¥m) N [tm, b1 = [tm, tmyik—11 C Epr.
Therefore, from (5.13), we conclude
1Vm—a=0 1Tz, + 1¥ml T,z < 1W¥m—t=1) — ¥mll7,E, - (5.14)

(3) Now recall that, by a theorem of de Boor (see [1] or [7, Chapter 5, Lemma 4.1]), there is
a constant dj that depends only on & such that

n
D ciN
J=1 LZ(Em)

(This gives the upper bound di for the B-spline basis condition number.) So, applying this
estimate to the left-hand side of (5.14), where we use (5.12), we derive

) _
2d 2Nl = 1Bl (1060305, + 10l e, )

2

A em|* < |Em| ™! Vej e R. (5.15)

W
IA —
N
p—

| Enl ™ WWm—k—t) — ¥l 2k,

2
5.12 =
(5.12) > ajN;
j:m—(k—l) Loo(Em)
< max lag|?,

m—(k—1)<s<m—1
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1.e.,

lam| < K3 max lag|?,
m—(k—1)<s<m—1

and that proves (5.11). [
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Unconditionality of orthogonal spline systems in L?
by

MARKUS PASSENBRUNNER (Linz)

Abstract. We prove that given any natural number k£ and any dense point se-
quence (ty), the corresponding orthonormal spline system is an unconditional basis in
reflexive LP.

1. Introduction. In this work, we are concerned with orthonormal
spline systems of arbitrary order k with arbitrary partitions. We let (¢,)72,
be a dense sequence of points in the open unit interval (0, 1) such that each
point occurs at most k£ times. Moreover, define g := 0 and t; := 1. Such
point sequences are called admaissible.

For n > 2, we define ST(lk) to be the space of polynomial splines of order k£
with grid points (tj);?:(), where the points 0 and 1 both have multiplicity k.

For each n > 2, the space S,(Lk_)1 has codimension 1 in szk)

exists fék) € Sflk) that is orthonormal to Sr(f_)l. Observe that fék) is unique
up to sign. In addition, let ( ék)):l:_kw

polynomials in L?[0,1] such that the degree of f,(lk) is k +mn — 2. The system

0o
n=—k+

k corresponding to (tn)22,. We will frequently omit the parameter k& and

write f, instead of fék)
The purpose of this article is to prove the following

, and therefore there
be the collection of orthonormal

of functions ( fnk)) o is called the orthonormal spline system of order

THEOREM 1.1. Let k € N and (t,,)n>0 be an admissible sequence of knots
in [0,1]. Then the corresponding general orthonormal spline system of order
k is an unconditional basis in LP|0,1] for every 1 < p < oo.

A celebrated result of A. Shadrin [12] states that the orthogonal projec-
tion operator onto Sflk) is bounded on L*°[0, 1] by a constant that depends
only on k. As a consequence, (fyn)n>_k+2 is a basis in LP[0,1], 1 < p < oo.

There are various results on the unconditionality of spline systems restrict-

2010 Mathematics Subject Classification: 42C10, 46E30.
Key words and phrases: orthonormal spline system, unconditional basis, LP.
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ing either the spline order k or the partition (,)n>0. The first result in this
direction, in [1], states that the classical Franklin system—the orthonor-
mal spline system of order 2 corresponding to dyadic knots—is an uncon-
ditional basis in LP[0,1], 1 < p < oco. This was extended in [3] to uncon-
ditionality of orthonormal spline systems of arbitrary order, but still with
dyadic knots. Considerable effort has been made to weaken the restriction
to dyadic knot sequences. In the series of papers [7, 9, 8] this restriction
was removed step-by-step for general Franklin systems, with the final result
that for each admissible point sequence (ty,),>0 with parameter k = 2, the
associated general Franklin system forms an unconditional basis in L?|0, 1],
1 < p < co. We combine the methods used in [9, 8] with some new inequal-
ities from [11] to prove that orthonormal spline systems are unconditional
in LP[0,1], 1 < p < oo, for any spline order k and any admissible point
sequence (tp)n>0-

The organization of the present article is as follows. In Section 2, we
give some preliminary results concerning polynomials and splines. Section 3
develops some estimates for the orthonormal spline functions f,, using the
crucial notion of associating to each function f,, a characteristic interval .J,, in
a delicate way. Section 4 treats a central combinatorial result concerning the
number of indices n such that a given grid interval J can be a characteristic
interval of f,. In Section 5 we prove a few technical lemmata used in the
proof of Theorem 1.1, and Section 6 finally proves Theorem 1.1. We remark
that the results and proofs in Sections 5 and 6 closely follow [8].

2. Preliminaries. Let k be a positive integer. The parameter k will
always be used for the order of the underlying polynomials or splines. We use
the notation A(t) ~ B(t) to indicate the existence of two constants ¢y, co > 0
that depend only on k, such that ¢; B(t) < A(t) < coB(t) for all ¢, where ¢
denotes all implicit and explicit dependences that the expressions A and B
might have. If the constants c1, co depend on an additional parameter p, we
write A(t) ~, B(t). Correspondingly, we use the symbols <, 2, <p, 2. For
a subset F of the real line, we denote by |E| its Lebesgue measure and by
1 its characteristic function.

First, we recall a few elementary properties of polynomials.

PROPOSITION 2.1. Let 0 < p < 1. Let I be an interval and A be a subset
of I with |A| > p|I|. Then, for every polynomial Q of order k on I,

max [Q(t)] <, sup Q1) and  {|Q(1)]dt <, [ Q)] dt.
el teA 7 )

LEMMA 2.2. Let V be an open interval and f be a function satisfying
S [f(@)dt < XV| for some X > 0. Then, denoting by Ty f the orthogonal
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projection of f - 1y onto the space of polynomials of order k on V,

(2.1) TV fllz2r) S AV
Moreover,
(2.2) 1T fllzeqry S ey, 1<p < o0

Proof. Let lj, 0 < j <k —1, be the jth Legendre polynomial on [—1,1]
with the normalization [;(1) = 1. In view of the integral identity
lij(x) = %&r(x + Va2 —1lcosp) dp, x€C\{-1,1},
0
l; is uniformly bounded by 1 on [—1,1]. We have the orthogonality relation
1
(2.3) | li(2)l(2) do =
~1

where §(-, ) denotes the Kronecker delta. Now let o := inf V and 5 := sup V.
For

2
2j + 1

ﬁmw:fﬂw*@x%g%gﬁ) v € o 8],

relation (2.3) still holds for the sequence (lj i P ~4, that is,
B
(Y @) (@) do = —=—5(i,7), 0<i,j<k—1
2 (2 J 2] + 1 Y Y — 7 —

So, Ty f can be represented in the form

k-1 .
27 +1
Tyf =Y 25— (L.
J=0

Thus we obtain

2j+1 k-1
1TV fll2(vy < Z LU 20y = Z
7=0

(s ()]

||lV||Loo(V) S lpan VT2

< ||f||L1(V)Z

Now, (2.1) is a consequence of the assumption {, [f(t)|dt < A|V|. If we set
P =p/(p—1), the second inequality (2.2) follows from

2j~|—1

1TV fllzeevy < Z

||f”LP(V)||l}/HLp’(V)HlyHLP(V) S llzeevys

since ||l;'/||Lp(V) < |V|1/p_1/2 for0<j<k—land1<p<oo. =
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We now let

24) T=0=m1= =7 <71 < - <" <TM41 =" =Ttk = 1)

be a partition of [0, 1] consisting of knots of multiplicity at most k, that is,
Ti < Tigk for all 1 <4 < M. Let ngj ) be the space of polynomial splines
of order k with knots 7. The basis of L°°-normalized B-spline functions in
ngj) is denoted by (N; x)X, or for short (N;)*,. Corresponding to this basis,

(k

there exists a biorthogonal basis of 87-), denoted by (Nz*k)f\il or (N)M .

Moreover, we write v; = T4 — 7.

We now recall a few important results on the B-splines N; and their dual

functions N;".

PROPOSITION 2.3. Let 1 <p < oo and g = Z;‘il a;jN;. Then

(2.5) | ST P Mgl ey, 1< <M,
where J; is the subinterval [1;, Ti41] of [7j, Tj4k] of mazimal length. Addi-
tionally,
< 1/p 1/p\M
(2.6) lglly ~ (3 laglv;) ™ = lavy ™)L o
j=1
Moreover, if h = ijl bj N7, then
S 1-p\ /P 1/p=1\M
(2.7) Il S (3 laslre) ) = g™ e
j=1

The two inequalites (2.5) and (2.6) are Lemmata 4.1 and 4.2 in [6, Chap-
ter 5], respectively. Inequality (2.7) is a consequence of the celebrated result

of Shadrin [12] that the orthogonal projection operator onto S#ﬁ ) is bounded
on L independently of 7. For a deduction of (2.7) from this result, see [4,

Property P.7].

The next task is to estimate the inverse of the Gram matrix
((Ni e Nj,k>)%:1. Before we do that, we recall the concept of totally positive
matrices: Let @, , be the set of strictly increasing sequences of m integers
from the set {1,...,n}, and A be an n x n-matrix. For o, 8 € Qpn, we
denote by Ala; 5] the submatrix of A consisting of the rows indexed by «
and the columns indexed by . Furthermore, we let o/ (the complement
of a) be the uniquely determined element of @Q,—, that consists of all
integers in {1,...,n} not occurring in «. In addition, we use the notation

A3 B) = Alos §).

DEFINITION 2.4. Let A be an n x n-matrix. Then A is called totally

positive if
det Ala; 5] > 0 for o, 8 € Qumm, 1 <m <mn.
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The cofactor formula b;; = (—1)"7 det A(j;i)/det A for the inverse B =
(bij)%zl of the matrix A leads to

PROPOSITION 2.5. The inverse B = (b;;) of a totally positive matriz
A = (a;j) has the checkerboard property:

(=1)™by; >0 for all 4, 5.
THEOREM 2.6 ([5]). Let k € N and T be an arbitrary partition of [0, 1]

as in (2.4). Then the Gram matric A = (<Nz‘,k,Nj,k>)%:1 of the B-spline
functions s totally positive.

This theorem is a consequence of the so called basic composition formula
[10, Chapter 1, equation (2.5)] and the fact that the kernel N; ;(x), depend-
ing on the variables i and z, is totally positive [10, Chapter 10, Theorem 4.1].
As a consequence, the inverse B = (bij)%.:l of A has the checkerboard pro-
perty by Proposition 2.5.

THEOREM 2.7 ([11]). Let k € N, let T be the partition defined as in
(2.4) and (bij)%zl be the inverse of the Gram matrix ((Ni,k,Nj,k>)%:1 of
the B-spline functions N;j, of order k corresponding to T. Then

Tmax(i,5)+k — Tmin(i,j)

where the constants C' > 0 and 0 < v < 1 depend only on k.

Let f € LP[0,1] for some 1 < p < 0o. Since the orthonormal spline system
(fn)n>—k+2 is a basis in LP[0, 1], we can write f = > ;5 ay fy. Based on
this expansion, we define the square function Sf := (270;7/“2 |anfn|2)1/2
and the mazimal function M f := sup,, ‘ Y n<m On fn‘ Moreover, given a
measurable function g, we denote by Mg the Hardy-Littlewood maximal

function of g, defined as
Ma(a) = sup 1] { |g(¢)] dt,
Iz T

where the supremum is taken over all intervals I containing x.
A corollary of Theorem 2.7 is the following relation between M and M:

THEOREM 2.8 ([11]). If f € L'[0, 1], we have
Mf(t) s Mf(t), tel0,1].

3. Properties of orthogonal spline functions. This section deals
with the calculation and estimation of one explicit orthonormal spline func-
tion fy(,,k) for fixed k € N and n > 2 induced by the admissible sequence
(tn)o - Let ip be an index with k+1 < iy < M. The partition 7T is defined
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as follows:
T=0=m= =7 <7 < <7
< ST < TM = = Tagk = 1),

and T is defined to be T with Ti, removed. In the same way we denote
by (N; : 1 < i < M) the B-spline functions corresponding to 7, and by
(N; : 1 < i< M —1) those corresponding to 7. Béhm’s formula [2] gives
the following relationship between N; and NZ

N;(t) = N;i(t) if 1<i<ig—k—1,
=~ . Tig—Ts Ti+k+1—Tig e . . .
(31) Nz(t) = —Ni(t)—f——NH_l(t) if Zo—k S 7 S 20—1,
Titk—Ti Titk+1—Ti+1
N;i(t) = Nijy1(t) if ig <i< M-—1.

To calculate the orthonormal spline functions corresponding to T and T,
we first determine a function ¢g € span{N; : 1 <1i < M} such that g L N;
for all 1 < j < M — 1. That is, we assume that g is of the form

M
g = ZO‘ija
=1

where (N7 : 1 < j < M) is the system biorthogonal to (N; : 1 <14 < M).
In order for g to be orthogonal to N;, 1 < j < M — 1, it has to satisfy the
identities

M
j=1

Using (3.1), this implies a; =0if 1 <i<iy—k—1orig+1<i< M. For
190 — k <1 < 19— 1, we have the recursion formula

Ti+k—|—1 - Tio Tio — T;

(3.2) Qi1 + oy =0,
Titk+1 — Ti+l Titk — T4
which determines the sequence (a;) up to a multiplicative constant. We
choose
el T,
+k — Tig
Qig—k = H o — T
I—ig—k+1 l+k l

for symmetry reasons. This starting value and the recursion (3.2) yield the
explicit formula

(3.3) - -
J— i0—
o = (_1)j—io+k( H Tig — T¢ )( H T€+k_7'i0> io—k}<j < i
_ —_— |, < 7 <1p.
Tork — T, Tork — T,
tmig—k1 LR TS N Ty TR T
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So,
10 0 M
g= Y aiNj= > > aibNy,
j=to—k j=io—k £=1

where (bjg)%:1 is the inverse of the Gram matrix ((IV;, Ng))%zl. We remark

that the sequence («;) alternates in sign and since the matrix (b; )%:1 is
checkerboard, we see that the B-spline coefficients of g, namely

10

(3.4) wei= Y agjby, 1<L<M,
j=io—k
satisfy
10 10
(3.5) ’ > Oéjbje) = > lagbyl, 1<ji<M.
j=io—k j=io—k

In Definition 3.1 below, we assign to each orthonormal spline function
a characteristic interval that is a grid point interval [1;, 7;11] and lies close
to the newly inserted point 7;,. We will see later that the choice of this in-
terval is crucial proving important properties that are needed to show that
the system ( f,sk))ff:_k 4o is an unconditional basis in LP, 1 < p < oo, for
all admissible knot sequences (¢,)n>0. This approach was already used by
G. G. Gevorkyan and A. Kamont [8] in the proof that general Franklin sys-
tems are unconditional in L”, 1 < p < oo, where the characteristic intervals
were called J-intervals. Since we give a slightly different construction here,
we name them characteristic intervals.

DEFINITION 3.1. Let T, T be as above and Ti, the new point in 7 that
is not present in 7. We define the characteristic interval J corresponding to
Ti, as follows.

(1) Let

A(O)::{i —k<j<ig:|lr,T; <2 min TV, T }
o—k<j <ol <2 min {7, 7ok
be the set of all indices j for which the support of the B-spline func-

tion IV; is approximately minimal. Observe that A is nonempty.
(2) Define

A = {j e A0 |aj| = max |ag\}.
e A0)
For an arbitrary, but fixed index j© € A get J(O) .= [Tj(o) , Tj(o)+k].
(3) The interval J(® can now be written as the union of k grid intervals
k—1
JO — U [T 105 Tj(©) 1g41]  With 7@ as above.
=0
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We define the characteristic interval J = J(7;,) to be one of the
above k intervals that has maximal length.

We remark that in the definition of A9, we may replace the factor 2 by
any other constant C' > 1. It is essential, though, that C' > 1 in order to
obtain the following theorem which is crucial for further investigations.

THEOREM 3.2. With the above definition (3.4) of wy for 1 < < M and
the index 7 given in Definition 3.1,
(3.6) [wio| Z b0 j0-

Before we start the proof of this theorem, we state a few remarks and

lemmata. For the choice of j(9) in Definition 3.1, we have, by construction,
the following inequalities: for all iy — k < ¢ < iy with £ # §(©),

(3.7) el < lojo| o |lme Tequ]] > 2. min_ - [7s, 7ol

We recall the identity

j—1 o 10—1 o
(3.8) |aj|=( 1 —f)(HL) o — k< i<iy
V4

Tork — T To+k — T
(i oy TEHR T TE Ziyy Ttk T T

Since by (3.5),
10
wiol = D lajb 0l = lajol bjo o,
j=io—k

in order to show (3.6), we prove the inequality
|O‘j(0)| > D >0

with a constant Dy only depending on k. By (3.8), this inequality follows
from the more elementary inequalities

(39) TiQ—TézTH—k—Tio, ’io—k+1§£§j(0)—1,

. Totk — Tig 2 Tio — T, j(0)+1§£§i0—1.

We will only prove the second line of (3.9) for all choices of j (). The first
line is proved by a similar argument. We observe that if j(© > iy — 1, then
there is nothing to prove, so we assume

(3.10) 7O <ig—2.

Moreover, we need only show the single inequality

(3.11) T30 4 k41 — Tio & Tio — TjO) 415

since if we assume (3.11), then for any ;@ 4+ 1 < ¢ <4y — 1,

Totk — Tig 2 T;0) +k+1 — Tio 2 Tip — T;(0) 41 > Tig — Tt-
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We now choose j to be the minimal index in the range ig > j > 7 such

that
(3.12) ] < eyl

If there is no such j, we set j = ig + 1.

If j <'ip, we employ (3.8) to deduce that (3.12) is equivalent to

j—1

(3.13)  (7jph — )00 11 (Tip — 7¢)

=3OV (ig—k+1)
© j/\(io—l)
1-6(5(9 ig—k
< (Tjopp — 750) VTR T (e — o),
=50 41

where d(+, -) is the Kronecker delta. Furthermore, let m in the range ig —k <
m < ig be such that 7,1 — T = min;, _k<s<io(Ts4k — Ts)-

Now, from the minimality of j and (3.7), we obtain

(3.14) Tork — 70> 2Tk — ), JOH1<0<j -1
Thus, by definition,
(3.15) m<ji9 or m>j

LEMMA 3.3. In the above notation, if m < j© and j — j©© > 2, then

we have (3.11), or more precisely,

(316) Tj(0)+k+1 — Tig Z Tig — Tj(0)+1'

Proof. We expand the left hand side of (3.16) as

Ti0) 4 k+1 — Tio = Tj(0) 441 — Tj0 41 — (Tig — Tj(0)+1)-

By (3.14) (observe that j — 7% > 2), we conclude that

Ti0) kg1 — Tio = 2(Timak — Tm) — (Tip — Tj(0)+1)-

Since m + k > ig and m < j(© we finally obtain

T](O)+k+1 - TiO Z 7—7:0 - T](0)+1 | |

LEMMA 3.4. Let j©, j and m be as above. If j© +1 <0< j—1 and

m > 7, we have

Tio = T¢ 2 Te414+k — Tig-
Proof. Let 7 41 < ¢ < j—1. Then from (3.14) we obtain

(3.17)  Tig—Te = Te14k—Te— (Te+1+k —Tig) = 2(Tmetk—Tim) — (Te 14k —Tip)-
Since we have assumed m > 7 >/ + 1, we get m+k > ¢+ 1+ k, and
additionally we have m < ig by definition of m. Thus (3.17) yields

Tio — T0 = Ti+14k — Tig-
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Since the index ¢ was arbitrary in the range j(® +1 < ¢ < j — 1, the proof
of the lemma is complete. =

Proof of Theorem 3.2. We employ the above definition of (9, j, and m
and split our analysis into a few cases, distinguishing various possibilities
for j© and j. In each case we will show (3.11).

CASE 1: There is no j > j© such that |aj| < (0| In this case, (3.15)
implies m < j©. Since j(® < iy — 2 by (3.10), we apply Lemma 3.3 to
deduce (3.11).

CASE 2: 49— k+1 < j© < j < iy — 1. Using the restrictions on j(©
and j, we see that (3.13) becomes

J Jj—1
(m04k —70) I Tesr —7i0) = (T — ) [ (i — 7).
=50 41 £=4(0)
This implies
j—1
(Tj+k — i) (Tip — Tj0) Tio — Tt
T50) 4 k+1 — Tig > - iy Tot o — T
7O 4k 3(0) 0= 41 4+-1+Ek io

Since by definition of j(©), we have in particular Ti0) 1k — Tj0 < 2(Tj4k —T5),
we conclude further that

-
Tip — T;j(0) 41 H Tio — T

(3.18) Ti(0) 1 kt1 — Tio > .
R Te+14+k — Tig

=50 41

If j = 79 41, the assertion (3.11) follows from (3.18), since the product
is then empty.

If > 70 + 2 and m < j©, we use Lemma 3.3 to obtain (3.11).

If j > 5O 4+ 2 and m > j, we apply Lemma 3.4 to the terms in the
product appearing in (3.18) to deduce (3.11).

This finishes the proof of Case 2.

CASE 3: 39—k +1 < j© < j = i5. Recall that j© < ig—2=7j—2
by (3.10). If m < j©, Lemma 3.3 gives (3.11). So we assume m > j. Since
io = j and m < ig, we have m = j. The restrictions on (%, j imply that
condition (3.13) is nothing else than

t0—1 i0—1
(04k —70) |1 esn—70) > ] (o —70).
(=50 +1 =50

Thus, in order to show (3.11), it is enough to prove that there exists a con-
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stant Dy > 0 only depending on k such that

10—1

(3.19) N | ey %
TjO 1k T TjO) N

Toir —T;
:j(0)+2 {+k 10

First observe that by Lemma 3.4,
Tig = Tj(0) = Tj(0) 4ht2 — Tio = T;(0) 4k — Tio-

Inserting this inequality in the left hand side of (3.19) and applying Lem-
ma 3.4 directly to the terms in the product, we obtain (3.19).

CASE 4: ig — k = jO < j = ig. We have j©O < ig — 2 by (3.10). If
m < 7O just apply Lemma 3.3 to obtain (3.11). Thus we assume m > j.
Since ig = j and m < ig, we have m = j. The restrictions on (9, j imply
that (3.13) takes the form

10—1 10—1
II -7 I (@ —m0)
l=i9—k+1 l=i9—k+1

Thus, to show (3.11), it is enough to prove that there exists a constant
Dy, > 0 only depending on k such that

io—1

[ o
T T > p,
Toak — T

(=ig—k+2 Tk T Tio

But this is a consequence of Lemma 3.4, finishing the proof of Case 4.
CASE 5: ig — k = j(O < j <ig— 1. In this case, (3.11) becomes
(3.20) Tio+1 — Tig X Tig — Tig—k+15

and (3.13) is nothing else than

J i—1
(3.21) H (Terk — Tig) 2 (Tjk — 75) H (Tio — 71)-
l=ig—k+1 l=ig—k+1

For j = ig— k+1, (3.20) follows easily from (3.21). If we assume j — (0 > 2
and m < (O we just apply Lemma 3.3 to obtain (3.11). If j — j(® > 2 and
m > j, then (3.20) is equivalent to the existence of a constant Dy > 0 only
depending on k such that
i—1
(i — 1) TT0=i —ig2 (Tio — 7o) _
j -
l=ip—k+2 (T£+k‘ o 7-Z.O)

This follows from the obvious inequality 7j4r — 7; > Tj4r — T, and from
Lemma 3.4. Thus, the proof of Case 5 is complete, thereby concluding the
proof of Theorem 3.2. =
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We will use this result to prove lemmata connecting the L” norm of the
function g and the corresponding characteristic interval J. Before we start,
we need another simple

LEMMA 3.5. Let C' = (cij)i;—1 be a symmetric positive definite matriz.
Then for (dij)i =1 = C~! we have

Ci_ilédn', 1<i<n.
Proof. Since C' is symmetric, it is diagonalizable:
C = SAST,

for some orthogonal matrix S = (si;)7;—; and for the diagonal matrix A
consisting of the eigenvalues A1, ..., A\, of C. These eigenvalues are positive,
since C' is positive definite. Clearly,

C'=854"1sT.
Let ¢ be an arbitrary integer in the range 1 < i < n. Then

n n
2 241
Cii = g sppAe and  d; = E SipAy -

Since Y j_;s% = 1 and the function z — x~!

conclude by Jensen’s inequality that

n 1 n

—1 2 2 y—1

Cii = (st)%) < ZSZ[)\g =di;- =
=1 =1

LEMMA 3.6. Let T, T be as above and g = Zj‘il w;N; be the function

in span{N; : 1 < i < M} that is orthogonal to every N;, 1 < i < M —1,
with (wj)j]\/il given in (3.4). Moreover, let ¢ = g/||g||2 be the L?>-normalized
orthogonal spline function corresponding to the mesh point 1;,. Then

is convex on (0,00), we

el oy ~ llellp ~ [TV, 1 <p < oo,

where J is the characteristic interval associated to the point T;,, given in
Definition 3.1.

Proof. As a consequence of (2.5), we get

(3.22) lgllzo(sy 2 1T1MP w0
By Theorem 3.2, |w;o)| Z b0 jo, where we recall that (bij)%zl is the
inverse of the Gram matrix (aij)%zl = ((Ni,Nj>)%:1. Now we invoke

Lemma 3.5 and (2.6) to infer from (3.22) that
lllecr) Z 1917650 jo0 > 11703, o)

—2 —1
= |JMP| N0 157 2 |J|1/pvj<o>'
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Since, by construction, J is the maximal subinterval of J(© and there are
exactly k subintervals of J(©, we finally get

(3.23) lgll oy Z 17177
On the other hand, g = Zé(;io_k a; N7, so we use (2.7) to obtain

0 1—p 1/p
lolly S (D2 gl 7).

j=to—k
Since |oj| <1 for all j and v;() is minimal (up to the factor 2) among the
values v;, 19 — k < j <'ip, we can estimate this further by

1/p—1
lglly S vy ™"
We now use the inequality |J| < v;0) = [J )] from the construction of J to
get
(3.24) gl < 1717

The assertion of the lemma now follows from (3.23) and (3.24) after renor-
malization. =

We denote by d7(x) the number of points in 7 between x and J counting
the endpoints of J. Correspondingly, for an interval V' C [0, 1], we denote by
d7(V') the number of points in 7 between V and J counting the endpoints
of both J and V.

LEMMA 3.7. Let T, T be as above and g= Z;Vil w;N; be orthogonal to
every N;, 1 < i < M —1, with (wj)j]\il as in (3.4). Moreover, let ¢ = g/||g/|2
be the normalized orthogonal spline function corresponding to T;,, and v < 1
the constant from Theorem 2.7 depending only on the spline order k. Then

f)/dT(Tj)
|J| + dist(supp N;, J) + v;
Moreover, if x < inf J, then

(3.25)  Juy| < for all 1< j < M.

,ydT(w)|J|1/2
| J| + dist(x, J))1-1/p’

(3.26) lellro,2) S ( 1<p<oo.

Simalarly, for x > sup J,
fydT(fC)|J|1/2
| J| + dist(z, J))1=1/p’

Proof. We begin by showing (3.25). By definition of w; and oy (see (3.4)
and (3.3)), we have

(3.27) lellr 1) S ( 1<p<oo.

| < bid.
wil 5, max byl
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Now we invoke Theorem 2.7 to deduce

i
max;, p<r<io V!
miﬂio—kgegio (Tmax(zz,j)+k - Tmin(e,j))
fydT(Tj)

(3.28) i S

<
MG, — k<¢<ig (Tmax(e,j)+k - Tmin(e,j))

Y

where the second inequality follows from the location of J in the interval
[Tio—k> Tig+k|- It remains to estimate the minimum in the denominator. Fix
¢ with ig — k < ¢ < 1g. First we observe that

(3.29) Tmax(€,j)+k — Tmin(t,j) = Tj+k — Tj = Isupp N;| = v;.

Moreover, by definition of J,

: 0
(330) Tmax(£,5)+k — Tmin(¢,5) > Z,O_I]?SIESZ.O(TT—H{ - 7-7”) > |J( )|/2 > |J|/2

If now j > ¢, then

(331) Tmax(£,7)+k — Tmin(¢,5) = Tj+k — T¢ > Ti+k — Tig

> max(7; — sup JO) 0),

since 7;, < sup J(©). But max(r; — sup J©,0) = dist([r}, 7j4%], /) due to
the fact that inf J© < Tio < To4k < Tj4k for the current choice of j. Addi-
tionally, dist([7j, 7j4x],J) < [JO] + d([rj, 7j1x], J@). So, as a consequence
of (3.31),

(332) Tmax(¢,5)+k — Tmin(¢,5) > diSt([ij Tj-i-ki]? J) - |J(O)|

An analogous calculation proves (3.32) also in the case j < ¢. We now
combine (3.28) with (3.29), (3.30) and (3.32) to obtain (3.25).

Next we consider the integral ( {; [g(¢)[P dt) YP for x < inf J. The anal-
ogous estimate (3.27) follows from a similar argument. Let 75 be the first
grid point in 7 to the right of z and observe that supp N, N [0,7s) = @ for
r > s. Then

s—1
lollo0) < Nolznomy < |- widdi|
i=1

By (2.6),

lll ooy < || (wirt™): 7,

We now use (3.25) for w; to get

loll o0 S Yy,
Lr(0,x) ~ |J| + dist(supp Ny, J) + v;

i=11l¢P
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Since v; < |J|4dist(supp Ny, J)+v; for all 1 <4 < M and dist(supp V;, J)+
v; > dist(x, J) for all 1 <7 < s — 1, the last display yields
91l o (0.2) S (1] + dist(, 1)~ VPN (TT) 3 o
The last fP-norm is a geometric sum with largest term 47 so
| J| + dist(z, J))1-1/p’

This concludes the proof, since we have seen in the proof of Lemma 3.6 that
lgllz ~ |7]71/2. =

REMARK 3.8. Analogously we obtain

AT ()| 7|12

su t) <  max .
Tj_lglt)grj Pl S j—k<i<j—1 |J| + dist(supp N, J) + v;

- f},dT(Tj)|J|1/2
~ I+ dist(d, [Ti-1, ) 4 -1 7]
since [1j_1,7;] C supp V; whenever j —k <i<j —1.

4. Combinatorics of characteristic intervals. Let (¢,)22, be an ad-
missible sequence of points and (f, )52 _, ., the corresponding orthonormal
spline functions of order k. For n > 2, the associated partitions 7, to f, are
defined to consist of the grid points (¢;)7_,, the knots {p = 0 and ¢; = 1

having both multiplicity & in 7. If n > 2, we denote by J\” and J, the
characteristic intervals J(© and J from Definition 3.1 associated to the new
grid point ¢,. If —k +2 < n < 1, we additionally set J, := [0,1]. For any
x € [0, 1], we define d,(x) to be the number of grid points in 7, between x
and J,, counting the endpoints of J,,. Moreover, for a subinterval V" of [0, 1],
we denote by d,, (V) the number of knots in 7, between V and J, counting
the endpoints of both V and J,,. Finally, if

Tn = (0 =Tnl=""="Tnk < Tnk+l
< - < Tan+k—1 < Tpnn+k = *°° = Tnn+2k—1 = 1)7

and if ¢, = 7,4,, then we denote by t;l"ﬁ the point 7, ;4.
For the proof of the central Lemma 4.2 of this section, we need a com-
binatorial lemma of Erdés and Szekeres:

LEMMA 4.1 (Erd6s—Szekeres). Let n be an integer. Every sequence
(T1,- s Tn—1)241) of real numbers of length (n—1)2+1 contains a monotone
sequence of length n.

We now use this result to prove a lemma about the combinatorics of the
characteristic intervals J,,:
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LEMMA 4.2. Let x,y € ()02, be such that x < y and 0 < § < 1/2.

Then there exists a constant Fy only depending on k such that
Ny := card{n cJn C [xvy]v |Jn| > (1 - 6)|[xay]|} < F,
where card E denotes the cardinality of the set E.

Proof. If n is such that J, C [z,y] and |J,| > (1 — 5)|[z,y]|, then, by
definition of .J,, we have t,, € [0,(1 — 8)z + Sy| U [Bx + (1 — B)y, 1]. Thus,
by the pigeon-hole principle, in one of the two sets [0, (1 — 8)z + By] and

[Bx + (1 — B)y, 1], there are at least

Ny —1
N1::{02 J—f—l

indices n with J,, C [z,y] and |J,,| > (1 — B)|[z, y]|. Assume without loss of
generality that this set is [Bx + (1 — )y, 1]. Now, let (nl)f\[:l1 be an increasing
sequence of indices such that t,, € [fz + (1 — B)y,1] and J,, C [z,y],
|Jn;| = (1 = B)|[z,y]| for every 1 < i < Nj. Observe that for such i, J,, is
to the left of ¢,,. By the Erdés—Szekeres Lemma 4.1, the sequence (tm)N

2

contains a monotone subsequence (tmi)ij\i , of length

Ny = L\/Nl — 1J + 1.

If (tmi)f\fl is increasing, then Ny < k. Indeed, if Ny > k+ 1, there are at

least k points (namely t,,,, ..., tm, ) in the sequence 7y, ,, between inf J,
and Ty, ;-

If (15,,%.)1]-\]:21 is decreasing, we let

k+1
This is in conflict with the location of Jy,, ., .

s1<---<sp

be an enumeration of the elements in 7,,, such that inf J,,, <s <t,,,. By
definition of J,,,, we obtain L < k + 1. Thus, there are at most k intervals
[s¢,Se4+1],1 <€ < L—1, contained in [inf J,,, , £, |. Again, by the pigeon-hole
principle, there exists one index 1 < ¢ < L—1 such that the interval [sy, sp11]

contains (at least)

N3 := \;Nzk_ 1J +1

points of the sequence (t,,)Y2. Let (t.)~% be a subsequence of length N

of such points. Furthermore, define
N4 = LN 3 / ]{ZJ .
Since (t,,)~? is decreasing, we have a collection of Ny disjoint intervals

L=ty %) Csey8001], 1< < Ny

Tk Tu-k

Consequently, there exists (at least) one index p such that

11| < |[se, se41][/Na.

mrg+4+1
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We next observe that the definition of J,,, yields
|[Jmi | 2 [[se, se4a]l-
We thus get
(4.1) IO 2 ] = (L= B[z, gl = (L= B) o |
= (1= P)llse; sexa]l = (1 = B)Nall|.
On the other hand, the construction of qug_)k implies in particular
(4.2) IO <2080 —tr,,) = 21L].

The inequalities (4.1) and (4.2) imply Ny < 2/(1 — 3) < 4. Since Ny only
depends on k, this proves the assertion of the lemma. =

5. Technical estimates

LEMMA 5.1. Let f = ZZOZ_IHQ anfn and V be an open subinterval
of [0,1]. Then

(5.1) I3 laif 0]t < S (S laser2) " an

Vegel jer
where I' :={j:J; CV and —k+2 < j < oo}.

Proof. If |V| =1, then (5.1) holds trivially, so we assume that |V| < 1.
We define x :=inf V, y :=sup V and fix n € I'. The definition of I" implies
n > 2, since J; = [0,1] for —k +2 < j < 1. We only estimate the integral
n (5.1) over [y, 1]; the integral over [0, z] is estimated similarly. Lemma 3.7
implies

1
V()] dt <A@, 12,
y
Applying Lemma 3.6 yields
1
(5.2) 1) dt <@ | fu(0)]di.
Yy In

Now choose 8 = 1/4 and let Jg be the unique closed interval that satisfies
|J?| = B]J,] and inf J? = inf J,.

Since f,, is a polynomial of order k on J,, we apply Proposition 2.1 to (5.2)
and estimate further

1
5:3) §lanfu®ldt S0 | lanfu®ldt <20 § (3 laysye)

Yy Jg JE Jer
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Define I'; := {j € I" : d;(y) = s} for s > 0. For fixed s > 0 and j1,j2 € I,
we have either

JiyNJj, =0 or supd; =supdJj,.
So, Lemma 4.2 implies that there exists a constant F}, only depending on k,

such that each t € V belongs to at most Fj intervals Jjﬂ , J € Is. Thus,
summing over j € I, from (5.3) we get

1
S Vlasfilae < Yo7 | (S lacsol) " a

jeluy jels  j# el
1/2
5758(Z|aefe(t)|2) dt.
Vo ter

Finally, we sum over s > 0 to obtain (5.1). m

Let g be a real-valued function defined on [0,1]. We denote by [g > A]
the set {x € [0,1] : g(x) > A} for any A > 0.

LEMMA 5.2. Let f = Y77 ;. oanfa with only finitely many nonzero
coefficients an, A >0, r <1 and

E)\:[Sf>>\], B>\7r:[./\/l]lE/\ >7“].

Then
E\ C B)\,T.

Proof. Fix t € E). Since Sf = (Z;’LO:_,H_Q |anfn|2)1/2 is continuous ex-
cept possibly at finitely many grid points, where it is continuous from the
right, there exists an interval I C E) such that ¢ € I. This implies

(Mg, )(t) = sup |U|_1 S 1g, (z) dx
tsU U
BanU| _ [Eand] 1]

= sup > == =1>r,
v |U| 1] 1]

so t € By ,, proving the lemma. =

LEMMA 5.3. Under the assumptions of Lemma 5.2, define

A={n:J, ¢ By, and —k+2<n<oo} and g= Zanfn.
neA
Then
(5.4) | Sgt)?dt < | Sg(t)*dt.
B ES

Proof. If By, = [0,1], the index set A is empty, and thus (5.4) holds
trivially; so assume B) , # [0, 1]. Then we apply Lemma 3.6 (for n > 2) and



48

CHAPTER 3. UNCONDITIONALITY OF ORTHOGONAL SPLINE SYSTEMS IN L”

Unconditionality of spline systems 69

the fact that J, = [O 1] for n <1 to obtain

S Sg( ) Z S |anfn ‘2 t< Z S ‘anfn ‘th

Ey neA Ey neA J,
We split the last expression into

Li=Y | lanfa@®Pdt, L= | l|anfa(t)]dt.
neA JoNES neA J,NE)y
For I, we clearly have
(5.5) L<) |\ Janfa(®)Pdt = | Sg(t)? dt.
neA B ES

It remains to estimate I. First we observe that by Lemma 5.2, E\ C B) ;.
Since the set By, = [M1g, > r] is open in [0, 1], we decompose it into a
countable collection (V;)52; of disjoint open subintervals of [0, 1]. Utilizing
this decomposition, we estimate

(5.6) L<Y Y | lanfa(®) dt.
neA j:|JpNV;|>0 JnNVj
If n € Aand |J, NV;| > 0, then, by definition of A, J, is an interval
containing at least one endpoint « € {inf V;,sup V;} of V; for which
Mlg, (z) <r.
This implies
|\ ExNJ,NV;| < r|J,NVj| or equivalently [ESNJ,NV;| > (1—r)|J,NVj|.

This inequality and the fact that | f,,|? is a polynomial of order 2k — 1 on J,,
allow us to use Proposition 2.1 to deduce from (5.6) that

LS Y, > | Janfalt)?dt

neA j: |J,NV;|>0 ESNJnNV;

<> b Janfa@®)P dt

neA ESNJnNBy
<> Vlanfa®)Pdt = | Sg(t)* dt.
neA ES ES
Combined with (5.5), this completes the proof. =
LEMMA 5.4. Let V be an open subinterval of [0,1], z := infV, y :=
supVoand f =307 ;. oanfn € LP[0,1] for 1 <p <2 with supp f C V. Let
R > 1 satisfy Ry < 1 for the constant v from Theorem 2.7. Then

o0

(5.7) > Bl Il oy S 11
n=n(V
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where n(V) = min{n : T, NV # 0} and V= (z,y) with * = x — 2|V| and
y=y+2|V|.

Proof. First observe that V¢ = [0,7] U [, 1]. We estimate only the part
corresponding to [0,z] and assume that £ > 0. The other part is treated

analogously.
Let m > 0 and define
(5.8) T :={neN:n>n(V), card{i <n:7 <t; <a} =m}.

We remark that T, is finite, since the sequence (¢,)5°, is dense in [0, 1].
We now split T}, into the following six subsets:

TR ={neTy:% ey, |Jn[E ]| >|V], Ju & [7 2]},
TG = {ne Ty, : J, C[0,7] or

(& € Ju with |, ([, 2]] < V] and J, ¢ [7,2]) },
TW ={neTy:xedn |z, ]| > V], J. ¢ |7 ]},
T,gf) = {nETm:JnC [z, y] or

(z € Jn with |J, N [z,2]| < |V|and J, ¢ [Z,2])},
T6) = {n€Tn:J,Cly,1] or (y€J, with J, ¢ [z,7]) }.

We treat each of these separately. Before examining sums like the one in
(5.7) with n restricted to one of the above sets, we note that for all n we
have, by definition of a,, = (f, f,) and the support assumption on f,

(59) anl? < {1 de- (§15a0 dt)"

Vv Vv
where p’ = p/(p — 1) denotes the conjugate Holder exponent to p.
CaSE 1:n € T = {neTy:J,C|z,z|}. Let T = Tr(nl)\{minTy(nl)}.

By definition, the interval J,, is at most k — 1 grid points in 7, away from %,.
Since the number m of grid points between z and x is constant for all

n € T, there are only 2(k — 1) possibilities for J, with n € T, By
Lemma 4.2 applied with 8 = 0, every J,, is a characteristic interval of at
most F} points t,,, and thus

(5.10) card T\ < 2(k — 1)F, + 1.
By Lemmata 3.7 and 3.6 respectively,

(5.11)

O = ]

fn@®F dt S AP @£ 2 and [ £ dt < A7V £,
%4
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for n € T, Furthermore, d,,(z) + d,,(V) = m by definition of d,,, the loca-
tion of J, and the fact that n € T\\"). So, using (5.9), (5.11) and Lemma 3.6,

we get
ST RV, P | fu ()P dt
nGTr(nl) 0
/ p_l5
Z RPan(V) S F@Pdt - (X | fn(O)P dt) S\fn(t)’pdt
nET(l) v ’
S S RPVAP @4V | P £, 17, §| (D) dt
nETy(nl)
S D (R IF@P .
nETr(nl) v

Finally, we employ (5.10) to obtain

(5.12) > mri Vg, P

nETT(nl)

fa(®)P dt S (Ry)P™ V| F (0P dt,
14

OMHE

which concludes the proof of Case 1.

CASE 2: n € T\ ={nely :xcJ,, |hNz ]| >|V],J £ [z,z]}. In
this case we have d, (V) m, and thus Lemma 3.7 implies

O dt < 1 all i [V] S 27Tl P21V
v
We use (5.9) and this estimate to obtain

anl? 1l < § 17t (§ 1P )" 1l
1% 1%

Y

1%
Lemma 3.6 further yields

(5.13) janPILfally S AP Tl PRIV (0P dt
\%4

S VIO dt AP T PRV P fallD.

AP T TPV A
2)

If ng < ni <--- < ngis an enumeration of all elements in 7, 7(n , by definition

of Tysf) we have

Jng D Jny DD Jp, and || > |V].
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Thus, Lemma 4.2 and the fact that 1 < p < 2 imply

(5.14) S 1Tl ey L, [ < VI
nETv(nQ)
We finally use (5.13) and (5.14) to conclude that
(5.15) R W ay P fulll S (Ry)P™ VP11 P
p p
neT(? neT(?

Sp (B F1I5-

CasE 3:n €T = {n €Ty J, C[0,7] or (F € J, with |J, N [F,2]| <
|V|and J,, ¢ [z,z])}. Forn e TT(,S’), we denote by (x;)", the finite sequence

of points in 7, N[Z, z| in increasing order and counting multiplicities. If there

exists n € T, 7%3 ) such that z; is the right endpoint of J, and x € J,,, we define

x* := x1. If not, we set * := z. By definition of Tg’) and x*, we have

(5.16) V] <|[z*, z]| <2|V]|.
Furthermore, for all n € T,Sf ),

Jp C [0,2%] and |[z*, 2] N Ty = m.
Moreover,
(5.17) m~+dy(x*) — k < d,(V) <m+d,(z%),

where the exact value of d,,(V) depends on the multiplicity of z* in T,
(which cannot exceed k). By Lemma 3.7 and (5.17) we have

sup | f(t)] < 4™ Hdn (") [ Ja]
ey | Jn| + dist(z, Jp,)
Hence
’ , « n p'/2
(5.18) [ faOF dt < V] - 47 (e |

) ([Tn] + dist(z, J))?

Employing (5.9), (5.18) and Lemma 3.6 gives

/ p—1
R W a2 < B2 § 1) de- (1@ dr) 502

v |4
dn (V -1 m+dny (x* ‘Jn‘P/Q
S ] e Y (v b o L A
[

S RO |y -yt dnte)

(|Jn] + dist(z, Jp))P"
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Inequality (5.17) then yields
||
(|Jn|+dist(z, Jn))P-
We now have to sum this inequality. In order to do this we split our
analysis depending on the value of d,(z*). For fixed j € Ny we consider

n € TS with dn(z*) = j. Let § = 1/4. Then, by Lemma 4.2, each point ¢
)

(5:19)  RPU W |ay|?|| fullh < (Ry)Pm | pljp v =t

(which is not a grid point) belongs to at most Fj intervals Jg with n € T, 7513
and d,,(z*) = j. Here J§ is the unique closed interval with

|J%| = B|J,| and infJ? = inf J,.
Furthermore, for t € J,, we have

| Jn| + dist(x, Jp) >z —t.

Hence
Z ’Jn’ |V‘p_1 < /8_1 Z S ‘V|p_1 dt
(|Jn| + dist(z, Jp))P — (x —t)P
neT® ner'd gk
dn(2*)=j dn (z*)=]
Fk‘ p—1 © —p < |V|p—1
S?\W | (z—1) dtwpméla

— 00
where in the last step we used (5.16). Combining (5.19) and the last in-
equality and summing over j (here we use the fact that Ry < 1), we arrive
at

(5.20) > R an Pl fullh Sp.r (RY)P™IFID-
nGTr(,?)

Case 4:n € TW = {n € Ty : 2 € Jn, |Jn N [7a]] > V], Jn ¢
[z, z]}. We can ignore the cases m = 0 and (m = 1 and [z,2] N 7T, = {z})

since these are settled in Case 2. We define T, 7%1 ) to be the set of all remaining

indices from T; 79? ). Let n € ﬁ(,f ). Then the definition of 7, T(,il ) implies

(5.21) dn (V) = dp([z,y]) = 0.

Moreover, there exists at least one point of 7, in V (since n > n(V) for
n € T,,) and at least one point of T, in [z, x] (since m > 1). Thus we have
(5.22) V| < |Jn| <3|V

Since x € J,, for all n € T,S;*), the family {J, : n € Tﬁ)} is a decreasing
collection of sets. Inequality (5.22) and a multiple application of Lemma 4.2
with sufficiently large [ gives a constant c; depending only on k such that

(5.23) card T\Y < ¢,



CHAPTER 3. UNCONDITIONALITY OF ORTHOGONAL SPLINE SYSTEMS IN L* 23

74 M. Passenbrunner

We employ Lemmata 3.7 and 3.6 to get
T

(5.24) V()P dt S AP TP = P J|1opl2 S gPm £, P
0

Hence

5o R Mg § | fut)? dt
neﬁ(ﬁl) 0 ~
/ p_la7
< 3 Vi@ d (§imoF d)" §if.oPd
neT®V 1% 0
I S N FL O Y [P Ll A TR S i 3
neTHV neT®

where we used (5.21) and (5.9) in the first inequality, (5.24) in the second
and Lemma 3.6 in the last one. Consequently, considering (5.23), the last
display implies

(5.25) > rrt Vg, P

neﬁgf)

[fu () dt S A ([ £15-

O e 8)

CASE 5:n e T = {neTy:J,Clz,y]or (x € J, with |J, N[z, z]| <
V| and J,, & [z,z])}. If there exists n € T with z,, = inf J,, then we

define ' = x,,. If there exists no such index, we set 2/ = z. We now fix

neT T, By definition of 2’ and 7,

(5.26) m+ dp(2') — k < dp(T) < m+dp(2)).

The exact relation between d,(Z) and d,(z') depends on the multiplicity of
the point 2’ in the grid 7,. By definition of TT(,;% ),

dist(z, J,) <5|V] and |V| <dist(z, ).
Moreover,
(5.27) || < |[2',7]] <4]V| and d,(V) < d,(2').
The last two displays now imply
|Jn| + dist(z, Jp,) ~ |V].
Lemma 3.7, together with the former observation, yields

|Jn|p/2 < pdn(i;')|‘]n|p/2
(IJn| + dist(z, Jn))P~t ™~ V-t

a0 dt 5 57

O e ])
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Inserting (5.26) in this inequality, we get

’ p/2
|fn(t)|p dt 5 ,yp(dn(m )+m)%

5.28 .
(0:2%) v

O — 8]

For each n € Trsi? ), we split [2/,7] into three disjoint subintervals Iy,
1 < ¢ < 3, defined by

Il = [x/7 inf JTL]? 12 = Jn, I3 = [Sup J’I’Hg]

Correspondingly, we set

ane= | f@)fa(t)dt,  £=1,2.3.

1NV

We start by analyzing the choice ¢ = 2 and first observe that by definition
of I 2,

(5.29) jan2l” < | fallh § 1P dt.
JIn

We split the index set T,S»? ) further and look at the set of those n € Tysf ) such
that d,,(z") = j for fixed j € Ny. These indices n may be arranged in packets
such that the intervals J,, from one packet have the same left endpoint and
the maximal intervals of different packets are disjoint. Observe that the
intervals J,, from one packet form a decreasing collection of sets. Let J,,

be the maximal interval of one packet. Define 7; := {n € TTSE) cdp(2)) = 4,
JIn C Jny - Then we use (5.27) and (5.29) to estimate

Eyji= Y R Wan P || fu(t)P dt
nel; 0
< > R\ fallh S ()" dt - S (t)[” dt.
nGI n 0
Continuing, we use (5.28) to get
/2
< pPJ Dt . D p(dn(z')+m) ’Jn’p
SR\ (fPdt- > | fallhy VT
J”O ’I’LEIj
By Lemma 3.6, || full,y ~ |J[*/7'~1/2, and thus
B < (R )pj pm S ‘f(t)’pdt Z ’Jn’p—l

JnO nEIj
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We apply Lemma 4.2 to the above sum to conclude that

m Jn P | A, D
By Sp (B | If@Pde- e < (mypin™ § If0) s
ng no

where in the last inequality we used (5.27). Now, summing over all maximal
intervals J,, and over j finally yields (note that Ry < 1)

(5.30) > mrt Vg, ofp

nETT(,Ls)

[Fa(OF dt Sp,r A" (LF 115

OL‘&I

This completes the proof of the case ¢ = 2.
Now consider ¢ = 3. Fix j € Ny and let (n;,)22; be the subsequence of
alln € T,Sf ) with dn(2") = j. For two such indices ny < ns we have either

(inf Jy, =inf Jp, and Jp, C Jp,) or supJ,, <infJ,,.

Observe that J,, = Jy, is possible, but by Lemma 4.2 (with 5 = 0) only Fj
times, with Fy only depending on k. Therefore, with 3, := supJ,,, for
r>1and B,,, =y,

e (Bny) > 5= =1 52721
Thus for s > r > 1 by Lemmata 3.7 and 3.6 we obtain
an,r_1 ) s—T
(5.31) Vo e OF dt S 77 s Bri)| o, 1B S AP 5 | g
Brj

and similarly, using also (5.26),

dn. (T m+d,, . (x'
(5.32) [ fg P dt S AP @ £ |2 S AP D g e,

O s ])

Choosing x := /() < 1, we deduce that

l/ 'B”j,r—l »
|anj,s,3 - ‘ fnj . dt) _ ‘ Z ST TS S f(t)fnLS (t) dt‘
"j,s ng o
- p/p & Prir
< (Z ,ip/(s—r)) Z [ P(r=s) S f(t)fnj,s(t) dt‘
r=1 r=1 /an’r
ﬂnj,rfl 5nj,7‘71

S | e (] 00 @)
r=1

Bn

jT’
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We now use inequality (5.31) to obtain
B"Lr—l

(5.33) L S A2 W (5 10 [/ L9
= Bn$r

Combining (5.33) and (5.32) yields
Esji= Y B*"lanslPlf117, 05 = D B lan, al”ll fa;. oz

nGTg)) s>1
dn(2')=3
S s—r Bn$T71
S 2B Ay N 1F@P e
s>1 r=1 Bnj

Using again Lemma 3.6 gives

Bnmrfl

By S RPY | IF@Pdt - A < AP (R £B.

r>1 Bn - s>r
Summing over j finally yields

(5.34)

7 Sp.r VI
neTé{%)
since Ry < 1. This finishes the proof of the case ¢ = 3.
We now come to the final part, £ = 1. Fix j and n such that d,,(z') = j

and let Ly, ..., Lj, be the grid intervals in the grid 7,, between 2’ and J,,
from left to right. Observe that f, is a polynomial on each L;,. We define

bim =\ f®)fa(t)dt, 1<i<j.
Lin

For n with d,(z') = j, we clearly have a,; = Zgzl bin, and Holder’s in-
equality implies

(5.3 boal? < § 1@ P (10 @)
Lin Lin
Remark 3.8 yields the bound
sup |falt)] S 77 | 2
teLin | Jn| + dist(Jp, Lin) + | Lin|’

and inserting this in (5.35) gives
[TnlP? Li P!
(|Jn| + diSt(Jna Lz’,n) + |Li,n|)p.

(5.36)  |binl? < | [F()Pdt AP0
LLn
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Observe that we have the elementary inequality

‘Jn‘pm’Li,n p-1 |Jn|p/2

5.37
O30 T @t Lig) + Eial? VI
|n] . _
< g (Tl 4+ st L) + [l
Combining (5.36), (5.37) and (5.28) allows us to estimate (recall that we
have assumed that d,(z') = )
(5.38)  RP b P -\ | ()P dt
0
S J. |p/2|L. [p—1 _ |J |p/2
< RPI~p(i—1) HIP dt - [/ L cAPGEm) Il
SR N O G Lo T T
< RPIpZi+m= Z>|V"|]p’1(|J |+ dist(Jn, Lig) + | Lin P72 | [F()P dt.

Li,n

For fixed j and ¢ we consider those indices n such that d,(z') = j, and
the corresponding intervals L; ,,. These intervals can be collected in packets
such that all intervals from one packet have the same left endpoint and
the max1mal intervals of different packets are disjoint. For f = 1/4, we
denote by Jn the unique interval that has the same right endpoint as J,
and length §|.J,|. The intervals .J,, corresponding to L;,’s from one packet
can now be grouped in the same way as the L;,’s, and thus Lemma 4.2
implies the existence of a constant F} depending only on k such that every
point ¢ € [0,1] belongs to at most F} intervals Jp corresponding to the
intervals L; ,, from one packet.

We now consider one such packet and denote by u* the left endpoint of
(all) intervals L; ., in the packet. Then for t € J5 we have

(5.39) (] + dist(Lip, J) + [Lin| > [t — u?].
If L7 is the maximal interval of the packet, (5.38) and (5.39) yield

Z den(v)|bzn|prHHLP Ox

n: L; , in one packet
] 2j+m—1i
- RPi~p(2] )
~o et

> 1 Jal(1a] + dist(Lign, J) + |Linl)P~2 | LF(@)P dt
n Li,n
RPI~pP(25+m—i)

S g ) FOPd 30 | -
L;
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Since every point t belongs to at most F}, intervals JE in one packet of L; ,,’s,
by using J,, C [/,y] and p < 2 we get

Z pd (V)lb nlp“fn”[,p Ox

n: L; ,, in one packet

RPI~p(2j+m—i) y .
S Vi VIrorde- | [t —ut P at
Ly u*
S RP9PED ()t
Ly

where in the last inequality we used (5.27). Since the maximal intervals L}
of different packets are disjoint, we can sum over all packets (for fixed j
and 7) to obtain

(5.40) > R WMy,

nGT,(nS)
dn (z")=3

Let x :=~2 < 1. Then for n such that d,(z') = j we have

P J p J
P y
— ‘E :,i] Kb 51?2 :Hp( ])lbi,np

Combining (5.41) with (5.40) we get

oz S BPAPEF=D) £,

J
(5.41)  anlP = ‘Z bin
1=1

dn, (V
> RV IZr0.2)
nET,S?)
SIS SR LT
i=1 nETT(nE))
dn(z")=j

J
S D2 WD R eI £ < (R £,
i=1
Since Ry < 1, we sum over j to conclude that finally

(5.42) > Rpin
nGTy(,?)
This finishes the proof of the case ¢ = 1.

We can now combine the inequalities for £ = 1,2, 3, that is, (5.42), (5.30)
and (5.34), to complete the analysis of Case 5 with the estimate

(5.43) > B an Pl full L0z Sor 1D,
nGTS)

1zr 0.z Spr YLD
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CASE 6: n € T,(,?) ={neT,:J, Clylor(ye J, with J, ¢
[z,9])}. Similarly to (5.8), we use the symmetric splitting of the indices n
into

Trs:={n=n(V): [ly,y]NTa| = s},
where r stands for “right”. These collections are again split into six subcol-
lections Tr(zs), 1 <17 <6, where the two of interest are

LY ={n €Ty G € Jn, | n Ny, 71 = VI I £ [y,51)
T® ={neT,:J,C[y1]or
(¥ € Jn with |y N[y, §]| < V] and Jn € [y, 5]}
The results (5.15) and (5.20) for 7 and T respectively had the form
Yo B Way Pl Spr (RS
neTPur®

Observe that the p-norm of f,, on the left hand side is over the whole interval
[0,1]. The same argument as for 7, 7%2 ) and T(S) yields

dr,
(5.44) > R Wan Pl fallh Spor (RIS,
neT2ur?)
Now, since
Uy cJrdur?,
m>0 s>0

inequality (5.44) implies

(5:45) > 3" R Oa, )| £l

m=0 76
o0
<SS ROl S I
$=0 per@ur?)

After summing (5.12), (5.15), (5.20), (5.25) and (5.43) over m, we add in-
equality (5.45) to obtain finally

dp, (V
> B an Pl fall o0z Ser IF1D.
n>n(V)
The symmetric inequality
dnp,
> B an Pl fall gy Soor IFI1E
n>n(V)

is proved analogously, and thus the proof of the lemma is complete. »
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6. Proof of the main theorem. In this section, we prove our main
result, Theorem 1.1, that is, unconditionality of orthonormal spline sys-
tems corresponding to an arbitrary admissible point sequence (t,)n>0 in
reflexive LP.

Proof of Theorem 1.1. We recall the notation

oo m

Sf(t) = ( Z |anfn(t)|2)1/2’ Mf(t) = sup ‘ Z anfn(t)‘
n=—k+2 m2—k+2 n=—k+2
when
f= Z an fr.
n=—*k+2

Since (fn)p_j4o 18 a basis in LP[0,1], 1 < p < oo, Khintchine’s inequality
implies that a necessary and sufficient condition for (f,)52_,.o to be an
unconditional basis in LP[0,1] for 1 < p < oo is

(6.1) 1Sfllp ~p 1 fllp, f € LP[0,1].

We will prove (6.1) for 1 < p < 2 since the case p > 2 then follows by a
duality argument.
We first prove the inequality

(6.2) £l Sp IS Fl-

Let f € LP[0,1] with f = 3" ;o @, fn. We may assume that the sequence
(@n)n>—k+2 has only finitely many nonzero entries. We will prove (6.2) by
showing that M £, <p 1S/

We first observe that

(6.3) IM (B =p | AP () dA
0

with ¥(A) :== [M f > A]. We will decompose f into two parts ¢1, @2 and esti-
mate the distribution functions ¥;(\) := [My; > A/2], i € {1, 2}, separately.
To define ;, for A > 0 we set
Ey = [Sf>)\], By = [M]lE/\ >1/2],
I'={n:J,CBy\,—k+2<n< oo}, A:=T¢

recall that J, is the characteristic interval corresponding to the grid point
t, and the function f,. Then, let

Y1 = Z anfn and g := Zanfn

nel’ neA
Now we estimate 1 = [Mp1 > \/2]:
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1(A) = [{t € Bx: Moi(t) > A/2}[ + [{t ¢ Bx: Mi(t) > A/2}]

2 2
< |B>\| + X S M‘Pl(t) dt < |B/\| + X S Z |anfn(t)| dt.
BS B§ nel’
We decompose B, into a disjoint collection of open subintervals of [0, 1] and
apply Lemma 5.1 to each of those intervals to deduce that
1 1 1
0N SIBA+ 5 | Sf@dt =B+ | Sftydt++ | Sf(t)dt
B B)\\E)\ E\NB)y
< Bl + |Ba\ Ba| + 1 S Sf(t)dt
EA
where in the last inequality we simply used the definition of E). Since the

Hardy—Littlewood maximal function operator M is of weak type (1,1), we
have |By| < |Ey|, and thus finally

(6.4) (M) < |EA|+ | Sf(t)dt.

EA
We now estimate 12(A). From Theorem 2.8 and the fact that M is a bounded
operator on L?[0,1] we obtain

Y2 (A) S )\2||M%02||2 N )\2||902||2 2||S<P2||§

1

A2(§ Sea(t)?dt + | S(,Oz(t)th).
E\ ES

We apply Lemma 5.3 to the first summand to get

(6.5) 2N £ 33 | Sealt) .
i

Thus, combining (6.4) and (6.5) gives

1
YO S 1) + (V) S IBx + 5 § SF@0dt+ 55 | S7(0)2 e
E,\ ES
Inserting this into (6.3), we obtain
IMFIE < p { XA dA+p | A2 | SF(2) dt d
0 0 Ex
+p | A3 S ()P dedA
0 ES
1 Sf(t) 1 00

=|SfIE+p\Sret) | X 2dxdt+p|Sf)? | W Pdadt,
0 0 0 Sf(t)
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and thus, since 1 < p < 2,

1M fllp <p 1S llp-

So, the inequality || f||, <p ||Sf]lp is proved.
We now turn to the proof of

(6.6) 1Sfllp Sp Ifllps  1<p<2.

It is enough to show that S is of weak type (p, p) whenever 1 < p < 2. This is
because S is (clearly) also of strong type 2 and we can use the Marcinkiewicz
interpolation theorem to obtain (6.6). Thus we have to show

(6.7) (S > Al Sp IFI5/X7, f € LP[0,1], A > 0.
We fix f and A > 0, define G := [Mf > A] and observe that

(6.8) GAlSp LFI15/ X,
since M is of weak type (p,p), and, by the Lebesgue differentiation theorem,

(6.9) If| <A a.e. on GS.

o0

We decompose the open set G\ C [0,1] into a collection (V;)72

open subintervals of [0, 1] and split f into

, of disjoint

hi=f-leg+) Tvf, g:=f—h
j=1

where for fixed index j, Ty, f is the projection of f - 1y, onto the space of
polynomials of order k on the interval V;.
We treat the functions h, g separately. The definition of A implies

R = S f(t |2dt+25 (Tv, f)(t
Jj=1V;

since the intervals V; are d18301nt. We apply (6.9) to the first summand and
(2.1) to the second to obtain

1013 < X277\ 1) dt + X%y,
GS
and thus, in view of (6.8),
1RlI3 <p AZPILFID-

Hence

£l
PV

4
1Sk > A/2)| < 51IShll5 = 3 A3 < Sp

which concludes the proof of (6.7) for h.
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We turn to the proof of (6.7) for g. Since p < 2, we have

610) Sotr=( X o f2h02) < S la F s O

For each j, we define ‘7] to be the open interval with the same center as V
but with 5 times its length. Then set G\ := (J;2; V;N[0, 1] and observe that

Gl < 5|Gal. We get

~ op
59> A2l < 1Gal + 3, | Sg(yr .

G5
By (6.8) and (6.10), this becomes
159 > 215 A (I + > § g fdlPIfa(OlF dt).
n=—k+2 éf\

But by definition of g and (2.2),

gl =DV 1f(0) = Ty, f@&)Pdt 5p YV IF @I dt S AL,
v

iV J

so to prove |[Sg > A\/2]| < A7P| f|[}, it is enough to show that

(6.11) S s Fd A dt S gl
n=—k+2 @i

We let g; := g - Ly;. The supports of g; are disjoint and we have [|g[|; =
> 521 llgjllp- Furthermore g = 3772, g; with convergence in LP. Thus for
each n,

0.¢]

<ga fn> = Z<g]7fn>7

j=1
and it follows from the definition of g; that
| gi(O)p(t)dt =0
Vj

for each polynomial p on V; of order k. This implies that (g;, f,) = 0 for
n < n(Vj), where

n(V):=min{n: T, NV # 0}.
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Thus, for all R > 1 and every n,

(6.12) |<g,fn>|p:\ > o hal|

j:n>n(Vj)

So R0 |(g;, fu| R0

jin>n(Vj)

> RO ) (Y Rrmen)T
jin>n(Vj) j:n>n(Vj)

where p’ = p/(p — 1). If we fix n > n(V}), there is at least one point of the
partition 7, contained in Vj;. This implies that for each fixed s > 0, there
are at most two indices j such that n > n(V;) and d,,(V;) = s. Therefore,

( Z Rp’dn(Vj))p/p/ < 1,
j:n>n(Vj)

and from (6.12) we obtain

1<g: )P Sp Z R (V. g]afn>|'

jin>n(Vj)

Now we insert this inequality in (6.11) to get

S g f PP dt
n=—k+2 Ge

S Y ROl £ I fa()P dt

n=—k+2 j:n>n(Vj) é}:\

< Z Z de gjafn>| S |fn(t)|pdt
n=—k+2 j:n>n(V;) Vjc

<Y Y RV gy, fu)P | I £a(B)IP dt.
J=1 nza(vy) 7

We choose R > 1 such that Ry < 1 for v < 1 from Theorem 2.7 and apply
Lemma 5.4 to obtain

SV g fa) L) dt pZHgg > = llgllp,
n:—k:—l—Zéc

proving (6.11) and hence ||Sf||5 <, || f||5- Thus the proof of Theorem 1.1 is
complete. m
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Unconditionality of orthogonal spline systems in H'!
by

GEGHAM GEVORKYAN (Yerevan), ANNA KAMONT (Gdansk),
KAREN KERYAN (Yerevan) and MARKUS PASSENBRUNNER (Linz)

Abstract. We give a simple geometric characterization of knot sequences for which
the corresponding orthonormal spline system of arbitrary order & is an unconditional basis
in the atomic Hardy space H'[0,1].

1. Introduction. This paper belongs to a series of papers studying
properties of orthonormal spline systems with arbitrary knots. The detailed
study of such systems started in the 1960’s with Z. Ciesielski’s papers [2, 3]
on properties of the Franklin system, which is an orthonormal system con-
sisting of continuous piecewise linear functions with dyadic knots. Next,
the 1972 results by J. Domsta [11] made it possible to extend the study to
orthonormal spline systems of higher order—and higher smoothness—with
dyadic knots. These systems occurred to be bases or unconditional bases in
several function spaces like LP[0,1], 1 < p < oo, C[0,1], HP[0,1],0 < p < 1,
Sobolev spaces WP*[0, 1]; they also give characterizations of BMO and VMO
spaces, and various spaces of smooth functions (Holder functions, Zygmund
class, Besov spaces). One should mention here the work of Z. Ciesielski,
J. Domsta, S. V. Bochkarev, P. Wojtaszczyk, S.-Y. A. Chang, P. Sjolin,
J.-O. Stromberg (for more detailed references see e.g. [13], [15], [16]). Nowa-
days, results of this kind are known for wavelets.

The extension of these results to orthonormal spline systems with ar-
bitrary knots began with the case of piecewise linear systems, i.e. general
Franklin systems, or orthonormal spline systems of order 2. This was pos-
sible due to precise estimates of the inverse of the Gram matrix of piecewise
linear B-spline bases with arbitrary knots, as presented in [19]. First results
in this direction were obtained in [5] and [13]. We would like to mention
here two results by G. G. Gevorkyan and A. Kamont. First, each general
Franklin system is an unconditional basis in LP[0, 1] for 1 < p < oo (see [14]).

2010 Mathematics Subject Classification: 42C10, 46E30.
Key words and phrases: orthonormal spline system, unconditional basis, H' spaces.

DOI: 10.4064/sm226-2-2 [123] © Instytut Matematyczny PAN, 2015
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Second, there is a simple geometric characterization of knot sequences for
which the corresponding general Franklin system is a basis or an uncon-
ditional basis in H'[0,1] (see [15]). For both of these results, an essential
tool is the association of a so called characteristic interval to each general

Franklin function f,.

The case of splines of higher order is much more difficult. The exis-
tence of a uniform bound for L°°-norms of orthogonal projections on spline
spaces of order k with arbitrary order (i.e. a bound depending on k, but
independent of the sequence of knots)—was a long-standing problem known
as C. de Boor’s conjecture (1973) (cf. [8]). The case of k = 2 was settled
earlier by Z. Ciesielski [2], the cases k = 3,4 were solved by C. de Boor him-
self (1968, 1981) in [7, 9], but the positive answer in the general case was
given by A. Yu. Shadrin [22] only in 2001. A much simplified and shorter
proof was recently obtained by M. v. Golitschek (2014) in [24]. An imme-
diate consequence of A.Yu. Shadrin’s result is that if a sequence of knots is
dense in [0, 1], then the corresponding orthonormal spline system of order
k is a basis in LP[0,1], 1 < p < oo, and in C|0,1]. Moreover, Z. Ciesielski
[4] obtained several consequences of Shadrin’s result, one of them being
an estimate for the inverse of the B-spline Gram matrix. Using this esti-
mate, G. G. Gevorkyan and A. Kamont [16] extended a part of their result
from [15] to orthonormal spline systems of arbitrary order and obtained a
characterization of knot sequences for which the corresponding orthonormal
spline system of order k is a basis in H'[0,1]. Further extension required
more precise estimates for the inverse of B-spline Gram matrices, of the
type known for the piecewise linear case. Such estimates were obtained re-
cently by M. Passenbrunner and A. Yu. Shadrin [21]. Using these estimates,
M. Passenbrunner [20] proved that for each sequence of knots, the corre-
sponding orthonormal spline system of order k is an unconditional basis in

LP[0,1], 1 < p < oo.

The main result of the present paper is a characterization of those knot
sequences for which the corresponding orthonormal spline system of order &

is an unconditional basis in H[0, 1].

The paper is organized as follows. In Section 2 we give the necessary
definitions and we formulate the main result of this paper, Theorem 2.4.
In Sections 3 and 4 we recall or prove several facts needed to establish our
results. In particular, in Section 4 we recall precise pointwise estimates for
orthonormal spline systems with arbitrary knots, the associated characteris-
tic intervals and some combinatorial facts for characteristic intervals. Then
Section 5 contains some auxiliary results, and the proof of Theorem 2.4 is

given in Section 6.



70

CHAPTER 4. UNCONDITIONALITY OF ORTHOGONAL SPLINE SYSTEMS IN H!

(k)

Orthogonal spline systems in H* 125

The results contained in this paper were obtained independently by two

teams, G. Gevorkyan & K. Keryan and A. Kamont & M. Passenbrunner at
the same time, so we have decided to produce a joint paper.

2. Definitions and the main result. Let £ > 2 be an integer. In

this work, we are concerned with orthonormal spline systems of order k

with arbitrary partitions. We let 7 = (¢,)72, be a dense sequence of
points in the open unit interval (0,1) such that each point occurs at most
k times. Moreover, define ty := 0 and t; := 1. Such point sequences are

called k-admissible. For —k +2 < n < 1, let Sf,(lk) be the space of polyno-
mials of order n + k — 1 (or degree n + k — 2) on the interval [0, 1] and

( ék))}l:_k 4o be the collection of orthonormal polynomials in L? = L?[0,1]
such that the degree of fT(Lk) isn+ k — 2. For n > 2, let 7, be the ordered
sequence of points consisting of the grid points (t;)
to their multiplicities and where the knots 0 and 1 have multiplicity &,
ie.,

n

7o repeated according

Tn=0=Tp1 =" =Tok < Tnkt1

<-.-- < Tnntk—1 < Tnnt+k = = Tpnt+2k—1 = 1)-

In that case, we also define S,gk) to be the space of polynomial splines of or-
der k with grid points 7,,. For each n > 2, the space (S'T(Lk_)1 has codimension 1

in ST(lk) , and therefore there exists fék) € S,gk) orthonormal to ST(lk_)l. Observe

that f#") is unique up to sign.

DEFINITION 2.1. The system of functions (]”T(Lk))ff’:_k+2 is called the or-

thonormal spline system of order k corresponding to the sequence (tn)o2.

We will frequently omit the parameter k and write f,, and S,, instead of
and Sflk), respectively.
Note that the case k = 2 corresponds to orthonormal systems of piecewise

linear functions, i.e. general Franklin systems.

We are interested in characterizing sequences 7 of knots such that the

system (f,i’“))oo , is an unconditional basis in H! = H'[0,1]. By H! =

n=—k-+

H'[0,1] we mean the atomic Hardy space on [0,1] (see [6]). A function
a:[0,1] — R is called an atom if either a = 1 or there exists an interval I’
such that:

(i) suppa C I,
) ol < 7
(iii) §,a(z)dz = {a(z)dz = 0.
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Then, by definition, H' consists of all functions f with a representation

00
f=2_ cnan
n=1

for some atoms (a,)22, and real scalars (¢,)52; such that Y >, |c,| < o0o.
The space H!' becomes a Banach space under the norm

N fllz = mfz lenls

where the inf is taken over all atomic representations > cpa, of f.

To formulate our result, we need to introduce some regularity conditions
for a sequence T.

Forn>2 /¢<kandk—/+1<i<n+k—1, we define Dfﬂ to be the
interval [T, 4, T ite]-

DEFINITION 2.2. Let ¢ < k and (¢,,)2°, be an ¢-admissible (and therefore

k-admissible) point sequence. This sequence is called ¢-regular with param-
eter v > 1 if

|D(£)

’I'Ll

<|D 1+1\< !D(QI, n>2k—(l+1<i<n+4+k-—2.
N

In other words, (t,) is ¢-regular if there is a uniform finite bound v > 1
such that for all n, the ratios of the lengths of neighboring supports of
B-spline functions (cf. Section 3.2) of order ¢ in the grid 7, are bounded
by 7.

The following characterization for (
result of [16]:

THEOREM 2.3 ([16]). Let k > 1 and let (t,) be a k-admissible sequence
of knots in [0, 1] with the corresponding orthonormal spline system (fflk)) of

order k. Then (ﬁgk)) is a basis in H' if and only if (t,) is k-regqular with
some parameter v > 1,

())

to be a basis in H! is the main

(F)

In this paper, we prove a characterization for (f;’) to be an uncondi-
tional basis in H!. The main result of our paper is the following:

THEOREM 2.4. Let (t,) be a k-admissible sequence of points. Then the
corresponding orthonormal spline system ( f,(lk)) 18 an unconditional basis in
H' if and only if (t,) is (k — 1)-regular with some parameter v > 1.

Let us note that in case k = 2, i.e. for general Franklin systems, both The-
orems 2.3 and 2.4 were obtained by G. G. Gevorkyan and A. Kamont [15].
(In the terminology of the current paper, strong regularity from [15] is
l-regularity, and strong regularity for pairs from [15] is 2-regularity.)
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The proof of Theorem 2.4 follows the same general scheme as the proof
of Theorem 2.2 in [15]. In Section 5 we introduce four conditions (A)—(D) for
series with respect to orthonormal spline systems of order k£ corresponding
to a k-admissible sequence of points. Then we study relations between these
conditions under various regularity assumptions on the underlying sequence
of points. Finally, we prove Theorem 2.4 in Section 6.

3. Preliminaries. The parameter k£ > 2 will always be used for the
order of the underlying polynomials or splines. We use the notation A(t) ~
B(t) to indicate the existence of two constants c1, ce > 0 such that ¢; B(t) <
A(t) < coB(t) for all t, where t denotes all implicit and explicit dependencies
that the expressions A and B might have. If the constants ¢y, co depend on
an additional parameter p, we write A(t) ~, B(t). Correspondingly, we use
the symbols <, 2, S, 2p- For a subset E of the real line, we denote by

|E| its Lebesgue measure and by 1g the characteristic function of E. If
f 2 — R is a real valued function and X is a real parameter, we write

[f > A i={we 2: fw) > A}

3.1. Properties of regular sequences of points. The following lem-
ma describes geometric decay of intervals in regular sequences (recall the

. V4
notation Df%z = [Tn,i, Tn,i—i—é]):

LEMMA 3.1. Let (ty,) be a k-admissible sequence ofpoz'nts that is (-reqular
for some 1 < ¢ < k with parameter v and let Dé)“ D - Dfi)wﬂ be a
strictly decreasing sequence of sets defined above. Then

DY < DY .
Nog,ioe! — 1+7€ n1,l1

Proof. We set V; := fo) i for 1 < j < 2¢. Then, by definition, V;

contains ¢ + 1 grid points from Tn, and at least 3¢ grid points of 7,,,. As a

. . L .
consequence, there exists an interval D7(12)€, for some m that satisfies

nzz m nze m nu m>

The (-regularity of (¢,,) now implies
[Vael <A 1DS), il < A (V] = [ Vae),

o [Vag| < 1+ 1 |V1|, which proves the assertion of the lemma. =

3.2. Properties of B-spline functions. We define (N(k));Hf ! to be
the collection of B-spline functions of order k correspondmg to the parti-
tion 7,. Those functions are normalized so that they form a partition of

unity, i.e. Z"“Lk ! N(k.)(a:) =1 for all x € [0,1]. Associated to this basis,

n,t
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there exists a biorthogonal basis of S,,, denoted by (N, (k)*)”+k 1 If the pa-
rameters k and n are clear from the context, we also denote those functions
by (N;)"F1 and (N;)"2F1, respectively.

We will need the following well known formula for the derivative of a
linear combination of B-spline functions: if g = zm—k ! a;j N, ) then

j=1 n,j’
n+k—1 N(k~_1)
I __ . n,j
(3.1) g =(k-1) Z (a; a]_l)—|D(k_1)|.
J=2 n,j

We now recall an elementary property of polynomials.

PROPOSITION 3.2. Let 0 < p < 1. Let I be an interval and A C I be a
subset of I with |A| > p|I|. Then, for every polynomial Q of order k on I,

B Q] Sow suplQ] and [ QWA Sy § Q]
te A T

tel

We recall a few important results on B-splines (XV;) and their dual func-
tions (V).

PROPOSITION 3.3. Let 1<p<oo and g=3""F"1 a;N;, where (N;)"HF~1

are the B-splines of order k corresponding to t%z?alpartztwn Tn. Then =
(3.2) | S 151 P llgllr ey, 1 <G <n+k -1,
where Jj is a subinterval [Ty 4, Tnit1] of [Tnj, Tn j+k] of mazimal length. Fur-
thermore,
n+k—1 1/p
33) Al ~e (D0 aalIDEN) T = g DN .
j=1

Moreover, if h = Zn+k Yb, N7, then

n+k—1

B4 s (Y bPpGr) " = o108

j=1

The inequalites (3.2) and (3.3) are Lemmas 4.1 and 4.2 in [10, Chapter 5],
respectively. Inequality (3.4) is a consequence of Shadrin’s theorem [22] that

(k)

the orthogonal projection onto Sy is bounded on L*° independently of n

and 7,. For a deduction of (3.4) from this result, see [4, Property P.7].

n+k—1
1,7=1

1/p— 1)n—|-k 1“ -
j=1

We next consider estimates for the inverse (b;;); of the Gram matrix

((Ni,NJ-})?j:kl_ 1 Later, we will need a special property of this matrix, of
being checkerboard, i.e.,

(3.5) (=1)"*b;; >0 for all 4, 4.
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This is a simple consequence of the total positivity of the Gram matrix (cf.
[7, 18]). Moreover, we need the lower estimate for b; ;,

(3.6) |D,(L’f3 |71 <k bis

This is a consequence of the total positivity of the B-spline Gram matrix,
the L?-stability of B-splines and the following lemma:

LEMMA 3.4 ([20]). Let C = (cij);;=1 be a symmetric positive definite
matriz. Then for (di;); ;= = C—1 we have

;' <dy, 1<i<n.

3.3. Some results for orthonormal spline systems. We now recall
two results concerning orthonormal spline series.

THEOREM 3.5 ([21]). Let (fn);Z_j.o be the orthonormal spline system
of order k corresponding to an arbitrary k-admissible point sequence (t)22,-
Then, for every f € L' = L'[0,1], the series > e a2 fs fr) fr converges
to f almost everywhere.

Let f € LP = LP|0, 1] for some 1 < p < oo. Since the orthonormal spline
system (fy)n>—k+t2 is a basis in LP, we can write f = Zfzo:—kw an frn. Based
on this expansion, we define the square function Pf:= (37" ;. o |an fr|2) /2
and the mazimal function Sf = sup,,|> ., <., anfn|. Moreover, given a
measurable function g, we denote by Mg the Hardy-Littlewood maximal
function of g defined as

Mg(z) := sup |T|"* | |g(t)| dt,
Y T

where the supremum is taken over all intervals I containing x. The connec-
tion between the maximal function Sf and the Hardy—Littlewood maximal
function is given by the following result:

THEOREM 3.6 ([21]). If f € L', then
Sf(t) Sk Mf(),  te€[0,1].

4. Properties of orthogonal spline functions and characteristic
intervals

4.1. Estimates for f,. This section concerns the calculation and esti-
mation of one explicit orthonormal spline function fék) for fixed £ € N and
n > 2 induced by a k-admissible sequence (t,)>2,. Most of the results are
taken from [20].

Here, we change our notation slightly. We fix n and let 79 with k£ + 1 <
10 < n+k—1 be such that 7,_1 equals 7, with the point 7;, removed. In the
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points of the partition 7,,, we omit the parameter n, and thus 7, is given by
EZ(OZTIZ"':Tk:<Tk'+1 S"'STZ'O
<--- < Tn+k—1 < Tpn+k = " = Tp42k—1 — 1)

We denote by (N; : 1 <i<n+k—1) the B-spline functions corresponding
to T,,.

An (unnormalized) orthogonal spline function g € S

) that is orthogonal

to ST(lk_)l, as calculated in [20], is given by

10 10 n+k—1
TR D S SR
Jj=io—k j=io—k (=1

where (bjg)?j:kl_l is the inverse of the Gram matrix ((N;, N))"7 %1 and

J.f=1
(4.2)
= U T
i—iq o 14 (+k — T4 . . .
aj:(_l)J zo—i—k:( H 0 )( H + 10>’ ZO_kSJ < .
Toak — T Toak — T
b=ig—k41 TR T IES NSy Tk TR

We remark that the sequence (o) alternates in sign, and since the matrix
(bjg)?_;:kl_ !is checkerboard, the B-spline coefficients of g, that is,

20
(4.3) wei= Y ajbj, 1<l<n+k—1,
j=io—k
satisfy
io io
(4.4) ‘ Z Ozjbjg‘ = Z lajbjel, 1<j<n+k—-1
j=io—k j=io—k

In the definition below, we assign to each orthonormal spline function
a characteristic interval that is a grid point interval [7;, 7;+1] and lies close
to the newly inserted point 7;,. The choice of this interval is crucial for

o0

proving important properties of the system ( fék))n:_k 4o- This approach
has its origins in [14], where it is proved that general Franklin systems are
unconditional bases in LP, 1 < p < oo.

DEerFINITION 4.1. Let 7,,T,—1 be as above and 7;, be the new point
in 7, that is not present in 7,_1. We define the characteristic interval J,
corresponding to the pair (Tn, Tn—1) as follows.

(1) Let
A(O)::{'—k;<'<‘: LTk <2 mi }
to—k<j<io:|lj ikl <2 min {7, 7okl
be the set of all j for which the support of the B-spline function V;
is approximately minimal. Observe that A is nonempty.
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(2) Define

AW = {j e A, laj| = max |Oég|}.
e A0)
For any fixed index j(© € AW get JO) .= [Tj(o),Tj(0)+k].
(3) The interval J(® can now be written as the union of k grid intervals
k—1
JO0) — U [Tj(o)+e,Tj(o)+£+1] with j(o) as above.
{=0

We define the characteristic interval J, to be one of the above k
intervals that has maximal length.

A few clarifying comments are in order. Roughly speaking, we first take
the B-spline support [7;,7j4%] including the new point 7, with minimal
length and then we choose as J, the largest grid point interval in [7;, 7j4].
This definition guarantees the concentration of f, on J, in terms of the
LP-norm (cf. Lemma 4.3) and the exponential decay of f, away from J,
(cf. Lemma 4.4), which are crucial for further investigations. An important
ingredient in the proof of Lemma 4.3 is Proposition 3.3, which justifies why
we choose the largest grid point interval as J,. Further important properties
of the collection (.J,,) of characteristic intervals are that they form a nested
family of sets and for a subsequence of decreasing characteristic intervals,
their lengths decay geometrically (cf. Lemma 4.5).

Next we remark that the constant 2 in step (1) of Definition 4.1 could
also be an arbitrary number C' > 1, but C' = 1 is not allowed. This is in
contrast to the definition of characteristic intervals in [14] for piecewise linear
orthogonal functions (k = 2), where precisely C' = 1 is chosen, step (2) is
omitted and j(? is an arbitrary index in A,

At first glance, it might seem natural to carry over the same definition to
arbitrary spline orders k, but at a certain point in the proof of Theorem 4.2
below, we estimate () by the constant €' —1 from below, which has to be
strictly greater than zero in order to establish (4.5). Since Theorem 4.2 is
also used in the proofs of both Lemmas 4.3 and 4.4, this is the reason for
a different definition of characteristic intervals, in particular for step (2) of
Definition 4.1.

THEOREM 4.2 ([20]). With the above definition (4.3) of wy for 1 < <
n+k—1 and with 7 given in Definition 4.1,

(4.5) w0 | Zk b0 -

LEMMA 4.3 ([20]). Let Tp, Tn—1 be as above and g be the function given
in (4.1). Then f, = g/||gll2 is the L?*-normalized orthogonal spline function
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corresponding to (Tpn, Tn—1) and

1 fallzocry ~n fallp ~k [Jal /P72 g [l P llgllps - 1< p < o0,

where J,, is the characteristic interval associated to (Tn, Tn—1).

We denote by d,(x) the number of points in 7, between x and J,, count-
ing endpoints of .J,,. Correspondingly, for an interval V' C [0, 1], we denote
by d, (V) the number of points in 7, between V and J,, counting endpoints
of both J,, and V.

LEMMA 4.4 ([20]). Let Tn, Tn_1 be as above, g = S "FF~1 w;N; be the

j=1
function in (4.1) with (wj)g‘if_l as in (4.3), and f, = g/|gll2. Then there
exists a constant 0 < q < 1 that depends only on k such that
(4.6)
qdn(Tj)

wi| < oralll<j<n+k-—1.
wil S | Jn| + dist(supp N, Jn) + | D ; 4 =J =

Moreover, if x < inf J,,, we have
qdn(x)|Jn|1/2
| J| + dist(x, Jp,))t—1/p’ -0

(4.7) [ fnllLr0.2) Sk (

Similarly, for x > sup J,,

dn () 7 [1/2
q [n| 1<p< .

4.8 n||LP(x S , a B
(48)  Mallwen) S 7 g T

4.2. Combinatorics of characteristic intervals. Next, we recall a
combinatorial result about the relative positions of different characteristic
intervals:

LEMMA 4.5 ([20]). Let x,y € (tn)2>, with x < y. Then there ezists a
constant Fy only depending on k such that

No := card{n : Jp C [z,y], |Jn| 2 |[z,9][/2} < F,
where card E denotes the cardinality of the set E.

Similarly to [14] and [15], we need the following estimate involving char-
acteristic intervals and orthonormal spline functions:

LEMMA 4.6. Let (t,) be a k-admissible point sequence in [0,1] and let

(fr)n>—k+2 be the corresponding orthonormal spline system of order k. Then,
for each interval V = [a, 8] C [0,1],

ST )] dt Sk (V.

n: J,CV 1%
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Once we know the estimates for orthonormal spline functions as in
Lemma 4.4 and the basic combinatorial result for their characteristic in-
tervals, i.e. Lemma 4.5, this result follows by the same argument that was
used in the proof of Lemma 4.6 in [14], so we skip its proof.

Instead of Lemma 3.4 of [15], we will use the following:

LEMMA 4.7. Let (t,)5% be a k-admissible knot sequence that is (k—1)-
reqular, and let A = Dﬁ:;l) for some m and i. For £ >0, let

N(A) :={n:card(ANT,) =k, J, C A},
M(A0) :={n:d,(A) =¥, card(ANT,) >k, |J, N A| =0},

where in both definitions we count the points in A N7, including multiplic-
ities. Then

1 ||
4. == > |l Sk 1, > 1)2
neN(A) neM(A,0)

(1)

m,i’

Proof. For every n € N(A), there are only the k — 1 possibilities D

Dg)wrk: o for J, and by Lemma 4.5, each interval D( ) s ] =0y, 0+

k: 2, occurs at most F} times as a characteristic interval ThlS 1mphes the
first inequality in (4.9).

To prove the second, assume that each J,, n € M(A,¥{), lies to the right

of A, since the other case is handled similarly. The argument is split into two

parts depending on the value of ¢, beginning with ¢ < k. In that case, for

n e M(A,/L), let Jn/ be the unique interval determined by the conditions
sup J711/2 = sup Jp, |J711/2| = |Jul/2.

Since d,(A) = ¢ is constant, we group the intervals J, into packets, where
all intervals in one packet have the same left endpoint and maximal intervals
from different packets are disjoint (up to possibly one point). By Lemma 4.5,

each t € [0,1] belongs to at most Fy intervals Jp 2 The (k — 1)-regularity
and ¢ < k now imply |J,| Sk~ |A] and dist(A, Jp,) Sk |A] for n € M(A, 1),
and thus every interval J,, with n € M (A, /) is a subset of a fixed interval
whose length is comparable to |A|. Putting these things together, we obtain

|Jn] 1 2
Z dist(J,, A )—HA|<\A] Z |Jn|—w Z Sdmf,kﬁl,

neM(AL) neM(AL) neM(AL) g 1/2

which completes the case of ¢ < k.
Next, assume ¢ > k + 1 and define (Lj)?i1 as the strictly decreasing
sequence of all sets L that satisfy

L= D(k Y and sup L =sup A
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for some n and ¢. Moreover, set
M;(A,0) :={ne M(A,?0) : card(L; N Tp) = k},

i.e., L; is a union of £ — 1 grid point intervals in the grid 7,. Then, since
A + dist(Jn, A) = |A] + dist(t, A) for t € J/? by (k — 1)-regularity,

’Jn’ < 1
z : Nkﬁ,’}’ Z S N dt.
neATAD dist(J,, A) + | 4| ned; (A Ji/2 dist(t, A) + | A

If n € M;(A, 1) we get, again due to (k — 1)-regularity,
inf J}/2 > inf J,, > v 7F|L;| + sup 4,

and
sup JL/2 <inf J, + |Jn| < Cpy*|L;| + sup A

for some constant C, only depending on k. Combining this with Lemma 4.5,
/2

which implies that each point ¢ belongs to at most F}, intervals J}L , we get
1 Ciy*ILs[+|4|
4.10 dt < — ds.
(4.10) 2. ) dist(t, A) + |A] ™ ) oo
TLEM](A,K) J}/Q ’y_k|LJ|+|A|

Next we will show that the above integration intervals can intersect for < ¢
indices j. Let jo > ji, so that L; D Lj,, and write jo = j1 + 2kr + ¢t with
t <2k — 1. Then, by Lemma 3.1,

Ck7€|Lj2| < Ck7£|Lj1+2kr| < Ck7£nT|Lj1|>

where n = y*71/(1 4+ +%71) < 1. If now r > Cj ¢ for a suitable constant
C,y depending only on k and v, we have

l —k
Cry' | Lj,| < v7F|Lj, |-
Thus, each point s in the integral in (4.10) for some j belongs to at most
Cy. ¢ intervals [y~*|L;| + |A|, Cxy¢|L;j| + |A]] where j is varying. So by
summing over j we conclude

(1+C7")1 4|

|Jn] 2
< 14 —ds < 0.
Z dist(J,, A) + 4| — Chy S s 0= Cra
neM(A,L) PAY

This completes the analysis of the case £ > k + 1, and the proof of the
lemma. =

5. Four conditions on spline series and their relations. Let (¢,)
be a k-admissible sequence of knots with the corresponding orthonormal
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spline system (fy,)n>_k+2. For a sequence (ay),>_k+2 of coefficients, let

o0 m
o o\ 1/2
P = ( E anfn) and S := pax ‘ E anfn‘.

If f € L', we denote by Pf and Sf the respective functions P and S cor-
responding to the coefficient sequence a,, = (f, f). Consider the following
conditions:

(A) Pe L.

(B) The series > 7 ;. 5 anfn converges unconditionally in L'

(C) Se Ll

(D) There exists a function f € H! such that a, = (f, f).

We will discuss relations between those four conditions and prove the impli-
cations indicated in the diagram below; some results need regularity condi-
tions on (t,), which we also indicate.

Proposition 5.2,
sup || 22 enanfalliSellPll

” (B)

—~

=

~—
IN

\
L4

[Pl Ssupe || 22 enan fullt,
Proposition 5.1

Proposition 5.3,
(k—1)-reg. =[P fll1 Sk, I fll g1

~~

D) (©)
-reg. = || fll g1 Sk 1SSl
Proposition 5.4

For orthonormal spline systems with dyadic knots, relations (and equiv-
alences) of these conditions have been studied by several authors, also in the
case p < 1 (see e.g. [23, 1, 12]). For general Franklin systems corresponding
to arbitrary sequences of knots, relations of these conditions were discussed
in [15] (and earlier in [13], also for p < 1, but for a restricted class of point
sequences). Below, we follow the approach of [15], adapted to the case of
spline orthonormal systems of order k.

We begin with the implication (B)=-(A), which is a consequence of
Khinchin’s inequality:

PROPOSITION 5.1 ((B)=(A)). Let (t,) be a k-admissible sequence of
knots with the corresponding general orthonormal spline system (fy), and
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let (an) be a sequence of coefficients. If the series Y 2, o anfn converges

unconditionally in L', then P € L'. Moreover,

00
HPHl 5 sup Z Enanfn
86{—1,1}Z TL:—k+2 1

Next, we investigate the implications (A)=(B) and (A)=-(C). Once we
know the estimates and combinatorial results of Sections 3 and 4, the proof
is the same as in [15, proof of Proposition 4.3], so we just state the result.

PROPOSITION 5.2 ((A)=(B) and (A)=(C)). Let (t,) be a k-admissible
sequence of knots and let (a,) be a sequence of coefficients such that P € L*.

Then S € L' and >_ a, f, converges unconditionally in L'; moreover,
o0
sup Z Enln fn

66{—1,1}2 n=—k+2
Next we discuss (D)=(A).

Sk Pt and  ||S||1 Sk [P

PRrOPOSITION 5.3 ((D)=(A)). Let (t,) be a k-admissible point sequence
that is (k — 1)-regular with parameter . Then there exists a constant Cy, -,

depending only on k and vy, such that for each atom ¢,
[Poll1 < Chy-
Consequently, if f € HY, then
[P flly < Cry

[ Fll -

Before we proceed to the proof, let us remark that essentially the same
arguments give a direct proof of (D)=-(C), under the same assumption of

(k — 1)-regularity of (¢,), and moreover
1571l < Cry

[ fll -

We do not present it here, since we have the implications (D)=-(A) under
the assumption of (k — 1)-regularity and (A)=-(C) under the assumption of
k-admissibility only. Note that Proposition 6.1 below shows that without
the assumption of (k — 1)-regularity of the point sequence, the implications

(D)=(A) and (D)=(C) need not be true.

Proof of Proposition 5.3. Let ¢ be an atom with Sé ¢(u) du = 0 and let
I' = [a, 8] be an interval such that supp ¢ C I and sup |¢| < |I'|~!. Define
nr := max{n : card(7,NI") < k—1}, where in the maximum, we also count

multiplicities of knots. It will be shown that
P11, [[P2dll1 Sk 1y

where
1/2

P = ( 3 aifg)l/z and Py = ( 3 a,%fg) .

nnr n>np
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First, we consider P; and prove the stronger inequality

> lanl I fallt Sk L

n<np
where a, = (¢, f,). For each n < np, we define I, , as the unique closed
(k—1)

interval D ; with minimal 7 such that

(k—1)

o< mmDn’jH.

We note that
Ihha Q-Ih%a for ny < my,
and, by (k — 1)-regularity,

\Dnal 2k 1T

Let g, = Z?jf ! w; N, (k]) be the unnormalized orthogonal spline function
as in (4.1) and with the coeflicients (w;) as in (4.3). For £ € I', we have (cf.

(3.1))
‘wJ’—i_’wJ 1]
(5.1 ) 5 2

where we sum over those 5 such that I'Nsupp NT(LJ. V- rn D 7é 0. By

(k — 1)-regularity, all lengths |D7(,Llfj_1)| in this summation are comparable to
|I.a|- Moreover, by (4.6),

qd(ﬂlﬂ
[0l S A (D® ®)"
[ Jal + dist(Dy, j, Jn) + Dy, 5|

Again by (k — 1)-regularity, for j in (5.1),
DLy ”| by 1Tl
dist(D™), J,) + yD N Zky dist(Jn, Tna) + [Tal.

n,j?
Combining the above mequahtles, we estimate the right hand side in (5.1)
further and get, with the notation I, := I, 4,

dn(Iy)
16| Shy K |
UL || + dist(Jy, In) + ||

As a consequence, for every 7 € I,

anl = | §6OU(®) = fu(r)] | <

r

(5.2)

|r| sup | £4() [t 7/ dt

|p| |Jn|1/2qdn(Fn)
\T| || + dist(Jn, In) + | Tn]

Let Ay D --- D Ag be the collection of all different intervals appearing as I,
for n < np. By Lemma 3.1, we have some geometric decay in the measure

Sk ATl 5up |97, (6)] Sy
ger
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of A;. Now fix A; and ¢ > 0 and consider indices n < np such that I;,, = A;
and d,,(I},) = ¢. By the last display and Lemma 4.3,

I | Tnlg®
A | T 4 dist( T, A7) + | Al
and thus Lemma 4.7 implies

1
an| In 15k, (E—I—l 2¢°
S el Uil e (0170 5

n: In=A;,dn ()=~

|an| [ fullt Sk

Now, summing over ¢ and then over ¢ (recall that |A;| decays like a geometric
progression by Lemma 3.1 and |4A;| 2 |I'| since n < nr) yields

> lanlllfalli Sk 1.

n<np

This implies the desired inequality ||P1¢|[1 Sgy 1 for the first part of Pé.

Next, we look at P¢ and define V' to be the smallest interval whose
endpoints in 7,,+1 and which contains I'. Moreover, V is defined to be the
smallest interval with endpoints in 7,41 and such that V contains k points
in 75,41 to the left of I" and as well k points in 7,41 to the right of I". We
observe that due to (k — 1)-regularity and the fact that I" contains at least
k points from Ty, 41,

(5.3) |V~| ko |‘7| ~kyy 17, B B
((VAV) {0, inf ]| ~pey [(VAV) O [sup 1| gy [V
First, we consider the integral of Po¢ over V and obtain by the Cauchy—
Schwarz inequality
|‘7|1/2
§ Poo()dt < [[1gl2lllle < Tz ko !
7

It remains to estimate S P2¢( ) dt. Since for n > np, the endpoints of
V are in Ty, either we have J,, C V or J, is to the right of V, or J, is to
the left of V. If J,, C V, then

full < 1]
o~

janl = | § 6(6) () dt| <
I

and therefore, by Lemma 4.6 and (5.3),
1
2. el VUmldt S D Val® § 170l dt

n: JnC\~/,n>np ve n: JnCv Ve

I<:|‘/| k
H )
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Now, let J, be to the right of ‘7; the case of J, to the left of Vs

considered similarly. By (4.7) for p = oo,
|J |1/2
|F| S |F| S

R t(VJ )+ |l

This inequality, Lemma 4.3 and the fact that dist(V, J,) 2k~ dist(V, J,) +
V| (cf. (5.3)) allow us to deduce

dn(V
S fallfh e, Y Ll
n>np el dist(V, J) + |V|
Jn totheright of V Jn totheright of V

Note that V' can be a union of k — 1, k or k + 1 intervals from 7p,,.11;
therefore, let V' be a union of k — 1 grid intervals from 7,11, with right
endpoint of VT coinciding with the right endpoint of V. As J, is to the
right of V, we have d,(V) = d,(V™"), dist(V, J,) = dist(V ™", J,,) and—by
(k — 1)-regularity—|V| ~ [V, which implies

Z |J,] <. Z qdn(VJr)‘Jn‘
e dist(V, J,,) + |V| ~7 e dist(V+, J,) + [V
Jn totheright of V Jn totheright of V

Finally, we employ Lemma 4.7 to conclude

< ¢ n
> lallflh S X6 Y e IR

n>nr _ /=0 n>np
Jn totheright of V dn(V)=¢ _
Jpn totheright of V

Nk725+12£<k1

To conclude the proof, note that if f € H' and f = Yoo Cm®m 1s an
atomic decomposition of f, then (f, fn) = > 00 ¢m{dm, fn), and Pf(t) <

m=1
D omet [Cm| P (t).
Finally, we discuss (C)=(D).
PropoSITION 5.4 ((C)=(D)). Let (t,) be a k-admissible sequence of

knots in [0, 1] which is k-reqular with parameter v and let (a,) be a sequence
of coefficients such that S = sup,, ‘ Y n<m anfn‘ € L'. Then there exists a

function f € H' with a, = (f, f») for each n. Moreover,

1z Sk 1511
Proof. As S € L', there is f € L' such that f = Y o, o anf, with

convergence in L'. Indeed, this is a consequence of the relative weak com-
pactness of uniformly integrable subsets in L! and the basis property of (f,,)
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in L'. Thus, we need only show that f € H', and this is done by finding a

suitable atomic decomposition of f.
We define Ey = By = [0, 1] and, for r» > 1,

E, = [S>2T], B, = [MJIET >Ckﬂ],

where M denotes the Hardy—Littlewood maximal function and 0 < ¢, <
1/2 is a small constant only depending on k and -y which is chosen according

to a few restrictions that will be given during the proof. We note that

INE,
Mg, (t) = sup (L0

. telo1],
T 0,1

where the supremum is taken over all intervals containing ¢. Since M is of
weak type (1,1), we have |B,| Sg |Er|. As S € L', it follows that |E,| — 0
and hence |B,| — 0 as r — oo. Now, decompose the open set B, into a

countable union of disjoint open intervals,

B, = UFr,m
K

where for fixed r, no two intervals I , have a common endpoint and the
above equality is up to a measure zero set (each open set of real numbers can
be decomposed into a countable union of open intervals, but it can happen
that two intervals have the same endpoint; in that case, we collect those two
intervals into one I, ;). This can be achieved by taking as I .. the collection

of level sets of positive measure of the function ¢ +— |[0,¢] N BE|.

Moreover, observe that if I’ ¢ is one of the intervals in the decomposi-
tion of B, 1, then there is an interval I, in the decomposition of B, such

that Iry1e C e

Based on this decomposition, we define the following functions for » > 0:

f(t), t € BE,
1
gr(t) := T \ f@)ydt, terl...
K r

TR

Observe that f = go + > oo o(gr+1 — gr) in L' and g,+1 — g, = 0 on BE. As

a consequence,

S gr+1(t) dt = S gr+1(t) dt + S ngrl(t) dt
Fr,n Fr,ﬁmBﬁ_i_l Fr,ﬁmBr—l—l
= | fwa+ > | f)de
Fr’ﬁﬂBﬁ_‘_l &: FT+1,£CFT’H Fr+1,§

= | fwyat= "\ g(t)at.

Fr,n Fr,n
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The main step of the proof is to show that
(5.4) 9-(t)] < Cr42", ae. tel0,1],

for some constant C} , only depending on k and . Once this inequality is
proved, we take ¢g = 1, ng = Sé f(u) du and

(g?”‘—|—1 - gr)]lpfr‘,n
Ck’72r|FT7H| ’

(bT’,KJ = n’f',ﬁ = CkerQT’FTaK/’
and observe that f = nogo + > .., Mrx®r . is the desired atomic decomposi-
tion of f since

2777’,/{ < Ck,722r|rr,n| = Ck,y 22T|Br|
Sk D2 1E| S 1S

Thus it remains to prove inequality (5.4).

To do so, we first assume ¢ € Bf. Additionally, assume that ¢ is such that
the series ), anfn(t) converges to f(t) and t is not in (t,). By Theorem
3.5, this holds for a.e. € [0,1]. We fix m and let V,, be the maximal interval
where the function Sy, := > ., anfn is a polynomial of order k and that
contains t. Then V;, ¢ B, and since V,, is an interval containing t,

[Vin 1 ES] = (1= ) [Vinl = [Vl /2.

Since |Sy,| < 2" on Ef, the above display and Proposition 3.2 imply that
S| Sk 2" on V, and in particular [S,,(t)| S 2". Now, S,,(t) — f(t) as
m — oo by the assumptions on ¢, and thus

lg- ()| = [f(O)] <k 2"

This concludes the proof of (5.4) in the case of t € BE.

Next, we fix x and consider g, on I" := [«, 8] := I .. Let np be the first
index such that there are k£ + 1 points from 7,,,. contained in I, i.e., there
exists a support anr),i of a B-spline function of order k in the grid 7, that
is contained in I'. Additionally, we define

Up := [an,i—kaan,i]a Wy = [anvi-i-k’ Tnfai+2k]'

Note that if a € 7,,., then a is a common endpoint of Uy and I', otherwise «
is an interior point of Up. Similarly, if 5 € 7y, .., then § is a common endpoint
of Wy and I', otherwise (8 is an interior point of Wy. By k-regularity of
(tn), we have max(|Uopl, |Wo|) Sk~ [I']. We first estimate the part Sp :=
> n<ny @nfn and show that |Sp| Sg 4 2" on I'. Observe that on A := Uy U
I'UW,y, Sr can be represented as a linear combination of B-splines (N;) on
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the grid 7y, of the form

i+2k—1

Sp(t)=h(t):= > biN;(),

j=i—2k+1

for some coefficients (b;). For j =i —2k +1,...,i4+ 2k — 1, let J; be a
maximal interval of supp N; and observe that due to k-regularity, |J;| ~ ~

|I'| ~~ [supp hl.

If we assume that max,; |Sr| > Cx2", where C}, is the constant of Propo-
sition 3.2 for p = 1/2, then Proposition 3.2 implies that |Sp| > 2" on a subset

I; of J; with measure > |.J;|/2. Hence

[supp h N Er| = |J; 0 Er| 2 [Jj|/2 Zky [supp .

We choose the constant cp, in the definition of B, sufficiently small to
guarantee that this last inequality implies supph C B,. This contradicts
the choice of I', which implies that our assumption maxy; [Sp| > Cp2" is

not true and thus

H}]aX|Sp|§Ck2T, jJ=1—2k+1,...,1+2k—1.

J

By local stability of B-splines, i.e., inequality (3.2) in Proposition 3.3, this

implies
bj| Sk 2 j=i—2k+1,...,0i+2k—1,
and so |Sp| <t 2" on A. This means

(5.5) \ISrl <k 2711,
T

which is inequality (5.4) for the part Sp.

In order to estimate the remaining part, we inductively define two se-
quences (us, Us)i>o and (ws, Ws)s>0 consisting of integers and intervals. Set
up = wo = nr and inductively define usy1 to be the first n > ug such that
t, € Us. Moreover, define Ugy; to be the B-spline support Dus+1,i(k) in the

grid 7, ,, where 7 is minimal such that Dgill’i NI # (). Similarly, we define
w41 to be the first n > w; such that ¢, € W, and Wy, as the B-spline sup-
where 4 is maximal such that DEZLM NI # Q.
It can easily be seen that this construction implies Usy1 C Us, Wsy1 C Wi
and a € Ug, B € Wy for all s > 0, or more precisely: if a € T,,_, then « is
either a common endpoint of U and I, or an inner point of Uy, and similarly
if 5 € Ty, then B is either a common endpoint of Wy and I', or an inner

port ptk) _; in the grid T,

Ws+1, s+17

point of Wi.
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For a pair of indices £, m, let

k—1 k—1
Ty = Z NUg,i+V]lUga Ym = Z Nme—I/]lea
v=0 v=0

where N, ; is the B-spline function on the grid 7,, with support Uy, and
Ny,,.; is the B-spline function on 7, with support W,,. The function

Go,m = e+ Lp\w,uwi) + Ym
is zero on (U, UT'"UW,,)¢, one on I'\ (U, UW,,) and a piecewise polynomial
function of order k£ in between. For ¢, m > 0, consider the following subsets
of {n:n>np}:
Lt):={n:up<n<wup1}, Rm):={n:w,<n<wn}
If n € L(¢) N R(m), we clearly have (fy,, ¢7m,m) = 0 and thus
1

(56)  \ fa()dt =\ fu(t) dt =\ fu()om(t) dt = Ag(fn) + Bm(fn),

r r 0
where

Adfa) = | fa)dt = | fa(O)ze(t) dt,

rnu, U,
By (fn) == S fn(t) dt — S Tn()ym () dt.
I'nWwy, Wm

This implies

60 1S ah®d]=| Y A+ Balh)

I'n=np+1 £m=0neL({)NR(m)
<2y ‘ S anfn(t)‘dt+2z { ‘ 3 anfn(t)‘dt.
{=0U; neL(¥) m=0W,, neR(m)

Consider the first sum on the right hand side. On U, = D(lz) the function

Up,t?
>_ner(e) @nfn can be represented as a linear combination of B-splines (V)
on the grid 7,, of the form

i+k—1
D anfa=hei= ) 0N,
neL(l) j=i—k+1

for some coefficients (b;). For j = i —k+1,...,i +k — 1, let J; be a
maximal grid interval of supp N; and observe that due to k-regularity,
|5l ~ky [Uel ~ky |supp he|. On Jj, the function >, cp ) anfn is a poly-
nomial of order k. If we assume max , ‘ ZneL(é) anfn‘ > 2"t where Cj,
is the constant of Proposition 3.2 for p = 1/2, then Proposition 3.2 implies
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that !Z%L(@ anfn] > 27 on a set Ji C Jj with |[J7] = [J;|/2; but this
means max(| >, <, anfnl | X<y, ,, anfnl) > 2" on J5. Hence
|E- Nsupp hy| > |E 0 Jj] > |J5] > | Jj1/2 2 [supp hyl.

We choose the constant c, in the definition of B, sufficiently small to
guarantee that this last inequality implies supp hy C B,. This contradicts
the choice of I', which implies that our assumption max,; ‘ Zne L(¢) On fn‘ >
Cy2" is not true and thus

max | 37 anfo

7 neL()

<C2, j=i—k+1,...i+k—1.

By local stability of B-splines, i.e., inequality (3.2), this implies
|bj|§k2T, j=1—k+1,...,i+k—1,
and so ‘ ZneL(@ anfrn| Sk 2" on Uy, which gives

P> s

Ur neL(f)

Sk 27Uy

Combining Lemma 3.1, the inclusions Uy;1 C U, and the inequality |Up| Sk~
|I'|, we see that Y2 |Us| Sg |[I']. Thus we get

SIS ad

(=0U, neL(()

Sk”y 2T|F|

The second sum on the right hand side of (5.7) is estimated similarly, which

gives
o0

>N e

Combining these estimates with (5.7) and (5.5), we find

(s d) = | § Y anfat) dt] Sps 211,
r I n

which implies (5.4) on I", and thus the proof is complete. m

6. Proof of the main theorem. For the proof of the necessity part of
Theorem 2.4, we will use the following:

PROPOSITION 6.1. Let (t,) be a k-admissible sequence of knots that is
k-regular with parameter v, but not (k — 1)-regular. Then

:OO,

sup | sup [a. (6)ful |

where the first sup is taken over all atoms ¢, and an(¢p) := (b, fn)-
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Proposition 6.1 implies in particular that Proposition 5.3 cannot be ex-
tended to arbitrary partitions. For the proof of Proposition 6.1 we need the
following technical lemma.

LEMMA 6.2. Let (t,) be a k-admissible sequence of knots that is k-regular
with parameter v > 1, but not (k — 1)-regular. Let £ be an arbitrary posi-
tive integer. Then, for all A > 2, there exists a finite increasing sequence
(nj)ﬁ %) such that if 7, ;. is the new point in T, not present in Tp, 1
and

A] = [Tnj,ij—kaTnj,ij—1)7 L] = [Tnj,ij—laTnj,ij)a R] = [Tnj,ijaTnj,ij+1)7
then for all i,5 with 0 <i < j </l —1 we have:

(1) R,NR; =0,
(2) 4 —/1,

(3) (2v=1)|L;| > HTn],zj k— 1anJ,zj—k:” > |Ljl/(27),
(4) [R;| < (2y = D[Ly],

(5) [L;] < 2(v + 1)k[R;],

(6) min(|L;], |R;]) = Al4;].

Proof. First, we choose a sequence (nj)é]; o so that (1)—(4) hold. Next,

we choose a subsequence (1, )é;% so that (5) and (6) hold as well.
Since (t,,) is not (k — 1)-regular, for all Cy there exist ng and g such

that
r [D¥Y 1> oy D

no,io—k

. k—1 k—1
(6.1) either COlszo,io)—M < |D7(10 10) k:+1| n0,i0— k+1|

We choose Cj sufficiently large such that with C; := Cj_1/y—1for j > 1 we
have Ciy > 27v. We will make an additional restriction on Cj at the end of
the proof. Without loss of generality, we can assume that the first inequal-
ity in (6.1) holds. Taking Ag = [Tng,ig—k> Tno,io—1) a0d Lo = [Tng,ig—1, Tnosio )
Ro = [Tng.ios Tno,io+1), We have

(6.2) |[Tno,i0—k+15 Tnoio) | = Col Aol
A direct consequence of (6.2) is
(6.3) |Lo| = (Co — 1)|Aol.

By k-regularity we have

(k)
|D(k)_ | > |Dn0,i0*k| _ |A0| + |L0|
no,io—k—11 = v v

which implies
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k | Ao| + | Lo|
(64)  [[Tugsio—t—1s Trosio—t)| = |1 Doy = o] = =022 — | A

L A Co—1
2| 01+| 0|+ 07 o] — Aol

27y 0% 2

L Co+1 L
:|0’_|_ 0 -1 |A0|ZM,

2y 2y 27y

i.e., the right hand inequality of (3) for 7 = 0. To get the upper estimate,
note that by k-regularity,

|A0| + |[Tn0,i0—k—177—no7i0—k]| < ’Y(|A0| + |L0|)7
hence by (6.3),

(6.5) |[Tn07i0—k—1’ Tno,io—k“ < 7|L0| + (- 1)|A0| < (2v- 1)‘[/0"
This and the previous calculation give (3) for j = 0. Therefore, the con-
struction can be continued either to the right or to the left of Aj.

We continue the construction to the right of Ag by induction. Having

defined n;, A;, L; and R;, we take
Nnj1 = min{n >nj ity € Aj U Lj}, 3 =>0.

By definition of R; and njii, property (1) is satisfied for all j > 0. We
identify bnjir = Tnjansijor- Thus, by construction, tn; = Tn,4; 18 & common
endpoint of L; and R; for j > 1.

In order to prove (2), we will show by induction that
(6.6) [T 5=kt 15 Ty ;]| = Cjl 45| and - Ay = A,
for all j = 0,...,kf. We remark that the equality A;41 = A; is equivalent
to the condition 7, ;;,, € Lj.

The inequality of (6.6) for j = 0 is exactly (6.2). If the identity in (6.6)
were not satisfied for j =0, i.e., 7, 4, € Ao, by k-regularity of (¢,), applied
to the partition 7,,, we would have

1
|A0| > ;|L0|7

which contradicts (6.3) for our choice of Cy. This means A; = Ay, and so
(6.6) is true for 7 = 0. Next, assume that (6.6) is satisfied for j — 1, where
1 < j < kf—1. By k-regularity, applied to 7, and employing (6.6) for j —1
repeatedly, we obtain

1
|A]| + |L]| = |A] ) L]| 2 ;(Tnj,ij%—l - Tnj,ij—k—}-l)
1
= ;(Tnj—laij—l - Tnj_l,ij_l—k—i—l)
Ci—1 Ci-1
> || = == [4].

v Y
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This means, by the recursive definition of C}, that
(6.7) |1Lj| = Cjl451,
and in particular the first identity in (6.6) is true for j. If the identity in

(6.6) were not satisfied for j, i.e., 7,4, € Aj, by k-regularity of (t,),
applied to Ty, ,, we would have

1
|A;] > ;!Lj\,

which contradicts (6.7) and our choice of Cy. This proves (6.6) for j, and
thus property (2) is true for all j =0,..., kl.

Moreover, choosing Cj sufficiently large, namely such that Cy; >
2(y+ 1)kA, (6.7) implies
(6.8) 1151 > 20y + 1ALy,

which is a part of (6).

The lower estimate in (3) is proved by repeating the argument giving
(6.4) and using (6.7) instead of (6.4). The upper estimate uses the same
arguments as the proof of (6.5), but now we have to use (6.7) as well.

Next, we look at (4). By k-regularity and (6.7), as C; > 1, we have

|Rj| + |Lj] < ~A([Lj| + [A4]) < 279]Lj1,

which is exactly (4).
We prove (5) by choosing a suitable subsequence of (n;) ;“i o- First, assume
that (5) fails for k consecutive indices, i.e., for some s,

(6.9) |Rsir| < a|Lsir| < a|Ls|, r=1,...,k,
where a := (2(y + 1)k)~!. We have L; = Lj+1 U Rjqq for 0 < j < kf — 1.
Thus, on the one hand,

k
(6.10) |Ls \ Lstk| = Z | Rstr| < ak|Ls|

r=1

by (6.9); on the other hand, by k-regularity of 7,

s+k?
1 —
Y

Now, (6.10) contradicts (6.11) for our choice of a. We have thus proved that

there is at least one index s+, 1 <r < k, such that (5) is satisfied for s+r.

Hence we can extract a sequence of length ¢ from (nj)é?il satisfying (5). For

k
1 1 ak
(611) 1L\ Losil 2 S\Essil =~ (1Ll = 3 1Rosal) > L.
r=1

simplicity, this subsequence is called (nj)ﬁ;é again.
Property (6) for R; is now a simple consequence of (6.8), property (5)

and the choice of (nj)ﬁ;é. Thus, the proof of the lemma is complete. m
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Now, we are ready to proceed to the proof of Proposition 6.1.

Proof of Proposition 6.1. Let £ be an arbitrary positive integer and A > 2
a number to be chosen later. Lemma 6.2 gives a sequence (nj)ﬁ;é such that
conditions (1)—(6) in Lemma 6.2 are satisfied. We assume that |Ag| > 0. Let
T I= Tng,ig—1, £ = T — 2|Ap| and y := 7 + 2|Ap|. Then we define an atom ¢

by
1

= m(l[m] —1iry)

and let 7 be an arbitrary integer with 0 < j < ¢ — 1. By partial integration,

the expression an;(¢) = (¢, fn;) can be written as

Yy
4| Aolan, (¢) =\ fu, (8) dt — | fo; (t) dt

T

S
anj fnj )dt_gfnj(t)_fnj(T)dt
= |
(¢

(x —t)f) (t)dt — ?( — 1) fn, (t) dt.

In order to estimate |a,,

above. We begin with I5.

Consider the function g, connected with f,,. via fn. = gn, /| gn,||2 and

lgn, ll2 ~k |Jn,|~1/? (cf. (4.1) and Lemma 4.3). In the notation of Lemma 6.2,
in 7p;—1, and it is a com-
mon endpoint of intervals L; and R;. By construction of the characteristic
interval .J,,;, properties (4)—(6) of Lemma 6.2, and the k-regularity of (t,),

gn; 18 obtained by inserting the point tn; = Tn; i

we have

By property (6), we have [, y] C L;, and therefore on |7, y], the derivative

of g,, has the representation (cf. (3.1))
ij—1

k
gn ( - Z €ZN7(LJ, 1) )? u € [7-7 y]v
1=1;— —k+1

where & = (w; — wi_l)/|D7(£;1)| and the coefficients w; are given by (4.3)
associated to the partition Ty . For i = i; —k +1,...4; — 1 we have L; C

plk-1)

g,

(6.13) [, |~ | Ll ~ky IDSD) =y — k41, — 1

)| from below, we estimate the absolute values

of I == [ (x —t)f,, (¢t )dt from below and of I := {/(y —t) f;, (t) dt from

, which together with the k-regularity of (¢,,) and property (6) implies
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. k—1
Moreover, for ¢ = i; — k, we have D(

because t —x > |Ag| for t € supp IV,
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Moreover, by Lemma 4.4,

wi| <g 1<i<n;+k—1.

1
[ Tny |

Therefore

[y @O~k g P g, (D] Sy 1L 722 for ¢ € [r,y].
j j

Consequently, putting the above facts together,
(6.14) o] gy [Ao]? - L7372

We now estimate I;. By properties (3) and (6) of Lemma 6.2 (with

nj

has the representation (cf. (3.1))

ij—2

g, =(k=-1) > &N W), uwelr]

i=i;—2k+1

We split Iy = I11 + I 2 according to whether ¢ # i; — k or i = ¢; — k in the
above representation of g;, on [z, T].

Note that [Tnj,ij_k_l,mj,ij_k] C ng;l) fori; —2k+1<i<1i; —k and

L; C ng;l) for i; — k < i <ij — 2. Therefore, by properties (3) and (6) of
Lemma 6.2 and the k-regularity of the sequence of knots we have

DY iy 1Lg] for iy — 2k +1 <0 <ij—2,i#i0;— k.

So, by arguments analogous to the proof of (6.14) we get
(6.15)

- i;—2
k— _
Tl ~i L, 2] § =) D0 &N (0 dt] S 40P - 1Ly 7,
z i=i;—2k+1
i#ij—k

)k—/lo,so

T

nz—

(6.16) 111,2\~k\Jnj|1/2]§(t—x)g% RNED t)dt]

i k— 1
> 1€l |, V2] 40] | N

nj,ij—
k—1)
| ( i, —k A 2
|£@J—k;| |AO| |Jnj|1/2 njajl |£Zj k|| n3‘1/2]|€3|17

(k= ) . Since the sequence w; is checker-
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board (cf. (4.4)),

6 = [wi; k| + |wi; 1] Wi, |
ij—k |D(k 1) | 7 (k—1) |
nj,i;—k nj,i;—k

By definition of w;;

\wi; | > Jovi; g [bi;—ki;—k ),

where o, is the factor from formula (4.2) and b;,_;; is an entry of the
inverse of the B-spline Gram matrix, both corresponding to the partition
Tn;- Formulas (4.2) and (6.12) imply that «;,  is bounded from below by a

positive constant that only depends on & and ~ (*). Moreover, |b;, g, k| >

k) k B A
||N7§]7ZJ LIz |D( ) Ll 1 (cf. (3.6)). Note that Df,bj),ij_k = Ag U L;, s0
| ”Nﬂ il ~hey Ll Thus &~k Zkny [Aol7HLs| 7. Inserting the above

calculations in (6.16), we find
]

(6.17) 2| Zhoy |, 11277
|Lj|

o 1 4o| 1Ly 12,

We now impose conditions on the constant A > 2+ from the beginning
of the proof and property (6) in Lemma 6.2. It follows from (6.17), (6.15)
and (6.14) that there are Cj 5 > 0 and ¢, 4 > 0, depending only on k and 7,

such that

4 4o| lan, (8)] = 12| = [T11] = [Lo| = C o] L5172 = er | Aol Ly /7

= [Ao| |Lj|~*(Chy — cryl Aol | L;]71).

By property (6) in Lemma 6.2 we have |Ag||L;|™' < 1/A. Choosing A

sufficiently large to guarantee

we get a constant my ,, depending only on % and -, such that

(6.18) Mk Lj| 72 <lan; ()], 5=0,...,0—1.

Next, we estimate |, | gn,; ()| dt from below. First, Proposition 3.3, prop-
J

erty (6) of Lemma 6.2 and the k-regularity of (¢,) yield

S |gnj (t)| dt Zk,’y ’R]| |wij |?
R,

(*) Formula (4.2) is applied with 7, = Tn; and corresponding to i, = Tn;,i;. Then
[Tio—1,Tio] = Lj and [Tiy, Tig+1] = R;. By k- regularlty and [Ag U Lj| ~p, 4 |L | each
denominator in (4.2) is ~k,4 |L;|. Each numerator in (4.2) is greater than either L; or R;,

so by (6.12) and k-regularity it is ~  |L;| as well.
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where w;; corresponds to the partition 7,;. By definition of w;,

| 1gn, (D1t Zpry 1R; v | b3, 3,

R;
By arguments similar to those above, |a;,| is bounded from below by a
constant only depending on k£ and v, and [b;, ;| 2k | gj)ijrl. Since by

k-regularity, |R;| ~p |Dnj7ij|, we finally get

\ lgn; (0)| dt 21 1,
R;

which means for f,; that

V1, O]t 2y 1T, |2 2y 11512
R;

Combining this last estimate with (6.18) and (1) of Lemma 6.2 gives

1

¢
Ssgp]an( Z S |an; (@) fn; ()] dt 2k €.

0

This construction applies to every positive integer ¢, proving the assertion
of the proposition for |Ay| > 0.

The case |Ap| = 0 is handled similarly, with the difference that the atom
¢ is defined to be centered at 7,,,—1 and the length of the support is
sufficiently small, depending on ¢ and |Lg|. =

With Proposition 6.1 and the results of Section 5 at hand, the proof of
Theorem 2.4 follows the proof of Theorem 2.2 in [15], but we present it here
for the sake of completeness.

Proof of Theorem 2.4. We start by proving the unconditional basis prop-
erty of (f,) = (fqgm) assuming the (k—1)-regularity of (¢,). If (t,,) is (k—1)-
regular, it is not difficult to check that it is also k-regular. As a consequence,
Theorem 2.3 implies that (f,,) is a basis in H'. Let f € H! with f =" a, fn
and £ € {—1,1}%. We need to prove the convergence of >_ e,a,f, in H'.
Let m1 < mgy. Then

!

mo ma m2
H > enanfn Sk HS( > Enanfn)Hl Sk HP( > snanfn)
n=mi n=mj n=mji

(3wt o | 8 s,

n=mj
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where we have used Propositions 5.4, 5.2 and 5.3 (cf. also the diagram on
page 135). So, since Y a,f, converges in H!, so does f- := Y ena,fn, and

the same calculation as above shows

el Sk 1 -

This implies that (f,,) is an unconditional basis in H'.

We now prove the converse: (f,) being an unconditional basis in H'
implies (k — 1)-regularity. First, if (¢,) is not k-regular, (f,) is not a ba-
sis in H' by Theorem 2.3. Thus, it remains to consider the case when (t,)
is k-regular, but not (k — 1)-regular. By Theorem 2.3 again, (f,) is then
a basis in H'. Suppose that (f,) is an unconditional basis in H!. Then,
for f = Y anfn, and ¢ € {—1,1}%, the function f. := > e,a,f, is also
in H'. Since || - |1 < | - ||g1, the series > a,f, also converges uncondi-
tionally in L', and thus Proposition 5.1 (i.e., Khinchin’s inequality) im-

plies
IPfllr S sup | felli < sup [fellar S Il
3 g

which is impossible due to Proposition 6.1, even for atoms. This concludes

the proof of Theorem 2.4. =

As an immediate consequence of Theorem 2.4, a fifth condition equiva-

lent to (A)—(D) is the unconditional convergence of > anf, in H':

COROLLARY 6.3. Let (t,) be a k-admissible and (k —1)-regular sequence
of points, with (fy,) the corresponding orthonormal spline system of order k.
Let (ayn) be a sequence of coefficients. Then conditions (A)—(D) from Sec-

tion 5 are equivalent. Moreover, they are equivalent to
(E) The series > anfn converges unconditionally in H'.
In addition, for f € HY, f =" anfn, we have

[f e ~ IS Sl ~ ([P fllx ~ _sup
{-1,1}2

Z Enln fn

7

with the implied constants depending only on k and the parameter of (k—1)-

reqularity of (t,).
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1. Introduction

1.1. Splines on an interval

In this article we prove some results about the periodic spline orthoprojector. In order to achieve
this, we rely on existing results for the non-periodic spline orthoprojector on a compact interval, so we

first describe some of those results for the latter operator. Let k € Nand A = (ti)l.r:é‘ a knot sequence
satisfying

ti < tiy1, ti < ik,

tg =+ = tggr—1, try1 =+ = bk

* Communicated by A. Hinrichs.
E-mail address: markus.passenbrunner@jku.at.

http://dx.doi.org/10.1016/j.jc0.2017.04.001
0885-064X/© 2017 Elsevier Inc. All rights reserved.
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Associated to this knot sequence, we define (N;)]_, as the sequence of L*°-normalized B-spline
functions of order k on A that have the properties

r

supp N; = [t;, tir], N; = 0, ZNi =1

i=¢
We write |A| = maXy<j< (i1 — t;) for the maximal mesh width of the partition A. Then, define
the space 4,(A) as the set of polynomial splines of order k (or at most degree k — 1) with knots
A, which is the linear span of the B-spline functions (N;);_,. Moreover, let P, be the orthogonal
projection operator onto the space &,(A) with respect to the ordinary (real) inner product (f, g) =

S F (g d, e,
(PAf,s) = (f,s) foralls e 8(A).

The operator P, is also given by the formula

.
Paf = {f NN}, (1.1)
i=t
where (N;){_, denotes the dual basis to (N;) defined by the relations (N, N;) = 0 whenj # i and
(N,N;) = 1foralli = £,...,r. Afamous theorem by A. Shadrin states that the L>°-norm of this
projection operator is bounded independently of the knot sequence A:

Theorem 1.1 ([8]). There exists a constant c, depending only on the spline order k such that for all knot

sequences A = (t,-),f;ré‘ as above,

IPa : L®[te, trpq] — L™[te, il < k.

We are also interested in the following equivalent formulation of this theorem, which is proved
in [1]: for a knot sequence A, let (a;) be the matrix ({N;*, N}), which is the inverse of the banded
matrix ((N;, N;)). Then, the assertion of Theorem 1.1 is equivalent to the existence of two constants
Ky > 0and y, € (0, 1) depending only on the spline order k such that
Koyg

ai| < —2
| Ul - max{/c,-,/cj}’

e<ij<r

— — 1

(1.2)

where k; denotes the length of supp N;. The proof of this equivalence uses Demko’s theorem [4] on the
geometric decay of inverses of band matrices and de Boor’s stability (see [2] or [5, Chapter 5, Theorem
4.2]) which states that for 0 < p < oo, the [P-norm of a B-spline series is equivalent to a weighted
£P-norm of its coefficients, i.e. there exists a constant D, depending only on the spline order k such
that:

1/p 1/p
(i) < [Son, = (Siobs)”
J J j

In fact, for a;;, we actually have the following improvement of (1.2) (see [6]): There exist two
constants K > Oand y € (0, 1) that depend only on the spline order k such that

lag| < , t=ij=r, (1.3)

where h;; denotes the length of the convex hull of supp N; U supp N;. This inequality can be used to
obtain almost everywhere convergence for spline projections of L!-functions:

Theorem 1.2 ([6]). For all f € L'[t, t.,1] there exists a subset A C [ty, t;41] of full Lebesgue measure
such that for all sequences (A,) of partitions of [t;, t;+1] such that |A,;| — 0, we have

nlim Pa.f(x) =f(x), xeA.
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Our aim in this article is to prove an analogue of Theorem 1.2 for orthoprojectors on periodic
spline spaces. In this case, we do not have a version of (1.3) at our disposal, since the proof of this
inequality does not carry over to the periodic setting. However, by comparing orthogonal projections
onto periodic spline spaces to suitable non-periodic projections, we are able to obtain a periodic
version of Theorem 1.2.

In the course of the proof of the periodic version of Theorem 1.2, we also need a periodic version of
Theorem 1.1, which can be proved by first establishing the same assertion for infinite point sequences
and then by viewing periodic functions as defined on the whole real line [9]. The proof of Theorem 1.1
for infinite point sequences is announced in [8] and carried out [3]. In this article we give a different
proof of the periodic version of Shadrin’s theorem by employing a similar comparison of periodic
and non-periodic projection operators as in the proof of the periodic version of Theorem 1.2. This
proof directly passes from the interval case to the periodic result without recourse to infinite point
sequences.

1.2. Periodic splines

Let n > k be a natural number and A = (sj) ! be a sequence of distinct points on the torus
T = R/Z identified canonically with [0, 1), such that for all j we have

Sj = Sj+1, Sj < Sj+ks
and we extend (s]) perlodlcally by
Sm4j =T T+
forre Z\{0}and0 <j<n-—1.
Now, the main result of this article reads as follows:
Theorem 1.3. For all functions f € L'(T) there exists a set A of full Lebesgue measure such that for all

sequences of partitions (A,) on T as above with |A,| — 0, we have

lim Pf () = f(0), x €A,

where En denotes the orthogonal projection operator onto the periodic spline space of order k with knots Zn.

In order to prove this result, we also need a periodic version of Theorem 1.1:

Theorem 1.4. There exzsts a constant ¢ depending only on the spline order k such that for all knot
sequences A= (s,) ! on T, the associated orthogonal projection operator P satisfies the inequality

IP : L°(T) — [®(T)| < .

The idea of the proofs of Theorems 1.3 and 1.4 is to estimate the difference between the periodic
projection operator P and the non -periodic projection operator P for certain non-periodic point
sequences associated to A= (si )

The article is organized as follows In Section 2, we prove a simple lemma on the growth behaviour
of linear combinations of non-periodic B-spline functions which is needed frequently later in the
proofs of both Theorems 1.3 and 1.4. Section 3 is devoted to the proof of Theorem 1.4, which is needed
for the proof of Theorem 1.3 in Section 4. Finally, in Section 5, we also apply our method of proof to
recover Shadrin’s theorem for infinite point sequences (see [3,8]).

2. A simple upper estimate for B-spline sums

Let A be a subset of [ty, t.1]. Then, define the set of indices i(A) whose B-splines are not identically
zeroonA as

i(A) .= {i : ANint(supp N;) # 0},
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where int U denotes the interior of the set U. We also write i(x) for i({x}). If we have two subsets U, V
of indices, we write d(U, V) for the distance between U and V induced by the metric d(i, j) = |i — j|.
We will use the notation A(t) < B(t) to indicate the existence of a constant C that depends only
on the spline order k such that for all t we have A(t) < CB(t), where t denotes all explicit or implicit
dependencies that the expressions A and B might have.
The fact that B-spline functions are localized, so a fortiori the set i(x) is localized for any x €
[te, t-+1], can be used to derive the following lemma:

Lemma 2.1. Let ] be a subset of theindexset {¢, ¢+1,...,r—1,r},f = Zjej (h, Nj)N;"andp € [1, oo].
Then, for all x € [ty, t; 1], we have the estimates

. K_l/p/
f®)] <y @D |h), max — 2.1)
mei(x).je] Rjm
i —1
<y @D k), max (max{icm, k)" (2.2)
mei(x),jej
< yUODY R, - 1017, 1< p < o0, (2.3)

where y € (0, 1) is the constant appearing in (1.3), I(x) is the interval I = [t;, t;;1) containing the point
x and the exponent p’ is such that 1/p+ 1/p’ = 1.

Proof. Since N = > ajnNm,

FOO=Y">" tmlh, N)Nm().

j€] mei(x)
This implies
li—m|
14
FGol < max (3 Z— il INjly ),
mei(x) iel hjm

where we used inequality (1.3) for a;,, Holder’s inequality with the conjugate exponentp’ = p/(p—1)
to p and the fact that the B-spline functions N,, form a partition of unity. Using again the uniform
boundedness of N;, we obtain

x)| < ||k max( —K; >
FGO1 % [l max j§€1j —

Estimating this last sum by Zje] yli—ml. maxjej /cj]/ v /hjm and summing the resulting geometric series
now yields (2.1). In order to get (2.2) from (2.1), observe that max{«j, km} < hjnand 1/p’ + 1/p = 1.
For the deduction of (2.3) from (2.2), we note that for all m € i(x), by definition, |I(x)| < «;;, which
directly implies (2.3). O

Remark 2.2. We note that we directly obtain the second estimate in the above lemma if we use the
weaker inequality (1.2) instead of (1.3). We also observe that the form of f in the above lemma means
that (f, N;) = 0forj & J.

3. The periodic spline orthoprojector is uniformly bounded on L*

In this section, we give a direct proof of Theorem 1.4 on the boundedness of periodic spline
projectors without recourse to infinite knot sequences. Here, we will only use the geometric decay
of the matrix (a;,) defined above for splines on an interval.

Avital tool in the proofs of both Theorems 1.1 and 1.2 are B-spline functions. We will also use them
extensively and introduce their periodic version, cf. [7, Chapter 8.1, pp. 297-308]. Associated to the
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periodic point sequence (s]-)}:o1 and its periodic extension as in Section 1.2 we define the non-periodic
point sequence

ti=sj, forj=-k+1,...,n+k—1

and denote the corresponding non-periodic B-spline functions by (I\Ij)}‘:__lk 1 With supp N; = [¢;, i1, ].
Then we define for x € [0, 1)

Nix) =Nj(x), j=0,....n—k,
if we canonically identify T with [0, 1). Moreover,forj=n—k+1,...,n—1,

N _ Nj—n(x), ifx € [0’ Sj],
Nj(x) = {Nj(x), ifx € (s5, 1).
We denote by P the orthogonal projection operator onto the space of periodic splines of order k

with knots (51')}1:_0]' which is the linear span of the B-spline functions (I\J]-)]'.IZ_O1 and similarly to the non-

periodic case we define

iA)={0<j<n-1 :Aﬂint(suppﬁj) *+0}, ACT.

Lemma 3.1. Let f; be a function on T with supp f; C [S;, Si+1] for some indexiin therange0 <i <n—1.
Then, for any x € T,

Pfi(x)| < y 0@ CuR) £yl

where d is the distance function induced by the canonical metric in Z/nZ and y € (0, 1) is the constant
appearing in inequality (1.3).

Proof. We assume that the index i is chosen such that s; < s;;1, since if s; = s;; 1, the function f; is
identically zero in L*°. Also, without loss of generality, we can assume that i = 0, since otherwise we
could just shift the point sequence.

Given a function f on T, we associate a non-periodic function Tf defined on [sg, S;,+1] given by

If () = f((t)), t € [So, Snyal,

where 7 (t) is the quotient mapping from R to T. We observe that T is a linear operator, ||T : L*>(T) —
L2([sg, sns1 DIl = V2 and |T : [®(T) — L*([S0, Sn+1D |l = 1. Moreover, for x € T, let r(x) be the
representative of x in the interval [sg, S;). We want to estimate Pfy(x). In order to do this, we first
decompose

Pfo(x) = TPfy(r(x)) = PTfo(r(x)) + (TPfo — PTfo) (r(x)), (3.1)

where P is the orthogonal projection operator onto the space of splines of order k corresponding to
the point sequence A = (tj)"”‘ associated to the non-periodic grid points in the interval [sg, Sp+1],

. j=—k+1
ie.,
ti=s;, j=0,....,n+1,
g1 =---=1t_1=S0, th2 = - = btatk = Sn+1-
Also, let (Nj)]’?:_k 41 be the L*-normalized B-spline basis corresponding to this point sequence.

We estimate the first term PIfo(r(x)) from the decomposition in (3.1) of 75f0(x). Since P is a
projection operator onto splines on an interval, we use representation (1.1) to get

n

PTRo(r() = Y (Tfo, )N/ (r(x)),

j=—k+1
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and, since suppTfy C [So,S1] U [Sn, Snr1] = [to, t1] U [tn, tne1] by definition of fo and T and
suppN; C [tj, tipi] forallj = —k+1,...,n,

PIfo(r(x) = Y (Tfo. NINJ (r(x)),
j€h
with]J{ = {-k+1,...,0}U{n—k+ 1,..., n}. Employing now inequality (2.3) of Lemma 2.1 with
p = oo to this sum, we obtain
IPTA(r ()| < y 280 @MD | Tf o <  SW-CmPI) e (3.2)

Now we turn to the second term on the right hand side of (3.1). Let g = (Tﬁ — PD)fy =
(TP — T)fog + (T — PT)fp. Observe that g € 4,(A) since the range of both TP and P is contained
in 4, (A). Moreover,

(TP — T)fo, Nj) = (Pfo — fo. Nj), j=0,....n—k+1.

This equation is true in the given range of the parameter j, since in this case, the functions N; and FIJ
coincide. The fact that P is an orthogonal projection onto the span of the functions (Nj);’;(} then implies

(TPfy — Tfo, N} = (Pfo —fo, Ny =0, j=0,....,n—k+1.
Combining this with the fact
(Tfo — PTfo, N;) =0, j=—k+1,...,n,
since P is an orthogonal projection onto a spline space as well, we obtain that
(g,Nj)=0, j=0,....,n—k+1.

Therefore, we can expand g as a B-spline sum

g=>Y (& NN,

j€h
with), = {—-k+1,...,—-1}U{n—k+ 2, ..., n}. Now, we employ inequality (2.2) of Lemma 2.1 on
the function g with the parameter p = 2 to get for the point y = r(x)

g < y R g, max | supp N;|~V/2.
2

Since g = (Tfl\" — PT)fy and the operator TP — PT has norm < 2+/2 onI%, we get
W S v ORNf a1 supp fol 2,

where we also used the fact that supp N; D [sg, s1] = [to, t1] or supp N; D [Sy, Spy1] = [tn, tha] for
J € Jo. Since d(i(y), J2) > d(i(x), i(supp fo)) and [|foll2 < IIfolle| supp fol /2, we finally get

801 55 y MO Iy .
Looking at (3.1) and combining the latter estimate with (3.2), the proof is completed. O

This lemma can be used directly to prove Theorem 1.4 on the uniform boundedness of periodic
orthogonal spline projection operators on L*°:

Proof of Theorem 1.4. We just decompose the function f as f = Z::ol f+ 1.5, and apply

Lemma 3.1 to each summand and the assertion ||’I;f||oo < |Ifllec follows after summation of a
geometric series. [

Remark 3.2. (i) Since Pisa selfadjoint operator, Theorem 1.4 also implies that P is bounded as an
operator fromNL] (T) to L'(T) by the same constant ¢, as in the above theorem. Moreover, by
interpolation, P is also bounded by c, as an operator from LP(T) to LP(T) for any p € [1, co].
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(ii) Inthe proofofLemma 3.1, we only use inequality (2.2) of Lemma 2.1 which follows from inequality
(1.2) on the inverse of the B-spline Gram matrix and does not need its stronger form ( 1.3). Similarly
to the equivalence of Shadrin’s theorem and (1.2) in the non-periodic case, we can derive the
equivalence of Theorem 1.4 and the estimate

~ K Va(i’j) .
laj| < ——=—=, 0=<ij<n-—1,
max(/(,-, Kj)

where (a;) denotes the inverse of the Gram matrix (( )) K > 0and Y_€ (0, 1) are constants
depending only on the spline order k, k; denotes the length of the support of N and d is the canonical
distance in Z/nZ. The proof of this equivalence uses the same tools as the proof in the non-periodic
case: a periodic version of both Demko’s theorem and de Boor’s stability.

4. Almost everywhere convergence

In this section we prove Theorem 1.3 on the a.e. convergence of periodic spline projections.

Proof of Theorem 1.3. Without loss of generality, we assume that Z\ has n points. Let Zn = (s(") )"_1

and (N; Ny ) ! be the corresponding periodic B-spline functions. Associated to it, define the non-

(n))n+l<

periodic point sequence A, = = ()2

with the boundary points 0 and 1 as
n) _ (m . o

tj —5]' , ]—0,...,11 1,

(==t =0, W= =t =1

We choose the integer m such that the multiplicity of the point 0 in A, is k and denote by (N; (")) i——m
the non-periodic B-spline functions corresponding to this point sequence and by P, the orthogonal
projection operator onto the span of (N ("))J“__lm

We will show that Pnf (x) — f(x) for all x in the set A from Theorem 1.2 of full Lebesgue measure
such that lim P, Tf (x) = Tf (x) for all x € A, where T is just the operator that canonically identifies a
function defined on T with the corresponding function defined on [0, 1) and we write x for a point in
T as well as for its representative in the interval [0, 1). Observe that this operator T is different from
the operator T in the proof of Lemma 3.1.

So, choose an arbitrary (non-zero) point x € A and decompose Pnf (x):

Puf (X) = TPuf (x) = P,Tf (x) + (TPnf(x) — PiTf (%)). (4.1)

For the first term of (4.1), P, Tf (x), we have that lim,_, o, P,Tf (x) = Tf (x)_= f (x) since x € A.
It remains to estimate the second term g,(x) = TP,f(x) — P,Tf (x) = TP,f(x) — Tf (x) + Tf (x) —
P,Tf (x) of (4.1). In order to do this, we write g,, € $;(A,) like the function g in the proof of Lemma 3.1:

&n = Z<g”’ Nj(n)>Nj(n)*’
Jj€ln

withJ, = {-m, ..., —-1}U{n—k,...,n—1}and (Nj(”)*) being the dual basis to (Nj(")). We now apply
inequality (2.1) of Lemma 2.1 with p = 1 to g, and get

d(in(x),
g @) < Y OO gy max
Lein(X).jeln h

hg) denotes the length of the convex hull of supp N\" U supp Nj(") and i, (x) is the set of indices

where
i such that x is contained in the support of Nl.("). Since for £ € i,(x), the point x is contained in supp N, é")

and for j € J, either the point O or the point 1 is contained in supp Nj("), we can further estimate

182 (®)| < y @M g |y ——.
min(x, 1 — x)
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Now, ||gall1 = || (Tﬁ —P.D)f|l1 < |IfIl1, since the operator T has norm one on L' and F and P, are both
bounded on L! uniformly in n by Theorem 1.4 (cf. Remark 3.2) and Theorem 1.1, respectively. Since
|A | tends to zero, and a fortiori the same is true for | A, |, we have that d(i, (x), J,) tends to infinity as
n — oo.This implies lim,_,  g,(x) = 0, and therefore, by the choice of the point x and decomposition
(4.1), lim P,f (x) = f(x). Since x € A was arbitrary and A is a set of full Lebesgue measure, we obtain

lim ﬁf(y) =0, foraeyeT,
n—oo

and the proof is completed. O

5. The case of infinite point sequences

In this last section, we use the methods introduced in the previous sections to recover Shadrin’s
theorem for infinite point sequences (see [8,3]).
Let (s;);ez be a biinfinite point sequence in R satisfying

Si = Sit1, Si < Sitk,

with the corresponding B-spline functions (Ni)ieZ satisfying supp Ni = [si, Sit«]. Furthermore, we
denote by P the orthogonal projection operator onto the closed linear span of the functions (N;);cz.

Lemma 5.1. Let f be a function on (infs;, sup s;) with compact support. Then, for any x € (infs;, sups;),
IPf ()] < y 0P p )
where y € (0, 1) is the constant appearing in inequality (1.3).

Proof. For notational simplicity, we assume in this proof that the sequence (s;) is strictly increasing.
Letx € (infs;, sups;) and letI(x) be the interval I = [s;, si;.1) containing x. Since f has compact support
and the sequence (s;) is biinfinite, we can choose the indices £ and r such that {x} Usupp f C [s¢, Sr+1)
andwith] ={{ —k+1,..., —1}U{r —k—+2,...,r}, theinequality

yd(i(X)J)| suppf|1/2|1(x)|_1/2 < yd(i(x),i(suppf))
is true.
Next, define the point sequence A = (t,-){ié‘_k 41 by
ti=s;, i=4£4, ...,7r+1,
a=tyry1=---=1t =S, b:tr—i-k:"':tr—',-lzsr—i-lv

and let the collection (N;);_,_,,; be the corresponding B-spline functions and P the associated
orthogonal projector. Let T be the operator that restricts a function defined on (infs;, sups;) to the
interval [a, b]. Note that this operator T is different from those in the proofs of Lemma 3.1 and
Theorem 1.3. In order to estimate Pf (x), we decompose

Pf(x) = TPf(x) = PTf (x) + (TPf (x) — PTf (x)). (5.1)

Observe that PTf = ), _.(f, N.)N;, where F = i(suppf). Applying inequality (2.3) of Lemma 2.1
with the exponent p = oo, we obtain

IPTF (x)] < ¥ If [l

_We now consider the second part of the decomposition (5.1), the function g = (TP —PD)f =
(TP — T + T — PT)f. Again, as we did for the function g in the proof of Lemma 3.1, we can write
g € 8,(A) as

g=>y (g NN

Jjel



110  CHAPTER 5. ORTHOGONAL PROJECTORS ONTO SPACES OF PERIODIC SPLINES

M. Passenbrunner / Journal of Complexity 42 (2017 ) 85-93 93

with] ={{ —k+1,...,¢£ —1}U{r —k+ 2,...,r}as defined above. Now, by inequality (2.3) of
Lemma 2.1 with the exponent p = 2, we get

20 < y @D Nglly - 11TV < y D f |l - 1G0T
< y D supp FIV2 1) 2 1If [l oo
Finally, due to the choice of £ and r,
yd(i(X)J)l Suppf|1/2|1(x)|_1/2 < yd(i(x),i(SUDpf)),
which proves the lemma. O

We can now use this lemma to define Ff for functions f € L*°(infs;, sup s;) that are not necessarily
in L2 (infs;, sups;) ifinfs; = —oo orsups; = +o00.If we let f; := f1is;.si.1), then f; has compact support
and the above lemma implies that the pointwise series

ﬁf(x) = ZFfi(x), x € (infs;, sups;),

i€z
is absolutely convergent and, moreover, there exists a constant C depending only on the spline order
k such that

IPflloc < Cllf lloc-

This operator enjoys the characteristic property of an orthogonal projection:

(Pf —f,N) =0, ieZ.

Remark 5.2. One can combine the proofs of Lemmas 5.1 and 3.1 to also obtain the uniform
boundedness of the spline orthoprojector on L* for one-sided infinite point sequences.
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Unconditionality of periodic orthonormal
spline systems in L

by

KAREN KERYAN (Yerevan) and MARKUS PASSENBRUNNER (Linz)

Abstract. Given any natural number k& and any dense point sequence (t,) on the
torus T, we prove that the corresponding periodic orthonormal spline system of order &
is an unconditional basis in LP for 1 < p < oo.

1. Introduction. In this work, we are concerned with periodic or-
thonormal spline systems of arbitrary order k£ with arbitrary partitions. We
let (s,)0% ; be a dense sequence of points in the torus T such that each point
occurs at most k times. Such point sequences are called admissible.

For n > k, we define S, to be the space of polynomial splines of order &
with grid points (sj) . For each n > k + 1, the space S,,_; has codimen-

sion 1 in S, and therefore there exists a function f, € S, with || fu]2 = 1
that is orthogonal to S_1. Observe that this function fn is unique up to
sign. In addition, let (f,)¥_, be an orthonormal basis for Sj. The system of
functions ( fn)n ; is called a periodic orthonormal spline system of order k
corresponding to the sequence (s,)5 ;. We remark that if a pomt T occurs
m times in the sequence (sy,)5% ; before index N, the space Sn consists of
splines that are in particular £ —1—m times continuously differentiable at x,
where for K —1 —m < —1 we mean that no restrictions at the point x are
imposed. This means that if m = k and also sy = z, we have SN 1= SN
and therefore it makes no sense to consider non-admissible point sequences.
The main result of this article is the following

THEOREM 1.1. Let k € N and (sp)n>1 be an admissible sequence of knots
in T. Then the corresponding periodic orthonormal spline system of order k
is an unconditional basis in LP(T) for every 1 < p < oo.
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This is the periodic version of the main result in [13]. We now give a few
comments on the history of this result. We can similarly define the spaces
Sy, corresponding to an admissible point sequence (t,) on the interval [0, 1].
A celebrated result of A. Shadrin [16] states that the orthogonal projec-
tion operator onto S,, is bounded on L*°[0,1] by a constant that depends
only on the spline order k. As a consequence, (f,), (also similarly defined
to fn) is a Schauder basis in LP[0,1], 1 < p < 00, and in the space C[0, 1]
of continuous functions. There are various results on the unconditionality of
spline systems restricting either the spline order k or the partition (t,)n>0-
The first result in this direction is [1], where it is proved that the clas-
sical Franklin system—that is, the orthonormal spline systems of order 2
corresponding to the dyadic knot sequence (1/2,1/4,3/4,1/8,3/8,...)—is
an unconditional basis in LP[0,1], 1 < p < oo. This argument was ex-
tended in [3] to prove unconditionality of orthonormal spline systems of
arbitrary order, but still restricted to dyadic knots. Considerable effort has
been made in the past to weaken the restriction to dyadic knot sequences.
In a series of papers [9, 11, 10] this restriction was removed step-by-step
for general Franklin systems, with the final result that for each admissi-
ble point sequence (t,),>0 with parameter k = 2, the associated general
Franklin system forms an unconditional basis in LP[0,1], 1 < p < oo. By
combining the methods used in [11, 10] with some new inequalities from
[15] it was proved in [13] that non-periodic orthonormal spline systems are
unconditional bases in LP[0,1], 1 < p < oo, for any spline order k and any
admissible point sequence (tp,).

The periodic analogue of Shadrin’s theorem can be obtained from Shad-
rin’s result [16] using [5]. Alternatively, [14] gives a direct proof. In the case
of dyadic knots, J. Domsta [8] obtained exponential decay for the inverse
of the Gram matrix of periodic B-splines, which were exploited to prove
the unconditionality of the periodic orthonormal spline systems with dyadic
knots in LP for 1 < p < oo. In [12] it was proved that for any admissible point
sequence the corresponding periodic Franklin system (i.e. the case k = 2)
forms an unconditional basis in LP[0,1], 1 < p < oo. Here we obtain an
estimate for general periodic orthonormal spline functions, which combined
with the methods developed in [10] yields the unconditionality of periodic
orthonormal spline systems in LP(T).

The main idea of the proofs of (f,) or (f,) being an unconditional basis
in LP, p € (1,00), in [10, 12, 13] is that to a single function f,, a grid point
interval is associated on which most of the mass of f,, is concentrated. In
the case of Haar functions h,,, its support splits into two intervals I and J,
where the function h,, is positive on I and negative on J. As the associated
interval, we could just use the smaller of I and J.
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The organization of the present article is as follows. In Section 2, we give
some preliminary results concerning polynomials, splines and non-periodic
orthonormal spline functions. Section 3 develops crucial estimates for the
periodic orthonormal spline functions f,, and gives several relations between
fn and its non-periodic counterpart. In Section 4 we prove a few technical
lemmata used in the proof of Theorem 1.1, and Section 5 finally proves
Theorem 1.1.

We remark that the results and most of the proofs in Sections 4 and 5
closely follow [10]. However, the proof of the crucial Lemma 4.4 is new and
much shorter than in [10].

2. Preliminaries. Let k£ be a positive integer. The parameter k£ will
always be used for the order of the underlying polynomials or splines. We
use the notation A(t) ~ B(t) to indicate the existence of two constants
c1,c2 > 0 that depend only on k, such that ¢;B(t) < A(t) < coB(t) for
all ¢, where t denotes all implicit and explicit dependences that the ex-
pressions A and B might have. If the constants c;,co depend on an ad-
ditional parameter p, we write this as A(t) ~, B(t). Correspondingly, we
use the symbols <, 2, <,, 2p. For a subset E of the real line, we denote
by |E| the Lebesgue measure of E and by 1g the characteristic function
of F.

We will need the classical Remez inequality:

THEOREM 2.1 (Remez). Let V C R be a compact interval and E C'V a
measurable subset. Then, for all polynomials p of order k on V,

V k—1
ol < (4%) pllz 2.

This immediately yields the following corollary:

COROLLARY 2.2. Let p be a polynomial of order k on a compact interval
V CR. Then

{z e Vilp(@)| =287 Hplroo)} = VI/2.

Proof. This is a direct application of Theorem 2.1 with F := {x € V :
()| < 8 pllLeo(r)}.

Let
(2.1)
T=0=74==710<7< <7 <Tp=:"="Tptk—1 =1)

be a partition of [0, 1] consisting of knots of multiplicity at most k, that is,
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Ti < Tivk for all 0 <4 <n —1. Let S5 be the space of polynomial splines of
order k with knots 7. The basis of L°°-normalized B-spline functions in S
is denoted by (N;x);— - k or for short (IV;); " 1 . Corresponding to this ba81s
there exists a biorthogonal basis of St Wthh is denoted by (N,L*k) o k: or
(N )= 1k Moreover, we write v; = T;1 — 7; = |supp V;|.

We now recall a few important results for B-splines N; and their dual
functions N;".

THEOREM 2.3 (Shadrin [16]). Let P be the orthogonal projection operator
onto St with respect to the canonical inner product in L?[0,1]. Then there
exists a constant Cy. depending only on the spline order k such that

IP: L°[0,1] — L®[0,1]]| < Cy.

PROPOSITION 2.4 (B-spline stability). Let1<p<oo andg= Z;— i 0N
be a linear combination of B-splines. Then

(2.2) laj| S Plgllrry),  —k<j<n—1,

where Lj is a subinterval [1;, Ti41] of [1j,Tj4x] of mazimal length. Addition-
ally,

n—1 1/p .
(2.3) lglls ~ (D= laslw;) ™ = ez =2 e

j=—h

Moreover, if h = Z]_ 1 O INT, then

n—1
— 1 I\n
(2.4) Il ~ (3 s ?) " = i

j=—k

Inequalites (2.2) and (2.3) are respectively Lemmas 4.1 and 4.2 in [7,
Chapter 5]. Inequality (2.4) is a consequence of Theorem 2.3. For a deduction
of the lower estimate in (2.4) from this result, see [4, Property P.7]. The proof
of the upper estimate uses a simple duality argument which we shall present
here:

Proof of the upper estimate in (2.4). We only consider the case p < oo
and we assume without loss of generality that b; > 0. Let N, , = _1/ P N, be

the p-normalized B-spline function and N o= =V L/p N ¥ be the correspondmg
p-normalized dual B-spline function. By deﬁmtlon the system N7, forms a
dual basis to the system of functions Nj;,. By choosing p’ = p/(p — 1) and

a=2/p (so2—a=2/p) we obtain, by (2.3),
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2 = (g, ) < | Sl | S,
J

[ el |,

< (34) ”sza o],

So we get

1/p'
(25) (Zb2> p < H Zba 1/pN>k
Setting a; = bSv /p, we see that b? = (a;v; 1/p)?/a — ag’/l/j_p//p = ag.’/u;*pl,
and therefore We may write (2.5) as

; 1/p'
1 *
(S )" 2| Soi],
J

which is the upper estimate in (2.4). =

It can be shown that Shadrin’s theorem actually implies the following
estimate on the B-spline Gram matrix inverse:

THEOREM 2.5 ([15]). Let k € N, let the partition T be defined as in
(2.1) and let (a;;) be the inverse of the Gram matriz ((N;, N;)) of B-spline
functions. Then
qlt=dl

|CL¢j|§C —k<1,7<n-—1,

|conv(supp N; U supp V)| ’

where the constants C > 0 and 0 < q < 1 depend only on the spline order
k and where by conv(U) for U C [0,1] we denote the smallest subinterval of
[0, 1] that contains U.

Let f € LP[0,1] for some 1 < p < 0o. Since the orthonormal spline system
(fn)n>—k+2 is a basis in LP[0, 1], we can write f = Y °"° 5 @ fp. In terms of
this expansion, we define the mazimal function M f := sup,, ‘ Y on<m anfn‘.
Given a measurable function g, we denote by Mg the Hardy—Littlewood
maximal function of g defined as

Mg(x) == sup|I]~* | |g(t)| dt,
I>x T

where the supremum is taken over all intervals I containing the point z.
A corollary of Theorem 2.5 is the following relation between M and M:

THEOREM 2.6 ([15]). If f € L'[0,1], then
Mf(t) S Mf(), telo1].
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2.1. Orthonormal spline functions, non-periodic case. This sec-

tion recalls some facts about orthonormal spline functions f,, = f,(Lk) for
fixed k € N and n > 2 induced by the admissible sequence (t,).
We again consider the mesh 7 as before:

T=0=1jp==171<70< - <Ti
< S Tpet <7-n:"':7-n—|—k:—1:1)a
where we singled out the point 7;,; and the partition T is defined to be the
same as T, but with 7;, removed. In the same way we denote by (N; : —k <
i < n—1) the B-spline functions corresponding to 7 and by (]TfZ -k <i<
n — 2) the B-spline functions corresponding to 7. Béhm’s formula [2] gives
us the following relationship between N; and NZ

(2.6)
Ni(t) if —k<i<ig—Fk—1,
~ Tig — T4 T3 — T g . .
N;(t) = ——— N;(t) + it N (t) ifig—k <i<ig—1,
Tit+k — Ti Titk+1 — Ti+1
Ni+1(t) if ’i() S 1 S n— 2.

In order to calculate the orthonormal spline function corresponding to
the partitions 7 and 7, we first determine a function g € span{N; : —k <
i <mn —1} such that g L Nj for all =k < 7 <n — 2. Up to a multiplicative
constant, the function g is of the form

10
j=io—k
where (N} : —k < j < n —1) is the system biorthogonal to the functions
(N;: —k<i<n-—1)and

(2.8)

7j—1 o i0—1 o
aj = (_1)j—io+k< H Tig Ty ) < H Tl+k Tlo)) lo—k S] < 7:0.
L

Toak — T To+k — T
(o g1 TR T T Zip Tk T T

Alternatively, the coefficients «; can be described by the recursion

Tit+k+1 — Ti Tip — Ti
(2.9) Qi —t Ly
Titk+1 — Ti+1 Titk — Tq

In order to give estimates for g, and a fortiori for the normalized function
f=9/|lgll2, we assign to each g a characteristic interval that is a grid point

interval [7;, 7;4+1] and lies in the proximity of the newly inserted point 7;,:

= 0.

DEFINITION 2.7 ([13], Characteristic interval for non-periodic sequences).

Let 7,7 be as above and 7;, be the new point in 7 that is not present in 7.
We define the characteristic interval J corresponding to T;, as follows.
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(1) Let
A0 = Lio k< j <io: [yl <2, min e 7e] |
be the set of all indices j for which the corresponding support of the
B-spline function Nj is approximately minimal. Observe that A g
non-empty.
(2) Define

W =i c A0 . 0] =
A .—{jeA .]aj|—erél/f&>§)|ag|}.

For an arbitrary but fixed index j(® € AD set J© .= [Tj(o),Tj(o)+k].
(3) The interval J© can now be written as the union of k grid intervals
k—1
JO) = U [Tj(0)+€,Tj(0)+g+1] with j(O) as above.
£=0
We define the characteristic interval J = J(7;,) to be one of the above
k intervals that has maximal length.
Using this definition of J, we recall the following estimates for g:

LEMMA 2.8 ([13]). Let T, T be as above and let g = Z;‘():io—k a;N; =
Z?:_ik w;N; be the function from (2.7), where the coefficients (w;) are de-
fined by this equation. Moreover, let f = g/||g|l2 be the L?*-normalized or-
thogonal spline function corresponding to the mesh point 7;,. Then

lgllzoy ~ llglly ~ [J1V/P7Y, 1< p <o,
and therefore
1oy ~ 1 fllp ~ TP 1< p <o,

where J s the characteristic interval associated to the point T, given in
Definition 2.7.

Additionally, if dr(2) denotes the number of grid points from T that lie
between J and z including z and the endpoints of J, then there exists a
q € (0,1) depending only on k such that

da(Tj)
| J| + dist(supp N, J) + v;
Moreover, if x < inf J, then

(2.11) 1l zr0,2) S (

Simalarly, for x > sup J,

(2.12) [fllLp () S (

(2.10)  Jwsl S

or all —k<j7<mn-—1.
J J

da(l') |J|1/2
|J| + dist(x, J))1—1/p’

da(w) |J|1/2
|J| + dist(z, J))1—1/p’
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2.2. Combinatorics of characteristic intervals. We additionally
have a combinatorial lemma concerning the collection of characteristic inter-
vals corresponding to all grid points of an admissible sequence (t,) of points
and the corresponding orthonormal spline functions (f,)> _, 4o of order k.
For n > 2, the partitions 7, associated to f, are defined to consist of the
grid points (tj);.‘:_l, the knots t_; = 0 and ¢y = 1 having both multiplicity
k in 7, and we enumerate them as

7;L = (O = Tn,—k = """ = Tn,—1 < Tn,0
<-... < Tan—1 < Tpn = """ = Tnntk—1 = 1)

If n > 2, we denote by JT(LO) and J,, the characteristic intervals J© and
J from Definition 2.7 associated to the new grid point ¢,, which is defined

to be the characteristic interval associated to (7,—1, 7). If n is in the range
—k +2 <n <1, we additionally set J, := [0, 1].

LEMMA 2.9 ([13]). Let V' be an arbitrary subinterval of [0,1] and let
B > 0. Then there exists a constant Fy, g only depending on k and [3 such
that
card{n : J, CV, |J,| > BV} < Fj 3,

where card E denotes the cardinality of the set E.

3. Periodic splines. In this section, we give estimates for periodic
orthonormal spline functions ( fn) similar to the ones in Lemma 2.8 for non-
periodic orthonormal splines. The main difficulty in proving such estimates
is that we do not have a periodic version of Theorem 2.5 at our disposal. In-
stead, we estimate the differences between fn and two suitable non-periodic
orthonormal spline functions f,.

Let n > k and (Ni)?z_ol be periodic B-spline functions of order k with an
arbitrary admissible grid (O’j)?:_ol on T canonically identified with [0, 1):

T=0<o0p<01 < <0ou1<1).
Moreover, let (N;)"=} be the dual basis to (N;)"=) and 5‘7- be the linear

span of (N;)"=}. First, we recall a periodic version of Shadrin’s theorem:

THEOREM 3.1. Let P be the L?(T)-orthogonal projection operator onto 37-.
Then there exists a constant Cy, depending only on the spline order k such
that

| P : L®(T) — L>®(T)|| < C}.

We refer to the articles [16, 5] for a proof of this result for infinite knot
sequences on the real line, which can then be carried over to T. Alternatively,
we refer to [14] for a direct proof.

Next, note that B-spline stability carries over to the periodic setting:
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A

PROPOSITION 3.2. Let n>2k and 1<p<oo. Then, for g= ZJ 0 a]N
we have

n—1

lolly ~ (X lasl?lsup 851) " = a; - [supp K51/ o
7=0

The matrix (a;;)7" =0 = (N7, N i 1, satisfies the following geometric
decay inequality, which is a consequence of Theorem 3.1 on the uniform
boundedness of the periodic orthogonal spline projection operator:

PROPOSITION 3.3. Let n > 2k. Then there exists a constant q € (0,1)
depending only on the spline order k such that
qi-d)
|dlj|§ ~ ~ ) OSZL]S”_17
max(|supp V|, [supp ;)

where d is the periodic distance function on {0,...,n—1}.

The proof of this proposition runs along the same lines as in the non-
periodic case, where B-spline stability and Demko’s theorem [6] on the ge-
ometric decay of inverses of band matrices is used. The proof in the non-
periodic case can be found in [4].

Observe that the estimate contained in this proposition for periodic
splines is not as good as the one from Theorem 2.5 for non-periodic splines
due to the different term in the denominator. Next, we also get stability of
the periodic dual B-spline functions (N}):

PROPOSITION 3.4. Letn > 2k, 1 <p<oo and h = Z}:& bj]\Af;‘. Then
- G o1—p) P 1/p—1
1l ~ (3 1bg17lsupp Ny ") = 11(b; - [supp N[/~ .
j=0

Proof. We only prove the assertion for p € (1,00). The boundary cases
follow by obvious modifications. By Propositions 3.3, 3.2, and Hélder’s in-
= I (e au)
p

equality,
1/p'
=| Zaa " 2 i,
q ('LJ)

H Zaj ]/p N*
J
SZ‘ZQVVP/&--ZOV. <Z Z|a v 1/p’V1/p g
- ; 777 1] 1~ i ; J 7 maX(Vi,Vj)
< Z(Z’aﬂqd(i,j)) Z (ZW pgdti)s ) (chz(i,j)%;;”)pq

i j ‘

J
d" Y
S DD laifPg" D% g lallf,
L2

p
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Setting b; = a;v J/ yields the first inequality of dual B-spline stability. The
other mequahty is proved similarly to the result for the non-periodic case in
Proposition 2.4. =

3.1. Periodic orthonormal spline functions. We now consider the
same situation as for the non-periodic case: Let

T=0<o00<01< <04y <+<opg <op1 <1)

be a partition of T canonically identified with [0,1), and 7 be the same

A

partition, but with o;, removed. Similarly, we denote by (Nj)?;ol the peri-
odic B-spline functions of order k with respect to 7 and by (Nj)?:_g the
periodic B-spline functions of order k with respect to T. Here, we use
the periodic extension of the sequence (aj)?:_ol, ie. oppyj = r+ o5 for

j € {0,...,n — 1} and r € Z, and the indices of B-spline functions are
taken modulo n.

To calculate the periodic orthonormal spline functions corresponding to
the above grids, we determine a function g € span{Nz- :0<1i<n-—1}such

that g L Nj for all 0 < j < n — 2. That is, we assume that

|
—

n

A

A A *
g= a;Ny,

<.
I
o

where (N 710 <j < n-—1)is the system biorthogonal to the functions
(N; : 0<i<n-—1)and & = (g, N;). For § to be orthogonal to N; for
0 < j <n—2,it has to satisfy the identities

Zaﬂ N ]\:f 0<i<n-—2.

We can look at the indices j here periodically, meaning that &; # 0 only
for j € {igp — k,...,i0}. Observe that formula (2.6) extends to the periodic
setting, which implies the following recursion for the coefficients (&;):

. Citk41 — Oiy |~ Oig — 0; . .
(3.1) Qit1 Adias 0 4 a—2—— =0, ig—k<i<ig-—L1l.
Oit+k+1 — Oi+1 Oi+k — O

With the starting value

10—1 o o
~ {+k — Oig
L |

l—ig—k+1 L+k 4

we get the explicit formula
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(3.2)
I i b o — o
dj=(—1)ﬂ‘l°+’“< || i —— )( || —— _;°), io—k <j <io.
iy 1 Ok — 0L i1 Otk ¢

Now, similarly to Definition 2.7, we are able to define characteristic in-
tervals for periodic grids as follows:

DEFINITION 3.5 (Characteristic interval for periodic sequences). Let

72, T be as above and 0i, be the new point in 7 that is not present in T.
Under the restriction n > 2k, we define the (periodic) characteristic interval
J corresponding to o;, as follows:

(1) Let
A(O)::{i —k<j<ig:l|lo;,0; <2 min 0y, O }
0=k <j<in: ooyl <2, min |lon, o]
be the set of all indices j in the vicinity of the index iy for which the
corresponding support of the periodic B-spline function N; is approxi-

mately minimal. Observe that A is non-empty.
(2) Define

m._ ©) . 4. = A
A .—{jEA .|aj|—zren/zlx(>0()|ag|}.

For an arbitrary but fixed index j(© € AD) et J© .= (05005 0 j0) 1]
(3) The interval J© can now be written as the union of k grid intervals
k—1
JO) — U [0j<0)+€>aj(0)+€+1] with j(o) as above.
(=0

Define the (periodic) characteristic interval J = J(o,) to be one of the
above k intervals that has maximal length.

3.2. L? norms of g
PRroPOSITION 3.6. Let n > 2k + 2. Then
gl ~ 171777, 1< p < oo

Proof. We can arrange the periodic point sequence (Jj)”_l so that o9 >0

§=0
and ig = |n/2]. Corresponding to this sequence, we define a non-periodic
sequence (Tj)jifgl by 7j =o0jforje{0,....n -1}, 7 p=---=71=0
and 7, = -+ = T4x—1 = 1. With this choice and the assumption n > 2k+2,

the conditions 79 > k and ig < n—k—1 are satisfied. Therefore, by comparing
(2.8) with (3.2), we get a; = &; for ig — k < j < ip, which yields

10 10

g= Z djN;, g= Z ;N7

J=to—k J=io—k
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Also, comparing the two definitions of J and J, in the present case we see
that |J| = |J|, and thus we use B-spline stability to get
10
A A 1— 71p—1
195~ > lay[Plsupp Nj[*P ~ |lg|lp ~ |T[7,
j=io—k
where the last equivalence follows from Lemma 2.8. =
LEMMA 3.7. Let n > 2k + 2. If g = S04 i N;, then

. 1
[i| S ¢ max v v
io—k<j<io max(|supp Ni|, [supp Nj|)

where we take the index 7 modulo n and d is the pertodic distance function
on {0,...,n—1}.

Proof. By looking at formula (3.2), we see that |&;| < 1 for all j, and
therefore, by Proposition 3.3,

oo LI o ¢0-d)
wil = | > dgag| S D lagl S D - —.
j=ig—k j=io—k j=io—k max(|supp Nz|7 |supp N]|)

This readily implies the assertion. m

PROPOSITION 3.8. There exists an index N (k) that depends only on k
such that for all partitions T with n > N (k), we have

18ll oy 21177, p e (100,

Proof. Assuming again that io = [n/2]| and n > 2k+2, we begin by con-
sidering the difference between the periodic function g and the non-periodic
function g corresponding to the partition 7 = (TJ)?;Lfgl with 7; = o; for
je{0,....n—1}, 7 =---=71=0and 7, =+ = Tpyp_1 = L

n—1
ui=g-g=y BN,

j=—k
where the coefficients §; are so chosen that this equation is true. This is pos-
sible since both g and § are contained in the linear span of the functions N 5
By defining the set of boundary indices B in T by

B={-k,....—1}u{n—Fk,....n—1} C {-k,...,n— 1},
we see that for j € B¢,
Bj = (u, Nj) = (g — g, Nj) = (g, Nj) — (9, Nj) = aj — &; = 0,

where the last equality follows from the fact that a; = &; for all indices j
in our current definition of 7. Therefore, u = g — g can be expressed as

(3.3) u=> BN;.

jEB
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Now, we estimate the coefficients ; for j € B by Lemma 3.7:

18il = [{g — 9, Nj)| = (g, N;)]

n—1 n—1
= ’sz’<Nz‘,Nj>‘ S Z ;| - |[supp N; N supp V|

i=0
n—1 1
zo ~
q (i) - |[supp N; N supp N;
; e 10 kmax(|suppN] \Supme|) | ’ i
< Z qd(z,zo)’
i: |supp N;N supp N;|>0
and since j € B={-k,...,—1}U{n—Fk,...,n— 1}, we have
(3.4) 8] < 700 < g%, jeB.

So, we estimate for x € J:

) =| Y 8N @) =328 3 i Ni(w)|
JEB JEB i=—k
= ‘ DS az‘jNi(x)‘
jeB i: JCsupp N;

SD 1Bl maxayl.

jeB i: JCsupp N;

Hence, by (3.4) and the estimate in Theorem 2.5 for the non-periodic matrix
(i),
0 qli=Jl
lu(z)| < ¢*?  max max L :
i: JCsupp N; JE€EB hzg

where h;; = |conv(supp IV; U supp IV;)|. Since J C supp N; for the above
indices 4, we have h;; > |J| = |J|, and therefore

[u(z)| = |(g - §)(2)] S ¢"|JI7"
This means that on J, we can estimate g from below: if x € J is such that
l9(@)| = |lgll Lo (s)/2, then |g(x)| Z |J|! by Lemma 2.8 and we get

19(z)| = [g(x) — (9(z) — 9(z))| > |g(z)] — |g(z) — g(z)|
> C1|J| ™ = ColJ| g,

where C| and Cy are constants that only depend on k and ¢ < 1. So there
exists an index N (k) such that for all n > N(k),

1]l ey 2 1917
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Since § is a polynomial on J, by Corollary 2.2 we now get, for any p € [1, o0],

HgHLp(j) Z ‘Jll/pil,

which is the assertion. m

3.3. More estimates for g. We now change our point of view slightly
and compare the function g with a non-periodic function g where we shift
the sequence T = (O’j)?:_& in such a way that we split a largest grid point
interval in the middle:

—1—0, 4 = o
00 On—1 5 OSI]I.lg;(_l (U] gj 1)7

and, as before, choose 7 = (TJ);‘;szl such that 7; = o for j € {0,...,n—1}

so that

1
T =T = Th = Tl = g Ogrjngag_l(aj —0j-1).
We refer to this choice of T as the mazimal splitting of 7. Similar to the

above, we define 7 and T to be the partitions T and T respectively with
the grid points o;, and 7;, removed.

If we work under this assumption, it is not necessarily the case that
|J| = |J| as it can happen that J lies near 79 or 7,,, but we have

PROPOSITION 3.9. Let J be the characteristic interval corresponding to
the point sequences (T,7T) and let J be the periodic characteristic interval

corresponding to (7’, 72) with the above maximal splitting. Then
| J| ~ [J].
Proof. Definitions 2.7 and 3.5 yield

. ~ i N ] ~ 1 N
(3:5) T~ i wupp Nl )~ in | lsupp Nl

where the periodic indices are interpreted in the sense of the usual periodic
continuation of subindices. Then the very definition of the point sequence
7T in terms of 7 implies

supp Nj| < [supp Nj|, —k<j<n-—1,

so, in combination with (3.5), we get |.J| < |J|. To show the converse in-
equality, we show

: i N;| < mi Nj|.
(3.6) o min_ [supp Nj| S min | [supp N

We assume that jg is an index such that [supp IVj,| = min;, <<, |[supp Nj|.
If jo¢ B={—k,...,—1}U{n—k,...,n— 1}, we even have [supp Nj,| =
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|supp Njo" If jo € B, then due to the choice of the maximal splitting,
1 1 -
|supp N, | > 50;]:125_1(0%1 —0j) = o |supp Nj|
for all indices j. So,Ain particular, (3.6) holds. Thus we have shown the
converse inequality |J| < |J| as well and the proof is complete. m

We also have the following relation between the dual B-spline coefficients
of g and ¢:

ProprosITION 3.10. For the mazximal splitting, there exists a constant
¢ ~ 1 such that for all j ¢ B,

Qj =C- dj.

Proof. Comparing the recursion formulas (2.9) for «; and (3.1) for &;,
we see that for j € {ig — k,...,i0 — 1},
54j+1 _ Q541

a; a;

(3.7) , {5i+1} B,

since by definition 7, = o; for 0 < ¢ < n — 1. So, now take an arbitrary
J € B¢. Looking at the formulas for a;; and &; we write

. j—1 j—1
& _ ( 11 M) ( 11 M)
Qj Tig — T4 Otk — 04

l=ig—k+1 l=ig—k+1
i0—1 io—1
( H U£+k—0io>< H T€+k—7'£>
T —T; o —0
(=j41 kT Mo (=j1 btk ¢

Note that for every s,t € {ip —k+1,...,ip+k—1} suchthat 0 <s—t <k
either oy — o0y = 74 — 74 Or 05 — 0y > Ts — T3, and the latter can only happen
when [7_1, 79] or [1,—1, T,] is a subset of [, 74|, so
1 1
Os =0y 2 Ts — Tt 2 5 ng;lgagi_l(o'j—i—l —0j) > ﬁ(as — 0y).
Hence we obtain o, — oy ~ 75 — 7. Therefore a;; ~ &;. This in combination
with (3.7) proves the proposition. m

PROPOSITION 3.11. Let x € [oy,0041]. Then there exists an interval
C = C(x) C T which is minimal (with respect to inclusion) with

jU [05,0'54_1] ccC

such that if K(C) is the number of grid points 0f7A~ contained in C, then

K (C)
() < L=,
C]

where ¢ € (0,1) depends only on k.
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Proof. In order to estimate g, we consider the difference u := g —c- g
and g separately, where g is the orthogonal spline function corresponding to
(T, T) that arises from the maximal splitting and ¢ ~ 1 denotes the constant
from Proposition 3.10. We can write

n—1
U = Z BjN;-k

j=—k

for some coefficients ;. This is possible since g and g are in the linear span
of (N;.‘);.’:_ik. Forj¢ B={—k,...,—1}U{n—k,...,n — 1}, we calculate

Bj={g—c-§,N;)={g,N;) —c-(§,N;) = aj —c-é&; =0,

where the last equality follows from Proposition 3.10. Therefore, the function
u =g — c- g can be expressed as

(3.8) u=> B;N;
jeB
and its coefficients 5; can be estimated by

1Bi] = [{g — cg, Nj)| < [{g, Nj)| + {3, N;)]|
n—1 n—1
= ‘ Z wi<Ni7Nj>‘ + ‘ Zwin’aNﬁ’ =: 21+ 2.
1=— 1=0

Now, by using (2.10) and the fact that j € B,
n—1
Sy <) |wil [supp N; N supp N |
i=—k
n—1

dr(7i)
< Z q
~ i——k |J| + dlSt(Supp Ni7 J) + |Supp N,L|

< Z qd(ivio) < qu(O,io).

i: |supp N;Nsupp N;|>0

|supp N; N supp V|

The term s is estimated similarly by using Lemma 3.7:

n—1
Yo < Z |W;| - |supp N; N supp IVj|
i=0
n—1 1
< d(iio) . N .
S q max . ~ supp V; Nsupp NV
; io—k<m<io max(|supp N[, [supp Np,|) | ' d
< Z qci(z',io) < qJ(O,io).

i: |supp N;N supp N;|>0
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Combining the estimates for Xy and Xy, we get |3;| < q‘i(o’io). Consequently,
for x € [y, To41),

u@)| = | > BiN; (@ \—\Z@Zaw | =38 > aii Ni(@)|

jeB jEB  i=l—k4+1
<

155] makxﬂlazgl

jEB

By the above calculation and the estimate for the non-periodic Gram matrix
inverse in Theorem 2.5, we get
¢ |Z_.7|

u(z)| < Cz(o’io) ma ma;
lu(z)| S g k}i—lgeg .

Y

where h;; = |conv(supp N; Usupp Nj)]. Since for j € B, either h;; > 19 —7_1
or hjj > 7, — T,—1, the defining property of the maximal splitting yields
hij > %maXogmgn_l(Um — 0m—1), and therefore

qcz(lo,f)
(3.9) u(z)] S

~ max;, (om — om_1)’

since also d(ig, £) < d(ig,0)+d(0,£) < d(ig,0)+2k+minjep ¢ pr1<i<e [i—jl-
Thus, by Lemma 2.8 and (3.9),

9(2)] < ¢ Ho(@)] +19(x) — ¢ g(2)]

qd(ig,é) qci(io,z)

N + ;
lconv([rg, Te11) U J)|  maxy,(om — 0m—1)

which, with the use of Proposition 3.9 and the definitions of the character-
istic intervals J and J, finishes the proof. =

So, by defining the normalized orthonormal spline function f = § /lall2,
we immediately obtain

COROLLARY 3.12. Let U be an arbitrary subset of T. Then

K(C(o
[f@pdespe 204
U

= U Noe, 0044]]
C

C:]og,0041]NUF#D Cloalr

where ¢ € (0,1) depends only on k.

We will also need the pointwise estimate of the maximal spline projection
operator by the Hardy—Littlewood maximal function in the periodic case,
which is true in (the non-periodic case is Theorem 2.6):

THEOREM 3.13. Let P be the orthogonal projection onto S‘fr. Then
|Ph(t)] S Mh(t), he LX),
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where Mh(t) = sup;s, ||~ \; Ih(y)|dy is the periodic Hardy-Littlewood
mazximal function operator and the sup s taken over all intervals I C T
containing the point t.

Proof. Let h be such that supp h C [0y, 0¢41] for some £ € {0,...,n—1}.
The first thing we show is that for any index r,

1PR] 11 < ¢l -

0'7“70'7'-1—1]

For this we write, when ¢ € [0, 0,41],

Ph(t) = Z Z aij (h, Ni) N, ().
j:supp Nj St 1:supp NiD[O'[,O’g+1]

After using Proposition 3.3 and a simple Holder, this is less than

Ml >

j:supp Nj St 4:supp Ny D[og,0041]

d(i.j) .
q N;(t

max(|supp Ny, |[supp Nj )

Integrating this estimate over [0, 041], we get

(3.10) 1PR]| 11 ) S IRl g™,

Or,0r+41

The same can be proved for the non-periodic projection operator P, since
we can use the same estimates.

Now, we take an arbitrary function h and localize it by setting

thh-Il[

00,0041]"

We fix a point t € [0, 0yn41] and associate to P the non-periodic projection
operator P corresponding to the maximal splitting. Then

(3.11) Ph(t) = Ph(t) + (Ph(t) — Ph(t)).

In order to show f’hgt) < Mh(t), we first recall that Theorem 2.6 yields
|Ph(t)| < Mh(t) < Mh(t). For the second term (P — P)h, we write

and prove an estimate for g¢(t) := (P — P)hy. Observe that
9e(t) = g, Ny NF(t) = D> > aij{ge, Ni)Nj(t),
1€EB j=m—k+1i€B

since the range of bothAfA’ and P is contained in the linear span of the
functions N and hy — Phy and hy — Phy are both orthogonal to the span
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of Nj, i ¢ B. Therefore, by using Theorem 2.5 for a;;,

471
l9e()] S Z Z

j=m—k+1ieB

i)

Consequently, by (3.10) and its non-periodic counterpart,

m li—jl .
q i
(3.12) eI S Y 3T —a el

j=m—k+1ieB Y
Since we have performed the maximal splitting for our periodic partition,
we get
1
hij > 3 max(o, —o,-1), @€ B.
v

Denoting by Cy,, the convex set that contains [0y, opy1] U [0, 0mt1] and
has the minimal number of grid points, we get

|C€m|
d(e,m)

ZJN )

Thus, we estimate (3.12) by

Z qul_]“i‘(j(l,z)d\(g’ m) ||h||LgUg,O'g+1]
j=m—k+1i€B | m€|

< (¢, m) max(q gl=mIHEOY L ()
€

for all t € [0, Om41]- By the triangle inequality, d(¢, m) < d(i,m)+d(i, £) <
li —m| 4+ d(i,¢) and thus we can estimate further

l96(t)] S max ol O (1),

1/2

where a can be chosen as ¢*/#. Summing this over ¢, we finally obtain

(P = P)h(t)| S o®Om™ Mh(t) < Mh(1),

which in combination with (3.11) and the result for Ph(t) yields the assertion
of the theorem. =

3.4. Combinatorics of characteristic intervals. Similarly to the
non-periodic case we can analyze the combinatorics of subsequent charac-
teristic intervals. Let (s5,)72; be an admissible sequence of points in T and
( fn)n 1 be the corresponding perlodlc orthonormal spline functions of or-
der k. For n > 1, the partitions 7,, associated to fn are defined to consist of
the grid points (sj) ?_1 and we enumerate them as

ﬁZ(USUn,OS"'SUn,n—1<1)-
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If n > 2k, we denote by jT(LO) and J,, the characteristic intervals J(© and
J from Definition 3.5 associated to the new grid point s,. For any =z € T,
let C,,(z) be the interval from Proposition 3.11 associated to J,. We define
dy,(z) to be the number of grid points in 7, between z and J,, contained in
Chr(x) counting = and the endpoints of Jp. Moreover, for a subinterval V'
of T, we denote dy (V) = mingey dp(z).

An immediate consequence of the definition of J, is that the sequence
(jn) of characteristic intervals forms a nested collection of sets, i.e., two sets
in it are either disjoint or one is contained in the other.

Since the definition of .J,, only involves local properties of the point se-
quence (s;), and the definition of J,, is the same as the definition of J,,
for any identification of T with [0, 1) such that between the newly inserted
point s;, and 0 or 1 there are more than £ grid points of 7,,, we also get the
periodic version of Lemma 2.9.

LEMMA 3.14. Let V' be an arbitrary subinterval of T and let 8 > 0. Then
there exists a constant Fy, g only depending on k and 8 such that

card{n > 2k : J, CV, |Ju| > BIV|} < Fpp.
Additionally, Lemma 3.14 has the following corollary:

A

COROLLARY 3.15. Let (Jp,)2, be a decreasing sequence of characteristic
intervals, i.e. Jn, , C Jn,. Then there erists a number k € (0,1) and a
constant Cy, both depending only on k, such that

| Jn,| < Cuiildy,|,  i€N.

4. Technical estimates. The lemmas proved in this section are similar
to the corresponding results in [10] or [13], and also the proofs are more or
less the same. The exception is Lemma 4.4 for which we give a new, shorter
proof.

LEMMA 4.1. Let N(k) be given by Proposition 3.8, f = ZZO>N(k) an f
and V be a subinterval of T. Then

. . 1/2
(4.1) P 3 lfimlae s § (D laifs0)2) at,
vejer vV jer
where
I''={j:J; CV and N(k) < j < oo}.
Proof. If |V| =1, then (4.1) holds trivially, so assume that |V| < 1. For
fixed n € I', Corollary 3.12 and Proposition 3.8 imply

(4.2) V1] dt < gV J Y2 < gV | | fult)] at.
Ve jn
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Now choose § = 1/4 and let J& be the unique closed interval that satisfies
J%| = B|J,| and center(J?) = center(J,,).

Since f, is a polynomial of order k on the interval .J,,, we apply Corollary
2.2 to (4.2) and estimate further

(4.3)
; (V) ; i (V) b o) 2
[ lanfn(®)]dt S a* V9§ Jan fu@l dt < g | (D lasfi0)2) " ar
ve i j8 jer

Define I'y:={j € I'": d (V€)= s} for s >0. If (J, )J | is a decreasing se-
quence of characteristic intervals with n; € I';, we can split (J ;) into at most
two groups so that the intervals in each group have one endpoint in common.

Lemma 3.14 implies that there exists a constant Fj, only dependmg on k,
such that each point ¢ € V' belongs to at most F}, intervals J , J € I's. Thus,
summing over j € I's, we see from (4.3) that

> Vlaifiwdt s> ¢ | (Z|agfg(t)|2)1/2 dt

Jjels Ve JETI jjﬁ Ler
R . 1/2
<q (Z |azfe(t)|2) dt
vV el

Finally, we sum over s > 0 to obtain inequality (4.1). m

Let g be a real-valued function defined on the torus T. In the following,
we denote by [g > A] the set {x € T : g(z) > A} for any A > 0.

LEMMA 4.2. Let f=> >, anfn with only finitely many non-zero coef-
ficients ap, A >0, r <1 and

Ey=[Sf>)\, By,=[Mlg, >r],
where Sf(t)2 =50, nfn( )2 is the spline square function. Then
E\ C By,.
Proof. Fix t € E). The square function Sf = (>°>7 |an fr|?)V/? is con-
tinuous except possibly at finitely many grid points, where Sf is at least

continuous from one side. As a consequence, for ¢ € FE), there exists an
interval I C E) such that ¢ € I. This implies

(M1g,)(t) = sup U™ | 1, (2) da
toU U
__ENU| _|EanI] |1
= sup > ==
] Vi

so t € By ,, proving the lemma. =

=1>r
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LEMMA 4.3. Let f = anN(k) anfn with only finitely many non-zero

coefficients an, A > 0 and r < 1, where N (k) is given by Proposition 3.8.
Define

=[Sf >\, By, :=[Mlg, >71],
where Sf(t)? = > n>N (k) a2 f(t)? is the spline square function. If

A={n:J, ¢ B, and N(k) <n < oo} and g:Zanfn,
neA

then

(4.4) | Sg(t)?at <. | Sg(t)?at.
B\ ES

Proof. First, we observe that if By , = T then A is empty and (4.4) holds
trivially. So assume B, # T. By Propositions 3.6 and 3.8,

S Sg(t)Q Z S |anfn |2dt < Z S |anfn |2dt
Ex neA Ey neA j,

We split the latter expression into

L= | laafa@®Pdt, L= | l|anfo(t)dt.

n€A j.nES neA j,nE,
Clearly,
(4.5) L<Y |\ Janfu(®)?dt = | Sg(t)*dt.
neA ES ES

To estimate 5, we first observe that Fy C B, by Lemma 4.2. Since the set

By, = [M 1g, > r]is open in T, we decompose it into a countable collection
(Vj)f;i1 of disjoint open subintervals of T. Utilizing this decomposition, we
estimate

(4.6) L<Y Y| ladaPa

neA j:|J,NV;|>0 J,NV;

If n € Aand |J, NV;| > 0, then, by definition of A, J, is an interval
containing at least one endpoint x of V; for which

Mig, (z) <.
This implies
|ExNJ,NV;| < 7[J,NV;|  or equivalently |ESNJ,NV;| > (1—7)-[J,NVj].
2

Using this inequality and the fact that | fn is a polynomial of order 2k — 1
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on J,, allows us to use Corollary 2.2 to deduce from (4.6) that

I2 Sﬂ" Z Z S |anfn(t)|2dt

nE€A j: | J,NV;]>0 BSNJnNV;

= DR I O

n€A psnJ,NBy

<> Vlanfa@®Pdt = | Sg(t)*dt

neA ES ES
The latter inequality combined with (4.5) completes the proof. =

LEMMA 4.4. Let V' be an open subinterval of T and f =), infn €
LP(T) for p € (1,00) with supp f C V. Then there exists a number R > 1
depending only on k such that

(4.7) > RtV Nanl a5y Sp 11115,

with V being the interval with the same center as V' but with three times its
diameter.

Proof. We can assume that [V| < 1/3, since otherwise |V¢| = 0 and the
left hand side of (4.7) is zero.

We start by estimating |a,|. Depending on n, we partition V into inter-
vals (A J)jv 1, Where except at most two intervals at the boundary of V', we
choose A,, ; to be a grid point interval in the grid 7. Let I, 0= [One,0p g+1]
be the ¢th grid point interval in 7;,. Moreover, for a grid point interval I in 7y,

and all subsets E' C I, we set C,,(F) to be the interval given by Proposition
3.11 that satisfies

Co(E) D TUJ,
and we denote by K,,(Cpn(I)) the number of grid points from 7, that are
contained in Cyp,(I). Next, we define r,, = min, , T Kn(Crh(Ing)), anj =

K,n(Cp(Ay,;)) and we choose a number S > 1 which we will specify later
and estimate by Holder’s inequality (with p’ = p/(p — 1))

] = I, Ja)] \Z | 7(6)fa) dt

=1A,;

(1 1rrar)™( § ihopa)”

j=1 A g An,j

Nn
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Al s 1/p 1/p'
=Y gmemasena(§ p@Pae) (] a0 dt)
J= Anj Anj
all / , p—1 1/p
< (Y sy (ZSP“W [ irepa (5 170 o) )
j=1 An,j Anj

Since the first sum above is a geometric series, and by using Corollary 3.12
for the integral of f,, we obtain

ilA .|p—1 1/p
48 i, << §Pan.s DPde- 4,2 1A ) .
(4.8) |G| Z ATSL] (t)] | Crl A, )P

We also estimate || f,||” by applying Corollary 3.12:

Lp(Ve)

a2 Y VN Lol

anHLp(VC) ~ |C ( n£)|p

e:Venl, (#0

. 1r,,(t)
= | Ju|P/2GP"n it
SR NI DR v
Ve r:Venl, (#0
By integration of the function ¢ — ¢7P, this is dominated by
2

Miny, Feqy #@'C (Ln,e) P~

(4.9)

For every E2 C T, let £o(E) be an index such that I, s (py N E # () and

— i (L))l
1Crn(In g0 (E))] e:zfﬁ%%#@w( 0l

Now we introduce one more notation: let B,,(E) C Cy (I, ¢y (E )) be the largest

interval B such that BNE = J, N E. Obviously B, (FE) D J,, for every E.
Using this notation, we estimate (4.9) and conclude

B
(i) S [Ba(Ve)lp—t
Combining (4.8) and (4.10) yields

Zde <v>|an|p||fn||Lp(Vc) S Z|J pgorn RPdn (V)| B, (7€) (1P

< |[An [P~
. 5.5 \Pan,j Pt . L)
<;(q e ) Isor Exre)

n?j

(4.10) 1Fall?,
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Since (flw-);\]:’“”1 is a partition of V for any n, we further write

jn p—lA § .
A DI ()

|J [[An,j[”
X pan] )
Z |Cn (A n,g)|p

To estimate this by |, | f(¢)|P dt, we will estimate pointwise for fixed t € V.
To do this, we first observe that we have to estimate the expression

2 p—1 ) 7 p—1

Z < ‘JTL‘ ) q\prandn(V)(q"S)pan,j(n) [Jn] 1A 7,5 ”)| :

e \[Bp(VO)] |Cn(A n,J(n))|p

where A,, ;) is just the interval A, ; such that ¢ € A, ;. Next, we split the
summation index set into |7, where

Ts ={n: 7y + ap jn) = s}
Since czn(V) < Gy j(n), We see that if R, S > 1 with RS§ < 1, then there
exists a < 1, depending only on k, such that the above expression is <

p-1 |j | |"4n,j(n)|p_1

(4.11) Z Z<‘B|JVIC> |gn(

= ne€lys

La, ;@O0 dt.

Anjm)lP
Now, we split the analy51s of this expression into two cases:

CASE 1: Summing over n € Ts; = {n € T} : |Bn(XN/C)| < |Bp(V)| or
V| < |Ju|}. The inner sum in (4.11), taken over n € Ty, is immediately
estimated by A
Z ‘Jn‘ ’An,j(n)‘p_l
’Cn(An,j(n))lp

neTs,l

To estimate this sum, we further split 7 1 into
Si={neTs;: J,, contains at least one of the two endpoints of V1,
52 = T571 \ Sl.

By the conditions of Case 1 and the definition of ‘7, if n € S1 we have
|Jn| > |V| and a geometric decay in the length of J,, by Corollary 3.15, and

therefore
J A p—1 p—1 p—1
5~ 12l W>| oy uHVI pgz(hﬂ) <1
n€esSy ’Cn( ’J(n) n€St .5 n))’ nest |Jn|

Next, observe that under the conditions in Case 1 and the definition
of Sz, we have |J, N V| = 0 for n € Sz. Since additionally (4, j¢,)) is a
decreasing family of subsets of V' and since 1, + a, ji,) = s for n € Tj,
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we can split S into Sy and S92 such that for any distinct ni,ne € So;
for i € {1,2}, the corresponding intervals jm and an are either disjoint or
share an endpoint.

If n € Sp; then an endpoint a of B, (V) coincides with an endpoint
of V (since J, C V¢). In this case, for t € B,(V) we let B,(t) C Bn(V)
be the interval with endpoints ¢ and a. Let J for 8 = 1 /4 be the interval
characterized by the properties

JBc J,, center(J%) = center(J,), |JP| = |Jn|/4.

By Lemma 3.14, for each point u € T, there exist at most Fj, indices in Sz ;
such that u € Jf . We now enumerate the intervals jn with n € S, in the
following way: Since the intervals are nested, we write Jp, ; for the maximal

ones and we assume that J, C jw’j for all j. Since the two intervals

ne,54+1
JIny C Jp, for ni,ng € Sz ; have one endpoint in common, for each maximal

interval J,, , we have at most two sequences of this form.

ng1
Using this enumeration, we write

| An [P~ | L peL dt
: <287 VIPT —_
; |Cn(An,J(n))|p %jﬁs _ |Bn£,j(t)|p
j

TLGSQ7

Observe that the function
zes [{lgttedy, x =By, ()}
is uniformly bounded by 4F} for all z > 0. Since we also have the estimate
V[/2 < |Bu(t)], n€ Satelp,

we conclude that

o

dt dx
-1 -1 -1 -1
VP E — < 4F; VIP — < C
bi Jg, €3 V]/2
sJ

where (Y}, is some constant only depending on k. This finishes the proof in
the case n € Ty 1.

CASE 2: Summing over Tso = {n € Ts : |By(V)| < 1B, (V)| and
|Ju| < [V]}. Observe that for n € T,5 we have J, C V. Next, we subdi-
vide T2 into generations G, , such that for two indices n1,ng in the same
generation, the corresponding characteristic intervals jm and jn2 are dis-
joint. We observe that the geometric decay of characteristic intervals yields
| Ju|/|V| < &° for some & < 1 and n € G, 4. Therefore, by introducing 8 < 1
such that S(p—1) < 1 we continue estimating (4.11) by using the inequality
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V| < |Bp(VE)| for n € Ty,
> <_‘j71‘—)p_1 [Jul [An o0 P~
|Bn (V)] |Cr(An )P

n€Tls 2
< i K091 3
=0

n€Gs ¢

|J |1+8(— 1)|A N 1
’V|,6’(p 1 |Cn( n,j5( n))'p

We further split G, into
G ={n€ Gt Cn(Anjm)l =1 -2V}, G% =G\ 6L

Since |V| < 1/3 and the intervals J, for n € Qilé) are disjoint, we immediately
see that Znegilg || | Ay P71 < 1, so we next consider

|jn|1+ﬁ(p—1)|14n,j(n) |p—1

(4.12) _ .

To analyze this expression, we define C}, (A, j(n)) as Crn(Ap j(n)) if 0CH (A, ()
NA, i) jm) 7 0, and as the smallest interval which is a subset of Cy,(A,, j())

that contains J, and OV N4A, ) EOCK (A () N A, j(n) = 0. The canonical
case is the first one; the second case can only occur if A4, ;(,, is not a grid point
interval in grid n, which happens only if A, ;. lies at the boundary of V.
With this definition, we consider the set of different endpoints of Cy,(A,, j())

intersecting A,, j(,), i-e.,
o B, 2
E37g = {LE c 80;(14”’](,1)) N An,j(n) n e Q;E)},
enumerate it as the sequence (x, )72, which by definition is entirely contained

in V, and split the collection G (22 according to those different endpoints into

g( {n € g( ) . ¢ is minimal with z, € 0C), (A, 3m) N An ) }-

sér_

If weset Agp={r:g

2. 2

€A peg?

s, ,r

# (0}, we can write (4.12) as

sﬂr

|jn|1+,3(p—1) |An’j(n) |p—1

\V|/3(p‘1)!Cn(An,j(n>)|p

/\

In|
|V|/3p [V |B—1) Z Z |C! (A )|1 B(p—1)"

’I“GAS iy (2)

slr

Since the J,’s in the above sum are disjoint, J, C V and z, is an endpoint
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we can estimate

of Gy, (Ay j(n)) for all n € g%

s,4,r)
|
|V|,3(p 1) TEXA;Z z(;) |C (A n))|1—ﬁ(p—1)
SZT 2|V| 1
T'EAsg 0

In order to finish our estimate, we show that [As_1 ¢ < 8s?+ 1 =: N. If
we assume the contrary, let (n;); be an increasing sequence such that

nzeg

sérn

for some different values r,,. Consider F' := A Since the J,,’s corre-

nN7j (nN) :
sponding to n; are disjoint, one of the two connected components of V' \ F
contains (N — 1)/2 = 4s? intervals J,,,, i = 1,..., N. Enumerate them as
Jm17 LR ) Jm(N—l)/Q‘

Since any real sequence of length s? + 1 has a monotone subsequence of
length s, we only have the following two possibilities:

(1) There is a subsequence (¢;)_; of (m;) such that, for each i,
conv(Jy, U F) C conv(Jp, 1 UF).

(2) There is a subsequence (¢;)_; of (m;) such that, for each 4,

(Je

conv UF) C conv(Jy, UF).

1+1

Here by conv(U) for U C V we mean the smallest interval contained in V
that contains U.

We observe that conv(.J,, UF) C C (Ap, j(ny)) for all i since the sequence
(Ay, j(n,))i is decreasing and therefore, in case (1), we have ay, j,) > @ and
hance ay, j(s,) > s, which is in conflict with the definition of Ts_1 .

We now recall that r, = min__; ., Kn(Cn(Inye)). We let i(n) be an
index such that

In case (2), we distinguish two cases:
(a) Cfs (Ifs,i(gs)) 2 U;:l Jgj,
(b) Co, (o, ie,)) contains {z, ,...,zr, }.
If we are in case (a), we have of course r, > s, in contradiction to the
definition of T}, 2. If we are in case (b), since the points x,, are all different

by definition of Qfg) . and they are all (except possibly the two endpoints
of V') part of the grid points in the grid corresponding to the index /4, we
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have 7, > s as well, which shows that |As_1,] < 8s® + 1; therefore, by
collecting all estimates and summing geometric series over ¢ and s,
dn (V)| 4 ;
S RO an Pl ) S 171
n

which finishes the proof of the lemma.

5. Proof of the main theorem. In this section, we prove our main
result Theorem 1.1, that is, unconditionality of periodic orthonormal spline
systems corresponding to an arbitrary admissible point sequence (sy,),>1 in
LP(T) for p € (1,00).

Proof of Theorem 1.1. We recall the notation

st =( % lafuP)” Ms@ = swp [ anfult)
n>N (k) m2N(k) "N k)

when
= Z an fn.-
n>N (k)
Since (fn)ff:l is a basis in LP(T), 1 < p < oo, by Theorem 3.1, to show
its unconditionality, it suffices to show that (fyn),>n() is an unconditional

basic sequence in LP(T). Khinchin’s inequality implies that a necessary and
sufficient condition for this is

(5.1) 1S Fllp ~p [[fllp, [ € LP(T).
We will prove (5.1) for 1 < p < 2 since the cases p > 2 then follow by a
duality argument.

We first prove the inequality

(5.2) L llp Sp (1S Fllp-

To begin, let f € LP(T) with f => "> N (k) Onfn- Without loss of generality,
we may assume that the sequence (an),>n(x) has only finitely many non-
zero entries. We will prove (5.2) by showing that ||M f||, <Sp [|Sf]p. We first

observe that
0

(5.3) IMFIp=p | A 1p(A) dA
0
with p(A) :=[Mf > N :={t € T: Mf(t) > A}. Next we decompose f into
two parts 1, 2 and estimate the corresponding distribution functions. We
first set, for A > 0,
Ey:=[Sf > )], By = [Mlg, >1/2],

I'i={n:J,Cc B\, N(k)<n<oo}, A:=IF
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where we recall that J, is the characteristic interval corresponding to the
grid point s,, and the function f,,. Then let

p1 = Z anfn and (g 1= Zanfn.

nel’ neA
Now we estimate 11 = [Mp1 > A\/2]:
1(A) = {t € Ba: Moi(t) > A/2} + [{t ¢ By Mgi(t) > A/2}]

2
<|B + 1 | M) t<|BA|+ 1> lanfult) dt.
BS BCneF

We decompose the open set B into a disjoint collection of open subintervals
of T and apply Lemma 4.1 to each of those intervals to conclude from the
latter expression:

¢<><\BA\+ | St at

B/\
=|BA|+§ \ Sf(t)dt+§ | Sr)at
Ba\E» ExNBy,
<|B)\|+|B)\\E>\|+ | Sr)at,

E>\

where in the last inequality, we have simply used the definition of ). Since
the Hardy-Littlewood maximal function operator M is of weak type (1, 1),
|Bx| < |Ey| and thus finally

(5.4) v1(A) S !Ew | Srt)at

E)\

From Theorem 3.13 and the fact that M is a bounded operator on L? [0, 1],
we obtain
1
P2(A) S —2||M902||2 Sy ||<P2||2 2 ||5902||§
( S Spa(t ) dt + S S@Q(t)2 dt).
E\ ES

1
)\2

We apply Lemma 4.3 to get

(5.5) () < % [ Sia(t)?dt.
5

Thus, by combining (5.4) and (5.5),
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P(A) < h1(A) +ha(N)
1

1 2
SIEA+5 | Sr@de+ 55 | Sr?* .
B E§

Inserting this inequality into (5.3) gives
IMFIE < p | WY E A +p | A2 | SF(8) dedn
0 0 o
0.]

+p {73 | Sr(t)?dedr
0 ES
1 Sf(t)
= |SFIE+p\SFE) | A2 dadt
0 0
1 0

+p|SF)? | A drde,
0 Sf(t)
and thus, since 1 < p < 2,

1M fllp Sp [15F1lp-

So, the inequality || f||, <p ||Sf]lp is proved.
We now turn to the proof of

(5.6) ISFllp <p l[flles 1 <p<2.

It is enough to show that S is of weak type (p,p) for 1 < p < 2. Indeed, S is
(clearly) also of strong type 2 and we can use the Marcinkiewicz interpolation
theorem to obtain (5.6).

Thus we have to show

p
(5.7 (5r> 15 B pemm.as0
We fix f and A > 0, define G := [Mf > )] for A > 0 and observe that
/1l
<
(58) |G>\| ~p Ap 9

since M is of weak type (p, p), and, by the Lebesgue differentiation theorem,
(5.9) If| <A ae. onGS.

We decompose the open set Gy C [0, 1] into a collection (V})
open subintervals of [0, 1] and split the function f into

oo

52, of disjoint

hi=f-las+ > Tv,f, g:=f—h,

J=1
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where for fixed j, Ty, f is the projection of f -1y, onto the space of polyno-
mials of order £ on the interval V.
We treat the functions h, g separa,tely The definition of A implies

(5.10) Hm@-5|f |%ﬂ4-§j§ (Ty, f)(t

Jj=1V;
since the intervals V; are dlSJOlIlt. For the second summand, by Corollary 2.2,
2
J (1, @t~ vy~ (§ 1T, 1)l at)
Vj Vj

Since Ty; is bounded on L' (a very special instance of Shadrin’s theorem,
Theorem 2.3), we have

2 -

§ (@, H®2ae S 7§ 1F01dE)” S (MF@)2IV] < 02 Vil,

Vi Vj
where x is a boundary point of V; and the last inequality follows from the
defining property of V;. By using this estimate, from (5.10) we obtain

P13 < X272\ (@) At + NG,
G
and thus, in view of (5.8),
IRlI3 Sp A2PILFID-

This inequality allows us to estimate

1f 117
AP

4
5h > /2] < 5 IShIE = <1013 <

which concludes the proof of (5.7) for the part h.
We turn to the proof of (5.7) for g. Since p < 2, we have

610 Sotr=( X U s PR < X Lo I PIOP.

n>N(k) n>N (k)
For each j, we define XN/J to be the open interval with the same center as
V:j/ but with five times its length. Then set G := U;’il V; and observe that
|G| < 5|Gy|. We get

~ opP
189> A2l <[Gal+ 55 | Sg(t)dt.
G5
By (5.8) and (5.11), this becomes

(e.9]

59> 2215 A (1715 + > § 1o, FPIfaP at).

n=>N(k) G5
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But by definition of g and the fact that Ty, is bounded on L?,

gl => "V 1F() =Ty, fOPdt < Y- V1@ S AR,
3V Y

so to prove |[Sg > A\/2]| < A7P| f||} it is enough to show that

(5.12) YoV g fadPIfaP dt S gy,

n>N(k) G

W(?)Onow let gj := g - 1y,. The sugoports o.f g; are disjoint, and so ||g||h =
> e |g;|b. Furthermore g = >_j—19; with convergence in LP. Thus for
each n,

Z gj?f?’l

and it follows from the definition of g; that

| gi(t)p(t)dt =0

Vi
for each polynomial p on V; of order k. This implies that (g;, fn> = 0 for
n < n(Vj), where

n(V) :=min{n: T, NV # 0}.

Hence for all R > 1 and every n,

(5.13)
’<9,fn>|p = ‘ Z <gj,fn>’p < ( Z Rdn(Vj)|<gj,fn>|R—dn(vj))p
ginzn(Vj) jin>n(Vj)
( Z den V)|<g] fn )( Z R p'dn (V))P/p
j:n>n(Vj) jin>n(V;)

where p’ = p/(p — 1). If we fix n > n(V}), there is at least one point of the
partition 7, contained in Vj;. This implies that for each fixed s > 0, there
are at most two indices j such that n > n(V;) and d,,(V;) = s. Therefore,

i, p/p
(]n;j(v)Rp YT g,

and from (5.13) we obtain

(o fdl? Sp Y BP0, f .

j:n>n(Vj)
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Now we insert this in (5.12) to get

S\ g f)PIfn )P

n=N(k) Ge

S Y S RO ) fan)lP dt

n=N(k) j:n>n(V;) GS,

o > Bg )l I f) P dt
n=N(k) j:n=n(V;) ve
<S03 RO (gl It
i=1n>n(V;) vy

J

We choose R > 1 such that we can apply Lemma 4.4 to obtain

S g fa) L0 at panj 2= |lgl,
n=N(k) G¢

proving (5.12) and hence ||Sf|5 <, || fI|5- Thus the proof of Theorem 1.1 is
complete. m

Acknowledgements. K. Keryan was supported by SCS RA grant 18T-
1A074 and M. Passenbrunner was supported by the FWF, project number
P27723. Part of this work was done while K. Keryan was visiting the De-
partment of Analysis, J. Kepler University Linz in January 2017.

References

[1] S. V. Bockarev, Some inequalities for Franklin series, Anal. Math. 1 (1975), 249-257.

[2] W. Bohm, Inserting new knots into B-spline curves, Computer-Aided Design 12
(1980), 199—-201.

[3] Z. Ciesielski, Equivalence, unconditionality and convergence a.e. of the spline bases
in L, spaces, in: Approximation Theory (Warszawa, 1975), Banach Center Publ. 4,
PWN, Warszawa, 1979, 55—68.

[4] Z. Ciesielski, Orthogonal projections onto spline spaces with arbitrary knots, in: Func-
tion Spaces (Poznari, 1998), Lecture Notes in Pure Appl. Math. 213, Dekker, New
York, 2000, 133-140.

[5] C. de Boor, On the (bi)infinite case of Shadrin’s theorem concerning the Loo-bounded-
ness of the Lo-spline projector, Proc. Steklov Inst. Math. 277 (2012), suppl. 1, 73-78.

[6] S. Demko, Inverses of band matrices and local convergence of spline projections, STAM
J. Numer. Anal. 14 (1977), 616-619.

[7] R. A. DeVore and G. G. Lorentz, Constructive approzimation, Grundlehren Math.
Wiss. 303, Springer, Berlin, 1993.



146

CHAPTER 6. UNCONDITIONALITY OF PERIODIC SPLINE SYSTEMS IN L”

8]
[9]
[10]

[11]

Unconditionality of spline systems in LP 91

J. Domsta, A theorem on B-splines. II. The periodic case, Bull. Acad. Polon. Sci. Sér.
Sci. Math. Astronom. Phys. 24 (1976), 1077-1084.

G. G. Gevorkyan and A. Kamont, On general Franklin systems, Dissertationes Math.
(Rozprawy Mat.) 374 (1998), 1-59.

G. G. Gevorkyan and A. Kamont, Unconditionality of general Franklin systems in
L?[0,1], 1 < p < oo, Studia Math. 164 (2004), 161-204.

G. G. Gevorkyan and A. A. Sahakian, Unconditional basis property of general Franklin
systems, Izv. Nats. Akad. Nauk Armenii Mat. 35 (2000), no. 4, 7-25.

K. Keryan, Unconditionality of general periodic Franklin systems in LP[0,1], 1 < p
< 00, J. Contemp. Math. Anal. 40 (2005), 13-55.

M. Passenbrunner, Unconditionality of orthogonal spline systems in LP, Studia Math.
222 (2014), 51-86.

M. Passenbrunner, Orthogonal projectors onto spaces of periodic splines, J. Complex-
ity 42 (2017), 85-93.

M. Passenbrunner and A. Shadrin, On almost everywhere convergence of orthogonal
spline projections with arbitrary knots, J. Approx. Theory 180 (2014), 77-89.

A. Shadrin, The Lo -norm of the La-spline projector is bounded independently of the
knot sequence: a proof of de Boor’s conjecture, Acta Math. 187 (2001), 59-137.

Karen Keryan Markus Passenbrunner
Yerevan State University Institute of Analysis
Alex Manoogian St. 1 Johannes Kepler University Linz
0025, Yerevan, Armenia Altenberger Strasse 69

and
American University of Armenia

4040 Linz, Austria
E-mail: markus.passenbrunner@jku.at

Marshal Baghramyan St. 40
0019, Yerevan, Armenia
E-mail: karenkeryan@ysu.am; kkeryan@aua.am



CHAPTER 7

On almost everywhere convergence of tensor product spline
projections

147



148 CHAPTER 7. A.E. CONVERGENCE OF TENSOR PRODUCT SPLINE PROJECTIONS

68 (2019), 3-17

On Almost Everywhere Convergence
of Tensor Product Spline Projections

MARKUS PASSENBRUNNER & JoscHA PROCHNO

ABSTRACT. Let d € N, and let f be a function in the Orlicz class
L(log™ L)d —1 defined on the unit cube [0, l]d in R9. Given knot se-
quences A1, ..., Az on [0, 1], we first prove that the orthogonal pro-
jection Pa, A, (f) onto the space of tensor product splines with

.....

arbitrary orders (kp, ..., kg) and knots Ay, ..., Ay converges to f al-
most everywhere as the mesh diameters |A], ..., |Ag]| tend to zero.
This extends the one-dimensional result in [9] to arbitrary dimensions.

In the second step, we show that this result is optimal, that is, given
any “bigger” Orlicz class X = o (L)L(log™ L)4=1 with an arbitrary
function o tending to zero at infinity, there exist a function ¢ € X and
partitions of the unit cube such that the orthogonal projections of ¢ do
not converge almost everywhere.

1. Introduction and Main Results

The notion of splines is originally motivated by concepts used in shipbuilding de-
sign and was first introduced by Schoenberg in his 1946 paper [13] to approach
problems of approximation. The particular interest in tensor product splines, be-
sides a purely mathematical one, is due to their various applications in high-
dimensional problems. For instance, in statistics, they are used in nonparamet-
ric and semiparametric multiple regression, where high-dimensional vectors of
covariates are considered for each observation (see, e.g., [16]) and in the approx-
imation of finite window roughness penalty smoothers [6]. In data mining, they
appear in predictive modeling with multivariate regression splines in the form
of popular MARS or MARS-like algorithms [17]. Further applications appear
in problems related to high-dimensional numerical integration. With this paper,
we contribute to a better understanding of theoretical aspects of tensor product
splines.

One of the major mathematical achievements in the last years is Shadrin’s
proof of de Boor’s conjecture [15], where he showed that the max-norm of the
orthogonal projection P onto spline spaces of arbitrary order k with knots A is
bounded independently of the knot-sequence A. In particular, this result implies
the L ,-convergence (1 < p < 00) of orthogonal spline projections, that is, for all

Received January 4, 2017. Revision received January 25, 2018.
M. Passenbrunner was supported by the Austrian Science Fund, FWF projects P 23987-N18 and
P 27723-N25. J. Prochno was supported in parts by the Austrian Science Fund, FWFM 1628000.
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fe€Lpyla,b],

Pa(f) =5 |,

provided that the mesh diameter |A| tends to zero. A similar result holds for the
Lo-norm if one replaces the space L, with the space of continuous functions.
Recently, in [9], Shadrin and the first named author extended this result. They
proved that the max-norm boundedness of Pa implies the almost everywhere the
(a.e.) convergence of orthogonal projections P ( f) with arbitrary knot-sequences
A and f € Li[a, b], provided that the mesh diameter |A| tends to zero. Their
proof is based on a classical approach, where a.e. convergence is proved on a
dense subset of L1, and where it is shown that the maximal projection operator is
of weak (1, 1)-type. The main tool in the proof of this theorem is a sharp decay
inequality for inverses of B-spline Gram matrices.

This leaves open the natural question of a corresponding result in higher di-
mensions. In the first step in this work, we extend the one-dimensional result
obtained in [9] to arbitrary dimensions d € N, where the function f, defined on
the unit cube in R?, belongs to the Orlicz class L(logt L)4~! (details are given
further). In the second step, which is the main result of this paper, we prove that
this is in fact optimal.

Let us present our results in more detail. We write PA for the orthogonal pro-
jection operator from L»[0, 114 onto the linear span of the sequence of tensor
product B-splines and denote by |A| the maximal directional mesh width. The
first result of this paper is the a.e. convergence of PA f to f for the Orlicz class
L(log+ L)d_l:

THEOREM 1.1. Let f € L(log™ L)4~!. Then, as |A| — 0,
Pof— f ae.
The second and main result of this work shows that this result is optimal.

THEOREM 1.2. For any positive function o on [0, 0c0) with liminf; o () =0,
there exists a nonnegative function ¢ on [0, 11 such that

() the function o (¢) - ¢ - (logt )¢~ is integrable, and
(ii) there exist a subset B C [0, 11¢ of positive Lebesgue measure and a sequence
of partitions (A,) of [0, 11¢ with |A,| — O such that, for all x € B,

limsup | Pa, ¢(x)| = 00.
n—oo

The paper is organized as follows. In Section 2, we present the notation and no-
tions used throughout this work and present some preliminary results. In Sec-
tion 3, we give the proof of Theorem 1.1. The proof of Theorem |.2, showing the
optimality of Theorem 1.1, is presented in Section 4. We conclude the paper in
Section 5 with some final remarks and an open problem that we consider to be of
further interest.
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2. Notation and Preliminaries

In this section, we introduce the notation used throughout the text and present
some background material such as a multidimensional version of the Remez in-
equality, which we will use later, and recall the definition of tensor product B-
splines.

2.1. General Notation

We denote by card[A] the cardinality of a set A. The symbol | - | will be used
for the modulus, the mesh width, and the Lebesgue measure; the meaning and the
dimension of the Lebesgue measure will be always clear from the context. Given a
compact metric space M, we denote by C (M) the space of continuous functions
on M. As usual, for 1 < p < oo and a measure space (E, X, i), we denote by
L ,(E) the space of (equivalence classes of) measurable functions f : E — R for

which
1/p
1l ey = (/Elflpdu) o

[ fllLee(e) :==1nf{p = 0: (1 fI > p) =0} <00

for p = oco. We will also write || ||, instead of || f|L,z) when the choice of E
is clear from the context. More generally, given a convex function M : [0, o) —
[0, 0co) with M (0) = 0, the set of all (equivalence classes of) measurable functions
f + E — R such that, for some (and thus for all) A > 0,

()=

is called the Orlicz space associated with M and is denoted by L, (E). This space
becomes a Banach space when it is supplied with the Luxemburg norm

||f||M=inf{)\ >O:/EM<|%> du < 1}.

In this work, we consider functions f defined on the unit cube [0, 11¢ that belong
to the Orlicz space L(log™ L)/, thatis, | f |(log™ | f )/ is integrable over [0, 114
with respect to the Lebesgue measure, where log™ (-) := max{0, log(-)}. More
information and a detailed exposition of the theory of Orlicz spaces can be found,
for instance, in [8; 7; 10; 11].

for 1 < p < oo and

2.2. Remez Inequality for Polynomials

We will need the following multidimensional version of the Remez theorem
(see [4; 1]). If p(x) = Zae[ aygx® is a d-variate polynomial where [ is a fi-
nite set containing d-dimensional multiindices, then the degree of p is defined
as max{zg‘{= L@ :a € I}. Recall that a convex body in RY is a compact convex
set with nonempty interior.
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THEOREM 2.1 (Remez, Brudnyi, Ganzburg). Letd € N, let V C R4 be a convex
body, and let E C V be a measurable subset. Then, for all polynomials p of degree
konV,

1%
IpllLov) < (4dm IPllLo(E)-

We have the following corollary.

COROLLARY 2.2. Let p be a polynomial of degree k on a convex body V C R?,
Then

lfx € V:1p)] = Bd) FlIplla}l = 1VI/2.

Proof. This follows from an application of Theorem totheset E={xeV:
1P| < B X pllLovy)- [

2.3. Tensor Product B-Splines

We will now provide some background information on tensor product splines.
For more information, we refer the reader to [14, Section 12.2]. Let d € N, and
for w € {1,...,d}, let k, be the order of polynomials in the direction of the uth
standard unit vector in R?, where the order of a univariate polynomial refers to
the degree plus 1. For each such ., we define the partition of the interval [0, 1] by

n,+k
Ay = (ti(u))iil Y. onueN,

where, foralli <n, +k, and j <ny,

(1) (1) (1) (1)
[P P and t <tj+k,/
and
(n) _ _ () _ _ _ (W
1= ”_tku =0 and l_tnu+1_m_tnu+ku‘

A boldface letter always denotes a vector of d entries, and its coordinates are
denoted by the same letter, for instance, n = (ny,...,ng), kK= (k1,...,kg), or
A=(A1,..., ;). Welet (Nl.(“))?i1 be the sequence of B-splines of order k, on
the partition A, with the properties

an
supp Ni(“) = [tiw), ti(_’:,)(u], Nl.(”) >0, and ZN;’” =1.
i=1

The space spanned by those B-spline functions consists of piecewise polynomials
p of order k,, with grid points A, which satisfy the following smoothness con-
ditions at those grid points: if the point # occurs m times in A, then the function
p is k, — 1 —m times continuously differentiable at ¢. In particular, if m =k,
then there is no smoothness condition at the point 7.

The tensor product B-splines are defined as

1 d .
Ni(x1, ..., x0) =N ") - NP (xg), 1<i<n,
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where 1 is the d-dimensional vector consisting of d entries equal to one, and
where we say that i <n if i, <n, for all u € {1,...,d}. Furthermore, P, is
defined to be the orthogonal projection operator from L5[0, 1]¢ onto the linear
span of the functions (Nj)1<i<n With respect to the standard inner product (-, -).
This operator can be naturally extended to L1-functions since B-splines are con-

tained in Lo, (see Lemma 3.4). For u € {1, ..., d}, we define the mesh width in
the direction of u by |A,| := max; |tl.(f:)1 — tl.(M )| and the mesh width by

Al := max |A,].
|A| 1§M§d| wl

3. Almost Everywhere Convergence

In this section, we prove Theorem 1.1 on a.e. convergence. Its proof follows along
the lines of the one-dimensional case proved in [?9] and is based on the standard
approach of verifying the following two conditions that imply the a.e. conver-
gence of P f for f € L(log™ L)4~! (see [5. pp. 3—4]):

(a) there is a dense subset F of L(log™ L)4=1 on which we have a.e. conver-
gence,
(b) the maximal operator P* f :=supy | Pa f| satisfies some weak-type inequal-

1ty.
Let us now discuss conditions (a) and (b) in more detail. Concerning (a), we first

note that, for d = 1, Shadrin [15] proved that the one-dimensional projection op-
erator P is uniformly bounded on L, for any spline order k, that is,

[ Palloo < ck,

where the constant ¢; € (0, 00) depends only on k and not on the partition A.
A direct consequence of this result and of the tensor structure of the underlying
operator Py is that this assertion also holds in higher dimensions:

COROLLARY 3.1. For any d € N, there exists a constant cg x € (0, 00) that only
depends on d and K such that

| PAlloo < Cd k-

In particular, ¢4 x is independent of the partitions A.

This can be used to prove the uniform convergence of PAg to g for continuous
functions g as |A| tends to zero:

PROPOSITION 3.2. Let g € C([0, 11¢). Then, as |A| — 0,

1Pag = glloo = 0.

Therefore we may choose F to be the space of continuous functions on [0, 11¢,

which is dense in L(log™ L)d-1 (see, e.g., [7. Chapter 7]).
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We now turn to the discussion of condition (b) and define the strong maximal
function Mg f of f € L1[0, 11¢ by

1
Ms £ (x) :=sup—/|f(y)|dy, el0, 11,
1sx 1 J1

where the supremum is taken over all d-dimensional rectangles I C [0, l]d , which
are parallel to the coordinate axes and contain the point x. The strong maximal

function satisfies the weak-type inequality
d—1
|{x:Msf(x)>k}|§cM/ M(l—l—logJr M) dx, (3.1)
[071]d A A

where |A| denotes the d-dimensional Lebesgue measure of a set A, and ¢y €
(0, o0) is a constant independent of f and A (see, e.g., [3] and [ 18, Chapter 17]).
To get this kind of weak-type inequality for the maximal operator P*, we prove
the following pointwise estimate for PA by the strong maximal function.

PROPOSITION 3.3. There exists a constant ¢ € (0, 00) that only depends on the
dimension d and the spline orders K such that, for all f € L]0, 114, x €0, 14,
and all partitions A,

|PAf(x)| < c-Ms f(x).

We now present the proof Theorem and defer the proofs of Propositions
and

Proof of Theorem 1.1. Let f € L(logt L)?~! and define

R(f, x) :=limsup Pa f(x) —liminf Pp f (x).
|A|—0 |A[—0

Let g € C([O, l]d). Since, by Proposition , R(g,x) =0 for continuous func-
tions g, and because P, is a linear operator,

R(f,x) =R(f —8,x)+ R(g,x) =R(f —g,x).
Let 6 > 0. Then by Proposition we have

{x :R(f,x) > 8} < [{x: R(f — g, x) > 5}

< {x:2c-Ms(f —g)(x) > 8}|.
Now we employ the weak-type inequality (3.1) for Mg to find
[{x : R(f, x) > 8}

d—1
Sch 2c-|<f—g><x>|<1+log+ 2c-|(f—g)(x)|) .
[071]d ) )

By assumption, the expression on the right-hand side of the latter display is finite.
Choosing a suitable sequence of continuous functions (g,) (first approximate f
by a bounded function and then apply Lusin’s theorem), this expression tends to
zero, and we obtain

1{x: R(f,x) > 8} =0.
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Since § > 0 is arbitrary, R(f,x) =0 for a.e. x € [0, 11¢. This means that PaA f
converges almost everywhere as |A| — 0. It remains to show that this limit equals
f a.e. This is obtained by a similar argument as before by replacing R(f, x) by

[limja [0 Pa f(x) = f(2)]. [
The rest of this section is devoted to the proofs of Propositions 3.2 and

Proof of Proposition 3.2. By Corollary 3.1, P is a bounded projection operator,
and so, for all functions 4 in the range of Pa, we have

1PAg — &llcc = I1PA(g = M) llco + 117 = glloo = (1 +ca 1) I8 = Allco-

Taking the infimum over all such 4, we have

1PAg — &lloo < (1 +cak) - Ea(Q), (3.2)

where EA(g) is the error of best approximation of g by splines in the span of
tensor product B-splines (Nj)1<i<n. It is known that

d

ky
Ea(g)<c-)  sup sup|(Dy"gu)(xu)l,
i1 huslAul X :

where g, «(s) :==g(x1, ..., Xy—1,8, Xpt1,...,Xq), and Dhu is the forward differ-
ence operator with step size i, (see, e.g., [14. Theorem 12.8 and Example 13.27]).
This is the sum of moduli of smoothness in each direction w of the function g
with respect to the mesh diameters |A1], ..., |Ay4|, respectively. As these diame-
ters tend to zero, the right-hand side of the inequality also tends to zero since g is
continuous. Together with (3.2), this proves the proposition. U

Next, we present the proof of Proposition 3.3. It is essentially a consequence of
a pointwise estimate involving the Dirichlet kernel of the projection operator Pp .
With the notation

1= 18, 1 = convexhull(1 1Y), pefl,....d},
its one-dimensional version, where we suppress the superindex (i), reads as fol-
lows.

LEMMA 3.4 ([9. Lemma 2.1]). Let Ka be the Dirichlet kernel of the projection
operator Pa, that is, K A is defined by the equation

1
Paf(x) =f0 KaGey)fdy, feLyfo,1],x €0, 1].

Then K A satisfies the inequality
[KaCe, I =Cy =Nyl xelyel;,

where C € (0,00) and y € (0, 1) are constants that depend only on the spline
order k.
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Proof of Proposition 3.3. We first note that the estimate given in Lemma 3.4 car-
ries over to the Dirichlet kernel Ka of Pa for dimension d, which is defined by
the relation

PAf(x>=/[O LKa@DFO. felio N xe0r . G3)

Indeed, since Pa is the tensor product of the one-dimensional projections

Pa,, ..., Pa,, the Dirichlet kernel KA is the product of the one-dimensional
Dirichlet kernels Ka,, ..., Ka,. Thus, Lemma implies the inequality
|KaGe. | <Cy™ g~ xehyel, (3.4)
where we set
d d d
i—jli= lip—jul.  Le=]]1". L=]]1".
n=1 n=1 n=1

and C € (0, 00) and y € (0, 1) are constants only depending on d and k.
Let x € [0, 1]¢ and i be such that x € I and |Z;| > 0. By equation (3.3),

3 fl KA<x,y)f(y>dy‘.

1<j<n

|PAf(xX)| =

[, Kawmrma

Using estimate (3.4) on the Dirichlet kernel, we obtain

i—i
)/I .]|l

IPAf@)|<C Y

1<j<n

[ f(»)ldy,

Ll Jy

where C € (0, 00) is the constant in (3.4). Since /j C Ijj and x € I C I;j, we

conclude
IPaf@)=C Y yHIMs ),
1<j<n
which, after summing a geometric series, concludes the proof. U
4. Optimality of the Result
In this section, we prove the optimality result, Theorem 1.2. The choice of the

function ¢ is based on the following result of Saks [12].

THEOREM 4.1. For any function o : [0, 00) — [0, 00) with liminf; o () =0,
there exists a nonnegative function ¢ = ¢ on [0, 11¢ such that

(i) the function o (¢) - ¢ - (log™ (p)”l_l is integrable,

(i) for all x € [0, 119,

1
lim sup —/w(y)dyzoo,
diam I —0,/3x |I| 1

where lim sup is taken over all d-dimensional rectangles I that are parallel
to the coordinate axes and contain the point x.
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2 ! |
I§ 1-){2) | |
4 | |
IO |
5
52 l !
Iél) 1 3
I{gl) 1
(1)
4 (1)
1
5 b

Figure 1 First sets in the enumeration (4.1) for N =5

We will show that the same function ¢, constructed in the proof of the previ-
ous theorem, also has the properties stated in Theorem 1.2. The definition of ¢
rests on a construction due to H. Bohr, which appears in the first edition of [
pp. 689-691] from 1918 for dimension d = 2. Let us begin by recalling Bohr’s
construction and Saks’ definition of the function ¢.

Bohr’s Construction

Let N e N, and let S := [ay, b1] x [a2, bo] C RZ be a rectangle. Using the splitting
parameter N, we define subsets of this rectangle as follows:

J (b —611)]
N

b —
X[az,az-l- 2 .az], 1<j<N.
j

IJO) = [01,611 +

The part S \ U;V:] I;l) consists of N — 1 disjoint rectangles, to which we apply
the same splitting as we did with S (see Figure 1). This procedure is carried out
until the area of the remainder is less than |S|/N?2. The remainder is again a dis-
joint union of rectangles J M .., JT Thus, we obtain a sequence of rectangles
whose union is §,

(1) (1), ;) @. . (). 701
AT ED S fFUUED AU ALra ALY AL O/ §

We can generalize this construction to arbitrary dimensions d as follows: first,
notice that the corners of the rectangles Ij(.l), 1 < j <N, lie on the curve (x —
ay)(y —az) = (by —ay)(by —az)/N = |S|/N. Given a rectangle S :=[a, b1] X
-+ X lag, bg], d > 2, we consider rectangles similar to I;l) whose corners lie on
the variety (x; —ap)(xo —az)---(xg —ag) = |S|/Nd_1. Foraj=---=a; =0
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and by =---=by = 1, we can write those rectangles using d — 1 parameters as
. - 1
L juy = |:0, J—l] X -+ X |:0, ‘]d—l] X [0, 7]
N N Jreejd—1
for 1 <ji,..., ja—1 < N. The volume of the union over all those sets is approxi-
mately

log N -1
(%)
which can be seen by integration of the function x; = (N A=y, ... xy_1) "1 over
the rectangle [1/N, 119!, In what follows, it is important that in Bohr’s construc-
tion, we only choose those rectangles 7, . ;,_, for which the product j; - -- jz—1
is less than or equal to N, so that the volume V; of their union is still approxi-
mately N'=?10g?~! N, whereas the volume V, of their intersection equals N .
Therefore the quotient Vi / V5 is of the order N log?~! N. This is crucial for the
construction of the function ¢ in Theorem

The function ¢ from Theorem is constructed in [12] in such a way that it
satisfies the following additional properties.

THEOREM 4.2. The function ¢ from Theorem ‘.1 can be chosen in such a way that
there exist a sequence (&;)ieN € (0, oo)N and a sequence (C;)icN of rectangular
coverings of [0, 11 such that
(i) the function o (¢) - ¢ - (log™ ¢ is integrable,
(i1) the sequence (&;)icN converges to 0,
(iii) for eachi € N, C; = (Rij)ﬁ/l:"l with U;W:’I R;; =10, 119 we have diam Rij <
1/i and

)d—l

1

o(x)dx > el._l forall j €{1,..., M;},
|Rij| Jrj;

(iv) for each i € N, there exist L;, N; € N and a partition (Sij)JL.;l of the unit
cube [0, 11 consisting of rectangles with diameter < 1/i such that for all
Jj €{l,..., L;}, the subcollection of rectangles in C; that intersect S;; is
given by the rectangles in (4.1) (or its higher-dimensional analogue) corre-
sponding to S;; and the splitting parameter N;.

Let P; be the orthogonal projection operator onto the space of d-variate polyno-
mials of order (k1, k2, ..., kg) on the rectangle /. We now use the Remez inequal-
ity to prove that | P;¢| is large on a large subset of I as long as ﬁ / ;¢ dy is large
enough. This is the first important step in proving (ii) of Theorem

LEMMA 4.3. Let I CR? be a rectangle. Then, there exists a constant ck € (0, 00),
only depending on the polynomial orders k = (ky, ..., kg), such that, for all pos-
itive functions f on I, there exists a subset A C I with measure |A| > |1|/2 such
that, forall x € A,

P () = C—k/f(y)dy-
1| Jg
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Proof. The operator Pj is the orthogonal projection onto the space of d-variate
polynomials of order (k1, k2, ..., kg) on I. Therefore, the characteristic function
X1 1s contained in the range of P;, and we have

(Prf,xi)={fsx1)-

Hence, in fact, || P; fll Loy = |1 |~ f ; f(y)dy. Consequently, Corollary im-
plies the assertion. O

Considering the properties of ¢ in Theorem 4.2, the previous proposition applied
to ¢ shows that, for any element / € C;, there exists a subset A := A(/) C I with
measure > |I|/2, on which | P;¢| > c¢/e; for a constant ¢ € (0, o) only depending
on the polynomial orders (ki, ..., kg). In Lemma 4.4, we ensure that the union
over those sets A still has large enough measure relatively to the measure of the
union over all / € C;. To this end, we will use the special structure indicated by
Bohr’s construction and Theorem 4.2(iv).

Lemma 4.4. Forall ji, ..., ja—1€{1,..., N}, let

. - 1
Ij] v Jd—1 — 0, J_l X - x |0, Jd—l X 0,%
o N N JueJa-

and A ={(j1,..., ja—1):j1 - ja < N}. For . € A, let A, C I, be a Borel mea-
surable subset of I, such that

|Axl = clli] =

Nd—l

for some absolute constant c € (0, 00). Then there exist constants cy, c¢3 € (0, 00),
depend only on c and d, such that

d—1
UAA Z@(lo}g,:}N) >y UIA

AEA
Proof. Let M € N to be specified later and define ¢ := 1/M. Define the index set

C={M", ... M"Y e A:ky,... ka1 € Nob.

Then we can estimate

zDAu—% D 14N A,

UAA > UAA
AEA rel rel A,pel
AFEu
1
>c) 1hl=5 3 W0yl
rel’ A,pel

AFEu

Now we observe that card[I'] = card[{k € N} : Z”}:l ki <L}]= (LLJS+S) where
L =logy, N,s =d — 1, and | L] denotes the largest integer smaller than or equal
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to L. Therefore card[I'] > C; log‘lf,l_1 N for some positive constant Cs depending
only on s. Thus,

log,; N L |
L A Zc-Cd_1< N ) -5 > LN (4.2)
rEA A,uel
AFER
Next, observe that if A, u € I have the form A = (MY, ..., Mt-1) and w =
(M™t .., M™d-1) then

L N1, = Nl—dqu;f (max(¢;,m;)—min(¢;.m;))

which, by summing geometric series and noting that the condition A # w implies
the existence of at least one index i € {1, ...,d — 1} such that A; # u;, yields

log,, N -1
Zlhmlﬂl )dlz —(1_)d1< ]i;l ) :

A,uel
AFER

Inserting this inequality into (4.2), we obtain

d—1
q logMN
Al > .Ci_q1 — )
U “(C a1 2<1—q>d—1>< N )

AEA
We can choose M = 1/q (depending only on ¢ and d) sufficiently large to guar-
antee that ¢ - C45_1 — ZO—qT > ¢ - C4—1/2. Then the assertion of the lemma

follows with the choice c; =c - Cy—1/(2 logd_1 M). |

Bringing together the previous facts, we are now able to prove our optimality
result.

Proof of Theorem 1.2. We subdivide the proof into two parts. In the first part, we
show that, for all points x in a set of positive measure, there exists a sequence (/)
of intervals containing x whose measure tends to zero and such that | Py ¢(x)| —
oo. Based on that observation, we construct the desired sequence of partitions in
the second step.

Step 1. Since Theorem proves the integrability condition (i) of Theo-
rem |.2, we only need to prove (ii), that is, the existence of a set B C [0, 11¢ with
positive Lebesgue measure and of a sequence (A,) of partitions such that, for all
x € B, limsup,,_, . |Pa,¢(x)| =00. We fix i € N and consider the corresponding
covering C; of [0, 11¢ from Theorem 4.2. Then we define

B; .={x €0, l]d : there exists a rectangle 1 € C; withx € 1
and | Pyo(x)| > ck/é&i},

where ck € (0, 00) is the constant that appears in Lemma 4.3, and (g;) is the
sequence from Theorem 4.2. Recall that ¢; — 0 as i — oco. We will show that
|Bj| > ¢ > 0 for all i € N and some suitable constant ¢ € (0, 00).
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Let I € C;. Due to Theorem 4.2, we have diam/ < 1/i and

1/ dr > 1
— X E. .
i ;2=

Thus, Lemma provides a set A(I) C I with |A(Z)| > |I|/2 such that, for all
xeA(l),
Ck
Pro@)] = —.
l

This means that A(/) C B;. For fixed j, let (I,Sf)) and (J©) be the collections
of rectangles (4.1) contained in C; forming a covering of §;; (see Theorem 4.2,
part (iv)). As a consequence of the latter bound, Lemma and the fact that the
rectangles J(© are disjoint, we find

N;
NG ETED PR

+Y 1A Y)]
l

£ 'm=1
N; 1
>er ) (U L0 +5 2 1701z ealsijl.
¢ 'm=1 l

where ¢ := min{cy, %}. Consequently,

L; L;

Bil =) 1SN Bil =2y _1Sij| =call0. 1] = c2.
j=1 j=1

Since all sets B; satisfy this uniform lower bound, the set B := limsup,, B, has a
positive measure as well, because

U &

m>n

|B| = lim
n

> limsup |B,| > ¢ > 0.
n

Step 2: We now proceed with the construction of the desired sequence of par-
titions (A,). Let (R; j)?/[:il be the rectangles contained in the collection C;. For
1 < j < M;, we define the partition AGD) = (Agi’j), e, Ag’j)) such that each
R;j is a grid point interval of A®D and, for u € {1, ...,d}, the uth coordinate
projection of the vertices of R;; has multiplicity &, in the partition A,(j’] ) We give
this multiplicity condition in order to have, for all x € R;;,

Ppip f(x) =P, f(x), feLi[0, 1]

Other knots of the partition A%/ are chosen arbitrarily, with the only condition
|A@D| < 1/i. Observe that this is possible since diam R; ; < 1/i.Now we define
the sequence (A,) as

(Ap) := (ALY AGMD A@D G

Observe that this sequence of partitions is not nested. To prove the assertion of the
theorem, we fix some x € B. By the definition of B, for infinitely many indices i €
N, there exists a rectangle R;¢, in the collection C; such that x € R;,, diam R;y; <
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1/i, and |Pyai.cpo(x)] = |PRi€i ¢(x)| > cx/¢i. Therefore, since &; — 0, we have,

forall x € B,
limsup | P, ¢(x)| = oo.
n—oo
This completes the proof of the theorem. U

5. Final Remarks and Open Problems

It is natural to ask whether the rather general structure of the partitions A, whose
mesh diameter tends to zero in Theorem 1.1, can be relaxed to obtain a.e. conver-
gence for a class larger than L(log™ L)¢~!. A result in this direction is supported
by the fact that in the case of piecewise constant functions, we get a.e. conver-
gence for all Li-functions, provided that the underlying sequence of partitions
is nested. This holds as the sequence of projection operators applied to an L1-
function then forms a martingale. Although it first seems that approaching this
problem for general spline orders under the same framework should lead to a
positive or negative answer, we must say that it is far from clear if such a result
holds. On the other hand, it is unclear how to generalize Saks’ construction from
[12] to this setting, since the sequence of partitions constructed in the proof of
Theorem 1.2 is not nested.
We close this work with the following open problem.

PrROBLEM 1. Isit true that the a.e. convergence in Theorem 1.1 holds forall f € L4
under the assumption that the sequence of partitions is nested?

ACKNOWLEDGMENTS. We are grateful to the anonymous referees for their valu-
able suggestions that improved the quality of the paper.
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ALMOST EVERYWHERE CONVERGENCE OF SPLINE
SEQUENCES

PAUL F. X. MULLER AND MARKUS PASSENBRUNNER

ABSTRACT. We prove the analogue of the Martingale Convergence Theorem
for polynomial spline sequences. Given a natural number k and a sequence (t;)
of knots in [0, 1] with multiplicity < k — 1, we let P, be the orthogonal projec-
tion onto the space of spline polynomials in [0, 1] of degree k — 1 corresponding
to the grid (¢;)_,. Let X be a Banach space with the Radon-Nikodym prop-
erty. Let (gn) be a bounded sequence in the Bochner-Lebesgue space L [0, 1]
satisfying
gn = Pn(gn+1), n € N.

We prove the existence of limyp— oo gn(t) in X for almost every t € [0,1].
Already in the scalar valued case X = R the result is new.

1. INTRODUCTION

In this paper we prove a convergence theorem for splines in vector valued L!-
spaces. By way of introduction we consider the analogous convergence theorems
for martingales with respect to a filtered probability space (€, (A,), p). We first
review two classical theorems for scalar valued martingales in L' = L1(, u). See
Neveu [6].

(M1) Let g € L. If g, = E(g|Ay) then ||gn|l1 < |lg]l1 and (g,) converges almost
everywhere and in L.

(M2) Let (g,) be a bounded sequence in L' such that g, = E(g,41|A,). Then
(gn) converges almost everywhere and g = lim g,, satisfies ||g||1 < sup ||gnl/1-

Next we turn to vector valued martingales. We fix a Banach space X and let
LY, = L% (9, ) denote the Bochner-Lebesgue space. The Radon-Nikodym property
(RNP) of the Banach space X is intimately tied to martingales in Banach spaces.
We refer to the book by Diestel and Uhl [3] for the following basic and well known
results.

(M3) Let g € L. If g, = E(g|A,) then lgnllzy < llgllzs - The sequence (gy)
converges almost everywhere in X and in L. (This holds for any Banach
space X.)

(M4) Let (g,) be a bounded sequence in L% such that g, = E(gn+1|A,). If the
Banach space X satisfies the Radon-Nikodym property, then (g, ) converges
almost everywhere in X and g = limg, satisfies [|g|lz1 < sup|lgnllz -
Moreover the L -density of the p-absolutely continuous part of the vector

Date: August 20, 2019.
2010 Mathematics Subject Classification. 65D07,46B22,42C10.
Key words and phrases. Orthonormal spline projections, almost everywhere convergence,
Radon-Nikodym property.
1
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measure

v(E)= lim [ g,du, E € UA,
n—oo E
determines g = lim g,,.
(M5) Conversely if X fails to satisfy the Radon Nikodym property, then there

exists a filtered probability space (€2, (A,), ) and bounded sequence in
LY (Q, p) satisfying g, = E(gn+1|An) such that (g,,) fails to converge almost
everywhere in X.

In the present paper we establish a new link between probability (almost sure

convergence of martingales, the RNP) and approximation theory (projections onto

splines in [0, 1]).

We review the basic setting pertaining to spline projections. (See for instance
[12], [9], [11].) So, fix an integer k > 2, let (¢;) a sequence of grid points in (0, 1)
where each ¢; occurs at most k — 1 times. We emphasize that in contrast to [9],
in the present paper we don’t assume that the sequence of grid points is dense in
(0,1).

Let S,, denote the space of splines on the interval [0,1] of order k (degree k — 1)
corresponding to the grid (¢;)7,. Let A\ denote Lebesgue measure on the unit
interval [0, 1]. Let P, be the orthogonal projection with respect to L*([0, 1], A) onto
the space of splines S,. By Shadrin’s theorem [12], P, admits an extension to
LY([0,1], \) such that

sup [P, : L'([0,1], %) = L'([0,1], A)|| < o0.

neN
Assuming that the sequence (;) is dense in the unit interval [0, 1], the second named
author and A. Shadrin [9] proved — in effect — that for any g € L% ([0,1],\) the
sequence g, = P, g converges almost everywhere in X. The vector valued version
of [9] holds true without any condition on the underlying Banach space X. Thus
the paper [9] established the spline analogue of the martingale properties (M1) and
(M3) — under the restriction that (¢;) is dense in the unit interval [0, 1].

Our main theorem — extending [9] — shows that the vector valued martingale
convergence theorem has a direct counterpart in the context of spline projections.
Theorem 1.1 gives the spline analogue of the martingale properties (M2) and (M4).
The first step in the proof of Theorem 1.1 consists in showing that the restrictive
density condition on (¢;) may be lifted from the assumptions in [9].

Theorem 1.1 (Spline Convergence Theorem). Let X be a Banach space with RNP
and (gn) be a sequence in L with the properties

(1) supy, [|gnl[Ly < oo,
(2) Pugn = gm for all m < n.

Then, g, converges A-a.e. to some L% function.

Already in the scalar case X = R Theorem 1.1 is a new result. In the course of its
proof we intrinsically describe the pointwise limit of the sequence (g, ). At the end
of Section 6 we formulate a refined version of Theorem 1.1 employing the tools we
developed for its proof. This includes an explicit expression of lim g, in terms of
B-splines.

We point out that only under significant restrictions on the geometry of the
grid points (¢;), is it true that the spline projections P, are Calderon-Zygmund
operators (with constants independent of n). See [4].



166 CHAPTER 8. ALMOST EVERYWHERE CONVERGENCE OF SPLINE SEQUENCES

ALMOST EVERYWHERE CONVERGENCE OF SPLINE SEQUENCES 3

Our present paper should be seen in context with the second named author’s
work [7], where Burkholder’s martingale inequality

”Zi f|A (f|~An—1))HLy(Q”u) < Cp”f”LP(Q,u)y

was given a counterpiece for spline projections as follows

H Z +(Pa(g) — Pnfl(g))HLp([OJ]) < Cp||9||LP([0,1])7

where 1 < p < oo, and C), ~ p*/(p — 1). The corresponding analogue for vector
valued spline projections is still outstanding. (See however [5] for a special case.)

Organization. The presentation is organized as follows. In Section 2, we collect
some important facts and tools used in this article. Section 3 treats the convergence
of P, g for L -functions g. Section 4 contains special spline constructions associated
to the point sequence (¢;). In Section 5, we give a measure theoretic lemma that is
subsequently employed and may be of independent interest in the theory of splines.
Finally, in Section 6, we give the proof of the Spline Convergence Theorem.

2. PRELIMINARIES

2.1. Basics about vector measures. We refer to the book [3] by J. Diestel and
J.J. Uhl for basic facts on martingales and vector measures. Let (£2,.4) be a measure
space and X a Banach space. Every o-additive map v : A — X is called a vector
measure. The variation \u| of v is the set function

B)=sup 3 [(A)]x.

T Aer
where the supremum is taken over all partitions m of E into a finite numer of
pairwise disjoint members of A. If v is of bounded variation, i.e., [V|(Q2) < oo, the
variation |v| is o-additive. If p : A — [0,00) is a measure and v : A — X is a
vector measure, v is called p-continuous, if lim,,(gy_,o v(E) =0 for all £ € A.

Definition 2.1. A Banach space X has the Radon-Nikodgm property (RNP) if
for every measure space (§2,.4), for every positive measure p on (€,.A) and for
every p-continuous vector measure v of bounded variation, there exists a function
[ € LY (9, A, ) such that

A):/Afd;h Ac A

Theorem 2.2 (Lebesgue decomposition of vector measures). Let (Q2,.A) be a mea-
sure space, X a Banach space, v : A — X a vector measure and p: A — [0,00) a
measure. Then, there exist unique vector measures v.,vs : A — X such that

(1) v=uv.+vs,

(2) v, is p-continuous,

(3) z*vs and p are mutually singular for each x* € X*.
If v is of bounded variation, v, and vs are of bounded variation as well, |v|(E) =
[Ve|(E) + |vs|(E) for each E € A and |vs| and p are mutually singular.

The following theorem provides the fundamental link between convergence of
vector valued martingales and the RNP of the underlying Banach space X. See
Diestel-Uhl [3, Theorem V.2.9]. Tt is the point of reference for our present work on
convergence of spline projections.
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Theorem 2.3 (Martingale convergence theorem). Let (€,.4) be a measure space
and p: A —[0,00) a measure. Let (A,) be a sequence of increasing sub-o-algebras
of A. Let X be a Banach space, let (g,) be a bounded sequence in L (9, Ay, ),
such that g, = E(gn+1]A) and let

v(E)= lim [ g¢,du, E € UA,.
n—oo E

Let v = v, + vs denote the Lebesque decomposition of v with respect to p. Then
lim,, o g exists almost everywhere with respect to p if and only if v. has a Radon-
Nikodym derivative f € LY (2, p). In this case

lim gn = E(f|-'4<>o)7
n—r oo
where Ao, is the o-algebra generated by UA,,.
Let X be a Banach space, let v € L'(2, A,m) and z € X. We recall that
v®@x:Q — X is defined by v ® z(w) = v(w)z and that
LY(Q,A,m) ® X = span{v; ® 2; : v; € LY(Q, A,m),z; € X}.
The following lemmata are taken from [10].

Lemma 2.4. For any Banach space X, the algebraic tensor product L'(Q, A,m)®
X is a dense subspace of the Bochner-Lebesgue space L (Q, A,m).

Lemma 2.5. Given a bounded operator T : L'(Q, A,m) — LY (Y, A’,m’) there
exists a unique bounded linear map T : L (Q, A,m) — L% (', A',m’) such that

T(pex)=T(p)z, pe LYQ,A m),z € X.
Moreover, ||T|| = ||T||.

Lemma 2.6. Let Xg be a separable closed subspace of a Banach space X. Then,
there exists a sequence (x}) in the unit ball of the dual X* of X such that

n

]l = sup |7, (2)], = € Xo.
n

2.2. Tools from Real Analysis. We use the book by E. Stein [13] as our ba-
sic reference to Vitali’s covering Lemma and weak-type estimates for the Hardy-
Littlewood maximal function.

Lemma 2.7 (Vitali covering lemma). Let {Cy : © € A} be an arbitrary collection of
balls in R? such that sup{diam(C,) : ¥ € A} < co. Then, there exists a countable
subcollection {Cy : x € J}, J C A of balls from the original collection that are

disjoint and satisfy
U ¢c.csc.

zEA xzeJ

Vitali’s covering Lemma implies weak type estimates for the Hardy-Littlewood
maximal function.

Theorem 2.8. Let f € LY and Mf(t) := sup;, ﬁfl I/ (s)||x ds the Hardy-
Littlewood mazimal function. Then M satisfies the weak type estimate

Cllfll ey,
u b)

AAMS > u}) < >0,

where C > 0 is an absolute constant.
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2.3. Spline spaces. Denote by |A,| the maximal mesh width of the grid A,, =
(t;)"_, augmented with k times the boundary points {0,1}. Recall that P, is the
orthogonal projection operator onto the space S,, of splines corresponding to the
grid A,,, which is a conditional expectation operator for k = 1.

For the following, we introduce the notation A(t) < B(t) to indicate the existence
of a constant ¢ > 0 that only depends on k such that A(t) < ¢B(t), where ¢ denotes
all explicit or implicit dependences that the expressions A and B might have. As
is shown by A. Shadrin, the sequence (P,) satisfies L! estimates as follows:

Theorem 2.9 ([12]). The orthogonal projection P, admits a bounded extension to
L' such that
sup |Py : L' — L'|| < 1.

By Lemma 2.5, the operator P, can be extended to the vector valued L' space L
with the same norm so that for all ¢ € L! and z € X, we have P,(p®x) = (P,¢)z.
We also have the identity

1 1
(2.1) / Pog(t) - £(t) dA(t) = / o) Pf)dN1D), gLk, fe L™

which is just the extension of the fact that P, is selfadjoint on L2.
Fix f € C[0,1]. Consider the kth forward differences of f given by

k
DEF(t) = 3 (~1)F (’;)fu T jh).

j=0
The kth modulus of smoothness of f in L* is defined as

wk(fv 5) = Ssup sup ‘DZf(t)L
0<h<§ 0<t<1—kh

where 0 < § < 1/k. We have lims_,qwi(f,d) = 0 for any f € C[0,1]. Any con-
tinuous function can be approximated by spline functions satisfying the following
quantitative error estimate.

Theorem 2.10 ([11, Theorem 6.27]). Let f € C[0,1]. Then,
d(fu Sn)oo 5 wk(fu |An|)a

where d(f, Sn)eo 1S the distance between f and S, in the sup-norm. Therefore, if
|A,| = 0, we have d(f,Sn)oco — 0.

Denote by (Ni("))i the B-spline basis of S,, normalized such that it forms a
partition of unity and by (Ni(n)*) its corresponding dual basis in S,,. Observe that
Puf(t) =Y (NN, feL’

7

Since the B-spline functions Ni(n) are contained in C[0, 1], we can also insert L!-
functions as well as measures in the above formula.

If we set al(.;b) = <Ni(")*, N ;")*>, we can expand the dual B-spline functions as a
linear combination of B-spline functions with those coefficients:

(2.2) NM* = Z al N,
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Moreover, for t € [0,1] denote by I,,(t) a smallest grid point interval of positive
length in the grid A, that contains the point t. We denote by i,(t) the largest
index 4 such that I,(t) C supp NZ-(”). Additionally, denote by hz(-;) the length of the
convex hull of the union of the supports of N, (") and N; (n),

With this notation, we can give the following estimate for the numbers a(") nd,

a fortiori, for Ni(n)*.

Theorem 2.11 ([9]). There exists g € (0,1) depending only on the spline order k,
such that the numbers a( " = <Ni(n)*7 N;n)*> satisfy the inequality
gli—il

B

)

lal| <

and therefore, in particular, for all i,
li—in ()]
max (A(1,,(t)), A(supp N; ™))
Proof. The first inequality is proved in [9] and the second one is an easy consequence
of the first one inserted in formula (2.2) for N\™*. O

€ [0,1].

An almost immediate consequence of this estimate is the following pointwise
maximal inequality for P, ¢:

Theorem 2.12 ([9]). For all g € L%
sup | Pag()llx S Mg(t), ¢ €0,1],

where Mg(t) = sup;s, /\ f] llg(s)|lx ds denotes the Hardy-Littlewood mazimal
function.

This result and Theorem 2.10, combined with Theorem 2.8, imply the a.e. con-
vergence of P,g to g for any L'-function g provided that the point sequence (;) is
dense in the unit interval [0, 1], cf. [9].

As the spline spaces S,, form an increasing sequence of subspaces of L%, we

can write the B-spline function Ni(n)

functions (N ;nJrl)). The exact form of this expansion is given by Bohm’s algorithm

[1] and it states in particular that the following result is valid:

as a linear combination of the finer B-spline

Proposition 2.13. Let f =5, ociNi(m) € S, for some m. Then, there exists a
sequence (8;) of coefficients so that

f = Z ﬂiNi(m+1)

and, for all i, B; is a convexr combination of c;—1 and «;.
By induction, an immediate consequence of this result is

Corollary 2.14. For any positive integers n > m and any indez i, the B-spline
: (m)
function N, can be represented as
N =3 N,
J
with coefficients A; € [0,1] for all j.
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In the following theorem it is convenient to display explicitly the order k of the
B-splines N™ = N i(f,z). The relation between the sequences (N, i(;z))i and (Ni(,z)q)i
is given by well known recursion formulae, for which we refer [2]. See also [11].

Theorem 2.15. Let [a,b] = supp Ni(z). Then, the B-spline function Ni(z) of order
k can be expressed in terms of two B-spline functions of order k — 1 as follows:

t—a (n) b—t (n)
—— NV () + Ny g1 (8)-
A(supp Ni(f,?_l) A(supp Ni(ﬁ,k—ﬂ

Nf,? (t) =

3. CONVERGENCE OF P,g

As we are considering arbitrary sequences of grid points (¢;) which are not neces-
sarily dense in [0, 1], as a first stage in the proof of the Spline Convergence Theorem,
we examine the convergence of P,g for g € L.

We first notice that P,g converges in L'. Indeed, this is a consequence of the
uniform boundedness of P, on L' as we will now show. Observe that for g € L2,
we get that if we define S as the L? closure of US,, and P, as the orthogonal
projection onto S,

Hpng - PoogHL2 — 0.

Next, we show that this definition of P, can be extended to L' functions g. So, let
g € L' and € > 0. Since L? is dense in L', we can choose f € L? with the property
llg — fll1 < e. Now, choose Ny sufficiently large that for all m,n > Ny, we have
I(Pn, — Pp)fll2 < €. Then, we obtain

1P = Pr)gller < (P = Pn)(g = )l + 1(Pa = Prn) fl 1
< 2Ce+ [[(Pn = Pn) fl 2
< (20 +1)e

for a constant C' depending only on k& by Theorem 2.9. This means that P,g
converges in L' to some limit that we will again call P,g. It actually coincides
with the operator Py, on L? and satisfies the same L' bound as the sequence (P,,).
Summing up we have

HPng - ‘PoogHL1 — 0,
for any g € L. Applying Lemma 2.5 to (P, — P,) we obtain the following vector
valued extension. For any Banach space X

[ Png — Poogllry — 0,

for g € LY.

The next step is to show pointwise convergence of P, g for continuous functions g.
We define U to be the complement of the set of all accumulation points of the given
knot sequence (t;). This set U is open, so it can be written as a disjoint union of
open intervals

U=u2,U;.

Jj=1

Lemma 3.1. Let g € C[0,1]. Then, P,g converges pointwise a.e. to Psg with
respect to Lebesque measure.

Proof. We first show that on each interval U;, P,g converges locally uniformly.
Let A C U; be a compact subset. Then the definition of U; implies that s :=
inf{\(I,(t)) : t € A,n € N} is positive. Observe that of course, since in particular
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g € L0, 1], the sequence P,g converges in L. Therefore, for ¢ > 0, we can choose
M so large that for all n,m > M, |Phg — Pngl|lrr < es. We then estimate by
Theorem 2.11 forn > m > M and t € A:

(P = Pun)g(6)] = |Pu(Pa = Pu)g(0)]
= | 22((Pu = Pu)g. NN (1)

li—in ()|

q
< E P p
~ i )\(In(t)) H( n m)gHLl(suppNi("))

gli=in(®)
< NI(Pa = Pa)gllzroap Y ————
< 1B = Pr)gllzrpoy _

~ — =

S

S

so P,g converges uniformly on A.

If t € U¢, we can assume that on both sides of ¢, there is a subsequence of grid
points converging to t, since if there is a side that does not have a sequence of grid
points converging to ¢, the point ¢ would be an endpoint of an interval U; and the
union over all endpoints of U; is countable and therefore a Lebesgue zero set. Let
€ > 0 and let ¢ be such that

3.1) ¢‘llgllz= <e.

We choose M so large that for any m > M on each side of ¢ there are ¢ grid points
of A,, and each of those grid point intervals has the property that the length is
< 0 with 6 > 0 being such that w(g,d) < e, where wy is the kth modulus of
smoothness. With this choice, by Theorem 2.10, there exists a function f € Sy,
with || f]lre < |lg]lL that approximates g well on the smallest interval B that
contains ¢ — k grid points to the left of ¢ and £ — k grid points to the right of ¢ in
Ajs in the sense that

(3.2) If = glle=(B) S wr(g,d) <e.
Therefore, we can write for n,m > M
(Pn - Pm)g(t) = Pn(g - f)(t) + Pm(f - g)(t)'
Next, estimate P, (g — f)(¢) for n > M by Theorem 2.11:
Palg = DO = | > tg = £, NN (1)
qli—in(t)\

A(supp N\™)

K2

S D19 = 1l e upptyy Asupp N

7

= Z gli=in®l|g — f”Lw(supp N
i

In estimating the above series we distinguish two cases for the value of :

i —in(t)] < € — 2k, and i —in(t)] > £ — 2k.
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Using {19 = fll oo (gupp vy < 19 = Fllz=(s) and (3.2) we get
li=in (B}, —
Z q o ||g fHLOC(SuppNi(n)) 5 €.
itli—in (¢)|<€—2k
USINg g = £l gupp ey S lgll= and (3.1) gives
limin (B}, —
Z q o ”g fHLOC(suppNi(")) S €.
iili—in (t)|>€—2k
This yields |P,(g — f)(t)] < € for n > M and therefore P,g(t) converges as n —
00. 0

The following theorem establishes the spline analogue of the martingale results
(M1) and (M3). The role of Lemma 3.1 in the proof given below is to free the main
theorem in [9] from the restriction that the sequence of knots (¢;) is dense in [0, 1].

Theorem 3.2. Let X be any Banach space. For f € L%, there exists E C [0,1]
with A(E) = 0 such that

lim P, f(t) = Ps f(1),
for anyt €[0,1]\ E.

Proof. The proof uses standard arguments involving Lemma 3.1, Theorems 2.12
and 2.8. (See [9].)
STEP 1: (The scalar case.) Fix v € L and ¢ € N. Put

A9y = | {t:|Pav(t) = Poo(t)] > 1/2}.
N mn>N
By Lemma 3.1, for any u € C[0, 1],
MAO () = MAO (v —u))
Let P*(v — u)(t) = sup,, | P (v — u)(t)]. Clearly we have
MAY (v — ) < A{t: 2P* (v —u)(t) > 1/0}).

By Theorem 2.12, P* is dominated pointwise by the Hardy-Littlewood maximal
function and the latter is of weak type 1-1. Hence

A{E: PP (v —u)(t) = 1/6}) S Hlv — ullr

Now fix ¢ > 0. Since C[0,1] is dense in L', there exists u € C]0,1] such that
|v—wu g1 < e/f. Thus, we obtained A(A®¥)(v)) < ¢ for any & > 0, or A\(A®) (v)) = 0.
It remains to observe that

A({t : P,v(t) does not converge}) = )\(UA“) (v)) =0.
¢

STEP 2:(Vector valued extension.) Let g, = vm, ® z,, where v, € L' and
ZTm € X and let g € L' ® X be given as
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Applying Step 1 to v, shows that P,g(t) converges in X for A-almost every ¢ € [0, 1].
Taking into account that L' ® X is dense in L}, we may now repeat the argument
above to finish the proof. Details are as follows: Fix f € L and ¢ € N. Put

AN = U 1Pt (0) = Puf@)llx > 1/¢}.

N mmn>N
Then
A({t: P,f(t) does not converge in X}) = )\(UA(Z)(f))
¢

It remains to prove that A(A“)(f)) = 0. To this end observe that for g € L' @ X
we have A(AW(f)) = AM(AY(f — g)). Define the maximal function P*(f — g)(t) =
sup,, [|P.(f — g)(t)||x. Clearly we have

AAO(f = g)) < A{t:2P*(f = g)(t) > 1/£}).
By Theorem 2.12, and the weak type 1-1 estimate for the Hardy-Littlewood maxi-
mal function,

A{t: P(f—9) ) = 1/63) S UIf =9l -
Fix € > 0, choose g € L' ® X such that f—9gllz, < e/t This gives MAO () <e
for any € > 0, proving that A\(A®)(f)) = 0. O

4. B-SPLINE CONSTRUCTIONS

Recall that we defined U to be the complement of the set of all accumulation
points of the sequence (¢;). This set U is open, so it can be written as a disjoint
union of open intervals

U=U3;2,U;.
Observe that, since a boundary point a of U; is an accumulation point of the
sequence (t;), there exists a subsequence of grid points converging to a. Let

Bj :={a € 0U; : there is no sequence of grid points
contained in U; that converges to a}
Now we set V; := U; U B; and V := U;V}.
Consider an arbitrary interval Vj, and set a = inf Vj},, b = sup V},. We define the
sequences (s;) and (sgn)) —rewritten in increasing order with multiplicities included
— to be the points in (t;) and (t;)7_;, respectively, that are contained in Vj,. If

a € Vj,, the sequence (s;) is finite to the left and we extend the sequences (s;)

and (sgn)) so that they contain the point a k times and they are still increasing.

Similarly, if b € Vj,, the sequence (s;) is finite to the right and we extend the
sequences (s;) and (sgn)) so that they contain the point b k times and they are still
increasing. Observe that if a ¢ Vj, or b ¢ Vj,, the sequence (s;) is infinite to the left

or infinite to the right, respectively. We choose the indices of the sequences (s;) and
(sg»n)) so that for fixed j and n sufficiently large, we have s; = sg.”). Let (N;) and

(N J(n) ) be the sequences of B-spline functions corresponding to the sequences (s;)
J J

implies for all j that N; = ]\_]j(") if n is sufficiently large. Let (N](n)) be the sequence
of those B-spline functions from Section 2 whose supports intersect the set Vj, on
a set of positive Lebesgue measure, but do not contain any of the points U, \ Bj,

and (s;’), respectively. Observe that the choice of the sequences (s;) and (s
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and without loss of generality, we assume that this sequence is enumerated in such
a way that starting index and ending index coincide with the ones of the sequence
I(N;"))j. Then, the relation between (N;"))j and (N;); is given by the following
emma:

Lemma 4.1. For all j, the sequence of functions (N;n)]lvjo) converges uniformly
to some function that coincides with Nj on Uj,.

Proof. If the support of Ni(n) is a subset of Vj, for sufficiently large n, the se-

quence n — Ni(n) is eventually constant and coincides by definition with N;. In the
other case, this follows by the recursion formula (Theorem 2.15) for B-splines and
observing that for piecewise linear B-splines, this is clear. O

In view of the above lemma, we may assume that N; coincides with the uniform
limit of the sequence (Ni(n) Ly, ). Define (N;n)*) to be the dual B-splines to (N;n)).

For t € [0, 1] denote by I,,(t) a smallest grid point interval of positive length in the
(n)
that I,(t) C supp Ni(n). Additionally, denote by hgl) the length of the convex hull
of the union of the supports of Ni(n) and ]\_f;n). Similarly we let I(t) denote a
smallest grid point interval of positive length in the grid (s;) containing ¢ € [0, 1].
We denote by i(t) the largest index ¢ such that I(t) C supp N;. Next, we identify
dual functions to the sequence (N;):

grid (s;") that contains the point t. We denote by i, (t) the largest index 4 such

Lemma 4.2. For each j, the sequence N;n)* converges uniformly on each interval
[Si, Si41] to some function N;‘ that satisfies

(1) <N;,Ni> = §ij fO’I" all i,

(2) for allt € Uj,,
gl =il

AU(E))

(4.1) N7 ()] €

where g € (0,1) is given by Theorem 2.11.

Proof. We fix the index j, the point ¢t € U;, and ¢ > 0. Next, we choose M
sufficiently large so that for all m > M and all ¢ with the property |£ —i(t)] < L
we have s{™ = s;, where L is chosen so that ¢ /A\(I(t)) < € and |j —i(t)] < L — k.
For n > m > M, we can expand the function N;m)* in the basis (Ni(")*) and write

We now turn to estimating the coefficients a; defined by equation (4.2). Observe
that for ¢ with [¢ —i(t)| < L — k, we have Ném) = N[(n), and therefore, for such ¢,

Sje = (Ny™* NJ™) = (NJ™" Ny =3 (NI N = aye,

which means that the expansion (4.2) takes the form

(4.3) NI =N S N
ele—=i(t)|>L—k
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Next we show that |a| is bounded by a constant independently of j, ¢ and m, n.
Recall }_L(m) denotes the length of the smallest interval containing supp N, (m)
supp N( m) . By Theorem 2.11, applied to the matrix (a;; (m )) ((N(m)* N(m)*>) we
get

el = (™", M) = \<Za NN
L gl = (m)
S Z Ni N < ZWA(SHPPNZ' )

i Tl
qulz J|§1_
i

This can be used to obtain an estimate for the difference between N ;m)*(t) and
N;n)*(t) by inserting it into (4.3) and applying again Theorem 2.11:
O A IO D DI (O]
L:16—i(t)|>L—k
w_;n(t)‘ L
q < 4

S 2 SEmw Saw <©

£:)0—i(t)|>L—k

This finishes the proof of the convergence part. Estimate (4.1) now follows from
the corresponding estimate for N;n)* in Theorem 2.11.

Now, we turn to the proof of property (1). Let j,i¢ be arbitrary. Choose M
sufficiently large so that for all n > M, we have N; = Ni(") on Uj,, therefore,

(N, NGy = 855 = [(NF, N;) — (N{*, N()| = |(NF — N{* N ™))

S IIN; = NJ™ e aupp 0 - Alsupp V™),

which, by the local uniform convergence of N. ;n)* to N 7, tends to zero. O

5. A MEASURE ESTIMATE

Let o be a measure defined on the unit interval. Recall that P, () is defined by
duality. In view of Theorem 2.11, localized and pointwise estimates for P, (o) are
controlled by terms of the form

i—j
i i ~lor|(supp N )N,
7 hy
Subsequently the following Lemma will be used to show that P, (o) converges a.e.
to zero, for any measure o singular to the Lebesgue measure.

Lemma 5.1. Let F, be a Borel subset of V< and 0 a positive measure on [0, 1] with
0(F,) =0 so that for all x € F,, we have

lim sup by, (z) > 1/r,
where by, (x) is a positive function satisfying
li—3l
q n n
bn(z) < Z o) 0(suppNi( ))N; )(x), z € Fp.

4,5 g
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Then, A(F,) = 0.

Proof. First observe that we can assume that each point in F,. can be approximated
from both sides with points of the sequence (¢;), since the set of points in V¢ for
which this is not possible is a subset of U;0V; and therefore of Lebesgue measure
Zero.

STEP 1: For an arbitrary positive number €, by the regularity of €, we can take
an open set U, C [0,1] with U, D F, and 6(Us) < 5 Then for z € F,., we choose a

ball B, C U, with center z, define s,,(x) = {j : N j ( ) # 0} and calculate

li—3l

q m m
bn(2) S Y Lsb(supp N )N ™ ()
o7 Mg
O(su N
pp V; )
]6‘57” 1’) (
|Z Jl (m)
< max O(supp N; )

™~ j€sm(z) P hg;n)

=C max (ngn) + Z(m)),

JEsm ()

for some constant C' and where

i— 1—7
li—Jl ql Jl

(m) . _ 4 (m) (m) ._ (m)
X = Z o )0(suppN ), Yy = Z o) f(supp N;")
et g S

and
Agm) = {i : supp Ni(m) C B.}, A(m) (A(m))
STEP 2: Next, we show that it is possible to choose m sufficiently large to have
Eg';) < 1/(2Cr) for all j € sp(x).
To do that, let j,, € s, (x) and observe that

B Z q‘L ]”“9 suppN Z q‘l Jm|9(supp N( )) - A(m)
2]rn B d( N( )) o
€A™ zjm ieAl™ %, SUPP

(M)> (m)

where d(z,supp N, denotes the Euclidean distance between x and supp IV,
Now, for n > m sufficiently large, we get

AP = % ¢"=719(supp N;")
n d(x,supp NL,("))

eeAdm
(5 1) < Z Z q|£*jn|9(8upp N("))
iEAL™ eAl™, d(z,supp N("))

supp Né") Csupp Ni(m)

Define L,, ,,, to be the cardinality of the set {t; : m < i <n}NB,NI[0,z] and R,,
the cardinality of {¢; : m < i <n}N B, N|[x,1]. Put

Kn,m = min{anM Rn,m}
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The term (5.1) admits the following upper bound
qli_jml

K"L,m —e
oAl d(x,supp Ni(m))

(n)
E O(supp N,")
eenl™,
supp Nén) Csupp Ni(m)

q

q‘i_jrnl

< qKn,'m
ieAtm d(x,supp Ni(m))

~

0 (supp Ni(m)) — qKn,mA(m)

2,0m?

Since = can be approximated by grid points from both sides, lim,,_,oc Kp m = 00,
and we can choose m sufficiently large to guarantee

(m) (m) 1
Yrg Az < 207"

STEP 3: Next, we show that for any x € F., there exists an open interval
Cy C B, such that 6(Cy)/A\(Cy) 2 1/(2Cr).

By Step 2 and the fact that limsupb,(z) > 1/r for x € F,, there exists an
integer m and an index jo € $,,(x) with

1
E(m)
Lijo = 90y’
which means that

E S Z h(nL) e(bU’ppNi )

iea(™ ido

q“ o (m) (m)
Z 6( conv(supp N;"™ U supp N )
A(m) ”0

where conv(A) denotes the convex hull of the set A. Since }>._, gli=iol <1,
1
there exists a constant ¢ depending only on ¢ and an index ¢ with supp Ni(m) C B,
and
9( conv (supp N(m) U supp Nj(gn))) S
pim) — 207’

1J0

which means that there exists an open interval C, with z € C, C B, with the
property 6(Cy)/A(Cy) > ¢/(2Cr).

STEP 4: Now we finish with a standard argument using the Vitali covering
lemma (Lemma 2.7): there exists a countable collection J of points « € F,. such

that {C, : € J} are disjoint sets and
F.c |J C.c|5Cs.
zeF, xeJ
Combining this with Steps 1-3, we conclude

AF) <M 502) <5300 < S (e < P gy < 2

xzeJ zeJ zeJ

Since this inequality holds for all € > 0, we get that A(F,.) = 0. O
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6. PROOF OF THE SPLINE CONVERGENCE THEOREM

In this section, we prove the Spline Convergence Theorem 1.1. For f € S,,, a
consequence of (2.1) is

/ gult) - (1) AN(E) = / Gu(t) - P f(£) (1) = / Progn() - £(£) dA(E)
0 0

1
:/ gm(D) - O AN, n>m.

0

This means in particular that for all f € U,S,,, the limit of fol gn(t) - f(t)dA(?)
exists, so we can define the linear operator

1
T:US, = X, f+—>li7rln/0 gn(t) - (1) AN().

By Alaoglu’s theorem, we may choose a subsequence k, such that the bounded
sequence of measures ||gg, ||x d\ converges in the weak*-topology to some scalar
measure y. Then, as each f € U, .S,, is continuous,

(6.1) ITflx < / F®)]du(t),  f € US,.

We let W denote the L ([0, 1], u)-closure of U, S,,. By (6.1), the operator T' extends
to W with norm bounded by 1.
We set

(PT)(t) == > (TN )N (1)

which is well defined. Moreover,

(PT)(t) = > (TN)N (1)

= lim / gm N dX - N (1)
= {gn, NIYNI (1) = (Paga) (1) = gu (D).

Thus we verify a.e. convergence of g,, by showing a.e. convergence of P,,T below.

Lemma 6.1. For all f € US,, the function fly, is contained in W and also f1y
is contained in W. Additionally, on the complement of V. = UV}, the o-algebra
F={Ae€B:14 € W} coincides with the Borel o-algebra B, i.e., VSNF =V°eNB.

Proof. Since W is a linear space, it suffices to show the assertion for each B-spline
function Ni(m) contained in some S,,. By Corollary 2.14, it can be written as a
linear combination of finer B-spline functions (n > m)

(m) _ (n) pr(n)
N =D O,
¢
where each coefficient )\é") satisfies the inequality |)\§n)| < 1. We set

h, = Z A@n)Nén),
Leh,
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where the index set A, is defined to contain precisely those indices ¢ so that
supp Ne(n) intersects V; but does not contain any of the points OU; \ B;j. The
function h,, is contained in S,, and satisfies |h,| < 1. Observe that supp h,, C O,

for some open set O, and h, = Ni(m) on some compact set A, C V; that satisfy
On\ Ap L 0 as n — oo and thus,

INT Ty, — bl S (00 \ An) = 0.

This shows that N™ 1y, € W.

Since p is a finite measure, lim,, 4(U;j>,V;) = 0, and therefore, f1y = fly,v, is
also contained in W.

Similarly, we see that the collection F = {A € B: 14 € W} is a o-algebra. So,
in order to show VeNF = VN B we will show that for each interval (¢, d) contained
in [0, 1], we can find an interval I € F with the property V¢N (¢,d) = V¢nlI. By

the same reasoning as in the approximation of Ni(m)]lvj by finer spline functions,
we can give the following sufficient condition for an interval I to be contained in
F: if for all a € {inf I, sup I} we have either

a € I and there exists a seq. of grid points conv. from outside of I to a
or
a ¢ I and there exists a seq. of grid points conv. from inside of I to a,

then I € F. Let now (c,d) be an arbitrary interval and assume first that ¢,d ¢
U,;0U;. For arbitrary points = € [0, 1], define

I(:C) L ‘/J if{L‘EUj,
" 10,  otherwise.

Then, by the above sufficient criterion, the set I = (¢,d) \ (I(c)UI(d)) is contained
in F. Moreoever, V<N (¢,d) = V¢N I and this shows that (¢,d)NVe e FNVe. In
general, since the set U;0U; is countable, we can find sequences ¢, > ¢ and d,, < d
with ¢, d,, ¢ Uj oU;, ¢n, = ¢, dyy, = d, and

(¢, d) NV = (Uplen,dy))NVee FNVE,
since F NV¢is a g-algebra. This shows the fact that F NV¢=BnNVe. d

Proof of Theorem 1.1. PART 1: t € V¢: By Lemma 6.1, we can decompose
gn(t) = (PT)(1) = DTN )N (1)

=3 TN )N (@) + TN 1y ) NI ()

= (" (t) + = (1).
Part 1.a: 2" (¢) FOR ¢ € V: We will show that ${™ (£) converges to zero a.e.
on V¢. This is done by defining the measure
O(F) = ,u(Eﬂ V), E ek,

and
F,={te Ve :limsup |3 (#)|lx > 1/r} Cc V°.
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Observe that §(F,) = 0 and, by (6.1) and Theorem 2.11,

li—3l
(n) q (n)y a7(n)
S0l 30 Lor e NN, te F
05 Mg
which allows us to apply Lemma 5.1 on F,. and 6 to get A\(F,.) = 0 for all » > 0,
ie., Zgn) (t) converges to zero a.e. on V°.

PART 1.B: Zé") (t) FOR t € V¢ Let Bye. = VN B. Thus By is the restriction
of the Borel o-algebra B to V. In this case, we define the vector measure v of
bounded variation on (V¢ By.) by

v(A):=T(1,), A € Bye.

Here we use the second part of Lemma 6.1 to guarantee that the right hand side is
defined and (6.1) ensures |v| < p. Apply Lebesgue decomposition Theorem 2.2 to
get

(6.2) dv = gd\ + dvg

where g € LY and |vg| is singular to A. Observe that for all f € US,,, we have

(6.3) /fdu —T(f1ye).

Indeed, this holds for indicator functions by definition and each f € US,, can be
approximated in L!(u) by linear combinations of indicator functions. Therefore,
(6.3) is established, since both sides of (6.3) are continuous in L'(u). So,

= (1) Z/N dv - N™* (1)
—Z/N gdx N +Z/N(" dv, - N™*(1).

The first part is P,g for an L) function g and this converges by Theorem 3.2 a.e.
to g.

To treat the second part P,v;, let A € By be a subset of V¢ with the property
A(Ve\ A) = |vs|(A) = 0, which is possible since |v,] is singular to A. For z* € X*,
we define the set

F, o+ ={t € A:limsup |(z"P,vs)(t)| > 1/r}.
n
Since by Theorem 2.11

|x* Pvg(t |—‘Za(n)/]\7n)dm o vg) - N( )(t)

li—
q * (n) (n)
< h N
~ Z h(n) |:I" o V5|(Supp Nz ) N_] (t)7
ij g
we can apply Lemma 5.1 to F;. z« and the measure 8(B) = |z* ov,|(BNV¢) to obtain
A(E 5+) = 0. Since the closure Xy in X of the set {P,vs(t) : ¢t € [0,1],n € N} is a

separable subspace of X, by Lemma 2.6, there exists a sequence () of elements
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in X* such that for all z € Xy we have ||z|| = sup,, |z} (x)|. This means that we
can write

F:={teA: hmbupHP vs(t)]| > 0} = U Fi s,
n =1

and thus, A(F') = 0, which shows that P,v, tends to zero almost everywhere on V¢
with respect to Lebesgue measure.

PART 2: t € V:

Now, we consider t € V' or more precisely ¢ € U. This makes no difference for
considering a.e. convergence since the difference between V and U is a Lebesgue
zero set. We choose the index jo such that ¢t € U;, and based on the location of ¢,
we decompose (using Lemma 6.1)

gn(t) = PuT (¢ ZT NN (8
ZT Ly, ) - N7 (8) + ) TN e ) - N7 (2)

B0+ 30,

PArT 2.a: 34" (t) FOR t € Uj,:
We now consider

ZT N1y, )N (), teUs,

and perform the construction of the B-splines (N;) and their dual functions (N7)
corresponding to Vj, described in Section 4. Define the function

(6.4) u(t) ==Y T(N)N;(t), teUj,

and first note that Nj € W since by Lemma 4.1 it is the uniform limit of the
functions (Nj(n) Ly, ), which, in turn, are contained in W by Lemma 6.1. Therefore,
T'(N;) is defined. Moreover, the series in (6.4) converges pointwise for ¢ € U}, since
A(I(t)) > 0, the sequence j — N} (t) admits a geometric decay estimate by (4.1)
and the inequality ||T'(N;)||x < u(supp NN;). If one additionally notices that (4.1)
implies the estimate | N*||,1 < 1 we see that the convergence in (6.4) takes place
in LY as well. This implies (u, N;) = T(V;) for all i by Lemma 4.2.

Next, we show that if for all n, (a;) and (a§">) are sequences in X so that for all
(n)

i we have lim,, a; * = a;, and sup; ||a;||x + sup; ,, Hal(-n) Ilx <1it follows that

(6.5) 11711112 —a)N™M () =0, teU,.

Indeed, let € > 0, the integer L such that ¢* < ¢ -inf,, A(I,(t)) and M sufficiently
large that for all n > M and all i with |i —i,(t)] < L, we have ||a{™ — a;]|x <
¢ -inf, A(I,(¢)). Then, by Theorem 2.11,

|Z Zn(t)‘

D (0
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gli=in(®)]

(n)
Yoo Y e -l Yy

itlimin ()<L 6:|i—in (t)|>L

qli_in(t)‘

< li—in ()] <
S 2 e 2 Nmoy tC

itli—in (£)|<L it)i—in (£)|>L
We now use these remarks to show that

m |2 (1) — Pou(t)|x =0,  teUj,.
Indeed, since (u, N;) = T(N;) for all 4,
20" (8) — Paut) = Z (TN Tv,,) = (u, N)) N (1)

= Z T(N{"1y, ) — T(N;))NV*(t)
+ 3 ((u, Ni) = (u, NV)) NI (1),

Now, observe that for all 4, we have T(Ni(n)]lvjo) — T(N;) and (u, NZ-(”)> — (u, N;)
since by Lemma 4.1, Ni(n) converges uniformly to N; on Vj, and u € L'. Moreover
all the expressions T(Ni(")]lvjo),T(Ni), (u,Ni(n)> are bounded in ¢ and n. As a

consequence, we can apply (6.5) to both of the sums in the above display to conclude
m |2 (1) — Pou(t)||x =0,  teUj,.

But we know that P,u(t) converges a.e. to u(t) by Theorem 3.2, this means that
also Zgn)(t) converges to u a.e.

PaRT 2.8: £{V(t) FOR t € Uj,: We show that B8 (t) = 3, (N 1y ) -
Ni(n)*(t) converges to zero for t € Uj,. Let € > 0 and set s = inf,, \(I,(t)), where
we recall that I,,(¢) is the grid interval in A,, that contains the point ¢. Since s > 0
we can choose an open interval O with the property u(O \ Vj,) < es. Then, due
to the fact that t € Uj,,, we can choose M sufficiently large that both intervals
(inf O,t) and (¢,supO) contain L points of the grid Ajs where L is such that
qt < es/u([0,1]). Thus, we estimate for n > M by (6.1) and Theorem 2.11

gli=in ()

A(In (1))
(X X ) mewe N avie)

S
i:supp Ni(")ﬂOC#(D i:supp Ni(")co

< L (ul0.1)g +pO\ Vi) S ¢

1257 (1) llx < 3 lsupp N V)

This proves that Eén) (t) converges to zero for t € Uj,. O

By looking at the above proof and employing the notation therein, we have
actually proved the following, explicit form of the Spline Convergence Theorem:

Theorem 6.2. Let X be a Banach space with RNP and (g,) be sequence in L
with the properties
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(1) supy, [|gnlly < oo,
(2) Ppngn = gm for allm <n.

Then, g, converges a.e. to the L -function

g]].vc + Z ZT(NQ‘O,]‘)N;OJ]].UJ .
Jjo 7
Here, g is defined by (6.2), and for each jo, (Nj, ;) and (N}, ;) are the B-splines
and their dual functions constructed in Section 4 corresponding to Vj, .

Remark 6.3. In order to emphasize the pivotal role of the set V' and its com-
plement we note that the proof of Theorem 6.2 implies the following: If (g,) be
sequence in L} such that

(1) Sup,, ||gnHL§( < 00,
(2) Pngn =gm forallm <n

and if A(V¢) = 0 then, without any condition on the Banach space X, g,, converges
a.e. to - ~

Z ZT(NJ'Ovj)N;o-j]lUm'

Jjo 7

Remark 6.4. Based on the results of the present paper, an intrinsic spline charac-
terization of the Radon-Nikodym property in terms of splines was obtained by the
second named author in [8]. The result in [8] establishes the full analogy between
spline and martingale convergence.
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ABSTRACT. We give necessary and sufficient conditions for a Banach space X
having the Radon-Nikodym property in terms of polynomial spline sequences.

1. INTRODUCTION AND PRELIMINARIES

The aim of this paper is to prove new characterizations of the Radon-Nikodym
property for Banach spaces in terms of polynomial spline sequences in the spirit of
the corresponding martingale results (see Theorem 1.2). We thereby continue the
line of research about extending martingale results to also cover (general) spline
sequences that is carried out in [4-8,11]. We refer to the book [1] by J. Diestel and
J. J. Uhl for basic facts on martingales and vector measures; here, we only give the
necessary notions to define the Radon-Nikodym property below. Let (£2,.4) be a
measure space and let X be a Banach space. Every o-additive map v : A — X is
called a vector measure. The variation |v| of v is the set function

WI(E) = St;pz [ (A)lx,

Aem

where the supremum is taken over all partitions m of E into a finite number of
pairwise disjoint members of A. If v is of bounded variation, i.e., |v|(2) < oo, then
the variation |v| is o-additive. If u: A — [0,00) is a measure and v : A — X is
a vector measure, v is called p-continuous if lim,gy_,ov(E) = 0 for all E € A.
In the following, L% = L% (Q, A, 1) will denote the Bochner-Lebesgue space of
p-integrable Bochner measurable functions f : 2 — X, and if X = R, we simply
write LP instead of L.

Definition 1.1. A Banach space X has the Radon-Nikodym property (RNP) if
for every measure space (€,.4), for every positive measure p on (2,.4), and for
every p-continuous vector measure v of bounded variation, there exists a function
[ € LY (Q, A, p) such that

V(A):/Afd,u, Ac A
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Additionally, recall that a sequence (f,) in L% is uniformly integrable if the
sequence (|| fn||x) is bounded in L' and, for any £ > 0, there exists § > 0 such that

p) <5 — sw [ flxdi<e  AcA
n A

We have the following characterization of the Radon-Nikodym property in terms
of martingales; see e.g. [9, p. 50].

Theorem 1.2. For any p € (1,00), the following statements about a Banach space
X are equivalent:

(i) X has the Radon-Nikodym property (RNP),
(ii) every X -valued martingale bounded in LY, converges almost surely,
(iii) every uniformly integrable X -valued martingale converges almost surely and
in LY,
(iv) every X -valued martingale bounded in L%, converges almost surely and in
L% .

Remark. For the above equivalences, it is enough to consider X-valued martin-
gales defined on the unit interval with respect to Lebesgue measure and the dyadic
filtration (cf. [9, p. 54]).

Now, we describe the general framework that allows us to replace properties
(ii)—(iv) with their spline versions.

Definition 1.3. A sequence of o-algebras (F,),>0 in [0,1] is called an interval
filtration if (F,) is increasing and each F,, is generated by a finite partition of [0, 1]
into intervals of positive Lebesgue measure.

For an interval filtration (F,,), we define A, := {0A : A is atom of F,} to be
the set of all endpoints of atoms in F,,. For a fixed positive integer k, set

Sk = {f e Ck2[0,1]: f is a polynomial of order k on each atom of F,},

where C™[0, 1] denotes the space of real-valued functions on [0, 1] that, for n > 0,
are additionally n times continuously differentiable and the order k of a polynomial
p is related to the degree d of p by the formula k = d + 1.

The finite dimensional space Sr(bk) admits a very special basis (IV;) of non-negative
and uniformly bounded functions, called B-spline basis, that forms a partition of
unity, i.e., Y, N;(t) =1 for all t € [0, 1], and the support of each N; consists of the
union of k neighboring atoms of F,,. If n > m and (N;), (N;) are the B-spline bases
of Sflk) and S,(,lf), respectively, we can write each f € S,(,f) as f=Y a;N; = ST biN;
for some coefficients (a;), (b;) since S% 8. Those coefficients are related to
each other in the way that each b; is a convex combination of the coefficients (a;).
For more information on spline functions, see [10].

Additionally, we let P,S’“) be the orthogonal projection operator onto Sy(lk) with
respect to L2[0,1] equipped with the Lebesgue measure | - |. Each space Sk g
finite dimensional and B-splines are uniformly bounded. Therefore, Pr(tk) can be
extended to L' and LY satisfying Py(lk)(f ®x) = (P,gk)f) ® x for all f € L' and
x € X, where f ® x denotes the function ¢ — f(t)x. Moreover, by S,gk) ® X, we
denote the space span{f @ x : f € ST(Lk), x € X}

Licensed to Johannes Kepler University. Prepared on Thu Sep 5 03:31:17 EDT 2019 for download from IP 140.78.125.112.
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Definition 1.4. Let X be a Banach space and let (f,)n>0 be a sequence of func-
tions in LY. Then, (f,) is an (X-valued) k-martingale spline sequence adapted to
(Fp) if (F,) is an interval filtration and

Prr(Lk)fn-i-l :fn; HZO

This definition resembles the definition of martingales with the conditional ex-
pectation operator replaced by P,(Lk). For splines of order k& = 1, i.e., piecewise

) even is the conditional expectation operator

constant functions, the operator Pr(lk
with respect to the o-algebra F,.
Many of the results that are true for martingales (such as Doob’s inequality, the
martingale convergence theorem, or Burkholder’s inequality) in fact carry over to
k-martingale spline sequences corresponding to an arbitrary interval filtration as

the following two theorems show:

Theorem 1.5. For any positive integer k, any interval filtration (F,,), and any
Banach space X, the following assertions are true:

(i) there exists a constant Cy depending only on k such that

sup |[PF) : LY — L || < Cy;

(ii) there exists a constant Cy, depending only on k such that for any X -valued
k-martingale spline sequence (f,) and any A > 0,
supy, [|.fnll Ly, )
)\ )
(iii) for all p € (1,00] there exists a constant Cp,j, depending only on p and k
such that for all X -valued k-martingale spline sequences (fy),

[{sup [ fullx > A} < C

| sup 1fallx]| o < Cpok Sup I frllze s

(iv) if X has the RNP and (f,) is an L -bounded k-martingale spline sequence,
then (f,) converges a.s. to some LY -function.

Item (i) is proved in [11], and (ii)—(iv) are proved (effectively) in [5,8].

Theorem 1.6 ([6]). For all p € (1,00) and all positive integers k, scalar-valued
k-spline differences converge unconditionally in LP; i.e., for all f € LP,

13" +(P5 — PO, < Coill fllze

for some constant Cp 1. depending only on p and k.

The martingale version of Theorem 1.6 is Burkholder’s inequality, which precisely
holds in the vector-valued setting for UMD-spaces X (by the definition of UMD-
spaces). It is an open problem whether Theorem 1.6 holds for UMD-valued k-
martingale spline sequences in this generality, but see [2] for a special case. For
more information on UMD-spaces, see e.g. [9].

Definition 1.7. Let X be a Banach space, let (F;,) be an interval filtration, and
let k be a positive integer. Then, X has the ((F,,), k)-martingale spline convergence
property (MSCP) if all L,-bounded k-martingale spline sequences adapted to (F,)
admit a limit almost surely.
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In this work, we prove the following characterization of the Radon-Nikodym
property in terms of k-martingale spline sequences.

Theorem 1.8. Let X be a Banach space, let (F,,) be an interval filtration, let k be
a positive integer, and let V' be the set of all accumulation points of |, An. Then,
((Fn),k)-MSCP characterizes RNP if and only if |V| > 0; i.e., |V| > 0 precisely
when the following are equivalent:

(1) X has the RNP,

(2) X has the ((Fn), k)-MSCP.

Proof. If |[V| > 0, it follows from Theorem 1.5(iv) that RNP implies ((F,),k)-
MSCP for any positive integer k and any interval filtration (F,). The reverse
implication for |V| > 0 is a consequence of Theorem 1.10. We even have that if X
does not have RNP, we can find an (F,,)-adapted k-martingale spline sequence that
does not converge at all points ¢t € E for a subset £ C V with |E| = |V|. We simply
have to choose E := limsup E,, with (E,) being the sets from Theorem 1.10.

If |V] = 0, it is proved in [5] that any Banach space X has ((F,), k)-MSCP. O

We also have the following spline analogue of Theorem 1.2:

Theorem 1.9. For any positive integer k and any p € (1,00), the following state-
ments about a Banach space X are equivalent:

(i) X has the Radon-Nikodym property,
(ii) every X -valued k-martingale spline sequence bounded in L% converges al-
most surely,
(iii) every uniformly integrable X -valued k-martingale spline sequence converges
almost surely and in LY,
(iv) every X -valued k-martingale spline sequence bounded in L% converges al-
most surely and in L% .

Proof. (1)=-(ii): Theorem 1.5(iv).

(if)=-(iii): Clear.

(iii)=(iv): If (f,) is a k-martingale spline sequence bounded in L% for p > 1,
then (f,,) is uniformly integrable; therefore it has a limit f (a.s. and L%), which,
by Fatou’s lemma, is also contained in L% . By Theorem 1.5(iii), sup,, || fn| x € L?,
and we can apply dominated convergence to obtain || f,, — flzz — 0.

(iv)=(i): Follows from Theorem 1.10. O

The rest of the article is devoted to the construction of a suitable non-RNP-
valued k-martingale spline sequence, adapted to an arbitrary given filtration (F,),
so that the associated martingale spline differences are separated away from zero
on a large set, which, more precisely, takes the following form:

Theorem 1.10. Let X be a Banach space without RNP, let (F,) be an interval
filtration, let V' be the set of all accumulation points of |, An, and let k be a
positive integer.

Then, there exists a positive number § such that for all n € (0,1), there exists an
increasing sequence of positive integers (m;), an L -bounded k-martingale spline
sequence (f;)j>o0 adapted to (Fp,,) with f; € S,Si“) ® X, and a sequence (E,) of
measurable sets E, CV with |E,| > (1 —27"n)|V] so that for alln > 1,

an(t)_fnfl(t)”X 257 te b,.
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We will use the concept of dentable sets to prove Theorem 1.10 and recall its
definition:

Definition 1.11. Let X be a Banach space. A subset D C X is called dentable if
for any € > 0 there is a point = € D such that
x ¢ conv (D \ B(x,¢)),

where conv denotes the closure of the convex hull and where B(z,¢) = {y € X :
ly — =l <e}.
Remark (Cf. [1, p. 138, Theorem 10] and [9, p. 49, Lemma 2.7]). If D is a bounded
non-dentable set, then the closed convex hull eéonv(D) is also bounded and non-
dentable. Thus, we may assume that D is convex. Moreover, we can as well assume
that each x € D can be expressed as a finite convex combination of elements
in D\ B(x,d) for some ¢ > 0 since if D C X is a convex set such that = €
conv(D \ B(xz,0)) for all z € D, then, the enlarged set D = D + B(0,n) is also
convex and satisfies

J,’Econv(ﬁ\B(x,é—n)), zeD.

The reason why we are able to use the concept of dentability in the proof of The-
orem 1.10 is the following geometric characterization of the RNP (see for instance
[1, p. 136]).

Theorem 1.12. For any Banach space X we have that X has the RNP if and only
if every bounded subset of X is dentable.

We record the following (special case of the) basic composition formula for de-
terminants (see for instance [3, p. 17]):

Lemma 1.13. Let (f;)i=; and (g;)}—, be two sequences of functions in L*. Then,

®qAEm%m@]ﬂ

=/ det(fi(te))7 o= - det(g;(te)} gmg Alt1, - tn).
0<t; <+ <t, <1

We also note the following simple lemma;:

Lemma 1.14. Let I C [0,1] be an interval and let V' be an arbitrary measurable
subset of [0,1]. Then, for all e1,e9 > 0, there exists a positive integer n so that for
the decomposition of I into intervals (Ag)j_, withsup Ay <inf Ay q and n|ANV] =
[INV]| for all ¢, the index set T = {2 <€ <n—1:max(|As_1], |Ael,|Ae+1]) < 1}
satisfies

ANV (1 -e)lInV].

ter

2. CONSTRUCTION OF NON-CONVERGENT SPLINE SEQUENCES

In this section, we prove Theorem 1.10. In order to do that, we begin by fixing
an interval filtration (F,,), the corresponding endpoints of atoms (A,,), and a pos-
itive integer k. For the space Sy(bk), we will suppress the (fixed) index k and write
S, instead. We will apply the same convention to the corresponding projection
operators P, = P We also let V [0,1] be the closed set of all accumulation
points of | J,, A,.
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The main step in the proof of Theorem 1.10 consists of an inductive application
of the construction of a suitable martingale spline difference in the following lemma:

Lemma 2.1. Let (mj)j]‘il be in the Banach space X, let T € Sy ® X for some
non-negative integer N such that T = Z]M=1 aj ® x; with Zjvil a; =1, ||lz;] <1,
a; € Sy having non-negative B-spline coefficients for all j, and let I C [0,1] be an
interval so that [INV| > 0.
Then, for alle € (0,1), there exist a positive integer K and a function g € SgkQX
with the following properties:
(i) [;t7g(t)dt =0 forall j=0,...,k—1.
(ii) suppg C int I.
(iii) We have a splitting of the collection of = {A C I: A is atom in Fx} into
oy U 2t so that
(a) if the functions a; are all constant, then on each J € <, T+ g is
constant with a value in \J;{x;}; otherwise we still have that on each
J € @, T+ g is constant with a value in conv{z; : 1 <i < M};
) [Uyew, 7OV] = (1—e)INV];
(c) on each J € ab, T+ g = >, i @ ye for some functions Ay € Sk
having non-negative B-spline coefficients with Y ,A¢ = 1 and y, €
conv{z; : 1 <j<M}+ B(0,¢).

Proof. The first step of the construction gives a function g satisfying the desired
conditions but having only mean zero instead of vanishing moments in property (i).
In the second step, we use this result to construct a function g whose moments also
vanish.

Step 1. We start with the (simpler) construction of g when the functions «; are not
constant and condition (iii)(a) has the form that on each J € 4, T + g is constant
with a value in conv{z; : 1 <i < M}.

First, decompose I into intervals (Ag)}y_, satisfying n|A, N V| = |I N V| with
sup Ay < inf Apy1 and n > 4/e. Then, choose K > N so large that Ay, As, A1, Ay
each contains at least k + 1 atoms of Fg. Denoting by (NN;) the B-spline basis of
Sk, we can write

CQEZO(@JN]', {=1,..., M,
J

for some non-negative coefficients (cy ;). Define
he = > a,j Nj.
j:U;:Z1 A;Nsupp N;#0

Observe that supp hy C int I and hy = ay on U:.:; A;. Letting = = > By for
Be = fhg/(zj fh]) € [0, 1], we define

M M
g:== hy@x+ (Zhj) ® 7.
=1 j=1

This is a function of the desired form when defining 2 = {A C U?:_Ql A;
Ais atom in Fx} and @ = &/ \ &, as we will now show by proving [g = 0
and properties (ii), (iii). The fact that [ g = 0 follows from a simple calculation.
Property (ii) is satisfied by the definition of the functions hy. Property (iii)(a)
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follows from the fact that Z(t) + ¢g(t) =& € conv{z; : 1 <j < M} fort € U?;Ql A;
since hy = ay on that set for any £ =1,..., M. Since |(A;UAsUA,_1UA,)NV| =
4INV|/n <elI NV, (iii)(b) also follows from the construction of &7 . Since

M M

2(t) + 9(t) = 3 (eult) = he(®))we + (D hs(0)) 7,
(=1 j=1

zeconv{z;:1<j <M}, hy <oy, and ), o =1, (iii)(c) is also proved.

The next step is to construct the desired function g when «; are assumed to
be constant and (iii)(a) has the form that on each J € &, T + g is constant
with a value in (J;{z;}. Here, the idea is to construct a function of the form
g(t) = fj(t)(z; — ) with f; € Sk for some K and [ f; ~ Ca; for all j and some
constant C' independent of j to employ the assumption ) o;(z; —z) = 0, implying

g=0.

f We begin this construction by successively choosing parameters e3 < €1 K € < €
obeying certain given conditions depending on €, Z, (z;), (¢;), [ NV], and |I|.

First, set

E=¢|lINV]|/(3I]) >0 and

eE(l—¢/3)|INV]
Now, we apply Lemma 1.14 with the parameters €1 and e = £/3 to get a positive
integer n and a partition (Ay)}_, of I consisting of intervals with n|4,NV| = |[INV|
forall =1,...,n so that

P={2<0<n—1:max(Aeal, [Ad, [ Ae) < 21}
satisfies

(2.2) (1—§)|IﬁV| <> |4Vl

Ler

Finally, we put €3 = ¢1/(2n).

Next, for each £ = 1,...,n, we choose a point p; € int A, and an integer K,
so that the intersection of int Ay and the e3-neighborhood B(py,e3) of py contains
at least £ + 1 atoms of Fg, to the left as well as to the right of p,. This is
possible since |[A, NV| = [INV]|/n and V is the set of all accumulation points
of Uj Aj. Then set K = maxy K, and let uy € Ay be the leftmost point of Ax
contained in B(pg,e3) Nint Ay. Similarly, let v, € Ay be the rightmost point of Ak
contained in B(py,e3)Nint Ag. Next, for 2 < ¢ <n—1, we put By := (vp—1, up+1) C
Ay_1UAUJA . Observe that the construction of uy and vy implies that B,NB; = ()
for all |¢ — j| > 2. Next, let (N;) be the B-spline basis of the space Sk and let
(€(i))E, be the increasing sequence of integers so that I' = {£(i) : 1 < i < L} for
L =|T'| <n. We then define the set

A(r,s) := {j :supp N, N (QBM)) # (Z)}

to consist of those B-spline indices so that the support of the corresponding B-spline
function intersects the set |J;_, By(;). Observe that by (2.2),

(2.3) (17 %)‘IQV| < Z|AgﬁV| = ‘ UA@QV’ < ’UBg(i)ﬁV‘ < ‘UBZ(i)
Ler Ler i i
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Thus, the definition (2.1) of €1 in particular implies that

(2.4) 72, M <& ‘ U By

We continue defining the functions (f;) contained in Sk using a stopping time
construction and first set jo = —1 and C' = (1-¢/3)| U, Be;)| > 0. For 1 <m < M,
if j,n_1 is already chosen, we define j,, to be the smallest integer < L so that the
function

(2.5) fm = Z N; satisfies /fm(t) dt > Cayp,.
jeA(j7n71+27jnL)

If no such integer exists, we set j,, = L (however, we will see below that for the
current choice of parameters, such an integer always exists). Additionally, we define

v = Z Nj.
JEA(GMm+2,L)

Observe that by the locality of the B-spline basis (N;), supp f¢ N supp fr, = 0 for
1<f¢<m< M+ 1. Based on the collection of functions ( fm)M *1 we will define

m=1>
the desired function g. But before we do that, we make a few comments about
(fm)mi-

Note that for m = 1,..., M, by the minimality of j,,,
/ > N;(t)dt < Coy,
jEA(jm—1+2J‘m71)

and therefore, again by the locality of the B-splines (N;),

(2.6) /fm(t) dt < Cayy, +/ > Nj(t)dt < Cap + 3¢y

JEA(Gm Jm)

Additionally, employing also the definition of u, and v, and the fact that the B-
splines (N;) form a partition of unity, we obtain

Im Jm
U Byiy| < /fm(t) dtﬁ) U (Pe(i)—15Peiy+1)
7::jmfl"l'2 i:j'anl"l‘Q
j’Vn
< ‘ U By

1=jm—1+2

(2.7)
+ 2nes.

Next, we will show that

(2.8) (1- 5)’ U By

S‘ U By

1<jm

< (1-¢/6)|J Buoy

Indeed, we calculate on the one hand by (2.7) and (2.6) that

M Im M M
(U Bol<X] U B+ X Bials Z/fm@)dtmslM
i<jm m=1 i=j,_ 142 m=1 m=1
M
< (Cam +3e1) +3e1M = C + 61 M.
m=1

Licensed to Johannes Kepler University. Prepared on Thu Sep 5 03:31:17 EDT 2019 for download from IP 140.78.125.112.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



194 CHAPTER 9. SPLINE CHARACTERIZATIONS OF THE RADON-NIKODYM PROPERTY

SPLINE CHARACTERIZATIONS OF THE RADON-NIKODYM PROPERTY 9

Recalling that C' = (1 — £/3)||J; Be(s)| and using (2.4) now yield the right hand
side of (2.8).
On the other hand, employing (2.7) and (2.5), we obtain

Jm
’ U B | 2 Z ‘ >N (/fm<t) dt—?nsg)
1<jm =1 i=jm-_1+2
M
>C Z Qm — 2nMeg = C' — 2nMes.
m=1

The definitions of C' = (1 — &/3)| U, Bu;)| and e5 = £1/(2n), combined with (2.4),
give the left hand inequality in (2.8).

The inequality on the right hand side of (2.8), combined with (2.4) again, allows
us to give the following lower estimate of [ far41:

/fM+1 dt>‘ U By >‘UB£()

12jm+2
We are now ready to define the function g € Sx ® X as follows:

(2.10) Q—ij ;=T +fM+1®ZﬂJ — ),
Jj=1
where
Ca; — [ f;(t)dt
(2.11) 53:%, 1<j<M.

We proceed by proving [ g = 0 and properties (ii)—(iii) for g.
The fact that [ g = 0 follows from a straightforward calculation using (2.11) and
the assumption Zj\il aj(z; —x) = 0. (ii) follows from suppg C [p1,ps] C int 1.

Next, observe that by deﬁnition of gand f1,..., far41, on each Fi-atom contained
in the set B := Uile g:jm71+2 By, the function z + g is constant with a value

in J,{x;}. Setting &/} = {A C B: Ais atom in Fg} and o = &/ \ & now shows
(iii)(a). Moreover, by (2.1), (2.3), and (2.8),

’ U JﬁV’_’ U U B“)mv‘>‘ U Bg()ﬂV‘—?)Mel

Jea m=14i=7m_1+2 i<jm
_eInV]
B _
> ||| U |- 255
i>JM

€ . elINV]
>(1-\nv| - ‘ — .

> ( 3)| NV|—¢& : 51

Since £|U; Begy| < €[I] < e[INV[/3 by definition of £, we conclude that [|J ¢, JN
V] > (1 —¢)|I NV, proving also (iii)(b). Next, we note that for ¢ € supp f; with
j < M, we have

T+g(t) =2+ f(t)(x; —2) = fi(H)x; + (1 - f;(t))z.
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Since f;(t) € [0,1] and Z is a convex combination of the elements (z;), we get
(iii)(c) in this case. If ¢ € supp far+1, we calculate that

M
THg(t) =2+ farea(t) Y Bl —
(2.12) 7=t Ny
= (1= fare1 ()T + farea (8) (T + Zﬂj(% -z

We have by the lower estimate (2.9) for [ far4+1 and by (2.6)
M

> oI < 50 VEECHEE

(3e1 M),
j=1 ()|j<M ’U Z()| 1

which, by (2.4), is smaller than /2. Therefore, combining this with (2.12) yields
property (iii)(c) for ¢ € supp far+1 by setting Ay = 1 — fare1, Ao = fyme1, y1 = T,
Yo =T + Zj Bj(z; — ). Thus, we have finished Step 1 of constructing a function
g with mean zero and properties (ii), (iii). The next step is to construct a function
g so that additionally all of its moments up to order k vanish.

Step 2. Set £ =1 — (1 —)Y/3 > 0. We write a = inf I, b = sup I, and choose ¢ € T
so that R := (¢, b) satisfies 0 < [RNV| =¢&|I NV|. Define L = I\ R. Let (N;) be
the B-spline basis of Sk, where we choose the integer Kr so that we can select
B-spline functions (N,,,)*=} that supp N,,, C int R for any i = 0,...,k — 1 and
supp Ny, Nsupp N,; = 0 for i # j. We then form the & x k-matrix

A= ( /R £ Ny, (1) dt)::lo'

The matrix (t;ﬁ)iz:lo is a Vandermonde matrix having positive determinant for
to < --- < tp_1. Moreover, the matrix (N, (tg));?_zzlo is a diagonal matrix hav-
ing positive entries if ¢, € intsupp N,,, for £ = 0,...,k — 1. For other choices of
(t¢), the determinant of (N, (t¢)) leo vanishes. Therefore Lemma 1.13 implies
that det A £ 0 and A is 1nvert1ble

Next, we choose €1 = &/(k(1 + &)||A7"|||L|) and apply Lemma 1.14 with the
parameters €1, €5 = £, and the interval L to obtain a positive integer n so that for
the partition (Ag)j_, of L with n|4,NV|=|LNV]| and sup A,_1 = inf Ay, the set

={2</l<n—1:max(|Ar_1|,|Ae|,|Ae+1|) < 1} satisfies

S ANV = (1-9LnV].
Ler

We now apply the construction of Step 1 on every set Ay, £ € T, with the parameters
z, (xj)j-w:l, (ozj)jl‘/il, € to get functions (g¢) with zero mean having properties (ii),
(iii) with I replaced by A,. On L, we define the function

:ng(t)a teL.

Ler
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Let z; := [} t7g(t)dt for j = 0,...,k — 1. Observe that since fAe ge(t)dt = 0 and
llgellLse < 14 & by (iii) and [Ae| < &1, we get for all j =0,...,k—1,

Iz = H;/A  gu(t) ]| = HKZ;/A (t — (inf 4,)7) - (1)t

<Y |Ad . lge(t)] dt
Ler ¢

<ja(1+8)L) <& A YL

In order to have fI tig(t)dt = 0 for all j = 0,...,k — 1, we want to define g on
R =1\ L so that

(2.13) /tjg(t)dt:—zj, j=0,... k-1
R

Assume that g on R is of the form

k—1
9(t) =3 Ny (Dwi,  tER,
1=0

for some (w;)¥Z contained in X. Then, (2.13) is equivalent to
Aw = —z
by writing w = (wo,...,wr_1)7 and z = (20,...,2k-1)7. Defining w := —A~ 'z
and employing the estimate for ||z||» above, we obtain
(2.14) lwlloo < 147 looll2lloc < &

The definition of g immediately yields properties (i), (ii). From the application of
the construction in Step 1 to each Ay, £ € T', we obtained collections <7 () of disjoint
subintervals of A, that are atoms in Fg, for some positive integer K, > N satisfying
that T + gy is constant on each J € 7 (¢) taking values in conv{z; : 1 < ¢ < M}
and |Ujep 0 JNVIZ (1 =8)[AN V] Let B :=U,U,eu ) J and define & to
be the collection {J C B : J is atom in Fk}, where K := max(max, K;, Kg), and
define o :={J C I:Jis atom in Fi}, oh = \ 4.

Then, (iii)(a) is satisfied by the corresponding property of each g,. Property
(iii) (b) follows from the calculation

) U va‘ >(1-8)3 ANV > (1-2?%LnV|
Jeat, Ler
>(1 =& INV|=1-¢)|InV]

Property (iii)(c) on L is a consequence of property (iii)(c) for the functions g;. We
can write oi; = Y, a; (N, for some non-negative coefficients (o) that have the
property ZJM:1 ajj¢ = 1 for each £. Therefore, on R we have

M k—1 M k—1
2(t) +9() =3 aj(®); + Y Now (Dwi = > No(t) ( PIIEDY 5g,miwi),
j=1 i=0 I} j=1 i=0

which, since ||w||e < € < e and Zjle o ¢ = 1 for each ¢, implies (iii)(c) on R. O

We now use Lemma 2.1 inductively to prove Theorem 1.10.
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Proof of Theorem 1.10. We assume that X does not have the RNP. Then, by The-
orem 1.12, the ball B(0,1/2) C X contains a non-dentable convex set D satisfying

z € conv(D \ B(z,26)), x €D,

for some parameter 2§. Defining Dy = D + B(0,6/2) and, for j > 1, D; =
D;_1 + B(0,277715), we use the remark after Definition 1.11 to get that all the
sets (D;) are contained in B(0, 1), are convex, and

z € conv (D; \ B(z,9)), x € Dj, j>0.

We will assume without restriction that n <.

Let zo,1 € Do be arbitrary and set fo = Tjp,1] ® Z0,1 € Sy ® X on I := [0, 1]
for mo = 0. By P;, we will denote the L%-extension of the orthogonal projection
operator onto Sy, where we assume that (m;)?_; and (f;)}=; with f; € Sy, ® X
for each j = 1,...,n are constructed in such a way that for all j =0,...,n,

(1) Pioafj=fi—1ifj =1
(2) on all atoms I in F,,, f; has the form

fi= Z Ar ® Yy, finite sum,
¢

for functions A\¢ € S, with non-negative B-spline coefficients, >, \¢ = 1,

and some y; € Dj;
(3) there exists a finite collection of disjoint intervals (I;;); that are atoms in

Fm, so that (setting C; = J, I;,:)

(a) for all 4, fj =Tj; €< Dj on Ijﬂ‘,

() [Ifi = fi-illx Z2don C;NCi_q if j > 1,

() |C;NCioanNV|> (1 =27y |V]if j > 1,

(d) [C;NV] = (1=277"2)|V],

(e) |I;; N V| >0 for every i.

We will then perform the construction of myy1, fny1, and the collection (I,41 )
of atoms in F,,,  , having properties (1)~(3) for j = n + 1. Define the collection
¢ = {Ais atom of F,,, : [ANV]| > 0}. We will distinguish the two cases B €
¢ :={Ac¥:A=1,, for some i} and B € G5 := % \ 6.

Case 1 (B € %1). Here, B = I,,; for some i, and we use the fact that on B,
fn=12p:=x,,; €D, and write

Mp
B = E aBeTB¢
=1

with some positive numbers (ap ) satisfying >, ap¢ = 1, some zp, € D,,, and
leg —xpe| > 0 for any £ = 1,..., Mp. We apply Lemma 2.1 to the interval B
with this decomposition and with the parameter ¢ = 7, := 277315, This yields
a function gp € Sk, ® X for some positive integer Kp that has the following
properties:
(i) [t'gp(t)dt=0, 0<(<k-1
(ii) suppgp C int B.
(iii) We have a splitting of the collection @5 = {A C B : A is atom in Fg, }
into @/ 1 U 4/p 2 so that
(a) on each J € /1, fn + 9B = B + gp is constant on J taking values

in U{zn,ets
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(b) [Ujewy, JNVI 2 (1 —m)BOV];
(¢) on each J € 4/ 2, the function f, + gp can be written as

fnt)+g8(t) =5 +98(t) = > _ Ape(t)ys.e
¢

for some functions Ag, € Sk, having non-negative B-spline coeffi-
cients with >>,Aps = 1 and yp, € conv{zp, : 1 < j < Mp} +
B(0,1,).

Case 2 (B € 63). On B, f, is of the form

Mp
fn(t) = Z Ae(t)ye
=1

for some functions \; € S,,, having non-negative B-spline coefficients with >, \; =
1 and some gy, € D,. Applying Lemma 2.1 with the parameter 1, = 2773, we
obtain a function gp € Sk, ® X (for some positive integer Kp) that has the
following properties:
(1) [ttgp(t)dt =0, 0<li<k-—1.
(ii) suppgp C int B.
(iii) We have a splitting of the collection o7 = {A C B : A is atom in Fk, }
into 2/p 1 U @7/ 2 so that
(a) for each J € g1, fn + gp is constant on J taking values in
conv{ye: 1 <{ < Mg},
(b) |UJEQQ{BYI JnN V‘ 2 (1 - 777L)‘B n V|,
(c) for each J € o7 o, the function f, + gp can be written as

Fa) +98(t) =Y A e(t)yn.e
¢

for some functions Ap, € Sk, having non-negative B-spline coeffi-
cients with ) 5, Ap ¢y =1and yp s € conv{y; : 1 < j < Mp}+ B(0,1,).

Having treated those two cases, we define the index m,, 1 := max{Kp : B € ¢}

and
fn+1 = fn + Z gB-
Be€

The new collection (I,4+1,;) is defined to be the decomposition of the set
Upew Ujew, , J (from the above construction) into Fp,,,,-atoms after deleting
those F,, ., -atoms I with [I N'V| = 0. Since D, is convex and n < §, the corre-
sponding function values of f,,+1 are contained in D,,+B(0,7,,) C D,+1, and we will
enumerate them as (z,,41,); accordingly. We additionally set Cp,11 := U, In41,i-

With these definitions, we will successively show properties (1)—(3) for j = n+1.
Since the function g = P, fp+1 € Sm, ® X is characterized by the condition

/ a(t)s(t) dt = / foni(s(t)dt, s € S,

property (1) for j = n+1 follows if we show that [ gg(t)s(t) dt = 0 for any s € S,
and any B € €. But this is a consequence of (i) for gg (in both Cases 1 and 2),
since s € S,,,, is a polynomial of order k on B.

Property (2) now is a consequence of (iii) (again for both Cases 1 and 2). We
just remark once again that D,, + B(0,n,) C Dp4+1 due to n < §. Properties (3a),
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(3b), and (3e) are direct consequences of the construction. Property (3d) follows
from (iii)(b) in Cases 1 and 2 since

|Cn+1mV|:(U U J“V)=Z‘ U va‘

Be€ JE.LZ{BJ Be€ Jer{B,l
=2 (1—nn) Z BOV]=(1-n,)|V]|
Be®

and 1, = 27" 3n. For property (3c), we calculate that
[Cp 1 NCu NV > (1= 0,)|[Cr NV > (1= np) (1= 27" 2p)|V|

by (iii)(b) in Case 1 and by the induction hypothesis. Since 7, = 27731, we get
(1 —=n,)(1=2"""2n) > 1 — 2=+ and this proves (3c) for j = n + 1.

Finally, we note that due to (2) and (3)(c), the sequence (m,,), the k-martingale
spline sequence (f,), and the sets E,, := C,, N C,,_1 NV have the properties that
are desired in the theorem. O
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Abstract
We show that D. Lépingle’s L1(€;)-inequality
1/2 1/2
(ZE[m%_l]z) <2- (Z f,f) . fa € T,
" 1 " 1

extends to the case where we substitute the conditional expectation operators with
orthogonal projection operators onto spline spaces and where we can allow that f,, is
contained in a suitable spline space .%(.%,,). This is done provided the filtration (.%,,)
satisfies a certain regularity condition depending on the degree of smoothness of the
functions contained in .¥(.#,). As a by-product, we also obtain a spline version of
H1-BMO duality under this assumption.

Keywords Martingale inequalities - Polynomial spline spaces - Orthogonal
projection operators

Mathematics Subject Classification 65D07 - 60G42 - 42C10

1 Introduction

This article is part of a series of papers that extend martingale results to polynomial
spline sequences of arbitrary order (see e.g. [11,14,16—-19,22]). In order to explain
those martingale type results, we have to introduce a little bit of terminology: Let k be
a positive integer, (.%,) an increasing sequence of o -algebras of sets in [0, 1] where
each .%, is generated by a finite partition of [0, 1] into intervals of positive length.
Moreover, define the spline space

Fi(Fn) = {f € CK72[0, 1] : f is a polynomial of order k on each atom of .%,}
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and let P,gk) be the orthogonal projection operator onto .¥% (.%,,) with respect to the L,
inner product on [0, 1] with the Lebesgue measure | - |. The space .%(.%,) consists
of piecewise constant functions and P,fl) is the conditional expectation operator with
respect to the o-algebra .%,. Similarly to the definition of martingales, we introduce
the following notion: let (f,),>0 be a sequence of integrable functions. We call this
sequence a k-martingale spline sequence (adapted to (.%,)) if, for all n,

Pn(k)fn—l—l = fn

For basic facts about martingales and conditional expectations, we refer to [15].
Classical martingale theorems such as Doob’s inequality or the martingale conver-

gence theorem in fact carry over to k-martingale spline sequences corresponding to

arbitrary filtrations (.%,) of the above type, just by replacing conditional expectation

operators by the projection operators Pn(k). Indeed, we have

(i) (Shadrin’s theorem) there exists a constant Cy depending only on k such that

sup |[PX i Ly — Ly|| < Cy,
n

(i) (Doob’s weak type inequality for splines)
there exists a constant Cy depending only on k such that for any k-martingale
spline sequence ( f,) and any A > 0,

sup, Il full1
A

l

l{sup [ ful > 2}| < Cik
n

(iii) (Doob’s L, inequality for splines)
for all p € (1, o] there exists a constant C), ;. depending only on p and k such
that for all k-martingale spline sequences ( f;),

|sup 1 fulll, < Cpesupll fullp,
n n

(iv) (Spline convergence theorem)
if (f,) is an Lji-bounded k-martingale spline sequence, then (f;) converges
almost surely to some L1-function,

(v) (Spline convergence theorem, L ,-version)
for 1 < p < o0, if (fy) is an L,-bounded k-martingale spline sequence, then
(fn) converges almost surely and in L .

Property (i) was proved by Shadrin in the groundbreaking paper [22]. We also refer
to the paper [25] by von Golitschek, who gives a substantially shorter proof of (i).
Properties (ii) and (iii) are proved in [19] and properties (iv) and (v) in [14], but see
also [18], where it is shown that, in analogy to the martingale case, the validity of
(iv) and (v) for all k-martingale spline sequences with values in a Banach space X
characterize the Radon—Nikodym property of X (for background information on that
material, we refer to the monographs [6,20]).
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Here, we continue this line of transferring martingale results to k-martingale spline
sequences and extend Lépingle’s L1 (£2)-inequality [12], which reads

[ Bz <2 ()] (1)

provided the sequence of (real-valued) random variables f; is adapted to the filtration
(%), i.e. each f, is .#,-measurable. Different proofs of (1.1) were given by Bour-
gain [3, Proposition 5], Delbaen and Schachermayer [4, Lemma 1] and Miiller [13,
Proposition 4.1]. The spline version of inequality (1.1) is contained in Theorem 4.1.

This inequality is an L extension of the following result for 1 < p < oo, proved
by Stein [24], that holds for arbitrary integrable functions f;;:

: (1.2)
p

(Stann], za (50"

for some constant a, depending only on p. This can be seen as a dual version of
Doob’s inequality || sup, [E[ f|-Z¢]lll, < cpll fllp for p > 1, see [1]. Once we know
Doob’s inequality for spline projections, which is point (iii) above, the same proof as
in [1] works for spline projections if we use suitable positive operators 7}, instead of
Pn(k) that also satisfy Doob’s inequality and dominate the operators Pn(k) pointwise (cf.
Sects. 3.1, 3.2).

The usage of those operators 7, is also necessary in the extension of inequality
(1.1) to splines. Lépingle’s proof of (1.1) rests on an idea by Herz [10] of splitting
E[ f, - h,] (for f, being .%,-measurable) by Cauchy—Schwarz after introducing the
square function S7 = >",_, f7:

ELfy - ha)? < ELf,7/Sa] - ELS,h] (1.3)

and estimating both factors on the right hand side separately. A key point in estimating
the second factor is that S, is .%,-measurable, and therefore, E[S,,|.%,] = S,. If we
want to allow f, € % (%,), S, will not be contained in .#;(.%#,) in general. Under
certain conditions on the filtration (.%,,), we will show in this article how to substitute
S, in estimate (1.3) by a function g, € .7%(.%,) that enjoys similar properties to S,
and allows us to proceed (cf. Sect. 3.4, in particular Proposition 3.4 and Theorem 3.6).
As a by-product, we obtain a spline version (Theorem 4.2) of C. Fefferman’s theorem
[7] on H'-BMO duality. For its martingale version, we refer to A. M. Garsia’s book
[8] on Martingale Inequalities.

2 Preliminaries

In this section, we collect all tools that are needed subsequently.
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2.1 Properties of polynomials

We will need Remez’ inequality for polynomials:

Theorem 2.1 Let V C R be a compact interval in R and E C V a measurable subset.
Then, for all polynomials p of order k (i.e. degree k — 1) on V,

k—1
V|
Pl Lovy < <4m IPIlL(E)-

Applying this theorem with the set E = {x € V : |p(x)| < 8_k+1||p||Loo(V)}
immediately yields the following corollary:

Corollary 2.2 Let p be a polynomial of order k on a compact interval V. C R. Then
[{x e Vilpl = 8 ipllLomn ] = IVI/2.

2.2 Properties of spline functions

For an interval o-algebra .# (i.e. .# is generated by a finite collection of intervals
having positive length), the space .7 (%) is spanned by a very special local basis
(N;), the so called B-spline basis. It has the properties that each N; is non-negative
and each support of N; consists of at most k neighboring atoms of .%. Moreover, (N;)
is a partition of unity, i.e. for all x € [0, 1], there exist at most k functions N; so that
N;(x) # 0and ) ; N;(x) = 1. In the following, we denote by E; the support of the
B-spline function N;. The usual ordering of the B-splines (/N;)—which we also employ
here—is such that for all i, inf E; < inf E; 1 and sup E; < sup Ej1.

We write A(t) < B(t) to denote the existence of a constant C such that for all ¢,
A(t) < CB(t), where t denote all implicit and explicit dependencies the expression
A and B might have. If the constant C additionally depends on some parameter, we
will indicate this in the text. Similarly, the symbols 2> and ~~ are used.

Another important property of B-splines is the following relation between B-spline
coefficients and the L ,-norm of the corresponding B-spline expansions.

Theorem 2.3 (B-spline stability, local and global) Let 1 < p < ocoandg = > jajN;.
Then, for all j,

a1 S 1P glL ) (2.1)
where J; is an atom of ¥ contained in E; having maximal length. Additionally,
lgllp = lIa; 1 E;1YP)le, 2.2)

where in both (2.1) and (2.2), the implied constants depend only on the spline
order k.
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Observe that (2.1) implies for g € .7 (%) and any measurable set A C [0, 1]

< max . 2.3
18l ooy S B 0 181l Lo () (2.3)

We will also need the following relation between the B-spline expansion of a func-
tion and its expansion using B-splines of a finer grid.

Theorem 2.4 Let Y C ¥ be two interval o-algebras and denote by (N ;); the B-
spline basis of the coarser space .71 () and by (N & ;); the B-spline basis of the finer
space Sy (F). Then, given f = Zj ajNg ;, we can expand f in the basis (Nz ;)i

ZajN%,j = sz’Nﬂ,i,
i

J

where for each i, b; is a convex combination of the coefficients a; with supp Ng ; 2
supp Nz ;.

For those results and more information on spline functions, in particular B-splines,
we refer to [21] or [5].

2.3 Spline orthoprojectors

We now use the B-spline basis of .7 (%) and expand the orthogonal projection oper-
ator P onto .77 (%) in the form

1
Pf = Za,,(/o f(x)Nl-(x)dx) N (2.4)
i

for some coefficients (a;;). Denoting by E;; the smallest interval containing both
supports E; and E; of the B-spline functions N; and N; respectively, we have the
following estimate for a;; [19]: there exist constants C and 0 < ¢ < 1 depending only
on k so that for each interval o -algebra .# and each i, j,

(2.5)

2.4 Spline square functions
Let (.%,,) be a sequence of increasing interval o -algebras in [0, 1] and we assume that
each .#,1 is generated from .%#, by the subdivision of exactly one atom of .%,, into

two atoms of .%, 1. Let P, be the orthogonal projection operator onto .%%(:%,). We
denote A, f = P, f — P,—1 f and define the spline square function

sr= (X 1aarr) "
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We have Burkholder’s inequality for the spline square function, i.e. forall 1 < p < oo
[16], the L ,-norm of the square function Sf is comparable to the L ,-norm of f:

ISl =W fllp. feLy (2.6)

with constants depending only on p and k. Moreover, for p = 1, it is shown in [9]
that

ISfFIh >~ sup Y enduflh.  Sf €L, (2.7)

ee{—1,1}Z n

with constants depending only on k& and where the proof of the <-part only uses
Khintchine’s inequality whereas the proof of the =-part uses fine properties of the
functions A, f.

2.5 Ly(£4)-spaces

For 1 < p,q < oo, we denote by L,({,;) the space of sequences of measurable
functions ( f;) on [0, 1] so that the norm

1, = (/01 (X Ifn(t)l")p/q dt)l/p

is finite (with the obvious modifications if p = oo or ¢ = o0). For 1 < p,q < oo,
the dual space (see [2]) of L,(€4) is Ly (£y) with p' = p/(p —1),q" =q/(g — 1)
and the duality pairing

1
((f). (gn)) = fo 3 fuOga() dr.

Holder’s inequality takes the form [((f), (¢ < I(f)llz, e 18I, e -

3 Main results

In this section, we prove our main results. Section 3.1 defines and gives properties

of suitable positive operators that dominate our (non-positive) operators P, = P,fk)
pointwise. In Sect. 3.2, we use those operators to give a spline version of Stein’s
inequality (1.2). A useful property of conditional expectations is the tower property
EgE g f = Eg f for Y C .. In this form, it extends to the operators (P, ), but not to
the operators 7" from Sect. 3.1. In Sect. 3.3 we prove a version of the tower property for
those operators. Section 3.4 is devoted to establishing a duality estimate using a spline
square function, which is the crucial ingredient in the proofs of the spline versions of
both Lépingle’s inequality (1.1) and H;-BMO duality in Sect. 4.
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3.1 The positive operators T

As above, let .% be an interval o-algebra on [0, 1], (N;) the B-spline basis of .%% (%),
E; the supportof N; and E;; the smallest interval containing both E; and E ;. Moreover,
let g be a positive number smaller than 1. Then, we define the linear operator T =

Ty,q,k by
j 1
T =3 L (1)1, ) = /0 K, 0 f(r)dr,
i,j

where the kernel K = K7 is given by

il
Ke,y=3 q|E“| L, (1) - L, (x).
ij

i,j

We observe that the operator T is selfadjoint (w.r.t the standard inner product on
L») and

1 2 1
kaﬁ:/mK@Jthl?il, x e [0, 1], 3.1)
0

which, in particular, implies the boundedness of the operator 7 on L1 and Lo:

2k + 1 2k + 1
ITFIl s%ﬂful, 1T flloo < 25ED oy
—q l—gq

Another very important property of 7 is that it is a positive operator, i.e. it maps non-

negative functions to non-negative functions and that 7" satisfies Jensen’s inequality
in the form

O(Tf() < K'T(p(Ky - ). f e Lixel01], (3.2)
for convex functions ¢. This is seen by applying the classical Jensen inequality to the

probability measure K (¢, x) dt /K.
Let .# f denote the Hardy—Littlewood maximal function of f € L, i.e.

1
) = sup—fllf(y)ldy,

I>x |I|

where the supremum is taken over all subintervals of [0, 1] that contain the point x.
This operator is of weak type (1, 1), i.e.

W f > <Cr M flh, feLi,A>0
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for some constant C. Since trivially we have the estimate ||.Z f|lcc < |l flloo, bY
Marcinkiewicz interpolation, for any p > 1, there exists a constant C,, depending
only on p so that

12 fllp < Cpll fllp-

For those assertions about .#, we refer to (for instance) [23].
The significance of T and .# at this point is that we can use formula (2.4) and
estimate (2.5) to obtain the pointwise bound

|Pfo)] = Ci(TIfD(x) = Codl (x),  f€Li,xel0,1], (3.3)

where ' = Tz , ;. with g given by (2.5), C; is a constant that depends only on k and
C> is a constant that depends only on k and the geometric progression g. But as the
parameter ¢ < 1 in (2.5) depends only on &, the constant C, will also only depend
on k.

In other words, (3.3) tells us that the positive operator 7 dominates the non-positive
operator P pointwise, but at the same time, 7 is dominated by the Hardy-Littlewood
maximal function .Z pointwise and independently of .7

3.2 Stein’s inequality for splines

We now use this pointwise dominating, positive operator 7 to prove Stein’s inequality
for spline projections. For this, let (%,) be an interval filtration on [0, 1] and P,
be the orthogonal projection operator onto the space .%%(.%#,) of splines of order k
corresponding to .%,. Working with the positive operators 7'z, , x instead of the non-
positive operators P,, the proof of Stein’s inequality (1.2) for spline projections can
be carried over from the martingale case (cf. [1,24]). For completeness, we include it
here.

Theorem 3.1 Suppose that (f,) is a sequence of arbitrary integrable functions on
[0, 1]. Then, for 1 <r < p<ooorl <p<r <o,

I (Pa f)llL ey S WCF) L, e (3.4)

where the implied constant depends only on p, r and k.

Proof By (3.3), it suffices to prove this inequality for the operators T, = Tz, , &
with g given by (2.5) instead of the operators P,. First observe that forr = p = 1,
the assertion follows from Shadrin’s theorem ((i) on page 1). Inequality (3.3) and the
L ,y-boundedness of .# for 1 < p’ < oo imply that

| sup |7, 11|

1<n<N

y SCpullfllpy,  fely (3.5)

with a constant C,, x dependingon p’ andk.Let1 < p < coandUy : L,(¢)) — L,
be given by (g1, ..., gn) Z?J:l T;g;.Inequality (3.5) implies the boundedness of
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the adjoint U}, : L,y — Ly (¢Y), f +— (ij)?’:1 for p’ = p/(p — 1) by a constant
independent of N and therefore also the boundedness of Uy. Since |T; f| < T;| f|
by the positivity of 7, letting N — oo implies (3.4) for T, instead of P, in the case
r = 1 and outer parameter 1 < p < oo.

If 1 <r < p, we use Jensen’s inequality (3.2) and estimate (3.1) to obtain

N N
D oITigiln S Tidg)
j=1 j=1

and apply the result for r = 1 and the outer parameter p/r to get the result for
1 <r <p<oo.Thecases 1 < p <r < oo now just follow from this result using
duality and the self-adjointness of 7. O

3.3 Tower property of T

Next, we will prove a substitute of the tower property E¢E z f = E¢ f (¢ C .%) for
conditional expectations that applies to the operators 7.

To formulate this result, we need a suitable notion of regularity for o -algebras which
we now describe. Let .% be an interval o -algebra, let (N;) be the B-spline basis of
Z%(Z) and denote by E; the support of the function N;. The k-regularity parameter
Vi (F) is defined as

vie(F) = max max(|E;|/|Eival, | Eit1l/|Ei),

where the first maximum is taken over all i so that E; and E; | are defined. The name
k-regularity is motivated by the fact that each B-spline support E; of order k consists
of at most k (neighboring) atoms of the o -algebra .%.

Proposition 3.2 (Tower property of T') Let 4 C ¥ be two interval o-algebras on
[0,1]. Let S = Ty o and T = Tz o for some o,t € (0, 1) and some positive
integers k, k'. Then, for all ¢ > max(t, o), there exists a constant C depending on
q,k, k' sothat

ISTF)| < C-y* Ty 4l fDx),  feLi,xel01], (3.6)

where y = yi(¥) denotes the k-regularity parameter of 9.

Proof Let (F;) be the collection of B-spline supports in .}/ (%) and (G;) the collection
of B-spline supports in .7%(%). Moreover, we denote by F;; the smallest interval
containing F; and F; and by G;; the smallest interval containing G; and G ;.

We show (3.6) by showing the following inequality for the kernels K5 of S and K7
of T (cf. 3.1)

|Gijl

1
/ Ks(x, K7 (t,5)dt < Cy* )y~ lg,(x)1g;(s),  x,s €[0,1]
0 i
(3.7)
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for all ¢ > max(t, o) and some constant C depending on ¢, k, k. In order to prove
this inequality, we first fix x, s € [0, 1] and choose i such that x € G; and ¢ such that
s € Fy. Moreover, based on £, we choose j sothats € G; and G; D Fy. There are
at most max(k, k) choices for each of the indices i, £, j and without restriction, we
treat those choices separately, i.e. we only have to estimate the expression

Z O’|m_i|flr_£||Gm N Frl
|Giml| Ferl '

m,r

Since, for each r, there are also at most k + k" — 1 indices m so that |G,, N F,| > 0
(recall that & C .%), we choose one such index m = m(r) and estimate

Olm(r)—il-[lr—fl|Gm(r) N Fy|
|Gime) || Ferl

Y=

r

Now, observe that for any parameter choice of r in the above sum,

Gimir U For 2 (Gij\Gj) UG,

and therefore, since also G,y N Fr C G i) N For,

s < 2 3 g mrrilgir—tl
1(Gij\G ;) UGi| =

which, using the k-regularity parameter y = 4 (%) of the o-algebra ¢4 and denoting
A = max(t, o), we estimate by

V m—i| Ir—e|
2 Z)\mz Z A= <|G

rm(r)y=m

S alimml+im=i|

ljl

< V.. (i = J1+ 1)

where the implied constants depend on A, k, k" and the estimate Zr:m(r):m Alr=t <
Alm=il ysed the fact that, essentially, there are more atoms of .% between F, and Fy
(for r as in the sum) than atoms of ¢ between G,, and G ;. Finally, we see that for any

qg > A,

for some constant C depending on ¢, k, k', and, as x € G; and s € G j» this shows
inequality (3.7). O

As a corollary of Proposition 3.2, we have

@ Springer



212

CHAPTER 10. MARTINGALE INEQUALITIES FOR SPLINE SEQUENCES

Martingale inequalities for spline sequences

Corollary 3.3 Let (f,,) be functions in L. We denote by P, the orthogonal projection
onto (%) and by P, the orthogonal projection onto /(%) for some positive
integers k, k'. Moreover, let T, be the operator Tg, , i from (3.3) dominating P,
pointwise.

Then, for any integer n and for any 1 < p < oo,

DIACEYARI Zj AT AN DI

>n >n

where the implied constants only depend on k and k'.

We remark that by Jensen’s inequality and the tower property, this is trivial for
conditional expectations E(-|.%,) instead of the operators Py, T}, Pg’_1 even with an
absolute constant on the right hand side.

Proof We denote by 7, the operator Tz, , , and by T, the operator Tz, . i, where the
parameters g, g’ < 1 are given by inequality (3.3) depending on k and k’ respectively.
Setting Uy := Tz, max(q.q)!/2,k> We perform the following chain of inequalities, where
we use the positivity of 7,, and (3.3), Jensen’s inequality for 7,/_,, the tower property
for T,,7,_, and the L ,-boundedness of U,,, respectively:

H TP ) | <] T (Tl |,

< | )|

>n

< I T D0+ | Y11, f2)|

{>n

SIRp+w @) | v

{>n

SweEt-| )
{>n

p

p

where the implied constants only depend on k and k’. O

3.4 A duality estimate using a spline square function

In order to give the desired duality estimate contained in Theorem 3.6, we need the
following construction of a function g, € .%x(.%,) based on a spline square function.

Proposition 3.4 Let ( f,,) be a sequence of functions with f, € /1 (F,) for all n and
set

X, = Zfez-

<n
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Then, there exists a sequence of non-negative functions g, € x(%,) so that for
each n,

(1) gnl % 8n+1,
(2) Xi"* < gn
(3) Eg, S EX ,1,/ 2, where the implied constant depends on k and on sup,, -, vk (Fm).

For the proof of this result, we need the following simple lemma.

Lemma 3.5 Let ¢y be a positive constant and let (A ]~)§.V:1 be a sequence of atoms in
Fn. Moreover, let £ 2 {1,..., N} = {1, ...,n}and, foreach j € {1,..., N}, let B;
be a subset of an atom D of Fy(j) with

Bjl=c1 ) Al (3.8)
il(i)>L()),
D;CD;
Then, there exists amap ¢ on {1, ..., N} so that

(1) le()I = c1lA;| forall j,
(2) ¢(j) S Bj forall j,
(3) @) Ne(j) =10 foralli # j.

Proof Without restriction, we assume that the sequence (A ;) is enumerated such that
L(j+1) < £(j)foralll < j < N—1.Wefirstchoose ¢(1) as an arbitrary (measurable)
subset of By with measure c{|A1|, which is possible by assumption (3.8). Next, we
assume that for 1 < j < jo, we have constructed ¢(j) with the properties

(D) le(DI = c1lAjl,

(2) ¢(j) <€ By,

(3) () NVUi<jpi) = 0.

Based on that, we now construct ¢(jo + 1). Define the index sets I' = {i : £(i) >
L(jo+1),D; € Djyt1}and A ={i :i < jo+ 1, D; C Dj,41}. Since we assumed
that £ is decreasing, we have A C I' and by the nestedness of the o-algebras .%,,, we
have fori < jo + 1 that either D; C Dj,41 or |D; N Dj,1| = 0. This implies

Bive\ U 00| = 1Bjp1l = | Biosr 0 [ 0|

i<Jjo i<jo
> 1 3 14il = Dy 0 | 00
iel i<jo
aylal-| U e
ieA ieA\(jo+1)
ey A= Y cllAil = cilAjl.
ieA i€A\{jo+1}

Therefore, we can choose ¢(jo + 1) € Bj, 1 that is disjoint to ¢ (i) for any i < jo
and [¢(jo + 1)| = c1]A ;41| which completes the proof. O

@ Springer



214

CHAPTER 10. MARTINGALE INEQUALITIES FOR SPLINE SEQUENCES

Martingale inequalities for spline sequences

Proof of Proposition 3.4 Fix n and let (N, ;) be the B-spline basis of .%;(.%#,). More-
. 1/2

over, forany j,set E, j = supp Ny, j andap,j := max¢<, Max,.g, ,SE, ; ”XZ“LOQ(Egr)

and we define £(j) < n and r(j) so that Ej,;) =2 Ep; and a,; =

12
1 Xe(j) ||Loo(Eaj),r(j>)' Set
gn =) n jNuj € S(Fn)
J

and it will be proved subsequently that this g, has the desired properties.
PROPERTY (1): In order to show g, < g,+1, we use Theorem 2.4 to write

&= aniNuj =Y BujNut1,
J J

where B, ; is a convex combination of those a, , with E, 1 ; C E, », and thus

8n = Z £ max Cln,r)Nn—H,j-
r:

n+1, j

By the very definition of a; 1, j, we have

max an,r = An+1,j,
r:En-i—l,ngn,r

and therefore, g, < g,4+1 pointwise, since the B-splines (N, ;); are nonnegative
functions.
PROPERTY (2): Now we show that X ,i/ 2 < gn. Indeed, for any x € [0, 1],
12

gn(0) =) an Ny j(x) = min ay; = min [ Xal/Z g )= Xa(0)'2,
j ]Enj3 ]En] o

since the collection of B-splines (N, ;) ; forms a partition of unity.

PROPERTY (3): Finally, we show Eg, < IEJX,IZ/ 2, where the implied constant
depends only on k and on sup,, -, ¥k (-#n). By B-spline stability (Theorem 2.3), we
estimate the integral of g, by

12
Egn S E 1En il IXeh 1L B0 (3.9)
J

where the implied constant only depends on k. In order to continue the estimate, we
next show the inequality

X < max X , 3.10
I ellLoo(Eg,»Ns:lEMﬂEmboll el Lo (Iey) (3.10)
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where by Jy ¢ we denote an atom of .%, with J; ; C E;  of maximal length and the
implied constant depends only on k. Indeed, we use Theorem 2.3 in the form of (2.3)
to get (fi € Sk (Fy) form < )

IXel iz < D Wik,

m<{t

2 _ 2
<> 2 Walisawn= > D Muliu
m=<tls:|E¢ sNEg >0 s EpsNEg ,|>0m=<{

(3.11)

Now observe that for atoms I of .%, due to the equivalence of p-norms of polynomials
(cf. Corollary 2.2),

1 1
Solfmlion S mflfn% = m/IXz < 1 Xell Lo r):

m</t m</t

which means that, inserting this in estimate (3.11),

IXeliwzn S D, IXellLawiy
s:)|Eg sNEg >0

and, since there are at most k indices s so that |Ey ¢ N Ey .| > 0, we have established

(3.10).
We define Ky , to be an interval Jy ¢ with |E, » N Ey ¢| > 0 so that

max XellL )= 1 Xell Lo (ky,)-
cE X 1 Xell Lo ey = I Xel Lo (ke

This means, after combining (3.9) with (3.10), we have

1/2
Egn S Z [ In iU WX e Lo ki (3.12)
j

We now apply Lemma 3.5 with the function £ and the choices

Aj=Jnjs  Dj=Keiyrij)

Bj = {l‘ S Dj : Xg(j)(l‘) > 8_2(k_l)||Xg(j)||Loo(Dj)}.

In order to see Assumption (3.8) of Lemma 3.5, fix the index j and let i be such that
£(i) > £(j). By definition of D; = Ky(;),r i), the smallest interval containing J, ; and
D; contains at most 2k — 1 atoms of .%y(;) and, if D; C Dj, the smallest interval
containing J, ; and D; contains at most 2k — 1 atoms of .%(;). This means that, in
particular, J,, ; is a subset of the union V of 4k atoms of .7 ;) with D; C V. Since
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each atom of .%,, occurs at most k times in the sequence (A ;), there exists a constant
c1 depending on k and sup, - jy ¥k (Fu) < sup, <, vk(:#,) so that

Djl=c1 Y Al

iL@)=L(j)
D;CD;

which, since |Bj| > |D;|/2 by Corollary 2.2, shows that the assumption of Lemma
3.5 holds true and we get a function ¢ so that |p(j)| = ci1lJs,;1/2, ¢(j) C Bj,
p@)Ne(j) =@ forall i, j. Using these properties of ¢, we continue the estimate in
(3.12) and write

12 _ |, 1 12
Egn S Y il IXehll, 2 ) <871 Y 0 = / X
I J I (DI Jocj

2 k- 1/2
=8 'Z/,Xaj)
j o(j)

Y[ ox<Ex
@(J)

~Y

J
with constants depending only on k and sup,,—,, Yk (). O

Employing this construction of g,, we now give the following duality estimate
for spline projections (for the martingale case, see for instance [8]). The martingale
version of this result is the essential estimate in the proof of both Lépingle’s inequality
(1.1) and the H'-BMO duality.

Theorem 3.6 Let (.%,) be such that y := sup,, vk (%) < 00 and (f,)n>1 a sequence
of functions with f, € (%) for each n. Additionally, let h, € L be arbitrary.
Then, for any N,

N
SRSl £VZE[( X £2) ] sup uea (Y R2IL,
l=n

n<N (<N n=N

where the implied constant is the same constant that appears in (3) of Proposition 3.4
and therefore only depends on k and y .

Proof Let X, := ) ,_, f(2 and fy = 0for ¢ > N and ¢ < 0. By Proposition 3.4, we
choose an increasing sequence (g,) of functions with go = 0, g, € % (#,) and the
properties X ,1/ 2 <gpand Eg, S EX ,1/ % where the implied constant depends only on
k and y . Then, apply Cauchy—Schwarz inequality by introducing the factor g,i/ % to get
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ZEnfn hn

Jn G112
172 8n

hn

= ZE [ }
1/2 1/2
< [Z E[f,?/gn]} : [Z E[gnhi]} :

We estimate each of the factors on the right hand side separately and set

21 =Y Elf;/gnl.

% =Y Elgahyl.
n

The first factor is estimated by the pointwise inequality X ,i/ 2 < gu:

; _E{ ff}
1= Zg— <E
=K

We continue with X5:

2 =E

L=

<E

Z(gn - gn—l):| + Sup

L=

_ /2
Z 1/2i|

_nX"

[ X, — X,_
Z n 1 2n 1} 2EZ(X1/2 _X1/2)_ ZIEXI/Z
n X”l/

T N N ¢

> geh%i| =E {Z > (en — gn_oh%}
| (=

T N N

D (8 —gn-1)- Zhﬁ}

| n=1 {=n

T N N

Z Pn(gn - gn—l) : Zh%j|

Z(gn 8n— 1) Py

1 =1 n=1

oo v (35)
(&),

1 I1<n<N

where the last inequality follows from g, > g,,—1. Noting that by the properties of g,

E[ Zyllvzl (gn - gn—l)]
obtain the conclusion.

4 Applications

=Egy SEX 11\,/2 and combining the two parts 1 and X, we

O

We give two applications of Theorem 3.6, (i) D. Lépingle’s inequality and (ii) an
analogue of C. Fefferman’s H1-BMO duality in the setting of splines. Once the results
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from Sect. 3 are known, the proofs of the subsequent results proceed similarly to their
martingale counterparts in [8,12] by using spline properties instead of martingale
properties.

4.1 Lépingle’s inequality for splines

Theorem 4.1 Let k, k' be positive integers. Let (%,) be an interval filtration with
sup,, vk (-Fn) < oo and, for any n, f, € %1 (F,) and P, be the orthogonal projection
operator on i (Fy,). Then,

1/2

1/2
ICP_y fi)llLacen) = }(Z(P,glfnﬁ) < (Zf,%) = 1l
n 1 n

1
where the implied constant depends only on k, k" and sup,, yi(Fy).
We emphasize that the parameters k and k" can be different here, k being the spline
order of the sequence ( f,,) and k’ being the spline order of the projection operators

P’ _,. In particular, the constant on the right hand side does not depend on the k’-
regularity parameter sup,, yx (F).

Proof We first assume that f, = 0 forn > N and begin by using duality

1/2
<Z< 1fn) supE[Z( lfn>-Hn]

(Hy)

where sup is taken over all (H,) € Loo(€2) with ||(Hy) |1, ) = 1. By the self-
adjointness of P, _,,

E[(P;;_lfn) ) Hn] = E[fn ) (Pr;—lHl’l)]'

Then we apply Theorem 3.6 for f,, and h, = P,_, H, to obtain (denoting by P, the
orthogonal projection operator onto .4 (%))

1/2

DUIELf hall SE|| D f2 . sup

n<N <N n=N

1/2

N
P, (Z(Pé_1H2)2>
l=n 00

@D

To estimate the right hand side, we note that for any n, by Corollary 3.3,

N
’, (m_lw) <
l=n o0
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Therefore, (4.1) implies
12

1/2
E (Z(P,;_lfnﬂ) =(s;r;E[an-<P,;_1Hn>}5E > |

L<N

with a constant depending only on k,k" and sup, -y ¥k (:#). Letting N tend to infinity,
we obtain the conclusion. O

4.2 H,-BMO duality for splines
We fix an interval filtration (.%,);2 |, a spline order k and the orthogonal projection
operators P, onto .%%(-#,) and additionally, we set Py = 0. For f € L, we introduce
the notation

n 1/2
Anfi=FPuf = Fu-tfo Salf) = (Z(Amz) L S(f) =sup Su(f).
n

=1

Observe that for ¢ < n and f, g € Ly,
E[Aef - Angl = E[Pe(Acf) - Apgl = E[Aef - Pe(Ang)] = 0. (4.2)

Let V be the Li-closure of U,,.%;(.%,). Then, the uniform boundedness of P, on
L1 implies that P, f — f in L for f € V. Next, set

Hix = Hik ((Fn) = {f €V E(S(f)) < oo}

and equip Hj  with the norm || f ||, , = ES(f). Define

BMO; = BMO:((Z,) = 1 f € V :supl| Y Tu((Af)?) oo < 00

n
>n

and the corresponding quasinorm

| £lismo, = sup | Y Tu((Ac)?)| L2,

>n

where T, is the operator from (3.3) that dominates P, pointwise.
Let us now assume sup,, ¥x(-#,) < oo. In this case we identify, similarly to H;-
BMO-duality (cf. [7,8,10]), BMOy as the dual space of Hj k.
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First, we use the duality estimate Theorem 3.6 and (4.2) to prove, for f € Hj ; and
h € BMOy,

B[P f) - (Pal)]| < Y E[IAc S 1AehI] S 1Sa()1 - IhllBMO -

<n
This estimate also implies that the limit lim,, E[( P,f)- (P, h)] exists and satisfies
[BmE[(Pyf) - (Bam)]| 1S - Wl

On the other hand, similarly to the martingale case (see [8]), given a continuous
linear functional L on Hj x, we extend L norm-preservingly to a continuous linear
functional A on L1(€;), which, by Sect. 2.5, has the form

A =E [ZOEW} . meLi(t)
l

forsome o € Loo(£2). The k-martingale spline sequence i, = ) ,_, Aoy isbounded
in L, and therefore, by the spline convergence theorem ((v) on ﬁage 2), has a limit
h € L, with P,h = h, and which is also contained in BMOy. Indeed, by using
Corollary 3.3, we obtain [|2|lsmo, S llollL. @) = IAll = |IL|l with a constant
depending only on k and sup,, yx(-%,). Moreover, for f € Hj j, since L is continuous
on Hj g,

L(f)=lmL(P,f) =lmA((A1f,..., A f,0,0,..))

=lim ) Elo¢ - Agf1=1mE[(Pyf) - (Puh)]-
(=1

This yields the following

Theorem 4.2 If sup, vk (-%,) < oo, the linear mapping
u:BMO; — Hfy, h (f = ImE[(P,f) - (P,h)])
’ n
is bijective and satisfies

lu(m) |y, = RlIBMO,

where the implied constants depend only on k and sup,, yi(Fp).

Remark 4.3 We close with a few remarks concerning the above result and we assume
that (.%,) is a sequence of increasing interval o -algebras with sup, yx(-%#,) < oc.
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oY)

2)

By Khintchine’s inequality, ||Sf |1 < SUPgeq—1,11Z Y n&nAnfll1. Based on the
interval filtration (.%,), we can generate an interval filtration (%,) that contains
(#,) as a subsequence and each ¥, is generated from ¥, by dividing exactly
one atom of ¥, into two atoms of ¥, 1. Denoting by P,'? the orthogonal projection
operator onto .%%(%,) and AC}{ = P;%g — Pjg_l, we can write

an+1—1

ZgnAnfzzgn Z Agff

Jj=an
for some sequence (a,). By using inequalities (2.7) and (2.6) and writing
(87 f)? = > IAgfflz, we obtain for p > 1

ISFI S USY £l < 187 Fllp S U1

This implies L, C Hjy for all p > 1 and, by duality, BMO; C L, for all
p < 00.

If (.#,) is of the form that each .%,, 1 | is generated from .%,, by splitting exactly one
atom of .%, into two atoms of .%, | and under the condition sup,, yx—1(%#,) < 00
(which is stronger than sup, yx(-%#,) < 00), it is shown in [9] that

ISFIle = L f s

where H; denotes the atomic Hardy space on [0, 1],1.e. in this case, H; x coincides
with Hj.
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