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CHAPTER 1

Introduction

In this work we investigate how well known and established results for martingales carry
over to certain polynomial spline sequences, where the degree of the splines is allowed to be
arbitrary. Here, by splines we mean functions that are piecewise algebraic polynomials. In
particular, we are especially interested in properties that are true for any underlying filtration,
where we will see below what we mean in detail by filtration in the context of splines.

Martingales are a central notion in probability theory and their applications reach far beyond
probability theory to many branches of mathematics and physics. We begin by defining the
notion of a martingale. Let (Ω,F ,P) be a probability space and (Fn) an increasing sequence of
σ-algebras (i.e., a filtration) contained in the σ-algebra F . We assume here for simplicity that
F is generated by ∪nFn. A sequence of real-valued integrable random variables (Xn) on Ω is
called a martingale if each Xn is measurable with respect to Fn and, moreover, the consecutive
random variables are connected via conditional expectations as follows

(1) Xn = EnXn+1,

where Enf := E(f |Fn) denotes the conditional expectation of the function f ∈ L1 with respect
to the σ-algebra Fn. It is the unique (up to equality almost surely) Fn-measurable function g
so that

(2)

∫

A

g dP =

∫

A

f dP, A ∈ Fn.

The operator En can be seen as local averaging and in the case that Fn is generated by the
partition (Aj)

m
j=1 of Ω into sets of positive probability, it is given by

(3) Enf =
m∑

j=1

∫
Aj
f dP

P(Aj)
1Aj

,

where 1Aj
denotes the characteristic function of the set Aj. A standard example for a filtration

is the dyadic one (Gn) on [0, 1), and its corresponding orthogonal function system, the classical
Haar system, which both can be constructed as follows: we set G0 = {∅, [0, 1)} and h0 = 1[0,1).
By induction, Gn+1 is constructed out of Gn by dividing the leftmost atom in Gn of maximal
length into two intervals I and J of equal length (left-closed and right-open) and defining Gn+1

as the σ-algebra that is generated by Gn ∪ {I, J}, so for instance G1 = σ({[0, 1/2), [1/2, 1)}),
G2 = σ({[0, 1/4), [1/4, 1/2), [1/2, 1)}) and so on. We additionally set hn+1 := 1I − 1J . The
conditional expectation E(f |Gn) is now the projection of f onto the linear span of the first
n + 1 Haar functions (hj)

n
j=0. The fact that taking conditional expectations is tantamount to

taking orthogonal projections is true not only for the dyadic filtration (Gn), but for general
σ-algebras. In fact the conditional expectation operator En is characterized by the property
that it is the orthogonal projection with respect to the canonical L2-inner product onto the
space of Fn-measurable L2-functions. In the setting of filtrations generated by a finite partition
of Ω into intervals, as can be seen by (3), the operator En is an orthogonal projection operator
onto a space of piecewise constant functions. Also note that En respects positivity, i.e., it maps
non-negative functions to non-negative functions.

An extension of this idea is to consider, on Ω = [0, 1] equipped with Lebesgue measure | · |,
orthogonal projection operators onto spaces of piecewise polynomial functions. This setting

5



6 CHAPTER 1. INTRODUCTION

can be described as follows: Let (Fn) be an interval filtration, i.e. a sequence of increasing
sub-σ-algebras of the Borel σ-algebra B on [0, 1] so that each Fn is generated by a partition of
[0, 1] into a finite number of intervals having positive length. For convenience, we also assume
that (Fn) has the properties

(4)

• F0 = {∅, [0, 1]},
• B is generated by ∪n Fn,

• for each n,Fn+1 is generated by Fn and

the subdivision of one atom of Fn into two subintervals.

For any positive integer k, the spline space Sk(Fn) of order k (or degree k − 1) is defined by

Sk(Fn) = {f ∈ Ck−2[0, 1] : f is an algebraic polynomial of order k on each atom of Fn}
and its corresponding orthogonal projection by

P (k)
n = orthogonal projection operator onto Sk(Fn) w.r.t. L2(B).

If k = 1, Sk(Fn) consists of piecewise constant functions without any smoothness conditions
(interpreting C−1[0, 1] as the space of all real-valued functions on [0, 1]). Note that the require-
ment f ∈ Ck−2[0, 1] only means continuity of k − 2 derivatives at the boundary points of each
atom of Fn, since polynomials are infinitely differentiable.

The above restriction to the space Ω = [0, 1] arises naturally, as we want to be able to talk
about polynomials on Ω and smoothness properties of functions. Additionally, as we will see

in more detail later, in order for a property of the sequence (P
(k)
n ) of projection operators to

be true for arbitrary filtrations (Fn), we use results that depend on the fact that Ω is totally
ordered in a way that the ordering admits a crucial relationship with a special local basis of
Sk(Fn) that we introduce now. The main difficulty in analyzing properties of the operators

(P
(k)
n ) lies in the fact that for k ≥ 2, the space Sk(Fn) does not have a basis consisting of

disjointly supported functions as opposed to the basis (1Aj
)mj=1 in which Enf is expanded in

equation (3). The substitute for this sharply localized basis in Sk(Fn) is called the B-spline basis
(Nj,k), where each function Nj,k has the property that it is non-negative, its support consists
of exactly k neighbouring atoms of Fn and it forms a partition of unity, i.e.,

∑
j Nj,k ≡ 1. For

a definition of B-splines and further properties we refer to the monograph [33]. There is also a
well known recursion formula, which can also be considered as definition of (Nj,k) and we will
recall it here. Let (tj) be the increasing sequence of boundary points of atoms in Fn, where
each point occurs once with the exception of the points 0 and 1 which each occurs k times.
Then, we have

(5) Nj,k(x) =
x− tj

tj+k−1 − tj
Nj,k−1(x) +

tj+k − x
tj+k − tj+1

Nj+1,k−1(x), j = 2− k, . . . ,m,

with the starting functions Nj,1 = 1[tj ,tj+1) for j = 1, . . . ,m. We observe that the basis (Nj,k)
is localized, but, for k ≥ 2, there is a certain overlap among neighboring functions.

Associated to the B-spline basis (Nj,k) (we assume the parameter k to be fixed in the sequel
and we write Nj for Nj,k), we define a dual basis (N∗j ) satisfying N∗j ∈ Sk(Fn) for each j and

〈N∗j , Ni〉 :=

∫ 1

0

N∗j (x)Ni(x) dx = δij,

where δij denotes the Kronecker symbol which is 1 when i = j and 0 otherwise. Using the

B-spline basis and its dual, we express the projection operator P
(k)
n as

(6) P (k)
n =

∑

j

〈·, Nj〉N∗j =
∑

i,j

〈·, Nj〉〈N∗i , N∗j 〉Ni.
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We are interested in properties of the sequence of operators (P
(k)
n ) that are true for each

filtration (Fn). Most theorems about martingales have this property. As a first example of
such properties for martingales (or rather conditional expectations), we look at the following
contractive inequality on Lp for 1 ≤ p ≤ ∞, which is easy to see by Jensen’s inequality:

(7) sup
n
‖Enf‖p ≤ ‖f‖p, f ∈ Lp, 1 ≤ p ≤ ∞.

This inequality is true for any filtration (Fn) and it implies that the sequence of martingale
differences dn := Enf −En−1f forms a monotone Schauder basis in the Lp-closure of the linear
span of (dn) for 1 ≤ p < ∞ (where a collection of vectors (xj)

∞
j=1 in a Banach space X is

called a Schauder basis of X, if each x ∈ X can be expressed uniquely as a convergent sum
x =

∑∞
j=1 ajxj for some scalars (aj) and the word monotone means that the partial sum

projections on this basis have norm one).

When carrying over (7) to spline projections P
(k)
n instead of conditional expectations En,

we cannot hope for a contractive inequality on Lp-spaces for p 6= 2, since by [15, 1], conditional
expectations are the only contractions on Lp that preserve constant functions. But it makes
sense to ask whether for every non-negative integer k, there exists a constant Ck so that for
any filtration (Fn),

(8) sup
n
‖P (k)

n f‖p ≤ Ck‖f‖p, f ∈ Lp, 1 ≤ p ≤ ∞.

This question turned out to be very difficult and was known for a long time as C. de
Boor’s conjecture [10], but it was eventually found to be true in this generality by A. Shadrin
[34]. There are many earlier results in this direction. Here we only mention results where the
filtration is allowed to be arbitrary, but the order k of polynomials is assumed to be fixed. For
k = 2, it was shown by Z. Ciesielski [4] that in the above inequality, C2 = 3 works, and it
was shown in [28, 29] that this constant is best possible. For k = 3, 4, C. de Boor gave upper
bounds for Ck in [9, 11]. In view of the known exact value of Ck for k = 1 and k = 2 and by
the lower estimate Ck ≥ 2k−1 for any k given in [34], it is conjectured there that for any k, the
best constant Ck in (8) should be 2k− 1. For a survey of earlier results specializing also in the
choice of possible filtrations (Fn), we refer to [34, Section 4.1]. We also remark here, that A.
Shadrin’s proof [34] is very long and complicated and M. v. Golitschek [23] gave a shorter and
simplified proof of Shadrin’s theorem. A crucial ingredient in both proofs is the fact that the
matrix (〈N∗i , N∗j 〉) has the ’checkerboard’ property, i.e., (−1)i+j〈N∗i , N∗j 〉 ≥ 0. This, in turn, is
a consequence of the total positivity (cf. [25]) of its inverse matrix, the B-spline Gram matrix
B = (〈Ni, Nj〉), which means, by definition, that any subdeterminant of B is non-negative.

In the analysis of the operator P
(k)
n – as can be seen from (6) – growth estimates on the

matrix (aij) = (〈N∗i , N∗j 〉) are important. In fact, by [5], inequality (8) is equivalent to the
existence of two uniform constants 0 < qk < 1 and C ′k <∞ so that for all filtrations (Fn), the
matrix (aij) admits the following geometric decay inequality:

(9) |aij| ≤ C ′k
q
|i−j|
k

| suppNi|+ | suppNj|
.

The proof uses Demko’s theorem [13] about the geometric decay of inverse band matrices. For
this, note that (aij) is the inverse of the banded matrix (〈Ni, Nj〉). We also remark that if one

applies Demko’s theorem to the fact that ‖P (k)
n : L2 → L2‖ = 1, we only get the following

estimate, which is weaker than (9)

|aij| ≤ C ′k
q
|i−j|
k

| suppNi|1/2| suppNj|1/2
.
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We can now ask for additional convergence properties of spline sequences similar to mar-
tingales and we begin with almost sure convergence. Almost sure convergence is connected to
certain weak-type bounds of associated maximal operators. For martingales (Xj), we consider
the maximal function

X∗n := max
j≤n
|Xj|,

which can be estimated by Doob’s inequalities:

(1) weak-type inequality: for all t > 0,

tP(X∗n > t) ≤
∫

{X∗
n>t}

Xn dP ≤ ‖Xn‖1,

(2) norm inequality: for all 1 < p <∞,

‖X∗n‖p ≤
p

p− 1
‖Xn‖p.

Using Banach’s principle (see for instance [17, p. 1]), it can be shown that such inequalities
for maximal operators imply that for f ∈ L1,

(10) Enf → f almost surely,

where we recall that we assumed that F is generated by ∪Fn. We want to extend this version
of the martingale convergence theorem to splines as well and the problem is to show that for
f ∈ L1,

P (k)
n f → f almost surely.

In the special case of piecewise linear splines (k = 2), Z. Ciesielski and A. Kamont [6] proved
that this is true for any interval filtration (Fn) satisfying (4). The idea for extending this result

to arbitrary order k is a pointwise estimate of P
(k)
n f by the Hardy-Littlewood maximal function

Mf defined by

Mf(x) = sup
I3x

1

|I|

∫

I

|f(y)| dy,

where the supremum is taken over all intervals I containing the point x. We know from Real
Analysis that this operator satisfies similar inequalities than X∗n, i.e., we have

tP(Mf > t) ≤ C‖f‖1 and ‖Mf‖p ≤ C‖f‖p for 1 < p ≤ ∞.
In order to carry over such estimates to the spline maximal operator maxj≤n |P (k)

j f(x)|, we

would like to derive a pointwise estimate of the form |P (k)
n f(x)| ≤ CkMf(x), where Ck is a

constant that depends on the spline order k but not on the underlying filtration (Fn). The
following short calculation shows that in order to derive such a pointwise inequality, it is
sufficient to have a certain refinement of (9). In this calculation, we denote by conv(A) the

smallest convex set that contains A and we begin by inserting formula (6) for P
(k)
n :

|P (k)
n f(x)| =

∣∣∣
∑

i,j

〈f,Nj〉aijNi(x)
∣∣∣ ≤

∑

j

∑

i:x∈suppNi

|aij| · |〈f,Nj〉|

≤
∑

j

∑

i:x∈suppNi

|aij| ·
∫

suppNj

|f(y)| dy

≤
∑

j

∑

i:x∈suppNi

|aij| ·
∫

conv(suppNj∪suppNi)

|f(y)| dy

≤Mf(x) ·
∑

j

∑

i:x∈suppNi

|aij| · | conv(suppNi ∪ suppNj)|.
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Therefore, using the fact that each point x is contained in suppNi for exactly k successive
indices i, the following estimate on aij, improving (9), would be sufficient to deduce the desired

pointwise inequality for P
(k)
n f :

(11) |aij| ≤ C ′k
q
|i−j|
k

| conv(suppNi ∪ suppNj)|
,

where, as before, 0 < qk < 1 and C ′k are constants that depend only on the underlying spline
order k. The proof of this inequality is content of Chapter 2. This leads to the proof of

P
(k)
n f → f almost surely for f ∈ L1 and any spline order k, independently of the filtration (Fn)

and this proof is also contained in Chapter 2.

Next, we ask the question about unconditional convergence of P
(k)
n f for f ∈ Lp in Lp-

spaces for 1 < p < ∞. The situation for martingales is the following: Martingales converge
unconditionally in Lp, 1 < p <∞, i.e., the result of the sum

∑
j dj of martingale differences does

not depend on the order of summation. This fact can be expressed by Burkholder’s inequality

(12)
∥∥

n∑

j=1

εjdj
∥∥
p
'
∥∥

n∑

j=1

dj
∥∥
p
,

where (εj) is an arbitrary sequence of values in {+1,−1}. By Khintchine’s inequality, we can

phrase this differently using the square function S =
(∑

j |dj|2
)1/2

by the inequality

(13) ‖S‖p '
∥∥∑

j

dj
∥∥
p
,

where the implied constants in both (12) and (13) depend only on p. We want to extend

unconditional convergence in Lp to spline differences (d
(k)
j ). Again, we only mention previous

results that are true for any filtration (Fn). In a series of papers by G.G. Gevorkyan, A. Kamont
and A. A. Sahakian [18, 22, 19], the restriction to special interval filtrations (Fn) was removed

step-by-step to show that piecewise linear spline differences d
(2)
j converge unconditionally in Lp

independently of the filtration (Fn). In Chapter 3, we combine methods used in [19] with new

pointwise and norm estimates for spline differences d
(k)
j that are a consequence of inequality

(11), to show that for any spline order k, spline differences d
(k)
j converge unconditionally in Lp

independently of the filtration (Fn).
The space L1[0, 1] does not have any unconditional Schauder basis, but we can substitute

the space L1 by H1, the atomic Hardy space. This space is defined as the subspace of functions
f ∈ L1 having the form

(14) f =
∞∑

n=1

cnan,

where (cn) is a real sequence satisfying
∑∞

n=1 |cn| < ∞ and an are so called atoms, which are
basic building block functions satisfying either an ≡ 1 or there exists an interval Γn ⊂ [0, 1]
with

supp an ⊂ Γn, ‖an‖∞ ≤ |Γn|−1,
∫ 1

0

an(x) dx = 0.

We equip the space H1 with the norm

‖f‖H1 = inf
∞∑

n=1

|cn|,

where the infimum is taken over all representations of f of the form (14). For more information
on atomic Hardy spaces and in particular their connection to classical Hardy spaces, we refer
to [8].



10 CHAPTER 1. INTRODUCTION

Historically, the classical Franklin system, which are spline differences of order k = 2 with
respect to the dyadic filtration (Gn) defined above, was the second explicit unconditional basis
in H1 (after L. Carleson’s construction [3] of a smooth version of the Haar system). This is
a result due to P. Wojtaszczyk [35]. Again, we are interested in how this result generalizes if
we consider different filtrations. For this problem it is not true that basis and unconditional
basis property extends to any filtration, but we can give a necessary and sufficient condition
on (Fn) for either property. In fact, in the case k = 2, this was settled by G. Gevorkyan and
A. Kamont in [20] by giving a simple geometric criterion on the interval filtration (Fn) for basis

and unconditional basis property of (d
(2)
n ) in H1, which we will describe now.

Let G be a σ-algebra in [0, 1] that is generated by a partition (Ai)
m
i=1 of [0, 1] into a sequence of

intervals with supAi = inf Ai+1 for i = 1, . . . ,m−1. Additionally, set Ai = ∅ for i /∈ {1, . . . ,m}.
Then, let (for ` ≥ 1)

δ
(`)
i :=

∣∣∣
i+`−1⋃

j=i

Aj

∣∣∣, i = 2− `, . . . ,m

be the length of the union of ` neighbouring atoms of G. Finally, define

(15) r`(G) := max
i=2−`,...,m−1

max
( δ(`)i

δ
(`)
i+1

,
δ
(`)
i+1

δ
(`)
i

)

as the maximal ratio of those neighbouring lengths. Note that by a simple calculation, r`+1(G) ≤
r`(G) + 1.

Combining the results from [20] (k = 2) and [21] (general k), we state that for any positive
integer k and any interval filtration (Fn), we have the following equivalence: there exists a
constant C so that

sup
n
‖P (k)

n f‖H1 ≤ C‖f‖H1 , f ∈ H1,

if and only if supn rk(Fn) <∞.
Moreover, concerning unconditional convergence of spline projections, combining the results

from [20] (k = 2) and Chapter 4 (general k): Let k ≥ 2 be an integer and (Fn) an interval
filtration. Then, spline differences converge unconditionally in H1 if and only if supn rk−1(Fn) <
∞.

Now, we switch our viewpoint slightly and instead of considering

Sk(Fn) = {f ∈ Ck−2[0, 1] : f is a polynomial of order k on each atom of Fn},
we now consider its periodic version

S̃k(Fn) = {f ∈ Ck−2(T) : f is a polynomial of order k on each atom of Fn},
where T denotes the unit circle. Measure theoretically, there is no distinction between the
unit interval [0, 1] and the unit circle T, i.e. if we are considering martingales, there is no
difference between [0, 1] and T. The situation is different if we consider orthogonal projections

P̃
(k)
n onto S̃k(Fn) because of additional smoothness conditions in the space S̃k(Fn). Similarly to

the interval case, we can define a periodic B-spline basis (Ñj) of S̃k(Fn) so that it has the same

basic properties that the interval B-spline basis, i.e., for each j, Ñj is a non-negative function,

has local support and the collection (Ñj) forms a partition of unity.
If we consider a fixed interval representation of T, in contrast to the interval case, the

periodic B-spline Gram matrix (〈Ñi, Ñj〉) is not totally positive anymore. This difference is
already present when considering piecewise linear splines: it is shown in [7] that for k = 2 and
the dyadic filtration (Gn) on the unit interval [0, 1], the so called Lebesgue constant of the class
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of operators (P
(2)
n ), which—by definition—is given by

sup
n
‖P (2)

n : L∞ → L∞‖,

has the exact value 2 + (2 −
√

3)2 ≈ 2.0718, whereas if we consider the same filtration on the
unit circle T, we get the different answer [30]

sup
n
‖P̃ (2)

n : L∞ → L∞‖ = 2 +
33− 18

√
3

13
≈ 2.1402.

In Chapter 5, we show that also for the periodic projection operators (P̃
(k)
n ) and arbitrary

filtrations (Fn) as in (4), we have, for f ∈ L1,

P̃ (k)
n f → f almost surely.

We also give a new proof of the fact that the operators (P̃
(k)
n ), as operators acting on Lp,

1 ≤ p ≤ ∞, are uniformly bounded, which proceeds by relating periodic spline spaces to spline
spaces on the interval in a delicate way. It should be noted that by looking at [4], the proof of
this fact for k = 2 can be done exactly in the same manner than in the non-periodic setting.
The already existing proof of this fact for general spline orders k, unfortunately, is unpublished
and can be deduced by generalizing A. Shadrin’s proof [34] for the interval [0, 1] first to spline
projections on the real line (which is done in [12]) and then by viewing periodic functions as
defined on the whole real line.

In Chapter 6, we also extend the result contained in Chapter 3 about the unconditionality

of spline differences d
(k)
n in Lp-spaces in the reflexive range 1 < p <∞ to periodic splines, i.e.,

we show that the periodic spline differences d̃
(k)
n = P̃

(k)
n f − P̃ (k)

n−1f also converge unconditionally
in this range of Lp-spaces for all filtrations (Fn). This also extends the earlier piecewise linear
periodic result in [26]. One main difficulty to overcome in the course of this proof was that
despite the fact that an estimate of the type (9) also holds in the periodic setting, estimate
(11) does not extend to the periodic setting.

In Chapter 7, we show that the result for almost sure convergence for L1-functions f on the
unit interval [0, 1]

P (k)
n f → f, almost surely,

extends to tensor product spline projections on [0, 1]d

(16) P (k1)
n1
⊗ · · · ⊗ P (kd)

nd
f → f,

provided that f is contained in the Orlicz space L(logL)d−1, i.e.
∫
|f |(log+ |f |)d−1 <∞ where

log+ x = max(0, log x). On the one hand, this result is in the spirit of the theorem by Jessen,
Marcinkiewicz, Zygmund [24] that shows for f ∈ L(logL)d−1, almost every point in [0, 1]d is a
strong Lebesgue point of f . We recall that a point x ∈ [0, 1]d is called a strong Lebesgue point
of the function f , if

1

|Qm|

∫

Qm

|f(s)− f(x)| ds→ 0,

where (Qm) is a sequence of rectangles parallel to the coordinate axes containing the point
x with diamQm → 0. On the other hand, we can compare it to the martingale result by
Cairoli [2], who showed that multiparameter conditional expectations of multivariate functions
f ∈ L(logL)d−1 converge almost surely. We also show in Chapter 7 that the space L(logL)d−1

in the assertion of almost sure convergence is somehow best possible, i.e., we show that for
any larger Orlicz class Λ of functions than L(logL)d−1, there exists a function f ∈ Λ so that

P
(k1)
n1 ⊗ · · · ⊗ P (kd)

nd f does not converge almost surely, cf. [32] for the case k1 = · · · = kd = 1.
We now go back to (10) and consider again almost sure convergence, but in an extended

setting. We begin by noting that for martingales, actually a more general result than (10) is
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true; in fact, any martingale (Xn) with sup ‖Xn‖1 <∞ converges almost surely, even without
specifying the limit function in advance. One way of identifying the limit of (Xn) proceeds by
using a compactness argument in the space of Radon measures followed by an application of
the Radon-Nikodým theorem on the absolutely continuous part of the limiting measure, whose
density function is the desired a.s. limit of (Xn). We recall that the Radon-Nikodým theorem
states that if for two σ-finite measures µ, ν so that ν is absolutely continuous with respect
to µ (i.e. µ(A) = 0 =⇒ ν(A) = 0), there exists a µ-integrable function f so that for any
measurable set A, we have

ν(A) =

∫

A

f dµ.

When considering martingales, we can also consider vector-valued martingales, where here,
vector-valued means Banach-space-valued. For measures with values in Banach spaces X, the
Radon-Nikodým theorem is not true anymore in general, but if it is true, X is said to have
the Radon-Nikodým property. Examples of Banach spaces with the Radon-Nikodým property
include all reflexive Banach spaces and all separable dual spaces. This property of a Banach
space X in fact is enough so that any martingale bounded in the Bochner-Lebesgue space
L1
X converges almost surely. Martingale convergence even is a characterization of the Radon-

Nikodym property, i.e., the following statements about a Banach space X are equivalent:

(1) X has the Radon-Nikodým property,
(2) every X-valued martingale bounded in L1

X converges almost surely,

For those results and more about vector measures and vector-valued martingales, see [14, 31].
In Chapter 8 and 9, we generalize this characterization theorem to spline projections. In

order to state this result, we define that a sequence of functions (fn)n≥0 in L1
X is an (X-valued)

k-martingale spline sequence adapted to (Fn) if

P (k)
n fn+1 = fn, n ≥ 0.

This definition resembles the definition of a martingale with the conditional expectation oper-
ator replaced by a spline projection operator.

Then, the spline version of the above result reads as follows: for any positive integer k, the
following statements about a Banach space X are equivalent:

(1) X has the Radon-Nikodým property,
(2) every X-valued k-martingale spline sequence bounded in L1

X converges almost surely,

In Chapter 8, we show the implication (1) =⇒ (2) and characterize the a.e. limit of every
L1
X-bounded martingale spline sequence intrinsically. In Chapter 9, we show the implication

(2) =⇒ (1) by constructing a non-convergent martingale spline sequence in every Banach space
X that does not have the Radon-Nikodým property.

In Chapter 10, we extend D. Lépingle’s L1(`2) inequality [27]

(17)
∥∥∥
(∑

n

E[fn|Fn−1]
2
)1/2∥∥∥

1
≤ 2 ·

∥∥∥
(∑

n

f 2
n

)1/2∥∥∥
1
, fn ∈ Fn,

to the case where we substitute the conditional expectation operators with orthogonal projec-

tion operators P
(k)
n onto spline spaces and where we can allow that fn is contained in a suitable

spline space Sk(Fn). This is done provided the filtration (Fn) satisfies the regularity condition
supn rk(Fn) < ∞. Recall that the number rk(Fn) was defined in (15) as the maximal length
ratio of neighbouring B-spline supports in Fn. Using similar techniques, we also obtain a spline
version of C. Fefferman’s H1-BMO duality [16] under this assumption.
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[1] T. Andô. Contractive projections in Lp spaces. Pacific J. Math., 17:391–405, 1966.
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Abstract

The main result of this paper is a proof that, for any f ∈ L1[a, b], a sequence of its orthogonal
projections (P∆n ( f )) onto splines of order k with arbitrary knots ∆n converges almost everywhere
provided that the mesh diameter |∆n | tends to zero, namely

f ∈ L1[a, b] ⇒ P∆n ( f, x) → f (x) a.e. (|∆n| → 0).

This extends the earlier result that, for f ∈ L p , we have convergence P∆n ( f ) → f in the L p-norm for
1 ≤ p ≤ ∞, where we interpret L∞ as the space of continuous functions.
c⃝ 2014 Elsevier Inc. All rights reserved.
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1. Introduction

Let an interval [a, b] and k ∈ N be fixed. For a knot-sequence ∆n = (ti )n+k
i=1 such that

ti ≤ ti+1, ti < ti+k,

t1 = · · · = tk = a, b = tn+1 = · · · = tn+k,
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let (Ni )
n
i=1 be the sequence of L∞-normalized B-splines of order k on ∆n forming a partition of

unity, with the properties

supp Ni = [ti , ti+k], Ni ≥ 0,


i

Ni ≡ 1.

For each ∆n , we define then the space Sk(∆n) of splines of order k with knots ∆n as the linear
span of (Ni ), namely

s ∈ Sk(∆n) ⇔ s =

n
i=1

ci Ni , ci ∈ R,

so that Sk(∆n) is the space of piecewise polynomial functions of degree ≤ k −1, with k −1−mi
continuous derivatives at ti , where mi is multiplicity of ti . Throughout the paper, we use the
following notations:

Ii := [ti , ti+1], hi := |Ii | := ti+1 − ti ,

Ei := [ti , ti+k], κi := |Ei | := ti+k − ti ,

where Ei is the support of the B-spline Ni . With conv(A, B) standing for the convex hull of two
sets A and B, we also set

Ii j := conv(Ii , I j ) = [tmin(i, j), tmax(i, j)+1],

Ei j := conv(Ei , E j ) = [tmin(i, j), tmax(i, j)+k].

Finally, |∆n| := maxi |Ii | is the mesh diameter of ∆n .
Now, let P∆n be the orthoprojector onto Sk(∆n) with respect to the ordinary inner product

⟨ f, g⟩ =
 b

a f (x)g(x) dx , i.e.,

⟨P∆n f, s⟩ = ⟨ f, s⟩, ∀s ∈ Sk(∆n),

which is well-defined for f ∈ L1[a, b].
Some time ago, one of us proved [12] de Boor’s conjecture that the max-norm of P∆n is

bounded independently of the knot-sequence, i.e.,

sup
∆n

∥P∆n ∥∞ < ck . (1.1)

This readily implies convergence of orthogonal spline projections in the L p-norm,

f ∈ L p[a, b] ⇒ P∆n ( f )
L p
→ f, 1 ≤ p ≤ ∞, (1.2)

where we interpret L∞ as C , the space of continuous functions. In this paper, we prove that the
max-norm boundedness of P∆n implies also almost everywhere (a.e.) convergence of orthogonal
projections (P∆n ( f )) with arbitrary knots ∆n provided that the mesh diameter |∆n| tends to
zero.

The main outcome of this article is the following statement.

Theorem 1.1. For any k ∈ N and any sequence of partitions (∆n) such that |∆n| → 0, we have

f ∈ L1[a, b] ⇒ P∆n ( f, x) → f (x) a.e. (1.3)

CHAPTER 2. A.E. CONVERGENCE OF SPLINE PROJECTIONS WITH ARB. KNOTS 17
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The proof is based on the standard approach of verifying two conditions that imply
a.e. convergence for f ∈ L1:

(1) there is a dense subset F of L1 such that P∆n ( f, x) → f (x) a.e. for f ∈ F ;
(2) the maximal operator P∗( f, x) := supn |P∆n ( f, x)| is of the weak (1, 1)-type,

m{x ∈ [a, b] : P∗( f, x) > t} <
ck

t
∥ f ∥1, (1.4)

with m A being the Lebesgue measure of A. The first condition is easy: by (1.2),
a.e. convergence (in fact, uniform convergence) takes place for continuous functions,

f ∈ C[a, b] ⇒ P∆n ( f, x) → f (x) uniformly in x . (1.5)

For the non-trivial part (1.4), we prove a stronger inequality of independent interest, namely
that

|P∆n ( f, x)| ≤ ck M( f, x), (1.6)

where M( f, x) is the Hardy–Littlewood maximal function. It satisfies a weak (1, 1)-type
inequality, hence (1.4) holds too.

The main technical tool which leads to (1.6) is a new estimate for the elements {ai j } of the
inverse of the Gram matrix of the B-spline functions, which reads as follows.

Theorem 1.2. For any ∆n , let {ai j }
n
i, j=1 be the inverse of the B-spline Gram matrix {⟨Ni , N j ⟩}.

Then,

|ai j | ≤ Kγ |i− j |h−1
i j , (1.7)

where

hi j := max{hs : Is ⊂ Ei j },

and K > 0 and γ ∈ (0, 1) are constants that depend only on k, but not on ∆n .

A pass from (1.7) to (1.6) proceeds as follows. Let K∆n be the Dirichlet kernel of the operator
P∆n , defined by the relation

P∆n ( f, x) =

 b

a
K∆n (x, y) f (y) dy, ∀ f ∈ L1[a, b].

Then, (1.7) implies the inequality

|K∆n (x, y)| ≤ C θ |i− j |
|Ii j |

−1, x ∈ Ii , y ∈ I j , (1.8)

where C > 0 and θ ∈ (0, 1). Now, (1.6) is immediately obtained from (1.8).
With a bit more sophisticated arguments, though still standard ones, estimate (1.8) on K∆n

allows us also to prove convergence of P∆n f at Lebesgue points of f . The latter forms a set of
full measure, so we derive this refinement of Theorem 1.1 as a byproduct.

Estimate (1.7) is also useful in other applications, for instance in [10] it is applied to obtain
unconditionality of orthonormal spline bases with arbitrary knot-sequences in L p-spaces for
1 < p < ∞.

We note that, previously, a.e. convergence of spline orthoprojections was studied by
Ciesielski [3] who established (1.3) for dyadic partitions with any k ∈ N, and by Ciesielski–
Kamont [5] who proved this result for any ∆n with k = 2, i.e., for linear splines. Both papers
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used (1.7) as an intermediate step, however our proof of (1.7) for all k with arbitrary knots ∆n
is based on quite different arguments. The main difference is that the proof of (1.7) for linear
splines in [5] does not rely on the mesh-independent bound (1.1) for ∥P∆n ∥∞, and can be used
to get such a bound for linear splines, whereas our proof depends on (1.1) in an essential manner.

The paper is organized as follows. In Section 2, we show how Theorem 1.2 leads to (1.8)
and the latter to (1.6). We complete then the proof of a.e. convergence of (P∆n ( f )) using the
scheme indicated above. In Section 3, as a byproduct, we show that (P∆n ( f )) converges at
Lebesgue points, thus characterizing the convergence set in a sense. Theorem 1.2 is proved then
in Section 4 based on Lemma 4.1, which lists several specific properties of the inverse {ai j } of
the B-spline Gram matrix G0 := {⟨Ni , N j ⟩}. Those properties are proved in Section 5, and they
are based mostly on Demko’s theorem on the inverses of band matrices, which we apply to the
rescaled Gram matrix G := (⟨Mi , N j ⟩), where Mi :=

k
κi

Ni . The uniform bound ∥G−1
∥∞ < ck ,

being equivalent to (1.1), plays a crucial role here.

2. Proof of Theorem 1.1

Here, we prove the weak-type inequality (1.4), then recall a simple proof of (1.5), and as a
result deduce the a.e. convergence for all f ∈ L1.

We begin with an estimate for the Dirichlet kernel K∆n .

Lemma 2.1. For any ∆n , the Dirichlet kernel K∆n satisfies the inequality

|K∆n (x, y)| ≤ C θ |i− j |
|Ii j |

−1, x ∈ Ii , y ∈ I j , (2.1)

where C > 0 and θ ∈ (0, 1) are constants that depend only on k.

Proof. First note that, with the inverse {aℓm} of the B-spline Gram matrix {⟨Nℓ, Nm⟩}, the
Dirichlet kernel K∆n can be written in the form

K∆n (x, y) =

n
ℓ,m=1

aℓm Nℓ(x)Nm(y).

For x ∈ Ii and y ∈ I j , since supp Nℓ = [tℓ, tℓ+k] and


Nℓ(x)Nm(y) ≡ 1, we obtain

|K∆n (x, y)| ≤ max
i−k+1≤ℓ≤i
j−k+1≤m≤ j

|aℓm |.

Next, we rewrite inequality (1.7) for aℓm in terms of Eℓm = [tmin(ℓ,m), tmax(ℓ,m)+k]: as hℓm is the
largest knot-interval in Eℓm , we have h−1

ℓm ≤ (|ℓ − m| + k)|Eℓm |
−1, hence for any real number

θ ∈ (γ, 1),

|aℓm | ≤ Kγ |ℓ−m|(|ℓ− m| + k)|Eℓm |
−1

≤ C1θ
|ℓ−m|

|Eℓm |
−1,

where C1 depends on k and θ . Therefore,

|K∆n (x, y)| ≤ C1 max
i−k+1≤ℓ≤i
j−k+1≤m≤ j

θ |ℓ−m|
|Eℓm |

−1.

For indices ℓ and m in the above maximum, we have Ii j ⊂ Eℓm , hence |Eℓm |
−1

≤ |Ii j |
−1, and

also |ℓ− m| > |i − j | − k, hence θ |ℓ−m|
≤ θ−kθ |i− j |, and inequality (2.1) follows. �
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Definition 2.2. For an integrable f , the Hardy–Littlewood maximal function is defined as

M( f, x) := sup
I∋x

|I |−1


I
| f (t)| dt, (2.2)

with the supremum taken over all intervals I containing x . As is known [13, p. 5], it satisfies the
following weak-type inequality

m{x ∈ [a, b] : M( f, x) > t} ≤
5
t

∥ f ∥1. (2.3)

Proposition 2.3. For any ∆n , we have

|P∆n ( f, x)| ≤ ck M( f, x), x ∈ [a, b]. (2.4)

Proof. Let x ∈ [a, b], and let the index i be such that x ∈ Ii and |Ii | ≠ 0. By definition of the
Dirichlet kernel K∆n ,

P∆n ( f, x) =

 b

a
K∆n (x, y) f (y) dy,

so using inequality (2.1) from the previous lemma, we obtain

|P∆n ( f, x)| ≤

n
j=1


I j

|K∆n (x, y)| | f (y)| dy ≤ C
n

j=1

θ |i− j |

|Ii j |


I j

| f (y)| dy.

Since I j ⊂ Ii j and x ∈ Ii ⊂ Ii j , the definition (2.2) of the maximal function implies
I j

| f (y)| dy ≤


Ii j
| f (y)| dy ≤ |Ii j |M( f, x). Hence,

|P∆n ( f, x)| ≤ C
n

j=1

θ |i− j |M( f, x),

and (2.4) is proved. �
On combining (2.4) and (2.3), we obtain a weak-type inequality for P∗.

Corollary 2.4. For the maximal operator P∗( f, x) := supn |P∆n ( f, x)|, we have

m{x ∈ [a, b] : P∗( f, x) > t} ≤
ck

t
∥ f ∥1. (2.5)

The next statement is a straightforward corollary of (1.1); we give its proof for completeness.

Proposition 2.5. We have

f ∈ C[a, b] ⇒ P∆n ( f, x) → f (x) uniformly. (2.6)

Proof. Since P∆n is a linear projector and ∥P∆n ∥∞ ≤ ck by (1.1), the Lebesgue inequality
gives us

∥ f − P∆n f ∥∞ ≤ (ck + 1) E∆n ( f ),

where E∆n ( f ) is the error of the best approximation of f by splines from Sk(∆n) in the uniform
norm. It is known that

E∆n ( f ) ≤ ckωk( f, |∆n|),
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where ωk( f, δ) is the kth modulus of smoothness of f . Since ωk( f, δ) → 0 as δ → 0, we have
the uniform convergence

∥ f − P∆n f ∥∞ → 0 (|∆n| → 0),

and that proves (2.6). �
Proof of Theorem 1.1. The derivation of the almost everywhere convergence of P∆n f for
f ∈ L1 from the weak-type inequality (2.5) and convergence on the dense subset (2.6) follows a
standard scheme which can be found in [8, pp. 3–4]. We present this argument for completeness.

Let v ∈ L1
[a, b]. We define

R(v, x) := lim sup
n→∞

P∆nv(x)− lim inf
n→∞

P∆nv(x)

and note that R(v, x) ≤ 2P∗(v, x), therefore, by (2.5),

m{x ∈ [a, b] : R(v, x) > δ} ≤
2ck

δ
∥v∥1. (2.7)

Also, for any continuous function g we have R(g, x) ≡ 0 by (2.6), and since P∆n is linear,

R( f, x) ≤ R( f − g, x)+ R(g, x) = R( f − g, x).

This implies, for a given f ∈ L1 and any g ∈ C ,

m {x ∈ [a, b] : R( f, x) > δ} ≤ m {x ∈ [a, b] : R( f − g, x) > δ}
(2.7)
≤

2c
δ

∥ f − g∥1.

Letting ∥ f − g∥1 → 0, we obtain, for every δ > 0,

m {x ∈ [a, b] : R( f, x) > δ} = 0,

so R( f, x) = 0 for almost all x ∈ [a, b]. This means that P∆n f converges almost everywhere.
It remains to show that this limit equals f a.e., but this is obtained by replacing R( f, x) by
| limn→∞ Pn f (x)− f (x)| in the above argument. �

3. Convergence of P∆n( f ) at the Lebesgue points

Here, we show that the estimate (2.1) for the Dirichlet kernel implies convergence of
P∆n ( f, x) at the Lebesgue points of f . Since by the classical Lebesgue differentiation theorem
the set of all Lebesgue points has the full measure, this gives a more precise version of
Theorem 1.1.

We use standard arguments similar to those used in [7, Chapter 1, Theorem 2.4] for integral
operators, or in [9, Chapter 5.4] for wavelet expansions.

Recall that a point x is said to be a Lebesgue point of f if

lim
I∋x, |I |→0

|I |−1


I
| f (x)− f (y)| dy = 0,

where the limit is taken over all intervals I containing the point x , as the diameter of I tends to
zero.

Theorem 3.1. Let x be a Lebesgue point of the integrable function f , and let (∆n) be a sequence
of partitions of [a, b] with |∆n| → 0. Then,

lim
n→∞

P∆n ( f, x) = f (x).
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Proof. Let x be a Lebesgue point of f . Since the spline space Sk(∆n) contains constant func-
tions, we have

 b
a K∆n (x, y) dy = 1 for any x ∈ [a, b], so we need to prove that b

a
K∆n (x, y)[ f (x)− f (y)] dy → 0 (n → ∞). (3.1)

For r > 0, set Br (x) := [x − r, x + r ] ∩ [a, b]. Now, given ε > 0, let δ be such that

|I |−1


I
| f (x)− f (y)| dy < ε (3.2)

for all intervals I with I ⊂ B2δ(x) and I ∋ x . Further, with θ ∈ (0, 1) from inequality (2.1), take
m and N = N (m) such that

θm < εδ, (m + 2)|∆n| < δ ∀n ≥ N ,

and consider any such ∆n .
(1) Let |x − y| > δ, and let x ∈ Ii and y ∈ I j . Then |i − j | > m and |Ii j | > δ, hence, by

inequality (2.1) for the Dirichlet kernel K∆n ,

|K∆n (x, y)| ≤ Cθmδ−1
≤ Cε.

As a consequence,
|x−y|>δ

|K∆n (x, y)| | f (x)− f (y)| dy ≤ Cε
 b

a
| f (x)− f (y)| dy ≤ 2Cε∥ f ∥1. (3.3)

(2) Let |x − y| ≤ δ, i.e., y ∈ Bδ(x), and let x ∈ Ii . Note that if I j ∩ Bδ(x) ≠ ∅, then
I j ⊂ B2δ(x), hence Ii j ⊂ B2δ(x) as well, and again, by inequality (2.1),

Bδ(x)
|K∆n (x, y)| | f (x)− f (y)| dy ≤


j :I j ∩Bδ(x)≠∅


I j

|K∆n (x, y)| | f (x)− f (y)| dy

≤ C


j :Ii j ⊂B2δ(x)

θ |i− j |

|Ii j |

−1


Ii j

| f (x)− f (y)| dy

.

By (3.2), since x ∈ Ii j ⊂ B2δ(x), the terms in the parentheses are all bounded by ε, therefore
|x−y|<δ

|K∆n (x, y)| | f (x)− f (y)| dy ≤ Cε


j

θ |i− j |
≤ C1ε. (3.4)

Combining estimates (3.3) and (3.4) for the integration over |x − y| > δ and |x − y| < δ, respec-
tively, we obtain (3.1), i.e. convergence of P∆n ( f, x) to f (x) at Lebesgue points of f , provided
|∆n| → 0. �

4. Proof of Theorem 1.2

We will prove (1.7) for i ≤ j . This proves also the case i ≥ j , since hi j = h j i and ai j = a j i .
So, for the entries {ai j } of the inverse of the matrix {⟨Ni , N j ⟩}, we want to show that

|ai j | ≤ K γ |i− j |h−1
i j , (4.1)

where hi j is the length of a largest subinterval of [ti , t j+k]. The proof is based on the following
lemma.
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Lemma 4.1. For any ∆n , let {ai j } be the inverse of the B-spline Gram matrix {⟨Ni , N j ⟩}. Then

|ais | ≤ K1 γ
|i−s|(max{κi , κs})

−1, (4.2)

|ai j | ≤ K2 γ
|ℓ− j |

ℓ+k−2
µ=ℓ−(k−1)

|aiµ|, i + k ≤ ℓ < j, (4.3)

|aiµ| ≤ K3 max
µ−(k−1)≤s≤µ−1

|ais |, i < µ, (4.4)

where Ki > 0 and γ ∈ (0, 1) are some constants that depend only on k.

Remark 4.2. All three estimates are known in a sense. Inequalities (4.2) and (4.3) follow from
Demko’s theorem [6] on inverses of band matrices and the fact [12] that the inverse of the Gram
matrix G = {(Mi , N j )}

n
i, j=1 satisfies ∥G−1

∥∞ < ck . Actually, (4.2) was explicitly given by
Ciesielski [4], while (4.3) is a part of Demko’s proof. Inequality (4.4) appeared in Shadrin’s
manuscript [11], and it does not use the uniform boundedness of ∥G−1

∥∞. As those estimates
are scattered in the aforementioned papers, we extract the relevant parts from them and present
the proofs of (4.2)–(4.4) in Section 5.

Proof of Theorem 1.2. Let Iℓ be a largest subinterval of [ti , t j+k], i.e.,

hi j = max{hs}
j+k−1
s=i = hℓ.

(1) If Iℓ belongs to the support of Ni or that of N j , then

max(κi , κ j ) ≥ hℓ = hi j ,

and, by (4.2),

|ai j | ≤ K1 γ
|i− j |(max{κi , κ j })

−1
≤ K1 γ

|i− j |h−1
i j ,

so (4.1) is true.
(2) Now, assume that Iℓ does not belong to the supports of either Ni or N j , i.e.,

i + k ≤ ℓ < j.

Consider the B-splines (Ns)
ℓ
s=ℓ+1−k whose support [ts, ts+k] contains Iℓ = [tℓ, tℓ+1]. Then

κs ≥ hℓ = hi j , ℓ− (k − 1) ≤ s ≤ ℓ.

Using estimate (4.2), we obtain for such s

|ais | ≤ K1 γ
|i−s|κ−1

s ≤ K1 γ
|i−s|h−1

i j ≤ K1 γ
−kγ |i−ℓ|h−1

i j ,

i.e.,

max
ℓ−(k−1)≤s≤ℓ

|ais | ≤ C1 γ
|i−ℓ|h−1

i j . (4.5)

(3) From (4.3), we have

|ai j | ≤ 2(k − 1)K2γ
|ℓ− j | max

ℓ−(k−1)≤µ≤ℓ+k−2
|aiµ|. (4.6)

Note that (4.4) bounds |aiµ| in terms of the absolute values of the k − 1 coefficients that precede
it, hence by induction and with the understanding that K3 > 1,

|ai,ℓ+r | ≤ K r
3 max
ℓ−(k−1)≤s≤ℓ

|ais |, r = 1, 2, . . . ,
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therefore

max
ℓ−(k−1)≤µ≤ℓ+k−2

|aiµ| ≤ K k−2
3 max

ℓ−(k−1)≤s≤ℓ
|ais |. (4.7)

Combining (4.6), (4.7) and (4.5), gives

|ai j | ≤ 2(k − 1)K2γ
|ℓ− j |K k−2

3 C1γ
|i−ℓ|h−1

i j = K γ |i− j |h−1
i j ,

and that proves (4.1), hence (1.7). �

5. Proof of Lemma 4.1

Here, we prove the three parts of Lemma 4.1 as Lemmas 5.5, 5.6 and 5.7, respectively. The
proof is based on certain properties of the Gram matrix G := {⟨Mi , N j ⟩}

n
i, j=1 and its inverse

G−1
=: {bi j }

n
i, j=1. Here, (Mi ) is the sequence of L1-normalized B-splines on ∆n ,

Mi :=
k
κi

Ni ,

 ti+k

ti
Mi (t) dt = 1.

First, we note that G is a banded matrix with max-norm one, i.e.,

⟨Mi , N j ⟩ = 0 for |i − j | > k − 1, ∥G∥∞ = 1, (5.1)

where the latter equality holds due to the fact that


j |⟨Mi , N j ⟩| = ⟨Mi ,


j N j ⟩ = ⟨Mi , 1⟩

= 1. A less obvious property is the boundedness of ∥G−1
∥∞.

Theorem 5.1 (Shadrin [12]). For any ∆n , with G := {⟨Mi , N j ⟩}
n
i, j=1, we have

∥G−1
∥∞ ≤ ck, (5.2)

where ck is a constant that depends only on k.

We recall that (5.2) is equivalent to (1.1), i.e., the ℓ∞-norm boundedness of the inverse G−1 of
the Gramian is equivalent to the L∞-norm boundedness of the orthogonal spline projector P∆n ,
namely, with some constant dk (e.g., the same as in (5.15)), we have

1
d2

k
∥G−1

∥∞ ≤ ∥P∆n ∥∞ ≤ ∥G−1
∥∞.

Next, we apply the following theorem to G.

Theorem 5.2 (Demko [6]). Let A = (αi j ) be an r-banded matrix, i.e., αi j = 0 for |i − j | > r ,
and let ∥A∥p ≤ c′ and ∥A−1

∥p ≤ c′′ for some p ∈ [1,∞]. Then the elements of the inverse
A−1

=: (α
(−1)
i j ) decay exponentially away from the diagonal, precisely

|α
(−1)
i j | ≤ Kγ |i− j |,

where K > 0 and γ ∈ (0, 1) are constants that depend only on c′, c′′ and r.

We will need two corollaries of this result.

Corollary 5.3. For any ∆n , with G = {⟨Mi , N j ⟩}
n
i, j=1, and G−1

=: {bi j }
n
i, j=1, we have

|bi j | ≤ K0γ
|i− j |, (5.3)

where K0 > 0 and γ ∈ (0, 1) are constants that depend only on k.
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Proof. Indeed, by (5.1)–(5.2), we may apply Demko’s theorem to the Gram matrix G, with
c′

= 1, c′′
= ck, r = k − 1, and p = ∞, and that gives the statement. �

Corollary 5.4. For any ∆n , with G = {⟨Mi , N j ⟩}
n
i, j=1,

∥G∥1 < c1, ∥G−1
∥1 < c2, (5.4)

where c1, c2 depend only on k.

Proof. It follows from (5.3) that ∥G−1
∥1 = max j


i |bi j | is bounded, whereas ∥G∥1 is bounded

since G is a (k − 1)-banded matrix with nonnegative entries ⟨Mi , N j ⟩ ≤ 1. �
Now we turn to the proof of Lemma 4.1 starting with inequality (4.2).

Lemma 5.5 (Property (4.2)). Let {ai j } be the inverse of the B-spline Gram matrix {⟨Ni , N j ⟩}.
Then

|ais | ≤ K1 γ
|i−s|(max{κi , κs})

−1. (5.5)

Proof. As we mentioned earlier, this estimate was proved by Ciesielski [4, Property 6]. Here are
the arguments. The elements of the two inverses {ai j } = G−1

0 and {bi j } = G−1 are connected by
the formula

ai j = bi j (k/κ j ) = b j i (k/κi ). (5.6)

Indeed, the identity Ni = κi Mi/k implies that the matrix G0 := {⟨Ni , N j ⟩} is related to
G = {⟨Mi , N j ⟩} in the form

G0 = DG, where D = diag[κ1/k, . . . , κn/k].

Hence, G−1
0 = G−1 D−1, and the first equality in (5.6) follows. The second equality is a

consequence of the symmetry of G0, as then G−1
0 is symmetric too, i.e., ai j = a j i . Then, in

(5.6) we may use the estimate |bi j | ≤ K0γ
|i− j | from (5.3), and (5.5) follows. �

Lemma 5.6 (Property (4.3)). Let {ai j } be the inverse of the B-spline Gram matrix {⟨Ni , N j ⟩}.
Then

|ai j | ≤ K2 γ
|ℓ− j |

ℓ+k−2
µ=ℓ−(k−1)

|aiµ|, i + k ≤ ℓ < j. (5.7)

Proof. (1) Since ai j = b j i (k/κi ) by (5.6), it is sufficient to establish the same inequality for the
elements b j i of the matrix G−1

= (bi j ):

|b j i | ≤ K2 γ
|ℓ− j |

ℓ+k−2
µ=ℓ−(k−1)

|bµi |. (5.8)

We fix i with 1 ≤ i ≤ n, and to simplify notations we write b j := b j i , omitting i in the subscripts.
So, the vector b = (b1, . . . , bn)

T is the i th column of G−1, hence

Gb = ei . (5.9)

(2) The following arguments just repeat those in the proof of Theorem 5.2 used by Demko [6]
and extended by de Boor [2].
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For m > i , set

b(m) = (0, 0, . . . , 0, bm, bm+1, . . . , bn)
T .

With r := k − 1, the Gram matrix G = {(Mi , N j )}
n
i, j=1 is r -banded, and that together with (5.9)

implies

supp G b(m) ⊂ [m − r,m + (r − 1)].

It follows that G b(m) and G b(m+2r) have disjoint support, therefore

∥G b(m)∥1 + ∥G b(m+2r)
∥1 = ∥G b(m) − G b(m+2r)

∥1.

This yields

∥G−1
∥
−1
1 ( ∥b(m)∥1 + ∥b(m+2r)

∥1) ≤ ∥G b(m)∥1 + ∥G b(m+2r)
∥1

= ∥G b(m) − G b(m+2r)
∥1

≤ ∥G∥1 ∥b(m) − b(m+2r)
∥1

= ∥G∥1 ( ∥b(m)∥1 − ∥b(m+2r)
∥1),

i.e.,

∥b(m)∥1 + ∥b(m+2r)
∥1 ≤ c3 ( ∥b(m)∥1 − ∥b(m+2r)

∥1), (5.10)

where c3 = ∥G∥1∥G−1
∥1 ≥ 1. This gives

∥b(m+2r)
∥1 ≤ γ0 ∥b(m)∥1, γ0 =

c3 − 1
c3 + 1

< 1,

where γ0 depends only on k since so does c3 = c1c2 by (5.4).
It follows that, for any j,m such that i < m ≤ j ≤ n, we have

|b j | ≤ ∥b( j)
∥1 ≤ γ


j−m
2r


0 ∥b(m)∥1 ≤ γ−1

0 γ
| j−m|/2r
0 ∥b(m)∥1

=: c4 γ
| j−m|

∥b(m)∥1.

Applying (5.10) to the last line, we obtain

|b j | ≤ c4 γ
| j−m| c3 (∥b(m)∥1 − ∥b(m+2r)

∥1) = c5 γ
| j−m|

m+2r−1
µ=m

|bµ|.

Taking m = ℓ− r = ℓ− (k − 1), we bring this inequality to the form (5.8) needed:

|b j | = c5 γ
k−1γ | j−ℓ|

ℓ+k−2
µ=ℓ−(k−1)

|bµ|.

Lemma 5.7 (Property (4.4)). Let {ai j } be the inverse of the B-spline Gram matrix {⟨Ni , N j ⟩}.
Then

|aim | ≤ K3 max
m−(k−1)≤s≤m−1

|ais |, m > i, (5.11)

i.e., the absolute value of a coefficient following ai i can be bounded in terms of the absolute
values of the k − 1 coefficients directly preceding that coefficient.
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Proof. This estimate appeared in [11, proof of Lemma 7.1]. To adjust that proof to our notations,
we note that the basis {N∗

i } dual to the B-spline basis {Ni } is given by the formula

N∗

i =

n
j=1

ai j N j .

Indeed, from the definition of ai j , we have ⟨N∗

i , Nm⟩ =
n

j=1 ai j ⟨N j , Nm⟩ = δim .
(1) We fix i , write a j := ai j omitting the index i , and for m > i , set

ψm−(k−1) :=

n
j=m−(k−1)

a j N j , ψm :=

n
j=m

a j N j . (5.12)

Then, since supp N j = [t j , t j+k], it follows that

ψm−(k−1)(x) = N∗

i (x), x ∈ [tm, b].

Therefore, ψm−(k−1) is orthogonal to span{N j }
n
j=m , in particular to ψm . This gives

∥ψm−(k−1)∥
2
L2[tm ,b]

+ ∥ψm∥
2
L2[tm ,b]

= ∥ψm−(k−1) − ψm∥
2
L2[tm ,b]

. (5.13)

(2) Further, we have

Em = [tm, tm+k] ⊂ [tm, b],

whereas the equality ψm−(k−1) − ψm =
m−1

j=m−(k−1) a j N j implies

supp(ψm−(k−1) − ψm) ∩ [tm, b] = [tm, tm+k−1] ⊂ Em .

Therefore, from (5.13), we conclude

∥ψm−(k−1)∥
2
L2(Em )

+ ∥ψm∥
2
L2(Em )

≤ ∥ψm−(k−1) − ψm∥
2
L2(Em )

. (5.14)

(3) Now recall that, by a theorem of de Boor (see [1] or [7, Chapter 5, Lemma 4.1]), there is
a constant dk that depends only on k such that

d−2
k |cm |

2
≤ |Em |

−1

 n
j=1

c j N j


2

L2(Em )

∀c j ∈ R. (5.15)

(This gives the upper bound dk for the B-spline basis condition number.) So, applying this
estimate to the left-hand side of (5.14), where we use (5.12), we derive

2 d−2
k |am |

2
≤ |Em |

−1

∥ψm−(k−1)∥

2
L2(Em )

+ ∥ψm∥
2
L2(Em )


(5.14)

≤ |Em |
−1

∥ψm−(k−1) − ψm∥
2
L2(Em )

≤ ∥ψm−(k−1) − ψm∥
2
L∞(Em )

(5.12)
=

 m−1
j=m−(k−1)

a j N j


2

L∞(Em )

≤ max
m−(k−1)≤s≤m−1

|as |
2,
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i.e.,

|am | ≤ K3 max
m−(k−1)≤s≤m−1

|as |
2,

and that proves (5.11). �
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Unconditionality of orthogonal spline systems in Lp

by

Markus Passenbrunner (Linz)

Abstract. We prove that given any natural number k and any dense point se-
quence (tn), the corresponding orthonormal spline system is an unconditional basis in
reflexive Lp.

1. Introduction. In this work, we are concerned with orthonormal
spline systems of arbitrary order k with arbitrary partitions. We let (tn)∞n=2

be a dense sequence of points in the open unit interval (0, 1) such that each
point occurs at most k times. Moreover, define t0 := 0 and t1 := 1. Such
point sequences are called admissible.

For n ≥ 2, we define S(k)n to be the space of polynomial splines of order k
with grid points (tj)

n
j=0, where the points 0 and 1 both have multiplicity k.

For each n ≥ 2, the space S(k)n−1 has codimension 1 in S(k)n , and therefore there

exists f
(k)
n ∈ S(k)n that is orthonormal to S(k)n−1. Observe that f

(k)
n is unique

up to sign. In addition, let (f
(k)
n )1n=−k+2 be the collection of orthonormal

polynomials in L2[0, 1] such that the degree of f
(k)
n is k+n− 2. The system

of functions (f
(k)
n )∞n=−k+2 is called the orthonormal spline system of order

k corresponding to (tn)∞n=0. We will frequently omit the parameter k and

write fn instead of f
(k)
n .

The purpose of this article is to prove the following

Theorem 1.1. Let k ∈ N and (tn)n≥0 be an admissible sequence of knots
in [0, 1]. Then the corresponding general orthonormal spline system of order
k is an unconditional basis in Lp[0, 1] for every 1 < p <∞.

A celebrated result of A. Shadrin [12] states that the orthogonal projec-

tion operator onto S(k)n is bounded on L∞[0, 1] by a constant that depends
only on k. As a consequence, (fn)n≥−k+2 is a basis in Lp[0, 1], 1 ≤ p < ∞.
There are various results on the unconditionality of spline systems restrict-
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ing either the spline order k or the partition (tn)n≥0. The first result in this
direction, in [1], states that the classical Franklin system—the orthonor-
mal spline system of order 2 corresponding to dyadic knots—is an uncon-
ditional basis in Lp[0, 1], 1 < p < ∞. This was extended in [3] to uncon-
ditionality of orthonormal spline systems of arbitrary order, but still with
dyadic knots. Considerable effort has been made to weaken the restriction
to dyadic knot sequences. In the series of papers [7, 9, 8] this restriction
was removed step-by-step for general Franklin systems, with the final result
that for each admissible point sequence (tn)n≥0 with parameter k = 2, the
associated general Franklin system forms an unconditional basis in Lp[0, 1],
1 < p <∞. We combine the methods used in [9, 8] with some new inequal-
ities from [11] to prove that orthonormal spline systems are unconditional
in Lp[0, 1], 1 < p < ∞, for any spline order k and any admissible point
sequence (tn)n≥0.

The organization of the present article is as follows. In Section 2, we
give some preliminary results concerning polynomials and splines. Section 3
develops some estimates for the orthonormal spline functions fn using the
crucial notion of associating to each function fn a characteristic interval Jn in
a delicate way. Section 4 treats a central combinatorial result concerning the
number of indices n such that a given grid interval J can be a characteristic
interval of fn. In Section 5 we prove a few technical lemmata used in the
proof of Theorem 1.1, and Section 6 finally proves Theorem 1.1. We remark
that the results and proofs in Sections 5 and 6 closely follow [8].

2. Preliminaries. Let k be a positive integer. The parameter k will
always be used for the order of the underlying polynomials or splines. We use
the notation A(t) ∼ B(t) to indicate the existence of two constants c1, c2 > 0
that depend only on k, such that c1B(t) ≤ A(t) ≤ c2B(t) for all t, where t
denotes all implicit and explicit dependences that the expressions A and B
might have. If the constants c1, c2 depend on an additional parameter p, we
write A(t) ∼p B(t). Correspondingly, we use the symbols ., &, .p, &p. For
a subset E of the real line, we denote by |E| its Lebesgue measure and by
1E its characteristic function.

First, we recall a few elementary properties of polynomials.

Proposition 2.1. Let 0 < ρ < 1. Let I be an interval and A be a subset
of I with |A| ≥ ρ|I|. Then, for every polynomial Q of order k on I,

max
t∈I
|Q(t)| .ρ sup

t∈A
|Q(t)| and

�

I

|Q(t)| dt .ρ

�

A

|Q(t)| dt.

Lemma 2.2. Let V be an open interval and f be a function satisfying	
V |f(t)| dt ≤ λ|V | for some λ > 0. Then, denoting by TV f the orthogonal
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projection of f · 1V onto the space of polynomials of order k on V ,

(2.1) ‖TV f‖2L2(V ) . λ2|V |.
Moreover,

(2.2) ‖TV f‖Lp(V ) . ‖f‖Lp(V ), 1 ≤ p ≤ ∞.
Proof. Let lj , 0 ≤ j ≤ k − 1, be the jth Legendre polynomial on [−1, 1]

with the normalization lj(1) = 1. In view of the integral identity

lj(x) =
1

π

π�

0

(x+
√
x2 − 1 cosϕ)j dϕ, x ∈ C \ {−1, 1},

lj is uniformly bounded by 1 on [−1, 1]. We have the orthogonality relation

(2.3)

1�

−1
li(x)lj(x) dx =

2

2j + 1
δ(i, j), 0 ≤ i, j ≤ k − 1,

where δ(·, ·) denotes the Kronecker delta. Now let α := inf V and β := supV .
For

lVj (x) := 21/2|V |−1/2lj
(2x− α− β

β − α
)
, x ∈ [α, β],

relation (2.3) still holds for the sequence (lVj )k−1j=0 , that is,

β�

α

lVi (x)lVj (x) dx =
2

2j + 1
δ(i, j), 0 ≤ i, j ≤ k − 1.

So, TV f can be represented in the form

TV f =
k−1∑

j=0

2j + 1

2
〈f, lVj 〉lVj .

Thus we obtain

‖TV f‖L2(V ) ≤
k−1∑

j=0

2j + 1

2
|〈f, lVj 〉| ‖lVj ‖L2(V ) =

k−1∑

j=0

√
2j + 1

2
|〈f, lVj 〉|

≤ ‖f‖L1(V )

k−1∑

j=0

√
2j + 1

2
‖lVj ‖L∞(V ) . ‖f‖L1(V )|V |−1/2.

Now, (2.1) is a consequence of the assumption
	
V |f(t)| dt ≤ λ|V |. If we set

p′ = p/(p− 1), the second inequality (2.2) follows from

‖TV f‖Lp(V ) ≤
k−1∑

j=0

2j + 1

2
‖f‖Lp(V )‖lVj ‖Lp′ (V )‖lVj ‖Lp(V ) . ‖f‖Lp(V ),

since ‖lVj ‖Lp(V ) . |V |1/p−1/2 for 0 ≤ j ≤ k − 1 and 1 ≤ p ≤ ∞.
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We now let

(2.4) T =(0 = τ1 = · · ·= τk < τk+1 ≤ · · · ≤ τM < τM+1 = · · · = τM+k = 1)

be a partition of [0, 1] consisting of knots of multiplicity at most k, that is,

τi < τi+k for all 1 ≤ i ≤ M . Let S(k)T be the space of polynomial splines
of order k with knots T . The basis of L∞-normalized B-spline functions in

S(k)T is denoted by (Ni,k)
M
i=1 or for short (Ni)

M
i=1. Corresponding to this basis,

there exists a biorthogonal basis of S(k)T , denoted by (N∗i,k)
M
i=1 or (N∗i )Mi=1.

Moreover, we write νi = τi+k − τi.
We now recall a few important results on the B-splines Ni and their dual

functions N∗i .

Proposition 2.3. Let 1 ≤ p ≤ ∞ and g =
∑M

j=1 ajNj. Then

(2.5) |aj | . |Jj |−1/p‖g‖Lp(Jj), 1 ≤ j ≤M,

where Jj is the subinterval [τi, τi+1] of [τj , τj+k] of maximal length. Addi-
tionally,

(2.6) ‖g‖p ∼
( M∑

j=1

|aj |pνj
)1/p

= ‖(ajν1/pj )Mj=1‖`p .

Moreover, if h =
∑M

j=1 bjN
∗
j , then

(2.7) ‖h‖p .
( M∑

j=1

|aj |pν1−pj

)1/p
= ‖(ajν1/p−1j )Mj=1‖`p .

The two inequalites (2.5) and (2.6) are Lemmata 4.1 and 4.2 in [6, Chap-
ter 5], respectively. Inequality (2.7) is a consequence of the celebrated result

of Shadrin [12] that the orthogonal projection operator onto S(k)T is bounded
on L∞ independently of T . For a deduction of (2.7) from this result, see [4,
Property P.7].

The next task is to estimate the inverse of the Gram matrix
(〈Ni,k, Nj,k〉)Mi,j=1. Before we do that, we recall the concept of totally positive
matrices: Let Qm,n be the set of strictly increasing sequences of m integers
from the set {1, . . . , n}, and A be an n × n-matrix. For α, β ∈ Qm,n, we
denote by A[α;β] the submatrix of A consisting of the rows indexed by α
and the columns indexed by β. Furthermore, we let α′ (the complement
of α) be the uniquely determined element of Qn−m,n that consists of all
integers in {1, . . . , n} not occurring in α. In addition, we use the notation
A(α;β) := A[α′;β′].

Definition 2.4. Let A be an n × n-matrix. Then A is called totally
positive if

detA[α;β] ≥ 0 for α, β ∈ Qm,n, 1 ≤ m ≤ n.
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The cofactor formula bij = (−1)i+j detA(j; i)/detA for the inverse B =
(bij)

M
i,j=1 of the matrix A leads to

Proposition 2.5. The inverse B = (bij) of a totally positive matrix
A = (aij) has the checkerboard property:

(−1)i+jbij ≥ 0 for all i, j.

Theorem 2.6 ([5]). Let k ∈ N and T be an arbitrary partition of [0, 1]
as in (2.4). Then the Gram matrix A = (〈Ni,k, Nj,k〉)Mi,j=1 of the B-spline
functions is totally positive.

This theorem is a consequence of the so called basic composition formula
[10, Chapter 1, equation (2.5)] and the fact that the kernel Ni,k(x), depend-
ing on the variables i and x, is totally positive [10, Chapter 10, Theorem 4.1].
As a consequence, the inverse B = (bij)

M
i,j=1 of A has the checkerboard pro-

perty by Proposition 2.5.

Theorem 2.7 ([11]). Let k ∈ N, let T be the partition defined as in
(2.4) and (bij)

M
i,j=1 be the inverse of the Gram matrix (〈Ni,k, Nj,k〉)Mi,j=1 of

the B-spline functions Ni,k of order k corresponding to T . Then

|bij | ≤ C
γ|i−j|

τmax(i,j)+k − τmin(i,j)
, 1 ≤ i, j ≤M,

where the constants C > 0 and 0 < γ < 1 depend only on k.

Let f ∈ Lp[0, 1] for some 1 ≤ p <∞. Since the orthonormal spline system
(fn)n≥−k+2 is a basis in Lp[0, 1], we can write f =

∑∞
n=−k+2 anfn. Based on

this expansion, we define the square function Sf :=
(∑∞

n=−k+2 |anfn|2
)1/2

and the maximal function Mf := supm
∣∣∑

n≤m anfn
∣∣. Moreover, given a

measurable function g, we denote by Mg the Hardy–Littlewood maximal
function of g, defined as

Mg(x) := sup
I3x
|I|−1

�

I

|g(t)| dt,

where the supremum is taken over all intervals I containing x.

A corollary of Theorem 2.7 is the following relation between M andM:

Theorem 2.8 ([11]). If f ∈ L1[0, 1], we have

Mf(t) .Mf(t), t ∈ [0, 1].

3. Properties of orthogonal spline functions. This section deals
with the calculation and estimation of one explicit orthonormal spline func-

tion f
(k)
n for fixed k ∈ N and n ≥ 2 induced by the admissible sequence

(tn)∞n=0. Let i0 be an index with k+ 1 ≤ i0 ≤M . The partition T is defined
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as follows:

T = (0 = τ1 = · · · = τk < τk+1 ≤ · · · ≤ τi0
≤ · · · ≤ τM < τM+1 = · · · = τM+k = 1),

and T̃ is defined to be T with τi0 removed. In the same way we denote
by (Ni : 1 ≤ i ≤ M) the B-spline functions corresponding to T , and by

(Ñi : 1 ≤ i ≤ M − 1) those corresponding to T̃ . Böhm’s formula [2] gives

the following relationship between Ni and Ñi:

(3.1)





Ñi(t) = Ni(t) if 1 ≤ i ≤ i0−k−1,

Ñi(t) =
τi0−τi
τi+k−τi

Ni(t)+
τi+k+1−τi0
τi+k+1−τi+1

Ni+1(t) if i0−k ≤ i ≤ i0−1,

Ñi(t) = Ni+1(t) if i0 ≤ i ≤M−1.

To calculate the orthonormal spline functions corresponding to T̃ and T ,
we first determine a function g ∈ span{Ni : 1 ≤ i ≤ M} such that g ⊥ Ñj

for all 1 ≤ j ≤M − 1. That is, we assume that g is of the form

g =

M∑

j=1

αjN
∗
j ,

where (N∗j : 1 ≤ j ≤ M) is the system biorthogonal to (Ni : 1 ≤ i ≤ M).

In order for g to be orthogonal to Ñj , 1 ≤ j ≤ M − 1, it has to satisfy the
identities

0 = 〈g, Ñi〉 =
M∑

j=1

αj〈N∗j , Ñi〉, 1 ≤ i ≤M − 1.

Using (3.1), this implies αj = 0 if 1 ≤ i ≤ i0 − k − 1 or i0 + 1 ≤ i ≤M . For
i0 − k ≤ i ≤ i0 − 1, we have the recursion formula

(3.2) αi+1
τi+k+1 − τi0
τi+k+1 − τi+1

+ αi
τi0 − τi
τi+k − τi

= 0,

which determines the sequence (αj) up to a multiplicative constant. We
choose

αi0−k =

i0−1∏

`=i0−k+1

τ`+k − τi0
τ`+k − τ`

for symmetry reasons. This starting value and the recursion (3.2) yield the
explicit formula

(3.3)

αj = (−1)j−i0+k
( j−1∏

`=i0−k+1

τi0 − τ`
τ`+k − τ`

)( i0−1∏

`=j+1

τ`+k − τi0
τ`+k − τ`

)
, i0−k ≤ j ≤ i0.
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So,

g =

i0∑

j=i0−k
αjN

∗
j =

i0∑

j=i0−k

M∑

`=1

αjbj`N`,

where (bj`)
M
j,`=1 is the inverse of the Gram matrix (〈Nj , N`〉)Mj,`=1. We remark

that the sequence (αj) alternates in sign and since the matrix (bj`)
M
j,`=1 is

checkerboard, we see that the B-spline coefficients of g, namely

(3.4) w` :=

i0∑

j=i0−k
αjbj`, 1 ≤ ` ≤M,

satisfy

(3.5)
∣∣∣

i0∑

j=i0−k
αjbj`

∣∣∣ =

i0∑

j=i0−k
|αjbj`|, 1 ≤ j ≤M.

In Definition 3.1 below, we assign to each orthonormal spline function
a characteristic interval that is a grid point interval [τi, τi+1] and lies close
to the newly inserted point τi0 . We will see later that the choice of this in-
terval is crucial proving important properties that are needed to show that

the system (f
(k)
n )∞n=−k+2 is an unconditional basis in Lp, 1 < p < ∞, for

all admissible knot sequences (tn)n≥0. This approach was already used by
G. G. Gevorkyan and A. Kamont [8] in the proof that general Franklin sys-
tems are unconditional in Lp, 1 < p <∞, where the characteristic intervals
were called J-intervals. Since we give a slightly different construction here,
we name them characteristic intervals.

Definition 3.1. Let T , T̃ be as above and τi0 the new point in T that

is not present in T̃ . We define the characteristic interval J corresponding to
τi0 as follows.

(1) Let

Λ(0) :=
{
i0 − k ≤ j ≤ i0 : |[τj , τj+k]| ≤ 2 min

i0−k≤`≤i0
|[τ`, τ`+k]|

}

be the set of all indices j for which the support of the B-spline func-
tion Nj is approximately minimal. Observe that Λ(0) is nonempty.

(2) Define

Λ(1) :=
{
j ∈ Λ(0) : |αj | = max

`∈Λ(0)
|α`|
}
.

For an arbitrary, but fixed index j(0) ∈ Λ(1), set J (0) := [τj(0) , τj(0)+k].

(3) The interval J (0) can now be written as the union of k grid intervals

J (0) =
k−1⋃

`=0

[τj(0)+`, τj(0)+`+1] with j(0) as above.
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We define the characteristic interval J = J(τi0) to be one of the
above k intervals that has maximal length.

We remark that in the definition of Λ(0), we may replace the factor 2 by
any other constant C > 1. It is essential, though, that C > 1 in order to
obtain the following theorem which is crucial for further investigations.

Theorem 3.2. With the above definition (3.4) of w` for 1 ≤ ` ≤M and
the index j(0) given in Definition 3.1,

(3.6) |wj(0) | & bj(0),j(0) .

Before we start the proof of this theorem, we state a few remarks and
lemmata. For the choice of j(0) in Definition 3.1, we have, by construction,
the following inequalities: for all i0 − k ≤ ` ≤ i0 with ` 6= j(0),

(3.7) |α`| ≤ |αj(0) | or |[τ`, τ`+k]| > 2 min
i0−k≤s≤i0

|[τs, τs+k]|.

We recall the identity

(3.8) |αj | =
( j−1∏

`=i0−k+1

τi0 − τ`
τ`+k − τ`

)( i0−1∏

`=j+1

τ`+k − τi0
τ`+k − τ`

)
, i0 − k ≤ j ≤ i0.

Since by (3.5),

|wj(0) | =
i0∑

j=i0−k
|αjbj,j(0) | ≥ |αj(0) | |bj(0),j(0) |,

in order to show (3.6), we prove the inequality

|αj(0) | ≥ Dk > 0

with a constant Dk only depending on k. By (3.8), this inequality follows
from the more elementary inequalities

(3.9)
τi0 − τ` & τ`+k − τi0 , i0 − k + 1 ≤ ` ≤ j(0) − 1,

τ`+k − τi0 & τi0 − τ`, j(0) + 1 ≤ ` ≤ i0 − 1.

We will only prove the second line of (3.9) for all choices of j(0). The first
line is proved by a similar argument. We observe that if j(0) ≥ i0 − 1, then
there is nothing to prove, so we assume

(3.10) j(0) ≤ i0 − 2.

Moreover, we need only show the single inequality

(3.11) τj(0)+k+1 − τi0 & τi0 − τj(0)+1,

since if we assume (3.11), then for any j(0) + 1 ≤ ` ≤ i0 − 1,

τ`+k − τi0 ≥ τj(0)+k+1 − τi0 & τi0 − τj(0)+1 ≥ τi0 − τ`.
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We now choose j to be the minimal index in the range i0 ≥ j > j(0) such
that

(3.12) |αj | ≤ |αj(0) |.
If there is no such j, we set j = i0 + 1.

If j ≤ i0, we employ (3.8) to deduce that (3.12) is equivalent to

(3.13) (τj+k − τj)1−δ(j,i0)
j−1∏

`=j(0)∨(i0−k+1)

(τi0 − τ`)

≤ (τj(0)+k − τj(0))1−δ(j
(0),i0−k)

j∧(i0−1)∏

`=j(0)+1

(τ`+k − τi0),

where δ(·, ·) is the Kronecker delta. Furthermore, let m in the range i0−k ≤
m ≤ i0 be such that τm+k − τm = mini0−k≤s≤i0(τs+k − τs).

Now, from the minimality of j and (3.7), we obtain

(3.14) τ`+k − τ` > 2(τm+k − τm), j(0) + 1 ≤ ` ≤ j − 1.

Thus, by definition,

(3.15) m ≤ j(0) or m ≥ j.
Lemma 3.3. In the above notation, if m ≤ j(0) and j − j(0) ≥ 2, then

we have (3.11), or more precisely,

(3.16) τj(0)+k+1 − τi0 ≥ τi0 − τj(0)+1.

Proof. We expand the left hand side of (3.16) as

τj(0)+k+1 − τi0 = τj(0)+k+1 − τj(0)+1 − (τi0 − τj(0)+1).

By (3.14) (observe that j − j(0) ≥ 2), we conclude that

τj(0)+k+1 − τi0 ≥ 2(τm+k − τm)− (τi0 − τj(0)+1).

Since m+ k ≥ i0 and m ≤ j(0), we finally obtain

τj(0)+k+1 − τi0 ≥ τi0 − τj(0)+1.

Lemma 3.4. Let j(0), j and m be as above. If j(0) + 1 ≤ ` ≤ j − 1 and
m ≥ j, we have

τi0 − τ` ≥ τ`+1+k − τi0 .
Proof. Let j(0) + 1 ≤ ` ≤ j − 1. Then from (3.14) we obtain

(3.17) τi0−τ` = τ`+1+k−τ`−(τ`+1+k−τi0) ≥ 2(τm+k−τm)−(τ`+1+k−τi0).

Since we have assumed m ≥ j ≥ ` + 1, we get m + k ≥ ` + 1 + k, and
additionally we have m ≤ i0 by definition of m. Thus (3.17) yields

τi0 − τ` ≥ τ`+1+k − τi0 .
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Since the index ` was arbitrary in the range j(0) + 1 ≤ ` ≤ j − 1, the proof
of the lemma is complete.

Proof of Theorem 3.2. We employ the above definition of j(0), j, and m
and split our analysis into a few cases, distinguishing various possibilities
for j(0) and j. In each case we will show (3.11).

Case 1: There is no j > j(0) such that |αj | ≤ |αj(0) |. In this case, (3.15)

implies m ≤ j(0). Since j(0) ≤ i0 − 2 by (3.10), we apply Lemma 3.3 to
deduce (3.11).

Case 2: i0 − k + 1 ≤ j(0) < j ≤ i0 − 1. Using the restrictions on j(0)

and j, we see that (3.13) becomes

(τj(0)+k − τj(0))
j∏

`=j(0)+1

(τ`+k − τi0) ≥ (τj+k − τj)
j−1∏

`=j(0)

(τi0 − τ`).

This implies

τj(0)+k+1 − τi0 ≥
(τj+k − τj)(τi0 − τj(0))

τj(0)+k − τj(0)

j−1∏

`=j(0)+1

τi0 − τ`
τ`+1+k − τi0

.

Since by definition of j(0), we have in particular τj(0)+k−τj(0) ≤ 2(τj+k−τj),
we conclude further that

(3.18) τj(0)+k+1 − τi0 ≥
τi0 − τj(0)+1

2

j−1∏

`=j(0)+1

τi0 − τ`
τ`+1+k − τi0

.

If j = j(0) + 1, the assertion (3.11) follows from (3.18), since the product
is then empty.

If j ≥ j(0) + 2 and m ≤ j(0), we use Lemma 3.3 to obtain (3.11).

If j ≥ j(0) + 2 and m ≥ j, we apply Lemma 3.4 to the terms in the
product appearing in (3.18) to deduce (3.11).

This finishes the proof of Case 2.

Case 3: i0 − k + 1 ≤ j(0) < j = i0. Recall that j(0) ≤ i0 − 2 = j − 2
by (3.10). If m ≤ j(0), Lemma 3.3 gives (3.11). So we assume m ≥ j. Since
i0 = j and m ≤ i0, we have m = j. The restrictions on j(0), j imply that
condition (3.13) is nothing else than

(τj(0)+k − τj(0))
i0−1∏

`=j(0)+1

(τ`+k − τi0) ≥
i0−1∏

`=j(0)

(τi0 − τ`).

Thus, in order to show (3.11), it is enough to prove that there exists a con-
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stant Dk > 0 only depending on k such that

(3.19)
τi0 − τj(0)

τj(0)+k − τj(0)

i0−1∏

`=j(0)+2

τi0 − τ`
τ`+k − τi0

≥ Dk.

First observe that by Lemma 3.4,

τi0 − τj(0) ≥ τj(0)+k+2 − τi0 ≥ τj(0)+k − τi0 .
Inserting this inequality in the left hand side of (3.19) and applying Lem-
ma 3.4 directly to the terms in the product, we obtain (3.19).

Case 4: i0 − k = j(0) < j = i0. We have j(0) ≤ i0 − 2 by (3.10). If
m ≤ j(0), just apply Lemma 3.3 to obtain (3.11). Thus we assume m ≥ j.
Since i0 = j and m ≤ i0, we have m = j. The restrictions on j(0), j imply
that (3.13) takes the form

i0−1∏

`=i0−k+1

(τ`+k − τi0) ≥
i0−1∏

`=i0−k+1

(τi0 − τ`).

Thus, to show (3.11), it is enough to prove that there exists a constant
Dk > 0 only depending on k such that

i0−1∏

`=i0−k+2

τi0 − τ`
τ`+k − τi0

≥ Dk.

But this is a consequence of Lemma 3.4, finishing the proof of Case 4.

Case 5: i0 − k = j(0) < j ≤ i0 − 1. In this case, (3.11) becomes

(3.20) τi0+1 − τi0 & τi0 − τi0−k+1,

and (3.13) is nothing else than

(3.21)

j∏

`=i0−k+1

(τ`+k − τi0) ≥ (τj+k − τj)
j−1∏

`=i0−k+1

(τi0 − τ`).

For j = i0−k+1, (3.20) follows easily from (3.21). If we assume j− j(0) ≥ 2
and m ≤ j(0), we just apply Lemma 3.3 to obtain (3.11). If j − j(0) ≥ 2 and
m ≥ j, then (3.20) is equivalent to the existence of a constant Dk > 0 only
depending on k such that

(τj+k − τj)
∏j−1
`=i0−k+2(τi0 − τ`)∏j

`=i0−k+2(τ`+k − τi0)
≥ Dk.

This follows from the obvious inequality τj+k − τj ≥ τj+k − τi0 and from
Lemma 3.4. Thus, the proof of Case 5 is complete, thereby concluding the
proof of Theorem 3.2.
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We will use this result to prove lemmata connecting the Lp norm of the
function g and the corresponding characteristic interval J . Before we start,
we need another simple

Lemma 3.5. Let C = (cij)
n
i,j=1 be a symmetric positive definite matrix.

Then for (dij)
n
i,j=1 = C−1 we have

c−1ii ≤ dii, 1 ≤ i ≤ n.
Proof. Since C is symmetric, it is diagonalizable:

C = SΛST ,

for some orthogonal matrix S = (sij)
n
i,j=1 and for the diagonal matrix Λ

consisting of the eigenvalues λ1, . . . , λn of C. These eigenvalues are positive,
since C is positive definite. Clearly,

C−1 = SΛ−1ST .

Let i be an arbitrary integer in the range 1 ≤ i ≤ n. Then

cii =
n∑

`=1

s2i`λ` and dii =
n∑

`=1

s2i`λ
−1
` .

Since
∑n

`=1 s
2
i` = 1 and the function x 7→ x−1 is convex on (0,∞), we

conclude by Jensen’s inequality that

c−1ii =
( n∑

`=1

s2i`λ`

)−1
≤

n∑

`=1

s2i`λ
−1
` = dii.

Lemma 3.6. Let T , T̃ be as above and g =
∑M

j=1wjNj be the function

in span{Ni : 1 ≤ i ≤ M} that is orthogonal to every Ñi, 1 ≤ i ≤ M − 1,
with (wj)

M
j=1 given in (3.4). Moreover, let ϕ = g/‖g‖2 be the L2-normalized

orthogonal spline function corresponding to the mesh point τi0. Then

‖ϕ‖Lp(J) ∼ ‖ϕ‖p ∼ |J |1/p−1/2, 1 ≤ p ≤ ∞,
where J is the characteristic interval associated to the point τi0, given in
Definition 3.1.

Proof. As a consequence of (2.5), we get

(3.22) ‖g‖Lp(J) & |J |1/p|wj(0) |.
By Theorem 3.2, |wj(0) | & bj(0),j(0) , where we recall that (bij)

M
i,j=1 is the

inverse of the Gram matrix (aij)
M
i,j=1 = (〈Ni, Nj〉)Mi,j=1. Now we invoke

Lemma 3.5 and (2.6) to infer from (3.22) that

‖g‖Lp(J) & |J |1/pbj(0),j(0) ≥ |J |1/pa−1j(0),j(0)
= |J |1/p‖Nj(0)‖−22 & |J |1/pν−1

j(0)
.
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Since, by construction, J is the maximal subinterval of J (0) and there are
exactly k subintervals of J (0), we finally get

(3.23) ‖g‖Lp(J) & |J |1/p−1.

On the other hand, g =
∑i0

j=i0−k αjN
∗
j , so we use (2.7) to obtain

‖g‖p .
( i0∑

j=i0−k
|αj |pν1−pj

)1/p
.

Since |αj | ≤ 1 for all j and νj(0) is minimal (up to the factor 2) among the
values νj , i0 − k ≤ j ≤ i0, we can estimate this further by

‖g‖p . ν
1/p−1
j(0)

.

We now use the inequality |J | ≤ νj(0) = |J (0)| from the construction of J to
get

(3.24) ‖g‖p . |J |1/p−1.
The assertion of the lemma now follows from (3.23) and (3.24) after renor-
malization.

We denote by dT (x) the number of points in T between x and J counting
the endpoints of J . Correspondingly, for an interval V ⊂ [0, 1], we denote by
dT (V ) the number of points in T between V and J counting the endpoints
of both J and V .

Lemma 3.7. Let T , T̃ be as above and g =
∑M

j=1wjNj be orthogonal to

every Ñi, 1 ≤ i ≤M−1, with (wj)
M
j=1 as in (3.4). Moreover, let ϕ = g/‖g‖2

be the normalized orthogonal spline function corresponding to τi0, and γ < 1
the constant from Theorem 2.7 depending only on the spline order k. Then

(3.25) |wj | .
γdT (τj)

|J |+ dist(suppNj , J) + νj
for all 1 ≤ j ≤M.

Moreover, if x < inf J , then

(3.26) ‖ϕ‖Lp(0,x) .
γdT (x)|J |1/2

(|J |+ dist(x, J))1−1/p
, 1 ≤ p ≤ ∞.

Similarly, for x > sup J ,

(3.27) ‖ϕ‖Lp(x,1) .
γdT (x)|J |1/2

(|J |+ dist(x, J))1−1/p
, 1 ≤ p ≤ ∞.

Proof. We begin by showing (3.25). By definition of wj and α` (see (3.4)
and (3.3)), we have

|wj | . max
i0−k≤`≤i0

|bj`|.
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Now we invoke Theorem 2.7 to deduce

|wj | .
maxi0−k≤`≤i0 γ

|`−j|

mini0−k≤`≤i0(τmax(`,j)+k − τmin(`,j))
(3.28)

. γdT (τj)

mini0−k≤`≤i0(τmax(`,j)+k − τmin(`,j))
,

where the second inequality follows from the location of J in the interval
[τi0−k, τi0+k]. It remains to estimate the minimum in the denominator. Fix
` with i0 − k ≤ ` ≤ i0. First we observe that

(3.29) τmax(`,j)+k − τmin(`,j) ≥ τj+k − τj = |suppNj | = νj .

Moreover, by definition of J ,

(3.30) τmax(`,j)+k − τmin(`,j) ≥ min
i0−k≤r≤i0

(τr+k − τr) ≥ |J (0)|/2 ≥ |J |/2.

If now j ≥ `, then

τmax(`,j)+k − τmin(`,j) = τj+k − τ` ≥ τj+k − τi0(3.31)

≥ max(τj − sup J (0), 0),

since τi0 ≤ sup J (0). But max(τj − sup J (0), 0) = dist([τj , τj+k], J
(0)) due to

the fact that inf J (0) ≤ τi0 ≤ τ`+k ≤ τj+k for the current choice of j. Addi-

tionally, dist([τj , τj+k], J) ≤ |J (0)| + d([τj , τj+k], J
(0)). So, as a consequence

of (3.31),

(3.32) τmax(`,j)+k − τmin(`,j) ≥ dist([τj , τj+k], J)− |J (0)|.
An analogous calculation proves (3.32) also in the case j ≤ `. We now
combine (3.28) with (3.29), (3.30) and (3.32) to obtain (3.25).

Next we consider the integral
( 	x

0 |g(t)|p dt
)1/p

for x < inf J . The anal-
ogous estimate (3.27) follows from a similar argument. Let τs be the first
grid point in T to the right of x and observe that suppNr ∩ [0, τs) = ∅ for
r ≥ s. Then

‖g‖Lp(0,x) ≤ ‖g‖Lp(0,τs) ≤
∥∥∥
s−1∑

i=1

wiNi

∥∥∥
p
.

By (2.6),

‖g‖Lp(0,x) ≤
∥∥(wiν1/pi

)s−1
i=1

∥∥
`p
.

We now use (3.25) for wi to get

‖g‖Lp(0,x) .
∥∥∥∥
(

γdT (τi)ν
1/p
i

|J |+ dist(suppNi, J) + νi

)s−1

i=1

∥∥∥∥
`p
.
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Since νi ≤ |J |+dist(suppNi, J)+νi for all 1 ≤ i ≤M and dist(suppNi, J)+
νi ≥ dist(x, J) for all 1 ≤ i ≤ s− 1, the last display yields

‖g‖Lp(0,x) . (|J |+ dist(x, J))−1+1/p‖(γdT (τi))s−1i=1‖`p .
The last `p-norm is a geometric sum with largest term γdT (x), so

‖g‖Lp(0,x) .
γdT (x)

(|J |+ dist(x, J))1−1/p
.

This concludes the proof, since we have seen in the proof of Lemma 3.6 that
‖g‖2 ∼ |J |−1/2.

Remark 3.8. Analogously we obtain

sup
τj−1≤t≤τj

|ϕ(t)| . max
j−k≤i≤j−1

γdT (τi)|J |1/2
|J |+ dist(suppNi, J) + νi

. γdT (τj)|J |1/2
|J |+ dist(J, [τj−1, τj ]) + |[τj−1, τj ]|

,

since [τj−1, τj ] ⊂ suppNi whenever j − k ≤ i ≤ j − 1.

4. Combinatorics of characteristic intervals. Let (tn)∞n=0 be an ad-
missible sequence of points and (fn)∞n=−k+2 the corresponding orthonormal
spline functions of order k. For n ≥ 2, the associated partitions Tn to fn are
defined to consist of the grid points (tj)

n
j=0, the knots t0 = 0 and t1 = 1

having both multiplicity k in Tn. If n ≥ 2, we denote by J
(0)
n and Jn the

characteristic intervals J (0) and J from Definition 3.1 associated to the new
grid point tn. If −k + 2 ≤ n ≤ 1, we additionally set Jn := [0, 1]. For any
x ∈ [0, 1], we define dn(x) to be the number of grid points in Tn between x
and Jn counting the endpoints of Jn. Moreover, for a subinterval V of [0, 1],
we denote by dn(V ) the number of knots in Tn between V and Jn counting
the endpoints of both V and Jn. Finally, if

Tn = (0 = τn,1 = · · · = τn,k < τn,k+1

≤ · · · ≤ τn,n+k−1 < τn,n+k = · · · = τn,n+2k−1 = 1),

and if tn = τn,i0 , then we denote by t+`n the point τn,i0+`.

For the proof of the central Lemma 4.2 of this section, we need a com-
binatorial lemma of Erdős and Szekeres:

Lemma 4.1 (Erdős–Szekeres). Let n be an integer. Every sequence
(x1, . . . , x(n−1)2+1) of real numbers of length (n−1)2+1 contains a monotone
sequence of length n.

We now use this result to prove a lemma about the combinatorics of the
characteristic intervals Jn:
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Lemma 4.2. Let x, y ∈ (tn)∞n=0 be such that x < y and 0 ≤ β ≤ 1/2.
Then there exists a constant Fk only depending on k such that

N0 := card{n : Jn ⊆ [x, y], |Jn| ≥ (1− β)|[x, y]|} ≤ Fk,
where cardE denotes the cardinality of the set E.

Proof. If n is such that Jn ⊆ [x, y] and |Jn| ≥ (1 − β)|[x, y]|, then, by
definition of Jn, we have tn ∈ [0, (1 − β)x + βy] ∪ [βx + (1 − β)y, 1]. Thus,
by the pigeon-hole principle, in one of the two sets [0, (1 − β)x + βy] and
[βx+ (1− β)y, 1], there are at least

N1 :=

⌊
N0 − 1

2

⌋
+ 1

indices n with Jn ⊂ [x, y] and |Jn| ≥ (1− β)|[x, y]|. Assume without loss of
generality that this set is [βx+(1−β)y, 1]. Now, let (ni)

N1
i=1 be an increasing

sequence of indices such that tni ∈ [βx + (1 − β)y, 1] and Jni ⊂ [x, y],
|Jni | ≥ (1 − β)|[x, y]| for every 1 ≤ i ≤ N1. Observe that for such i, Jni is

to the left of tni . By the Erdős–Szekeres Lemma 4.1, the sequence (tni)
N1
i=1

contains a monotone subsequence (tmi)
N2
i=1 of length

N2 := b
√
N1 − 1c+ 1.

If (tmi)
N2
i=1 is increasing, then N2 ≤ k. Indeed, if N2 ≥ k+ 1, there are at

least k points (namely tm1 , . . . , tmk) in the sequence Tmk+1
between inf Jmk+1

and tmk+1
. This is in conflict with the location of Jmk+1

.

If (tmi)
N2
i=1 is decreasing, we let

s1 ≤ · · · ≤ sL
be an enumeration of the elements in Tm1 such that inf Jm1 ≤ s ≤ tm1 . By
definition of Jm1 , we obtain L ≤ k + 1. Thus, there are at most k intervals
[s`, s`+1], 1 ≤ ` ≤ L−1, contained in [inf Jm1 , tm1 ]. Again, by the pigeon-hole
principle, there exists one index 1 ≤ ` ≤ L−1 such that the interval [s`, s`+1]
contains (at least)

N3 :=

⌊
N2 − 1

k

⌋
+ 1

points of the sequence (tmi)
N2
i=1. Let (tri)

N3
i=1 be a subsequence of length N3

of such points. Furthermore, define

N4 := bN3/kc.
Since (tri)

N3
i=1 is decreasing, we have a collection of N4 disjoint intervals

Iµ := (trµ·k , t
+k
rµ·k) ⊆ [s`, s`+1], 1 ≤ µ ≤ N4.

Consequently, there exists (at least) one index µ such that

|Iµ| ≤ |[s`, s`+1]|/N4.
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We next observe that the definition of Jm1 yields

|Jm1 | ≥ |[s`, s`+1]|.
We thus get

|J (0)
rµ·k | ≥ |Jrµ·k | ≥ (1− β)|[x, y]| ≥ (1− β)|Jm1 |(4.1)

≥ (1− β)|[s`, s`+1]| ≥ (1− β)N4|Iµ|.

On the other hand, the construction of J
(0)
rµ·k implies in particular

(4.2) |J (0)
rµ·k | ≤ 2(t+krµ·k − trµ·k) = 2|Iµ|.

The inequalities (4.1) and (4.2) imply N4 ≤ 2/(1 − β) ≤ 4. Since N4 only
depends on k, this proves the assertion of the lemma.

5. Technical estimates

Lemma 5.1. Let f =
∑∞

n=−k+2 anfn and V be an open subinterval
of [0, 1]. Then

�

V c

∑

j∈Γ
|ajfj(t)| dt .

�

V

(∑

j∈Γ
|ajfj(t)|2

)1/2
dt,(5.1)

where Γ := {j : Jj ⊂ V and −k + 2 ≤ j <∞}.
Proof. If |V | = 1, then (5.1) holds trivially, so we assume that |V | < 1.

We define x := inf V , y := supV and fix n ∈ Γ . The definition of Γ implies
n ≥ 2, since Jj = [0, 1] for −k + 2 ≤ j ≤ 1. We only estimate the integral
in (5.1) over [y, 1]; the integral over [0, x] is estimated similarly. Lemma 3.7
implies

1�

y

|fn(t)| dt . γdn(y)|Jn|1/2.

Applying Lemma 3.6 yields

(5.2)

1�

y

|fn(t)| dt . γdn(y)
�

Jn

|fn(t)| dt.

Now choose β = 1/4 and let Jβn be the unique closed interval that satisfies

|Jβn | = β|Jn| and inf Jβn = inf Jn.

Since fn is a polynomial of order k on Jn, we apply Proposition 2.1 to (5.2)
and estimate further

(5.3)

1�

y

|anfn(t)| dt . γdn(y)
�

Jβn

|anfn(t)| dt ≤ γdn(y)
�

Jβn

(∑

j∈Γ
|ajfj(t)|2

)1/2
dt.
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Define Γs := {j ∈ Γ : dj(y) = s} for s ≥ 0. For fixed s ≥ 0 and j1, j2 ∈ Γs,
we have either

Jj1 ∩ Jj2 = ∅ or supJj1 = supJj2 .

So, Lemma 4.2 implies that there exists a constant Fk, only depending on k,
such that each t ∈ V belongs to at most Fk intervals Jβj , j ∈ Γs. Thus,
summing over j ∈ Γs, from (5.3) we get

∑

j∈Γs

1�

y

|ajfj(t)| dt .
∑

j∈Γs
γs

�

Jβj

(∑

`∈Γ
|a`f`(t)|2

)1/2
dt

. γs
�

V

(∑

`∈Γ
|a`f`(t)|2

)1/2
dt.

Finally, we sum over s ≥ 0 to obtain (5.1).

Let g be a real-valued function defined on [0, 1]. We denote by [g > λ]
the set {x ∈ [0, 1] : g(x) > λ} for any λ > 0.

Lemma 5.2. Let f =
∑∞

n=−k+2 anfn with only finitely many nonzero
coefficients an, λ > 0, r < 1 and

Eλ = [Sf > λ], Bλ,r = [M1Eλ > r].

Then

Eλ ⊂ Bλ,r.

Proof. Fix t ∈ Eλ. Since Sf =
(∑∞

n=−k+2 |anfn|2
)1/2

is continuous ex-
cept possibly at finitely many grid points, where it is continuous from the
right, there exists an interval I ⊂ Eλ such that t ∈ I. This implies

(M1Eλ)(t) = sup
t3U
|U |−1

�

U

1Eλ(x) dx

= sup
t3U

|Eλ ∩ U |
|U | ≥ |Eλ ∩ I||I| =

|I|
|I| = 1 > r,

so t ∈ Bλ,r, proving the lemma.

Lemma 5.3. Under the assumptions of Lemma 5.2, define

Λ = {n : Jn 6⊂ Bλ,r and −k + 2 ≤ n <∞} and g =
∑

n∈Λ
anfn.

Then

(5.4)
�

Eλ

Sg(t)2 dt .r

�

Ecλ

Sg(t)2 dt.

Proof. If Bλ,r = [0, 1], the index set Λ is empty, and thus (5.4) holds
trivially; so assume Bλ,r 6= [0, 1]. Then we apply Lemma 3.6 (for n ≥ 2) and
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the fact that Jn = [0, 1] for n ≤ 1 to obtain�

Eλ

Sg(t)2 dt =
∑

n∈Λ

�

Eλ

|anfn(t)|2 dt .
∑

n∈Λ

�

Jn

|anfn(t)|2 dt.

We split the last expression into

I1 :=
∑

n∈Λ

�

Jn∩Ecλ

|anfn(t)|2 dt, I2 :=
∑

n∈Λ

�

Jn∩Eλ
|anfn(t)|2 dt.

For I1, we clearly have

(5.5) I1 ≤
∑

n∈Λ

�

Ecλ

|anfn(t)|2 dt =
�

Ecλ

Sg(t)2 dt.

It remains to estimate I2. First we observe that by Lemma 5.2, Eλ ⊂ Bλ,r.
Since the set Bλ,r = [M1Eλ > r] is open in [0, 1], we decompose it into a
countable collection (Vj)

∞
j=1 of disjoint open subintervals of [0, 1]. Utilizing

this decomposition, we estimate

(5.6) I2 ≤
∑

n∈Λ

∑

j: |Jn∩Vj |>0

�

Jn∩Vj
|anfn(t)|2 dt.

If n ∈ Λ and |Jn ∩ Vj | > 0, then, by definition of Λ, Jn is an interval
containing at least one endpoint x ∈ {inf Vj , supVj} of Vj for which

M1Eλ(x) ≤ r.
This implies

|Eλ∩Jn∩Vj | ≤ r|Jn∩Vj | or equivalently |Ecλ∩Jn∩Vj | ≥ (1−r)|Jn∩Vj |.
This inequality and the fact that |fn|2 is a polynomial of order 2k− 1 on Jn
allow us to use Proposition 2.1 to deduce from (5.6) that

I2 .r

∑

n∈Λ

∑

j: |Jn∩Vj |>0

�

Ecλ∩Jn∩Vj
|anfn(t)|2 dt

≤
∑

n∈Λ

�

Ecλ∩Jn∩Bλ,r
|anfn(t)|2 dt

≤
∑

n∈Λ

�

Ecλ

|anfn(t)|2 dt =
�

Ecλ

Sg(t)2 dt.

Combined with (5.5), this completes the proof.

Lemma 5.4. Let V be an open subinterval of [0, 1], x := inf V , y :=
supV and f =

∑∞
n=−k+2 anfn ∈ Lp[0, 1] for 1 < p < 2 with supp f ⊂ V . Let

R > 1 satisfy Rγ < 1 for the constant γ from Theorem 2.7. Then

(5.7)

∞∑

n=n(V )

Rpdn(V )|an|p‖fn‖p
Lp(Ṽ c)

.p,R ‖f‖pp,
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where n(V ) = min{n : Tn ∩ V 6= ∅} and Ṽ = (x̃, ỹ) with x̃ = x − 2|V | and
ỹ = y + 2|V |.

Proof. First observe that Ṽ c = [0, x̃] ∪ [ỹ, 1]. We estimate only the part
corresponding to [0, x̃] and assume that x̃ > 0. The other part is treated
analogously.

Let m ≥ 0 and define

(5.8) Tm :=
{
n ∈ N : n ≥ n(V ), card{i ≤ n : x̃ ≤ ti ≤ x} = m

}
.

We remark that Tm is finite, since the sequence (tn)∞n=0 is dense in [0, 1].

We now split Tm into the following six subsets:

T (1)
m = {n ∈ Tm : Jn ⊂ [x̃, x]},
T (2)
m = {n ∈ Tm : x̃ ∈ Jn, |Jn ∩ [x̃, x]| ≥ |V |, Jn 6⊂ [x̃, x]},
T (3)
m =

{
n ∈ Tm : Jn ⊂ [0, x̃] or

(
x̃ ∈ Jn with |Jn ∩ [x̃, x]| ≤ |V | and Jn 6⊂ [x̃, x]

)}
,

T (4)
m = {n ∈ Tm : x ∈ Jn, |Jn ∩ [x̃, x]| ≥ |V |, Jn 6⊂ [x̃, x]},
T (5)
m =

{
n ∈ Tm : Jn ⊂ [x, ỹ] or

(
x ∈ Jn with |Jn ∩ [x̃, x]| ≤ |V | and Jn 6⊂ [x̃, x]

)}
,

T (6)
m =

{
n ∈ Tm : Jn ⊂ [ỹ, 1] or

(
ỹ ∈ Jn with Jn 6⊂ [x, ỹ]

)}
.

We treat each of these separately. Before examining sums like the one in
(5.7) with n restricted to one of the above sets, we note that for all n we
have, by definition of an = 〈f, fn〉 and the support assumption on f ,

(5.9) |an|p ≤
�

V

|f(t)|p dt ·
( �

V

|fn(t)|p′ dt
)p−1

,

where p′ = p/(p− 1) denotes the conjugate Hölder exponent to p.

Case 1: n ∈ T (1)
m = {n ∈ Tm : Jn ⊂ [x̃, x]}. Let T̃

(1)
m := T

(1)
m \{minT

(1)
m }.

By definition, the interval Jn is at most k−1 grid points in Tn away from tn.
Since the number m of grid points between x̃ and x is constant for all

n ∈ Tm, there are only 2(k − 1) possibilities for Jn with n ∈ T̃
(1)
m . By

Lemma 4.2 applied with β = 0, every Jn is a characteristic interval of at
most Fk points tm, and thus

(5.10) cardT (1)
m ≤ 2(k − 1)Fk + 1.

By Lemmata 3.7 and 3.6 respectively,

(5.11)

x̃�

0

|fn(t)|p dt . γpdn(x̃)‖fn‖pp and
�

V

|fn(t)|p′ dt . γp
′dn(V )‖fn‖p

′
p′
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for n ∈ T (1)
m . Furthermore, dn(x̃) + dn(V ) = m by definition of dn, the loca-

tion of Jn and the fact that n ∈ T (1)
m . So, using (5.9), (5.11) and Lemma 3.6,

we get

∑

n∈T (1)
m

Rpdn(V )|an|p
x̃�

0

|fn(t)|p dt

≤
∑

n∈T (1)
m

Rpdn(V )
�

V

|f(t)|p dt ·
( �

V

|fn(t)|p′ dt
)p−1 x̃�

0

|fn(t)|p dt

.
∑

n∈T (1)
m

Rpdn(V )γp(dn(x̃)+dn(V ))‖fn‖pp‖fn‖pp′
�

V

|f(t)|p dt

.
∑

n∈T (1)
m

(Rγ)pm
�

V

|f(t)|p dt.

Finally, we employ (5.10) to obtain

(5.12)
∑

n∈T (1)
m

Rpdn(V )|an|p
x̃�

0

|fn(t)|p dt . (Rγ)pm
�

V

|f(t)|p dt,

which concludes the proof of Case 1.

Case 2: n ∈ T (2)
m = {n ∈ Tm : x̃ ∈ Jn, |Jn∩[x̃, x]| ≥ |V |, Jn 6⊂ [x̃, x]}. In

this case we have dn(V ) = m, and thus Lemma 3.7 implies
�

V

|fn(t)|p′ dt ≤ ‖fn‖p
′

L∞(V )|V | . γp
′m|Jn|−p

′/2|V |.

We use (5.9) and this estimate to obtain

|an|p‖fn‖pp ≤
�

V

|f(t)|p dt ·
( �

V

|fn(t)|p′ dt
)p−1

‖fn‖pp

.
�

V

|f(t)|p dt · γpm|Jn|−p/2|V |p−1‖fn‖pp.

Lemma 3.6 further yields

|an|p‖fn‖pp . γpm|Jn|−p/2+1−p/2|V |p−1
�

V

|f(t)|p dt(5.13)

≤ γpm|Jn|1−p|V |p−1‖f‖pp.

If n0 < n1 < · · · < ns is an enumeration of all elements in T
(2)
m , by definition

of T
(2)
m we have

Jn0 ⊃ Jn1 ⊃ · · · ⊃ Jns and |Jns | ≥ |V |.
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Thus, Lemma 4.2 and the fact that 1 < p < 2 imply

(5.14)
∑

n∈T (2)
m

|Jn|1−p ∼p |Jns |1−p ≤ |V |1−p.

We finally use (5.13) and (5.14) to conclude that
∑

n∈T (2)
m

Rpdn(V )|an|p‖fn‖pp . (Rγ)pm|V |p−1‖f‖pp
∑

n∈T (2)
m

|Jn|1−p(5.15)

.p (Rγ)pm‖f‖pp.

Case 3: n ∈ T (3)
m = {n ∈ Tm : Jn ⊂ [0, x̃] or (x̃ ∈ Jn with |Jn ∩ [x̃, x]| ≤

|V | and Jn 6⊂ [x̃, x])}. For n ∈ T (3)
m , we denote by (xi)

m
i=1 the finite sequence

of points in Tn∩[x̃, x] in increasing order and counting multiplicities. If there

exists n ∈ T (3)
m such that x1 is the right endpoint of Jn and x̃ ∈ Jn, we define

x∗ := x1. If not, we set x∗ := x̃. By definition of T
(3)
m and x∗, we have

(5.16) |V | ≤ |[x∗, x]| ≤ 2|V |.

Furthermore, for all n ∈ T (3)
m ,

Jn ⊂ [0, x∗] and |[x∗, x] ∩ Tn| = m.

Moreover,

(5.17) m+ dn(x∗)− k ≤ dn(V ) ≤ m+ dn(x∗),

where the exact value of dn(V ) depends on the multiplicity of x∗ in Tn
(which cannot exceed k). By Lemma 3.7 and (5.17) we have

sup
t∈V
|fn(t)| . γm+dn(x∗) |Jn|1/2

|Jn|+ dist(x, Jn)
.

Hence

(5.18)
�

V

|fn(t)|p′ dt . |V | · γp′(m+dn(x∗)) |Jn|p′/2
(|Jn|+ dist(x, Jn))p′

.

Employing (5.9), (5.18) and Lemma 3.6 gives

Rpdn(V )|an|p‖fn‖pp ≤ Rpdn(V )
�

V

|f(t)|p dt ·
( �

V

|fn(t)|p′ dt
)p−1

‖fn‖pp

. Rpdn(V )‖f‖pp|V |p−1γp(m+dn(x∗)) |Jn|p/2
(|Jn|+ dist(x, Jn))p

‖fn‖pp

. Rpdn(V )‖f‖pp|V |p−1γp(m+dn(x∗)) |Jn|
(|Jn|+ dist(x, Jn))p

.
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Inequality (5.17) then yields

(5.19) Rpdn(V )|an|p‖fn‖pp ≤ (Rγ)p(m+dn(x∗))‖f‖pp|V |p−1
|Jn|

(|Jn|+dist(x, Jn))p
.

We now have to sum this inequality. In order to do this we split our
analysis depending on the value of dn(x∗). For fixed j ∈ N0 we consider

n ∈ T (3)
m with dn(x∗) = j. Let β = 1/4. Then, by Lemma 4.2, each point t

(which is not a grid point) belongs to at most Fk intervals Jβn with n ∈ T (3)
m

and dn(x∗) = j. Here Jβn is the unique closed interval with

|Jβn | = β|Jn| and inf Jβn = inf Jn.

Furthermore, for t ∈ Jn, we have

|Jn|+ dist(x, Jn) ≥ x− t.
Hence

∑

n∈T (3)
m

dn(x∗)=j

|Jn| |V |p−1
(|Jn|+ dist(x, Jn))p

≤ β−1
∑

n∈T (3)
m

dn(x∗)=j

�

Jβn

|V |p−1
(x− t)p dt

≤ Fk
β
|V |p−1

x∗�

−∞
(x− t)−p dt .p

|V |p−1
(x− x∗)p−1 ≤ 1,

where in the last step we used (5.16). Combining (5.19) and the last in-
equality and summing over j (here we use the fact that Rγ < 1), we arrive
at

(5.20)
∑

n∈T (3)
m

Rpdn(V )|an|p‖fn‖pp .p,R (Rγ)pm‖f‖pp.

Case 4: n ∈ T
(4)
m = {n ∈ Tm : x ∈ Jn, |Jn ∩ [x̃, x]| ≥ |V |, Jn 6⊂

[x̃, x]}. We can ignore the cases m = 0 and (m = 1 and [x̃, x] ∩ Tn = {x})
since these are settled in Case 2. We define T̃

(4)
m to be the set of all remaining

indices from T
(4)
m . Let n ∈ T̃ (4)

m . Then the definition of T
(4)
m implies

(5.21) dn(V ) = dn([x, y]) = 0.

Moreover, there exists at least one point of Tn in V (since n ≥ n(V ) for
n ∈ Tm) and at least one point of Tn in [x̃, x] (since m ≥ 1). Thus we have

(5.22) |V | ≤ |Jn| ≤ 3|V |.
Since x ∈ Jn for all n ∈ T̃

(4)
m , the family {Jn : n ∈ T̃

(4)
m } is a decreasing

collection of sets. Inequality (5.22) and a multiple application of Lemma 4.2
with sufficiently large β gives a constant ck depending only on k such that

(5.23) card T̃ (4)
m ≤ ck.
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We employ Lemmata 3.7 and 3.6 to get

(5.24)

x̃�

0

|fn(t)|p dt . γpm|J |p/2−p+1 = γpm|J |1−p/2 . γpm‖fn‖pp.

Hence

∑

n∈T̃ (4)
m

Rpdn(V )|an|p
x̃�

0

|fn(t)|p dt

.
∑

n∈T̃ (4)
m

�

V

|f(t)|p dt ·
( �

V

|fn(t)|p′ dt
)p−1 x̃�

0

|fn(t)|p dt

.
∑

n∈T̃ (4)
m

�

V

|f(t)|p dt · ‖fn‖pp′γpm‖fn‖pp ≤
∑

n∈T̃ (4)
m

γpm‖f‖pp,

where we used (5.21) and (5.9) in the first inequality, (5.24) in the second
and Lemma 3.6 in the last one. Consequently, considering (5.23), the last
display implies

(5.25)
∑

n∈T̃ (4)
m

Rpdn(V )|an|p
x̃�

0

|fn(t)|p dt . γpm‖f‖pp.

Case 5: n ∈ T (5)
m = {n ∈ Tm : Jn ⊂ [x, ỹ ] or (x ∈ Jn with |Jn ∩ [x̃, x]| ≤

|V | and Jn 6⊂ [x̃, x])}. If there exists n ∈ T (5)
m with xm = inf Jn, then we

define x′ = xm. If there exists no such index, we set x′ = x. We now fix

n ∈ T (5)
m . By definition of x′ and x̃,

(5.26) m+ dn(x′)− k ≤ dn(x̃) ≤ m+ dn(x′).

The exact relation between dn(x̃) and dn(x′) depends on the multiplicity of

the point x′ in the grid Tn. By definition of T
(5)
m ,

dist(x̃, Jn) ≤ 5|V | and |V | ≤ dist(x̃, Jn).

Moreover,

(5.27) |Jn| ≤ |[x′, ỹ ]| ≤ 4|V | and dn(V ) ≤ dn(x′).

The last two displays now imply

|Jn|+ dist(x̃, Jn) ∼ |V |.
Lemma 3.7, together with the former observation, yields

x̃�

0

|fn(t)|p dt . γpdn(x̃)
|Jn|p/2

(|Jn|+ dist(x̃, Jn))p−1
. γpdn(x̃)

|Jn|p/2
|V |p−1 .

CHAPTER 3. UNCONDITIONALITY OF ORTHOGONAL SPLINE SYSTEMS IN LP 53



Unconditionality of spline systems 75

Inserting (5.26) in this inequality, we get

(5.28)

x̃�

0

|fn(t)|p dt . γp(dn(x
′)+m) |Jn|p/2

|V |p−1 .

For each n ∈ T
(5)
m , we split [x′, ỹ ] into three disjoint subintervals I`,

1 ≤ ` ≤ 3, defined by

I1 := [x′, inf Jn], I2 := Jn, I3 := [supJn, ỹ ].

Correspondingly, we set

an,` :=
�

I`∩V
f(t)fn(t) dt, ` = 1, 2, 3.

We start by analyzing the choice ` = 2 and first observe that by definition
of I2,

(5.29) |an,2|p ≤ ‖fn‖pp′
�

Jn

|f(t)|p dt.

We split the index set T
(5)
m further and look at the set of those n ∈ T (5)

m such
that dn(x′) = j for fixed j ∈ N0. These indices n may be arranged in packets
such that the intervals Jn from one packet have the same left endpoint and
the maximal intervals of different packets are disjoint. Observe that the
intervals Jn from one packet form a decreasing collection of sets. Let Jn0

be the maximal interval of one packet. Define Ij := {n ∈ T (5)
m : dn(x′) = j,

Jn ⊂ Jn0}. Then we use (5.27) and (5.29) to estimate

E2,j :=
∑

n∈Ij
Rpdn(V )|an,2|p

x̃�

0

|fn(t)|p dt

≤
∑

n∈Ij
Rpj‖fn‖pp′

�

Jn

|f(t)|p dt ·
x̃�

0

|fn(t)|p dt.

Continuing, we use (5.28) to get

E2,j . Rpj
�

Jn0

|f(t)|p dt ·
∑

n∈Ij
‖fn‖pp′γp(dn(x

′)+m) |Jn|p/2
|V |p−1 .

By Lemma 3.6, ‖fn‖p′ ∼ |J |1/p
′−1/2, and thus

E2,j . (Rγ)pjγpm
�

Jn0

|f(t)|p dt ·
∑

n∈Ij

|Jn|p−1
|V |p−1 .
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We apply Lemma 4.2 to the above sum to conclude that

E2,j .p (Rγ)pjγpm
�

Jn0

|f(t)|p dt · |Jn0 |p−1
|V |p−1 . (Rγ)pjγpm

�

Jn0

|f(t)|p dt,

where in the last inequality we used (5.27). Now, summing over all maximal
intervals Jn0 and over j finally yields (note that Rγ < 1)

(5.30)
∑

n∈T (5)
m

Rpdn(V )|an,2|p
x̃�

0

|fn(t)|p dt .p,R γ
pm‖f‖pp.

This completes the proof of the case ` = 2.

Now consider ` = 3. Fix j ∈ N0 and let (nj,r)
∞
r=1 be the subsequence of

all n ∈ T (5)
m with dn(x′) = j. For two such indices n1 < n2 we have either

(inf Jn1 = inf Jn2 and Jn2 ⊂ Jn1) or supJn2 ≤ inf Jn1 .

Observe that Jn2 = Jn1 is possible, but by Lemma 4.2 (with β = 0) only Fk
times, with Fk only depending on k. Therefore, with βnj,r := sup Jnj,r for
r ≥ 1 and βnj,0 := ỹ,

dnj,s(βnj,r) ≥
s− r
Fk
− 1, s ≥ r ≥ 1.

Thus for s ≥ r ≥ 1 by Lemmata 3.7 and 3.6 we obtain

(5.31)

βnj,r−1�

βnj,r

|fnj,s(t)|p
′
dt . γp

′dnj,s (βnj,r )‖fnj,s‖p
′
p′ . γ

p′ s−r
Fk ‖fnj,s‖p

′
p′ ,

and similarly, using also (5.26),

(5.32)

x̃�

0

|fnj,s |p dt . γpdnj,s (x̃)‖fnj,s‖pp . γp(m+dnj,s (x
′))‖fnj,s‖pp.

Choosing κ := γ1/(2Fk) < 1, we deduce that

|anj,s,3|p =
∣∣∣

ỹ�

βnj,s

f(t)fnj,s(t) dt
∣∣∣
p

=
∣∣∣

s∑

r=1

κs−rκr−s
βnj,r−1�

βnj,r

f(t)fnj,s(t) dt
∣∣∣
p

≤
( s∑

r=1

κp
′(s−r)

)p/p′ s∑

r=1

κp(r−s)
∣∣∣
βnj,r−1�

βnj,r

f(t)fnj,s(t) dt
∣∣∣
p

.
s∑

r=1

κp(r−s)
βnj,r−1�

βnj,r

|f(t)|p dt ·
( βnj,r−1�

βnj,r

|fnj,s(t)|p
′
dt
)p/p′

.
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We now use inequality (5.31) to obtain

(5.33) |anj,s,3|p .
s∑

r=1

γ
p s−r
2Fk

βnj,r−1�

βnj,r

|f(t)|p dt · ‖fnj,s‖pp′ .

Combining (5.33) and (5.32) yields

E3,j :=
∑

n∈T (5)
m

dn(x′)=j

Rpdn(V )|an,3|p‖f‖pLp(0,x̃) =
∑

s≥1
Rpj |anj,s,3|p‖fnj,s‖pLp(0,x̃)

.
∑

s≥1
Rpj

s∑

r=1

γ
p s−r
2Fk ‖fnj,s‖pp′

βnj,r−1�

βnj,r

|f(t)|p dt · γp(m+j)‖fnj,s‖pp.

Using again Lemma 3.6 gives

E3,j . γpm(Rγ)pj
∑

r≥1

βnj,r−1�

βnj,r

|f(t)|p dt ·
∑

s≥r
γ
p s−r
2Fk . γpm(Rγ)pj‖f‖pp.

Summing over j finally yields

(5.34)
∑

n∈T (5)
m

Rpdn(V )|an,3|p‖f‖pLp(0,x̃) .p,R γ
pm‖f‖pp,

since Rγ < 1. This finishes the proof of the case ` = 3.

We now come to the final part, ` = 1. Fix j and n such that dn(x′) = j
and let L1,n, . . . , Lj,n be the grid intervals in the grid Tn between x′ and Jn,
from left to right. Observe that fn is a polynomial on each Li,n. We define

bi,n :=
�

Li,n

f(t)fn(t) dt, 1 ≤ i ≤ j.

For n with dn(x′) = j, we clearly have an,1 =
∑j

i=1 bi,n, and Hölder’s in-
equality implies

(5.35) |bi,n|p ≤
�

Li,n

|f(t)|p dt ·
( �

Li,n

|fn(t)|p′ dt
)p/p′

.

Remark 3.8 yields the bound

sup
t∈Li,n

|fn(t)| . γj−i
|Jn|1/2

|Jn|+ dist(Jn, Li,n) + |Li,n|
,

and inserting this in (5.35) gives

(5.36) |bi,n|p ≤
�

Li,n

|f(t)|p dt · γp(j−i) |Jn|p/2|Li,n|p−1
(|Jn|+ dist(Jn, Li,n) + |Li,n|)p

.
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Observe that we have the elementary inequality

(5.37)
|Jn|p/2|Li,n|p−1

(|Jn|+ dist(Jn, Li,n) + |Li,n|)p
|Jn|p/2
|V |p−1

≤ |Jn|
|V |p−1 (|Jn|+ dist(Jn, Li,n) + |Li,n|)p−2.

Combining (5.36), (5.37) and (5.28) allows us to estimate (recall that we
have assumed that dn(x′) = j)

(5.38) Rpdn(V )|bi,n|p ·
x̃�

0

|fn(t)|p dt

. Rpjγp(j−i)
�

Li,n

|f(t)|p dt · |Jn|p/2|Li,n|p−1
(|Jn|+ dist(Jn, Li,n) + |Li,n|)p

· γp(j+m) |Jn|p/2
|V |p−1

. Rpjγp(2j+m−i)
|Jn|
|V |p−1 (|Jn|+ dist(Jn, Li,n) + |Li,n|)p−2

�

Li,n

|f(t)|p dt.

For fixed j and i we consider those indices n such that dn(x′) = j, and
the corresponding intervals Li,n. These intervals can be collected in packets
such that all intervals from one packet have the same left endpoint and
the maximal intervals of different packets are disjoint. For β = 1/4, we
denote by Jβn the unique interval that has the same right endpoint as Jn
and length β|Jn|. The intervals Jn corresponding to Li,n’s from one packet
can now be grouped in the same way as the Li,n’s, and thus Lemma 4.2
implies the existence of a constant Fk depending only on k such that every
point t ∈ [0, 1] belongs to at most Fk intervals Jβn corresponding to the
intervals Li,n from one packet.

We now consider one such packet and denote by u∗ the left endpoint of
(all) intervals Li,n in the packet. Then for t ∈ Jβn we have

(5.39) |Jn|+ dist(Li,n, Jn) + |Li,n| ≥ |t− u∗|.
If L∗i is the maximal interval of the packet, (5.38) and (5.39) yield

∑

n:Li,n in one packet

Rpdn(V )|bi,n|p‖fn‖pLp(0,x̃)

. Rpjγp(2j+m−i)

|V |p−1
∑

n

|Jn|(|Jn|+ dist(Li,n, Jn) + |Li,n|)p−2
�

Li,n

|f(t)|p dt

. Rpjγp(2j+m−i)

|V |p−1
�

L∗i

|f(t)|p dt ·
∑

n

�

Jβn

|t− u∗|p−2 dt.
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Since every point t belongs to at most Fk intervals Jβn in one packet of Li,n’s,
by using Jn ⊂ [x′, ỹ ] and p < 2 we get

∑

n:Li,n in one packet

Rpdn(V )|bi,n|p‖fn‖pLp(0,x̃)

. Rpjγp(2j+m−i)

|V |p−1
�

L∗i

|f(t)|p dt ·
ỹ�

u∗
|t− u∗|p−2 dt

. Rpjγp(2j+m−i)
�

L∗i

|f(t)|p dt,

where in the last inequality we used (5.27). Since the maximal intervals L∗i
of different packets are disjoint, we can sum over all packets (for fixed j
and i) to obtain

(5.40)
∑

n∈T (5)
m

dn(x′)=j

Rpdn(V )|bi,n|p‖fn‖pLp(0,x̃) . Rpjγp(2j+m−i)‖f‖pp.

Let κ := γ1/2 < 1. Then for n such that dn(x′) = j we have

(5.41) |an,1|p =
∣∣∣
j∑

i=1

bi,n

∣∣∣
p

=
∣∣∣
j∑

i=1

κj−iκi−jbi,n
∣∣∣
p
.p

j∑

i=1

κp(i−j)|bi,n|p.

Combining (5.41) with (5.40) we get
∑

n∈T (5)
m

dn(x′)=j

Rpdn(V )|a1,n|p‖fn‖pLp(0,x̃)

.p

j∑

i=1

κp(i−j)
∑

n∈T (5)
m

dn(x′)=j

Rpdn(V )|bi,n|p‖fn‖pLp(0,x̃)

.
j∑

i=1

κp(i−j)Rpjγp(2j+m−i)‖f‖pp . (Rγ)pjγpm‖f‖pp.

Since Rγ < 1, we sum over j to conclude that finally

(5.42)
∑

n∈T (5)
m

Rpdn(V )|an,1|p‖fn‖pLp(0,x̃) .p,R γ
pm‖f‖pp.

This finishes the proof of the case ` = 1.
We can now combine the inequalities for ` = 1, 2, 3, that is, (5.42), (5.30)

and (5.34), to complete the analysis of Case 5 with the estimate

(5.43)
∑

n∈T (5)
m

Rpdn(V )|an|p‖fn‖pLp(0,x̃) .p,R γ
pm‖f‖pp.
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Case 6: n ∈ T
(6)
m = {n ∈ Tm : Jn ⊂ [ỹ, 1] or (ỹ ∈ Jn with Jn 6⊂

[x, ỹ ])}. Similarly to (5.8), we use the symmetric splitting of the indices n
into

Tr,s := {n ≥ n(V ) : |[y, ỹ ] ∩ Tn| = s},
where r stands for “right”. These collections are again split into six subcol-

lections T
(i)
r,s , 1 ≤ i ≤ 6, where the two of interest are

T (2)
r,s = {n ∈ Tr,s : ỹ ∈ Jn, |Jn ∩ [y, ỹ ]| ≥ |V |, Jn 6⊂ [y, ỹ ]},
T (3)
r,s =

{
n ∈ Tr,s : Jn ⊂ [ỹ, 1] or

(ỹ ∈ Jn with |Jn ∩ [y, ỹ ]| ≤ |V | and Jn 6⊂ [y, ỹ ])
}
.

The results (5.15) and (5.20) for T
(2)
m and T

(3)
m respectively had the form

∑

n∈T (2)
m ∪T (3)

m

Rpdn(V )|an|p‖fn‖pp .p,R (Rγ)pm‖f‖pp.

Observe that the p-norm of fn on the left hand side is over the whole interval

[0, 1]. The same argument as for T
(2)
m and T

(3)
m yields

(5.44)
∑

n∈T (2)
r,s ∪T (3)

r,s

Rpdn(V )|an|p‖fn‖pp .p,R (Rγ)ps‖f‖pp.

Now, since ⋃

m≥0
T (6)
m ⊂

⋃

s≥0
T (2)
r,s ∪ T (3)

r,s ,

inequality (5.44) implies

(5.45)

∞∑

m=0

∑

n∈T (6)
m

Rpdn(V )|an|p‖fn‖pp

≤
∞∑

s=0

∑

n∈T (2)
r,s ∪T (3)

r,s

Rpdn(V )|an|p‖fn‖pp .p,R ‖f‖pp.

After summing (5.12), (5.15), (5.20), (5.25) and (5.43) over m, we add in-
equality (5.45) to obtain finally

∑

n≥n(V )

Rpdn(V )|an|p‖fn‖pLp(0,x̃) .p,R ‖f‖pp.

The symmetric inequality
∑

n≥n(V )

Rpdn(V )|an|p‖fn‖pLp(ỹ,1) .p,R ‖f‖pp

is proved analogously, and thus the proof of the lemma is complete.
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6. Proof of the main theorem. In this section, we prove our main
result, Theorem 1.1, that is, unconditionality of orthonormal spline sys-
tems corresponding to an arbitrary admissible point sequence (tn)n≥0 in
reflexive Lp.

Proof of Theorem 1.1. We recall the notation

Sf(t) =
( ∞∑

n=−k+2

|anfn(t)|2
)1/2

, Mf(t) = sup
m≥−k+2

∣∣∣
m∑

n=−k+2

anfn(t)
∣∣∣

when

f =
∞∑

n=−k+2

anfn.

Since (fn)∞n=−k+2 is a basis in Lp[0, 1], 1 ≤ p < ∞, Khintchine’s inequality
implies that a necessary and sufficient condition for (fn)∞n=−k+2 to be an
unconditional basis in Lp[0, 1] for 1 < p <∞ is

(6.1) ‖Sf‖p ∼p ‖f‖p, f ∈ Lp[0, 1].

We will prove (6.1) for 1 < p < 2 since the case p > 2 then follows by a
duality argument.

We first prove the inequality

(6.2) ‖f‖p .p ‖Sf‖p.
Let f ∈ Lp[0, 1] with f =

∑∞
n=−k+2 anfn. We may assume that the sequence

(an)n≥−k+2 has only finitely many nonzero entries. We will prove (6.2) by
showing that ‖Mf‖p .p ‖Sf‖p.

We first observe that

(6.3) ‖Mf‖pp = p

∞�

0

λp−1ψ(λ) dλ

with ψ(λ) := [Mf > λ]. We will decompose f into two parts ϕ1, ϕ2 and esti-
mate the distribution functions ψi(λ) := [Mϕi > λ/2], i ∈ {1, 2}, separately.
To define ϕi, for λ > 0 we set

Eλ := [Sf > λ], Bλ := [M1Eλ > 1/2],

Γ := {n : Jn ⊂ Bλ,−k + 2 ≤ n <∞}, Λ := Γ c;

recall that Jn is the characteristic interval corresponding to the grid point
tn and the function fn. Then, let

ϕ1 :=
∑

n∈Γ
anfn and ϕ2 :=

∑

n∈Λ
anfn.

Now we estimate ψ1 = [Mϕ1 > λ/2]:
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ψ1(λ) = |{t ∈ Bλ : Mϕ1(t) > λ/2}|+ |{t /∈ Bλ : Mϕ1(t) > λ/2}|

≤ |Bλ|+
2

λ

�

Bcλ

Mϕ1(t) dt ≤ |Bλ|+
2

λ

�

Bcλ

∑

n∈Γ
|anfn(t)| dt.

We decompose Bλ into a disjoint collection of open subintervals of [0, 1] and
apply Lemma 5.1 to each of those intervals to deduce that

ψ1(λ) . |Bλ|+
1

λ

�

Bλ

Sf(t) dt = |Bλ|+
1

λ

�

Bλ\Eλ
Sf(t) dt+

1

λ

�

Eλ∩Bλ
Sf(t) dt

≤ |Bλ|+ |Bλ \ Eλ|+
1

λ

�

Eλ

Sf(t) dt,

where in the last inequality we simply used the definition of Eλ. Since the
Hardy–Littlewood maximal function operator M is of weak type (1, 1), we
have |Bλ| . |Eλ|, and thus finally

(6.4) ψ1(λ) . |Eλ|+
1

λ

�

Eλ

Sf(t) dt.

We now estimate ψ2(λ). From Theorem 2.8 and the fact thatM is a bounded
operator on L2[0, 1] we obtain

ψ2(λ) . 1

λ2
‖Mϕ2‖22 .

1

λ2
‖ϕ2‖22 =

1

λ2
‖Sϕ2‖22

=
1

λ2

( �

Eλ

Sϕ2(t)
2 dt+

�

Ecλ

Sϕ2(t)
2 dt
)
.

We apply Lemma 5.3 to the first summand to get

(6.5) ψ2(λ) . 1

λ2

�

Ecλ

Sϕ2(t)
2 dt.

Thus, combining (6.4) and (6.5) gives

ψ(λ) ≤ ψ1(λ) + ψ2(λ) . |Eλ|+
1

λ

�

Eλ

Sf(t) dt+
1

λ2

�

Ecλ

Sf(t)2 dt.

Inserting this into (6.3), we obtain

‖Mf‖pp . p

∞�

0

λp−1|Eλ| dλ+ p

∞�

0

λp−2
�

Eλ

Sf(t) dt dλ

+ p

∞�

0

λp−3
�

Ecλ

Sf(t)2 dt dλ

= ‖Sf‖pp + p

1�

0

Sf(t)

Sf(t)�

0

λp−2 dλ dt+ p

1�

0

Sf(t)2
∞�

Sf(t)

λp−3 dλ dt,
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and thus, since 1 < p < 2,

‖Mf‖p .p ‖Sf‖p.
So, the inequality ‖f‖p .p ‖Sf‖p is proved.

We now turn to the proof of

(6.6) ‖Sf‖p .p ‖f‖p, 1 < p < 2.

It is enough to show that S is of weak type (p, p) whenever 1 < p < 2. This is
because S is (clearly) also of strong type 2 and we can use the Marcinkiewicz
interpolation theorem to obtain (6.6). Thus we have to show

(6.7) |[Sf > λ]| .p ‖f‖pp/λp, f ∈ Lp[0, 1], λ > 0.

We fix f and λ > 0, define Gλ := [Mf > λ] and observe that

(6.8) |Gλ| .p ‖f‖pp/λp,
sinceM is of weak type (p, p), and, by the Lebesgue differentiation theorem,

(6.9) |f | ≤ λ a.e. on Gcλ.

We decompose the open set Gλ ⊂ [0, 1] into a collection (Vj)
∞
j=1 of disjoint

open subintervals of [0, 1] and split f into

h := f · 1Gcλ +

∞∑

j=1

TVjf, g := f − h,

where for fixed index j, TVjf is the projection of f · 1Vj onto the space of
polynomials of order k on the interval Vj .

We treat the functions h, g separately. The definition of h implies

‖h‖22 =
�

Gcλ

|f(t)|2 dt+

∞∑

j=1

�

Vj

(TVjf)(t)2 dt,

since the intervals Vj are disjoint. We apply (6.9) to the first summand and
(2.1) to the second to obtain

‖h‖22 . λ2−p
�

Gcλ

|f(t)|p dt+ λ2|Gλ|,

and thus, in view of (6.8),

‖h‖22 .p λ
2−p‖f‖pp.

Hence

|[Sh > λ/2]| ≤ 4

λ2
‖Sh‖22 =

4

λ2
‖h‖22 .p

‖f‖pp
λp

,

which concludes the proof of (6.7) for h.
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We turn to the proof of (6.7) for g. Since p < 2, we have

(6.10) Sg(t)p =
( ∞∑

n=−k+2

|〈g, fn〉|2fn(t)2
)p/2

≤
∞∑

n=−k+2

|〈g, fn〉|p|fn(t)|p.

For each j, we define Ṽj to be the open interval with the same center as Vj
but with 5 times its length. Then set G̃λ :=

⋃∞
j=1 Ṽj ∩ [0, 1] and observe that

|G̃λ| ≤ 5|Gλ|. We get

|[Sg > λ/2]| ≤ |G̃λ|+
2p

λp

�

G̃cλ

Sg(t)p dt.

By (6.8) and (6.10), this becomes

|[Sg > λ/2]| .p λ
−p
(
‖f‖pp +

∞∑

n=−k+2

�

G̃cλ

|〈g, fn〉|p|fn(t)|p dt
)
.

But by definition of g and (2.2),

‖g‖pp =
∑

j

�

Vj

|f(t)− TVjf(t)|p dt .p

∑

j

�

Vj

|f(t)|p dt . ‖f‖pp,

so to prove |[Sg > λ/2]| ≤ λ−p‖f‖pp, it is enough to show that

(6.11)

∞∑

n=−k+2

�

G̃cλ

|〈g, fn〉|p|fn(t)|p dt . ‖g‖pp.

We let gj := g · 1Vj . The supports of gj are disjoint and we have ‖g‖pp =∑∞
j=1 ‖gj‖

p
p. Furthermore g =

∑∞
j=1 gj with convergence in Lp. Thus for

each n,

〈g, fn〉 =
∞∑

j=1

〈gj , fn〉,

and it follows from the definition of gj that
�

Vj

gj(t)p(t) dt = 0

for each polynomial p on Vj of order k. This implies that 〈gj , fn〉 = 0 for
n < n(Vj), where

n(V ) := min{n : Tn ∩ V 6= ∅}.
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Thus, for all R > 1 and every n,

(6.12) |〈g, fn〉|p =
∣∣∣

∑

j:n≥n(Vj)
〈gj , fn〉

∣∣∣
p

≤
( ∑

j:n≥n(Vj)
Rdn(Vj)|〈gj , fn〉|R−dn(Vj)

)p

≤
( ∑

j:n≥n(Vj)
Rpdn(Vj)|〈gj , fn〉|p

)( ∑

j:n≥n(Vj)
R−p

′dn(Vj)
)p/p′

,

where p′ = p/(p − 1). If we fix n ≥ n(Vj), there is at least one point of the
partition Tn contained in Vj . This implies that for each fixed s ≥ 0, there
are at most two indices j such that n ≥ n(Vj) and dn(Vj) = s. Therefore,

( ∑

j:n≥n(Vj)
R−p

′dn(Vj)
)p/p′

.p 1,

and from (6.12) we obtain

|〈g, fn〉|p .p

∑

j:n≥n(Vj)
Rpdn(Vj)|〈gj , fn〉|p.

Now we insert this inequality in (6.11) to get

∞∑

n=−k+2

�

G̃cλ

|〈g, fn〉|p|fn(t)|p dt

.p

∞∑

n=−k+2

∑

j:n≥n(Vj)
Rpdn(Vj)|〈gj , fn〉|p

�

G̃cλ

|fn(t)|p dt

≤
∞∑

n=−k+2

∑

j:n≥n(Vj)
Rpdn(Vj)|〈gj , fn〉|p

�

Ṽ cj

|fn(t)|p dt

≤
∞∑

j=1

∑

n≥n(Vj)
Rpdn(Vj)|〈gj , fn〉|p

�

Ṽ cj

|fn(t)|p dt.

We choose R > 1 such that Rγ < 1 for γ < 1 from Theorem 2.7 and apply
Lemma 5.4 to obtain

∞∑

n=−k+2

�

G̃cλ

|〈g, fn〉|p|fn(t)|p dt .p

∞∑

j=1

‖gj‖pp = ‖g‖pp,

proving (6.11) and hence ‖Sf‖pp .p ‖f‖pp. Thus the proof of Theorem 1.1 is
complete.
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Unconditionality of orthogonal spline systems in H1

by

Gegham Gevorkyan (Yerevan), Anna Kamont (Gdańsk),
Karen Keryan (Yerevan) and Markus Passenbrunner (Linz)

Abstract. We give a simple geometric characterization of knot sequences for which
the corresponding orthonormal spline system of arbitrary order k is an unconditional basis
in the atomic Hardy space H1[0, 1].

1. Introduction. This paper belongs to a series of papers studying
properties of orthonormal spline systems with arbitrary knots. The detailed
study of such systems started in the 1960’s with Z. Ciesielski’s papers [2, 3]
on properties of the Franklin system, which is an orthonormal system con-
sisting of continuous piecewise linear functions with dyadic knots. Next,
the 1972 results by J. Domsta [11] made it possible to extend the study to
orthonormal spline systems of higher order—and higher smoothness—with
dyadic knots. These systems occurred to be bases or unconditional bases in
several function spaces like Lp[0, 1], 1 ≤ p <∞, C[0, 1], Hp[0, 1], 0 < p ≤ 1,
Sobolev spaces W p,k[0, 1]; they also give characterizations of BMO and VMO
spaces, and various spaces of smooth functions (Hölder functions, Zygmund
class, Besov spaces). One should mention here the work of Z. Ciesielski,
J. Domsta, S. V. Bochkarev, P. Wojtaszczyk, S.-Y. A. Chang, P. Sjölin,
J.-O. Strömberg (for more detailed references see e.g. [13], [15], [16]). Nowa-
days, results of this kind are known for wavelets.

The extension of these results to orthonormal spline systems with ar-
bitrary knots began with the case of piecewise linear systems, i.e. general
Franklin systems, or orthonormal spline systems of order 2. This was pos-
sible due to precise estimates of the inverse of the Gram matrix of piecewise
linear B-spline bases with arbitrary knots, as presented in [19]. First results
in this direction were obtained in [5] and [13]. We would like to mention
here two results by G. G. Gevorkyan and A. Kamont. First, each general
Franklin system is an unconditional basis in Lp[0, 1] for 1 < p <∞ (see [14]).
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Second, there is a simple geometric characterization of knot sequences for
which the corresponding general Franklin system is a basis or an uncon-
ditional basis in H1[0, 1] (see [15]). For both of these results, an essential
tool is the association of a so called characteristic interval to each general
Franklin function fn.

The case of splines of higher order is much more difficult. The exis-

tence of a uniform bound for L∞-norms of orthogonal projections on spline

spaces of order k with arbitrary order (i.e. a bound depending on k, but

independent of the sequence of knots)—was a long-standing problem known

as C. de Boor’s conjecture (1973) (cf. [8]). The case of k = 2 was settled

earlier by Z. Ciesielski [2], the cases k = 3, 4 were solved by C. de Boor him-

self (1968, 1981) in [7, 9], but the positive answer in the general case was

given by A. Yu. Shadrin [22] only in 2001. A much simplified and shorter

proof was recently obtained by M. v. Golitschek (2014) in [24]. An imme-

diate consequence of A.Yu. Shadrin’s result is that if a sequence of knots is

dense in [0, 1], then the corresponding orthonormal spline system of order

k is a basis in Lp[0, 1], 1 ≤ p < ∞, and in C[0, 1]. Moreover, Z. Ciesielski

[4] obtained several consequences of Shadrin’s result, one of them being

an estimate for the inverse of the B-spline Gram matrix. Using this esti-

mate, G. G. Gevorkyan and A. Kamont [16] extended a part of their result

from [15] to orthonormal spline systems of arbitrary order and obtained a

characterization of knot sequences for which the corresponding orthonormal

spline system of order k is a basis in H1[0, 1]. Further extension required

more precise estimates for the inverse of B-spline Gram matrices, of the

type known for the piecewise linear case. Such estimates were obtained re-

cently by M. Passenbrunner and A. Yu. Shadrin [21]. Using these estimates,

M. Passenbrunner [20] proved that for each sequence of knots, the corre-

sponding orthonormal spline system of order k is an unconditional basis in

Lp[0, 1], 1 < p <∞.

The main result of the present paper is a characterization of those knot

sequences for which the corresponding orthonormal spline system of order k

is an unconditional basis in H1[0, 1].

The paper is organized as follows. In Section 2 we give the necessary

definitions and we formulate the main result of this paper, Theorem 2.4.

In Sections 3 and 4 we recall or prove several facts needed to establish our

results. In particular, in Section 4 we recall precise pointwise estimates for

orthonormal spline systems with arbitrary knots, the associated characteris-

tic intervals and some combinatorial facts for characteristic intervals. Then

Section 5 contains some auxiliary results, and the proof of Theorem 2.4 is

given in Section 6.
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The results contained in this paper were obtained independently by two
teams, G. Gevorkyan & K. Keryan and A. Kamont & M. Passenbrunner at
the same time, so we have decided to produce a joint paper.

2. Definitions and the main result. Let k ≥ 2 be an integer. In
this work, we are concerned with orthonormal spline systems of order k
with arbitrary partitions. We let T = (tn)∞n=2 be a dense sequence of
points in the open unit interval (0, 1) such that each point occurs at most
k times. Moreover, define t0 := 0 and t1 := 1. Such point sequences are

called k-admissible. For −k + 2 ≤ n ≤ 1, let S(k)n be the space of polyno-
mials of order n + k − 1 (or degree n + k − 2) on the interval [0, 1] and

(f
(k)
n )1n=−k+2 be the collection of orthonormal polynomials in L2 ≡ L2[0, 1]

such that the degree of f
(k)
n is n + k − 2. For n ≥ 2, let Tn be the ordered

sequence of points consisting of the grid points (tj)
n
j=0 repeated according

to their multiplicities and where the knots 0 and 1 have multiplicity k,
i.e.,

Tn = (0 = τn,1 = · · · = τn,k < τn,k+1

≤ · · · ≤ τn,n+k−1 < τn,n+k = · · · = τn,n+2k−1 = 1).

In that case, we also define S(k)n to be the space of polynomial splines of or-

der k with grid points Tn. For each n ≥ 2, the space S(k)n−1 has codimension 1

in S(k)n , and therefore there exists f
(k)
n ∈ S(k)n orthonormal to S(k)n−1. Observe

that f
(k)
n is unique up to sign.

Definition 2.1. The system of functions (f
(k)
n )∞n=−k+2 is called the or-

thonormal spline system of order k corresponding to the sequence (tn)∞n=0.

We will frequently omit the parameter k and write fn and Sn instead of

f
(k)
n and S(k)n , respectively.

Note that the case k = 2 corresponds to orthonormal systems of piecewise
linear functions, i.e. general Franklin systems.

We are interested in characterizing sequences T of knots such that the

system (f
(k)
n )∞n=−k+2 is an unconditional basis in H1 = H1[0, 1]. By H1 =

H1[0, 1] we mean the atomic Hardy space on [0, 1] (see [6]). A function
a : [0, 1]→ R is called an atom if either a ≡ 1 or there exists an interval Γ
such that:

(i) supp a ⊂ Γ ,
(ii) ‖a‖∞ ≤ |Γ |−1,

(iii)
	1
0 a(x) dx =

	
Γ a(x) dx = 0.
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Then, by definition, H1 consists of all functions f with a representation

f =

∞∑

n=1

cnan

for some atoms (an)∞n=1 and real scalars (cn)∞n=1 such that
∑∞

n=1 |cn| < ∞.
The space H1 becomes a Banach space under the norm

‖f‖H1 := inf

∞∑

n=1

|cn|,

where the inf is taken over all atomic representations
∑
cnan of f .

To formulate our result, we need to introduce some regularity conditions
for a sequence T .

For n ≥ 2, ` ≤ k and k − `+ 1 ≤ i ≤ n+ k − 1, we define D
(`)
n,i to be the

interval [τn,i, τn,i+`].

Definition 2.2. Let ` ≤ k and (tn)∞n=0 be an `-admissible (and therefore
k-admissible) point sequence. This sequence is called `-regular with param-
eter γ ≥ 1 if

|D(`)
n,i|
γ
≤ |D(`)

n,i+1| ≤ γ|D
(`)
n,i|, n ≥ 2, k − `+ 1 ≤ i ≤ n+ k − 2.

In other words, (tn) is `-regular if there is a uniform finite bound γ ≥ 1
such that for all n, the ratios of the lengths of neighboring supports of
B-spline functions (cf. Section 3.2) of order ` in the grid Tn are bounded
by γ.

The following characterization for (f
(k)
n ) to be a basis in H1 is the main

result of [16]:

Theorem 2.3 ([16]). Let k ≥ 1 and let (tn) be a k-admissible sequence

of knots in [0, 1] with the corresponding orthonormal spline system (f
(k)
n ) of

order k. Then (f
(k)
n ) is a basis in H1 if and only if (tn) is k-regular with

some parameter γ ≥ 1,

In this paper, we prove a characterization for (f
(k)
n ) to be an uncondi-

tional basis in H1. The main result of our paper is the following:

Theorem 2.4. Let (tn) be a k-admissible sequence of points. Then the

corresponding orthonormal spline system (f
(k)
n ) is an unconditional basis in

H1 if and only if (tn) is (k − 1)-regular with some parameter γ ≥ 1.

Let us note that in case k = 2, i.e. for general Franklin systems, both The-
orems 2.3 and 2.4 were obtained by G. G. Gevorkyan and A. Kamont [15].
(In the terminology of the current paper, strong regularity from [15] is
1-regularity, and strong regularity for pairs from [15] is 2-regularity.)
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The proof of Theorem 2.4 follows the same general scheme as the proof
of Theorem 2.2 in [15]. In Section 5 we introduce four conditions (A)–(D) for
series with respect to orthonormal spline systems of order k corresponding
to a k-admissible sequence of points. Then we study relations between these
conditions under various regularity assumptions on the underlying sequence
of points. Finally, we prove Theorem 2.4 in Section 6.

3. Preliminaries. The parameter k ≥ 2 will always be used for the
order of the underlying polynomials or splines. We use the notation A(t) ∼
B(t) to indicate the existence of two constants c1, c2 > 0 such that c1B(t) ≤
A(t) ≤ c2B(t) for all t, where t denotes all implicit and explicit dependencies
that the expressions A and B might have. If the constants c1, c2 depend on
an additional parameter p, we write A(t) ∼p B(t). Correspondingly, we use
the symbols .,&,.p,&p. For a subset E of the real line, we denote by
|E| its Lebesgue measure and by 1E the characteristic function of E. If
f : Ω → R is a real valued function and λ is a real parameter, we write
[f > λ] := {ω ∈ Ω : f(ω) > λ}.

3.1. Properties of regular sequences of points. The following lem-
ma describes geometric decay of intervals in regular sequences (recall the

notation D
(`)
n,i = [τn,i, τn,i+`]):

Lemma 3.1. Let (tn) be a k-admissible sequence of points that is `-regular

for some 1 ≤ ` ≤ k with parameter γ and let D
(`)
n1,i1

⊃ · · · ⊃ D
(`)
n2`,i2`

be a
strictly decreasing sequence of sets defined above. Then

|D(`)
n2`,i2`

| ≤ γ`

1 + γ`
|D(`)

n1,i1
|.

Proof. We set Vj := D
(`)
nj ,ij

for 1 ≤ j ≤ 2`. Then, by definition, V1
contains `+ 1 grid points from Tn1 and at least 3` grid points of Tn2`

. As a

consequence, there exists an interval D
(`)
n2`,m for some m that satisfies

int(D(`)
n2`,m

∩ V2`) = ∅, D(`)
n2`,m

⊂ V1, dist(D(`)
n2`,m

, V2`) = 0.

The `-regularity of (tn) now implies

|V2`| ≤ γ`|D(`)
n2`,m

| ≤ γ`(|V1| − |V2`|),

i.e., |V2`| ≤ γ`

1+γ`
|V1|, which proves the assertion of the lemma.

3.2. Properties of B-spline functions. We define (N
(k)
n,i )n+k−1i=1 to be

the collection of B-spline functions of order k corresponding to the parti-
tion Tn. Those functions are normalized so that they form a partition of

unity, i.e.,
∑n+k−1

i=1 N
(k)
n,i (x) = 1 for all x ∈ [0, 1]. Associated to this basis,
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there exists a biorthogonal basis of Sn, denoted by (N
(k)∗
n,i )n+k−1i=1 . If the pa-

rameters k and n are clear from the context, we also denote those functions
by (Ni)

n+k−1
i=1 and (N∗i )n+k−1i=1 , respectively.

We will need the following well known formula for the derivative of a

linear combination of B-spline functions: if g =
∑n+k−1

j=1 ajN
(k)
n,j , then

(3.1) g′ = (k − 1)
n+k−1∑

j=2

(aj − aj−1)
N

(k−1)
n,j

|D(k−1)
n,j |

.

We now recall an elementary property of polynomials.

Proposition 3.2. Let 0 < ρ < 1. Let I be an interval and A ⊂ I be a
subset of I with |A| ≥ ρ|I|. Then, for every polynomial Q of order k on I,

max
t∈I
|Q(t)| .ρ,k sup

t∈A
|Q(t)| and

�

I

|Q(t)| dt .ρ,k

�

A

|Q(t)| dt.

We recall a few important results on B-splines (Ni) and their dual func-
tions (N∗i ).

Proposition 3.3. Let 1≤p≤∞ and g=
∑n+k−1

j=1 ajNj, where (Ni)
n+k−1
i=1

are the B-splines of order k corresponding to the partition Tn. Then

(3.2) |aj | .k |Jj |−1/p‖g‖Lp(Jj), 1 ≤ j ≤ n+ k − 1,

where Jj is a subinterval [τn,i, τn,i+1] of [τn,j , τn,j+k] of maximal length. Fur-
thermore,

(3.3) ‖g‖p ∼k
( n+k−1∑

j=1

|aj |p|D(k)
n,j |
)1/p

= ‖(aj |D(k)
n,j |1/p)n+k−1j=1 ‖`p .

Moreover, if h =
∑n+k−1

j=1 bjN
∗
j , then

(3.4) ‖h‖p .k

( n+k−1∑

j=1

|bj |p|D(k)
n,j |1−p

)1/p
= ‖(bj |D(k)

n,j |1/p−1)n+k−1j=1 ‖`p .

The inequalites (3.2) and (3.3) are Lemmas 4.1 and 4.2 in [10, Chapter 5],
respectively. Inequality (3.4) is a consequence of Shadrin’s theorem [22] that

the orthogonal projection onto S(k)n is bounded on L∞ independently of n
and Tn. For a deduction of (3.4) from this result, see [4, Property P.7].

We next consider estimates for the inverse (bij)
n+k−1
i,j=1 of the Gram matrix

(〈Ni, Nj〉)n+k−1i,j=1 . Later, we will need a special property of this matrix, of

being checkerboard, i.e.,

(3.5) (−1)i+jbij ≥ 0 for all i, j.
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This is a simple consequence of the total positivity of the Gram matrix (cf.
[7, 18]). Moreover, we need the lower estimate for bi,i,

(3.6) |D(k)
n,i |−1 .k bi,i.

This is a consequence of the total positivity of the B-spline Gram matrix,
the L2-stability of B-splines and the following lemma:

Lemma 3.4 ([20]). Let C = (cij)
n
i,j=1 be a symmetric positive definite

matrix. Then for (dij)
n
i,j=1 = C−1 we have

c−1ii ≤ dii, 1 ≤ i ≤ n.
3.3. Some results for orthonormal spline systems. We now recall

two results concerning orthonormal spline series.

Theorem 3.5 ([21]). Let (fn)∞n=−k+2 be the orthonormal spline system
of order k corresponding to an arbitrary k-admissible point sequence (tn)∞n=0.
Then, for every f ∈ L1 ≡ L1[0, 1], the series

∑∞
n=−k+2〈f, fn〉fn converges

to f almost everywhere.

Let f ∈ Lp ≡ Lp[0, 1] for some 1 ≤ p <∞. Since the orthonormal spline
system (fn)n≥−k+2 is a basis in Lp, we can write f =

∑∞
n=−k+2 anfn. Based

on this expansion, we define the square function Pf :=(
∑∞

n=−k+2 |anfn|2)1/2
and the maximal function Sf := supm |

∑
n≤m anfn|. Moreover, given a

measurable function g, we denote by Mg the Hardy–Littlewood maximal
function of g defined as

Mg(x) := sup
I3x
|I|−1

�

I

|g(t)| dt,

where the supremum is taken over all intervals I containing x. The connec-
tion between the maximal function Sf and the Hardy–Littlewood maximal
function is given by the following result:

Theorem 3.6 ([21]). If f ∈ L1, then

Sf(t) .kMf(t), t ∈ [0, 1].

4. Properties of orthogonal spline functions and characteristic
intervals

4.1. Estimates for fn. This section concerns the calculation and esti-

mation of one explicit orthonormal spline function f
(k)
n for fixed k ∈ N and

n ≥ 2 induced by a k-admissible sequence (tn)∞n=0. Most of the results are
taken from [20].

Here, we change our notation slightly. We fix n and let i0 with k + 1 ≤
i0 ≤ n+k−1 be such that Tn−1 equals Tn with the point τi0 removed. In the
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points of the partition Tn, we omit the parameter n, and thus Tn is given by

Tn = (0 = τ1 = · · · = τk < τk+1 ≤ · · · ≤ τi0
≤ · · · ≤ τn+k−1 < τn+k = · · · = τn+2k−1 = 1).

We denote by (Ni : 1 ≤ i ≤ n+ k− 1) the B-spline functions corresponding
to Tn.

An (unnormalized) orthogonal spline function g ∈ S(k)n that is orthogonal

to S(k)n−1, as calculated in [20], is given by

(4.1) g =

i0∑

j=i0−k
αjN

∗
j =

i0∑

j=i0−k

n+k−1∑

`=1

αjbj`N`,

where (bj`)
n+k−1
j,`=1 is the inverse of the Gram matrix (〈Nj , N`〉)n+k−1j,`=1 and

(4.2)

αj = (−1)j−i0+k
( j−1∏

`=i0−k+1

τi0 − τ`
τ`+k − τ`

)( i0−1∏

`=j+1

τ`+k − τi0
τ`+k − τ`

)
, i0−k ≤ j ≤ i0.

We remark that the sequence (αj) alternates in sign, and since the matrix

(bj`)
n+k−1
j,`=1 is checkerboard, the B-spline coefficients of g, that is,

(4.3) w` :=

i0∑

j=i0−k
αjbj`, 1 ≤ ` ≤ n+ k − 1,

satisfy

(4.4)
∣∣∣

i0∑

j=i0−k
αjbj`

∣∣∣ =

i0∑

j=i0−k
|αjbj`|, 1 ≤ j ≤ n+ k − 1.

In the definition below, we assign to each orthonormal spline function
a characteristic interval that is a grid point interval [τi, τi+1] and lies close
to the newly inserted point τi0 . The choice of this interval is crucial for

proving important properties of the system (f
(k)
n )∞n=−k+2. This approach

has its origins in [14], where it is proved that general Franklin systems are
unconditional bases in Lp, 1 < p <∞.

Definition 4.1. Let Tn, Tn−1 be as above and τi0 be the new point
in Tn that is not present in Tn−1. We define the characteristic interval Jn
corresponding to the pair (Tn, Tn−1) as follows.

(1) Let

Λ(0) :=
{
i0 − k ≤ j ≤ i0 : |[τj , τj+k]| ≤ 2 min

i0−k≤`≤i0
|[τ`, τ`+k]|

}

be the set of all j for which the support of the B-spline function Nj

is approximately minimal. Observe that Λ(0) is nonempty.
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(2) Define

Λ(1) :=
{
j ∈ Λ(0) : |αj | = max

`∈Λ(0)
|α`|
}
.

For any fixed index j(0) ∈ Λ(1), set J (0) := [τj(0) , τj(0)+k].

(3) The interval J (0) can now be written as the union of k grid intervals

J (0) =

k−1⋃

`=0

[τj(0)+`, τj(0)+`+1] with j(0) as above.

We define the characteristic interval Jn to be one of the above k
intervals that has maximal length.

A few clarifying comments are in order. Roughly speaking, we first take
the B-spline support [τj , τj+k] including the new point τi0 with minimal
length and then we choose as Jn the largest grid point interval in [τj , τj+k].
This definition guarantees the concentration of fn on Jn in terms of the
Lp-norm (cf. Lemma 4.3) and the exponential decay of fn away from Jn
(cf. Lemma 4.4), which are crucial for further investigations. An important
ingredient in the proof of Lemma 4.3 is Proposition 3.3, which justifies why
we choose the largest grid point interval as Jn. Further important properties
of the collection (Jn) of characteristic intervals are that they form a nested
family of sets and for a subsequence of decreasing characteristic intervals,
their lengths decay geometrically (cf. Lemma 4.5).

Next we remark that the constant 2 in step (1) of Definition 4.1 could
also be an arbitrary number C > 1, but C = 1 is not allowed. This is in
contrast to the definition of characteristic intervals in [14] for piecewise linear
orthogonal functions (k = 2), where precisely C = 1 is chosen, step (2) is
omitted and j(0) is an arbitrary index in Λ(0).

At first glance, it might seem natural to carry over the same definition to
arbitrary spline orders k, but at a certain point in the proof of Theorem 4.2
below, we estimate αj(0) by the constant C − 1 from below, which has to be
strictly greater than zero in order to establish (4.5). Since Theorem 4.2 is
also used in the proofs of both Lemmas 4.3 and 4.4, this is the reason for
a different definition of characteristic intervals, in particular for step (2) of
Definition 4.1.

Theorem 4.2 ([20]). With the above definition (4.3) of w` for 1 ≤ ` ≤
n+ k − 1 and with j(0) given in Definition 4.1,

(4.5) |wj(0) | &k bj(0),j(0) .

Lemma 4.3 ([20]). Let Tn, Tn−1 be as above and g be the function given
in (4.1). Then fn = g/‖g‖2 is the L2-normalized orthogonal spline function
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corresponding to (Tn, Tn−1) and

‖fn‖Lp(Jn) ∼k ‖fn‖p ∼k |Jn|1/p−1/2 ∼k |Jn|1/2‖g‖p, 1 ≤ p ≤ ∞,
where Jn is the characteristic interval associated to (Tn, Tn−1).

We denote by dn(x) the number of points in Tn between x and Jn count-
ing endpoints of Jn. Correspondingly, for an interval V ⊂ [0, 1], we denote
by dn(V ) the number of points in Tn between V and Jn counting endpoints
of both Jn and V .

Lemma 4.4 ([20]). Let Tn, Tn−1 be as above, g =
∑n+k−1

j=1 wjNj be the

function in (4.1) with (wj)
n+k−1
j=1 as in (4.3), and fn = g/‖g‖2. Then there

exists a constant 0 < q < 1 that depends only on k such that

(4.6)

|wj | .k
qdn(τj)

|Jn|+ dist(suppNj , Jn) + |Dk
n,j |

for all 1 ≤ j ≤ n+ k − 1.

Moreover, if x < inf Jn, we have

(4.7) ‖fn‖Lp(0,x) .k
qdn(x)|Jn|1/2

(|Jn|+ dist(x, Jn))1−1/p
, 1 ≤ p ≤ ∞.

Similarly, for x > sup Jn,

(4.8) ‖fn‖Lp(x,1) .k
qdn(x)|Jn|1/2

(|Jn|+ dist(x, Jn))1−1/p
, 1 ≤ p ≤ ∞.

4.2. Combinatorics of characteristic intervals. Next, we recall a
combinatorial result about the relative positions of different characteristic
intervals:

Lemma 4.5 ([20]). Let x, y ∈ (tn)∞n=0 with x < y. Then there exists a
constant Fk only depending on k such that

N0 := card{n : Jn ⊆ [x, y], |Jn| ≥ |[x, y]|/2} ≤ Fk,
where cardE denotes the cardinality of the set E.

Similarly to [14] and [15], we need the following estimate involving char-
acteristic intervals and orthonormal spline functions:

Lemma 4.6. Let (tn) be a k-admissible point sequence in [0, 1] and let
(fn)n≥−k+2 be the corresponding orthonormal spline system of order k. Then,
for each interval V = [α, β] ⊂ [0, 1],

∑

n: Jn⊂V
|Jn|1/2

�

V c

|fn(t)| dt .k |V |.
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Once we know the estimates for orthonormal spline functions as in
Lemma 4.4 and the basic combinatorial result for their characteristic in-
tervals, i.e. Lemma 4.5, this result follows by the same argument that was
used in the proof of Lemma 4.6 in [14], so we skip its proof.

Instead of Lemma 3.4 of [15], we will use the following:

Lemma 4.7. Let (tn)∞n=0 be a k-admissible knot sequence that is (k− 1)-

regular, and let ∆ = D
(k−1)
m,i for some m and i. For ` ≥ 0, let

N(∆) := {n : card(∆ ∩ Tn) = k, Jn ⊂ ∆},
M(∆, `) := {n : dn(∆) = `, card(∆ ∩ Tn) ≥ k, |Jn ∩∆| = 0},

where in both definitions we count the points in ∆ ∩ Tn including multiplic-
ities. Then

(4.9)
1

|∆|
∑

n∈N(∆)

|Jn| .k 1,
∑

n∈M(∆,`)

|Jn|
dist(Jn, ∆) + |∆| .k,γ (`+ 1)2.

Proof. For every n ∈ N(∆), there are only the k − 1 possibilities D
(1)
m,i,

. . . , D
(1)
m,i+k−2 for Jn and by Lemma 4.5, each interval D

(1)
m,j , j = i, . . . , i +

k − 2, occurs at most Fk times as a characteristic interval. This implies the
first inequality in (4.9).

To prove the second, assume that each Jn, n ∈M(∆, `), lies to the right
of ∆, since the other case is handled similarly. The argument is split into two
parts depending on the value of `, beginning with ` ≤ k. In that case, for

n ∈M(∆, `), let J
1/2
n be the unique interval determined by the conditions

sup J1/2
n = supJn, |J1/2

n | = |Jn|/2.
Since dn(∆) = ` is constant, we group the intervals Jn into packets, where
all intervals in one packet have the same left endpoint and maximal intervals
from different packets are disjoint (up to possibly one point). By Lemma 4.5,

each t ∈ [0, 1] belongs to at most Fk intervals J
1/2
n . The (k − 1)-regularity

and ` ≤ k now imply |Jn| .k,γ |∆| and dist(∆, Jn) .k,γ |∆| for n ∈M(∆, `),
and thus every interval Jn with n ∈ M(∆, `) is a subset of a fixed interval
whose length is comparable to |∆|. Putting these things together, we obtain

∑

n∈M(∆,`)

|Jn|
dist(Jn, ∆) + |∆| ≤

1

|∆|
∑

n∈M(∆,`)

|Jn|=
2

|∆|
∑

n∈M(∆,`)

�

J
1/2
n

dx .k,γ 1,

which completes the case of ` ≤ k.

Next, assume ` ≥ k + 1 and define (Lj)
∞
j=1 as the strictly decreasing

sequence of all sets L that satisfy

L = D
(k−1)
n,i and supL = sup∆

78 CHAPTER 4. UNCONDITIONALITY OF ORTHOGONAL SPLINE SYSTEMS IN H1



134 G. Gevorkyan et al.

for some n and i. Moreover, set

Mj(∆, `) := {n ∈M(∆, `) : card(Lj ∩ Tn) = k},
i.e., Lj is a union of k − 1 grid point intervals in the grid Tn. Then, since

|∆|+ dist(Jn, ∆) &γ |∆|+ dist(t,∆) for t ∈ J1/2
n by (k − 1)-regularity,

∑

n∈Mj(∆,`)

|Jn|
dist(Jn, ∆) + |∆| .k,γ

∑

n∈Mj(∆,`)

�

J
1/2
n

1

dist(t,∆) + |∆| dt.

If n ∈Mj(∆, `) we get, again due to (k − 1)-regularity,

inf J1/2
n ≥ inf Jn ≥ γ−k|Lj |+ sup∆,

and

sup J1/2
n ≤ inf Jn + |Jn| ≤ Ckγ`|Lj |+ sup∆

for some constant Ck only depending on k. Combining this with Lemma 4.5,

which implies that each point t belongs to at most Fk intervals J
1/2
n , we get

(4.10)
∑

n∈Mj(∆,`)

�

J
1/2
n

1

dist(t,∆) + |∆| dt .
Ckγ

`|Lj |+|∆|�

γ−k|Lj |+|∆|

1

s
ds.

Next we will show that the above integration intervals can intersect for . `
indices j. Let j2 ≥ j1, so that Lj1 ⊃ Lj2 , and write j2 = j1 + 2kr + t with
t ≤ 2k − 1. Then, by Lemma 3.1,

Ckγ
`|Lj2 | ≤ Ckγ`|Lj1+2kr| ≤ Ckγ`ηr|Lj1 |,

where η = γk−1/(1 + γk−1) < 1. If now r ≥ Ck,γ` for a suitable constant
Ck,γ depending only on k and γ, we have

Ckγ
`|Lj2 | ≤ γ−k|Lj1 |.

Thus, each point s in the integral in (4.10) for some j belongs to at most
Ck,γ` intervals [γ−k|Lj | + |∆|, Ckγ`|Lj | + |∆|] where j is varying. So by
summing over j we conclude

∑

n∈M(∆,`)

|Jn|
dist(Jn, ∆) + |∆| ≤ Ck,γ`

(1+Ckγ
`)|∆|�

|∆|

1

s
ds ≤ Ck,γ`2.

This completes the analysis of the case ` ≥ k + 1, and the proof of the
lemma.

5. Four conditions on spline series and their relations. Let (tn)
be a k-admissible sequence of knots with the corresponding orthonormal
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spline system (fn)n≥−k+2. For a sequence (an)n≥−k+2 of coefficients, let

P :=
( ∞∑

n=−k+2

a2nf
2
n

)1/2
and S := max

m≥−k+2

∣∣∣
m∑

n=−k+2

anfn

∣∣∣.

If f ∈ L1, we denote by Pf and Sf the respective functions P and S cor-
responding to the coefficient sequence an = 〈f, fn〉. Consider the following
conditions:

(A) P ∈ L1.
(B) The series

∑∞
n=−k+2 anfn converges unconditionally in L1.

(C) S ∈ L1.
(D) There exists a function f ∈ H1 such that an = 〈f, fn〉.

We will discuss relations between those four conditions and prove the impli-
cations indicated in the diagram below; some results need regularity condi-
tions on (tn), which we also indicate.

(A) (B)

(C)(D)

Proposition 5.2,
supε ‖

∑
εnanfn‖1.k‖P‖1

‖P‖1.supε ‖
∑
εnanfn‖1,

Proposition 5.1

P
roposition

5.2,

‖S‖
1.
k ‖P‖

1

k-reg. ⇒‖f‖H1.k,γ‖Sf‖1,
Proposition 5.4

P
ro
p
o
si
ti
o
n
5
.3
,

(k
−
1
)-
re
g
.
⇒
‖P
f
‖ 1

.
k
,γ
‖f
‖ H

1

For orthonormal spline systems with dyadic knots, relations (and equiv-
alences) of these conditions have been studied by several authors, also in the
case p < 1 (see e.g. [23, 1, 12]). For general Franklin systems corresponding
to arbitrary sequences of knots, relations of these conditions were discussed
in [15] (and earlier in [13], also for p < 1, but for a restricted class of point
sequences). Below, we follow the approach of [15], adapted to the case of
spline orthonormal systems of order k.

We begin with the implication (B)⇒(A), which is a consequence of
Khinchin’s inequality:

Proposition 5.1 ((B)⇒(A)). Let (tn) be a k-admissible sequence of
knots with the corresponding general orthonormal spline system (fn), and
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let (an) be a sequence of coefficients. If the series
∑∞

n=−k+2 anfn converges

unconditionally in L1, then P ∈ L1. Moreover,

‖P‖1 . sup
ε∈{−1,1}Z

∥∥∥
∞∑

n=−k+2

εnanfn

∥∥∥
1
.

Next, we investigate the implications (A)⇒(B) and (A)⇒(C). Once we
know the estimates and combinatorial results of Sections 3 and 4, the proof
is the same as in [15, proof of Proposition 4.3], so we just state the result.

Proposition 5.2 ((A)⇒(B) and (A)⇒(C)). Let (tn) be a k-admissible
sequence of knots and let (an) be a sequence of coefficients such that P ∈ L1.
Then S ∈ L1 and

∑
anfn converges unconditionally in L1; moreover,

sup
ε∈{−1,1}Z

∥∥∥
∞∑

n=−k+2

εnanfn

∥∥∥ .k ‖P‖1 and ‖S‖1 .k ‖P‖1.

Next we discuss (D)⇒(A).

Proposition 5.3 ((D)⇒(A)). Let (tn) be a k-admissible point sequence
that is (k − 1)-regular with parameter γ. Then there exists a constant Ck,γ,
depending only on k and γ, such that for each atom φ,

‖Pφ‖1 ≤ Ck,γ .
Consequently, if f ∈ H1, then

‖Pf‖1 ≤ Ck,γ‖f‖H1 .

Before we proceed to the proof, let us remark that essentially the same
arguments give a direct proof of (D)⇒(C), under the same assumption of
(k − 1)-regularity of (tn), and moreover

‖Sf‖1 ≤ Ck,γ‖f‖H1 .

We do not present it here, since we have the implications (D)⇒(A) under
the assumption of (k− 1)-regularity and (A)⇒(C) under the assumption of
k-admissibility only. Note that Proposition 6.1 below shows that without
the assumption of (k− 1)-regularity of the point sequence, the implications
(D)⇒(A) and (D)⇒(C) need not be true.

Proof of Proposition 5.3. Let φ be an atom with
	1
0 φ(u) du = 0 and let

Γ = [α, β] be an interval such that suppφ ⊂ Γ and sup |φ| ≤ |Γ |−1. Define
nΓ := max{n : card(Tn∩Γ ) ≤ k−1}, where in the maximum, we also count
multiplicities of knots. It will be shown that

‖P1φ‖1, ‖P2φ‖1 .γ,k 1,

where

P1φ =
( ∑

n≤nΓ
a2nf

2
n

)1/2
and P2φ =

( ∑

n>nΓ

a2nf
2
n

)1/2
.
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First, we consider P1 and prove the stronger inequality∑

n≤nΓ
|an| ‖fn‖1 .k,γ 1,

where an = 〈φ, fn〉. For each n ≤ nΓ , we define Γn,α as the unique closed

interval D
(k−1)
n,j with minimal j such that

α ≤ minD
(k−1)
n,j+1.

We note that

Γn1,α ⊇ Γn2,α for n1 ≤ n2,
and, by (k − 1)-regularity,

|Γn,α| &γ,k |Γ |.
Let gn =

∑n+k−1
j=1 wjN

(k)
n,j be the unnormalized orthogonal spline function

as in (4.1) and with the coefficients (wj) as in (4.3). For ξ ∈ Γ , we have (cf.
(3.1))

|g′n(ξ)| .k

∑

j

|wj |+ |wj−1|
|D(k−1)

n,j |
,(5.1)

where we sum over those j such that Γ ∩ suppN
(k−1)
n,j = Γ ∩D(k−1)

n,j 6= ∅. By

(k− 1)-regularity, all lengths |D(k−1)
n,j | in this summation are comparable to

|Γn,α|. Moreover, by (4.6),

|wj | .k
qdn(τn,j)

|Jn|+ dist(D
(k)
n,j , Jn) + |D(k)

n,j |
.

Again by (k − 1)-regularity, for j in (5.1),

|D(k−1)
n,j | &k,γ |Γn,α|,

dist(D
(k)
n,j , Jn) + |D(k)

n,j | &k,γ dist(Jn, Γn,α) + |Γn,α|.
Combining the above inequalities, we estimate the right hand side in (5.1)
further and get, with the notation Γn := Γn,α,

(5.2) |g′n(ξ)| .k,γ
1

|Γn|
qdn(Γn)

|Jn|+ dist(Jn, Γn) + |Γn|
.

As a consequence, for every τ ∈ Γ ,

|an| =
∣∣∣
�

Γ

φ(t)[fn(t)− fn(τ)] dt
∣∣∣ ≤

�

Γ

1

|Γ | sup
ξ∈Γ
|f ′n(ξ)| |t− τ | dt

.k |Γ | |Jn|1/2 sup
ξ∈Γ
|g′n(ξ)| .k,γ

|Γ |
|Γn|

|Jn|1/2qdn(Γn)
|Jn|+ dist(Jn, Γn) + |Γn|

.

Let ∆1 ⊃ · · · ⊃ ∆s be the collection of all different intervals appearing as Γn
for n ≤ nΓ . By Lemma 3.1, we have some geometric decay in the measure
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of ∆i. Now fix ∆i and ` ≥ 0 and consider indices n ≤ nΓ such that Γn = ∆i

and dn(Γn) = `. By the last display and Lemma 4.3,

|an| ‖fn‖1 .k,γ
|Γ |
|∆i|

|Jn|q`
|Jn|+ dist(Jn, ∆i) + |∆i|

,

and thus Lemma 4.7 implies
∑

n:Γn=∆i, dn(Γn)=`

|an| ‖fn‖1 .k,γ (`+ 1)2q`
|Γ |
|∆i|

.

Now, summing over ` and then over i (recall that |∆i| decays like a geometric
progression by Lemma 3.1 and |∆i| &k,γ |Γ | since n ≤ nΓ ) yields

∑

n≤nΓ
|an| ‖fn‖1 .k,γ 1.

This implies the desired inequality ‖P1φ‖1 .k,γ 1 for the first part of Pφ.

Next, we look at P2φ and define V to be the smallest interval whose
endpoints in TnΓ+1 and which contains Γ . Moreover, Ṽ is defined to be the

smallest interval with endpoints in TnΓ+1 and such that Ṽ contains k points
in TnΓ+1 to the left of Γ and as well k points in TnΓ+1 to the right of Γ . We
observe that due to (k − 1)-regularity and the fact that Γ contains at least
k points from TnΓ+1,

(5.3)
|V | ∼k,γ |Ṽ | ∼k,γ |Γ |,
|(Ṽ \ V ) ∩ [0, inf Γ ]| ∼k,γ |(Ṽ \ V ) ∩ [supΓ, 1]| ∼k,γ |Ṽ |.

First, we consider the integral of P2φ over Ṽ and obtain by the Cauchy–
Schwarz inequality

�

Ṽ

P2φ(t) dt ≤ ‖1
Ṽ
‖2‖φ‖2 ≤

|Ṽ |1/2
|Γ |1/2 .k,γ 1.

It remains to estimate
	
Ṽ c
P2φ(t) dt. Since for n > nΓ , the endpoints of

Ṽ are in Tn, either we have Jn ⊂ Ṽ , or Jn is to the right of Ṽ , or Jn is to
the left of Ṽ . If Jn ⊂ Ṽ , then

|an| =
∣∣∣
�

Γ

φ(t)fn(t) dt
∣∣∣ ≤ ‖fn‖1|Γ | .k

|Jn|1/2
|Γ | ,

and therefore, by Lemma 4.6 and (5.3),
∑

n: Jn⊂Ṽ , n>nΓ

|an|
�

Ṽ c

|fn(t)| dt .k
1

|Γ |
∑

n:Jn⊂Ṽ

|Jn|1/2
�

Ṽ c

|fn(t)| dt

.k
|Ṽ |
|Γ | .k,γ 1.
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Now, let Jn be to the right of Ṽ ; the case of Jn to the left of Ṽ is
considered similarly. By (4.7) for p =∞,

|an| ≤
1

|Γ |
�

Γ

|fn(t)| dt ≤ 1

|Γ |
�

V

|fn(t)| dt .k,γ
qdn(V )|Jn|1/2

dist(V, Jn) + |Jn|
.

This inequality, Lemma 4.3 and the fact that dist(V, Jn) &k,γ dist(V, Jn) +
|V | (cf. (5.3)) allow us to deduce

∑

n>nΓ
Jn to the right of Ṽ

|an| ‖fn‖1 .k,γ

∑

n>nΓ
Jn to the right of Ṽ

qdn(V )|Jn|
dist(V, Jn) + |V | .

Note that V can be a union of k − 1, k or k + 1 intervals from TnΓ+1;
therefore, let V + be a union of k − 1 grid intervals from TnΓ+1, with right
endpoint of V + coinciding with the right endpoint of V . As Jn is to the
right of V , we have dn(V ) = dn(V +), dist(V, Jn) = dist(V +, Jn) and—by
(k − 1)-regularity—|V | ∼k,γ |V +|, which implies

∑

n>nΓ
Jn to the right of Ṽ

qdn(V )|Jn|
dist(V, Jn) + |V | .k,γ

∑

n>nΓ
Jn to the right of Ṽ

qdn(V
+)|Jn|

dist(V +, Jn) + |V +| .

Finally, we employ Lemma 4.7 to conclude

∑

n>nΓ
Jn to the right of Ṽ

|an| ‖fn‖1 .k,γ

∞∑

`=0

q`
∑

n>nΓ
dn(V +)=`

Jn to the right of Ṽ

|Jn|
dist(V +, Jn) + |V +|

.k,γ

∞∑

`=0

(`+ 1)2q` .k 1.

To conclude the proof, note that if f ∈ H1 and f =
∑∞

m=1 cmφm is an
atomic decomposition of f , then 〈f, fn〉 =

∑∞
m=1 cm〈φm, fn〉, and Pf(t) ≤∑∞

m=1 |cm|Pφm(t).

Finally, we discuss (C)⇒(D).

Proposition 5.4 ((C)⇒(D)). Let (tn) be a k-admissible sequence of
knots in [0, 1] which is k-regular with parameter γ and let (an) be a sequence
of coefficients such that S = supm

∣∣∑
n≤m anfn

∣∣ ∈ L1. Then there exists a

function f ∈ H1 with an = 〈f, fn〉 for each n. Moreover,

‖f‖H1 .k,γ ‖Sf‖1.
Proof. As S ∈ L1, there is f ∈ L1 such that f =

∑
n≥−k+2 anfn with

convergence in L1. Indeed, this is a consequence of the relative weak com-
pactness of uniformly integrable subsets in L1 and the basis property of (fn)
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in L1. Thus, we need only show that f ∈ H1, and this is done by finding a
suitable atomic decomposition of f .

We define E0 = B0 = [0, 1] and, for r ≥ 1,

Er = [S > 2r], Br = [M1Er > ck,γ ],

where M denotes the Hardy–Littlewood maximal function and 0 < ck,γ ≤
1/2 is a small constant only depending on k and γ which is chosen according
to a few restrictions that will be given during the proof. We note that

M1Er(t) = sup
I3t

|I ∩ Er|
|I| , t ∈ [0, 1],

where the supremum is taken over all intervals containing t. Since M is of
weak type (1, 1), we have |Br| .k,γ |Er|. As S ∈ L1, it follows that |Er| → 0
and hence |Br| → 0 as r → ∞. Now, decompose the open set Br into a
countable union of disjoint open intervals,

Br =
⋃

κ

Γr,κ,

where for fixed r, no two intervals Γr,κ have a common endpoint and the
above equality is up to a measure zero set (each open set of real numbers can
be decomposed into a countable union of open intervals, but it can happen
that two intervals have the same endpoint; in that case, we collect those two
intervals into one Γr,κ). This can be achieved by taking as Γr,κ the collection
of level sets of positive measure of the function t 7→ |[0, t] ∩Bc

r|.
Moreover, observe that if Γr+1,ξ is one of the intervals in the decomposi-

tion of Br+1, then there is an interval Γr,κ in the decomposition of Br such
that Γr+1,ξ ⊂ Γr,κ.

Based on this decomposition, we define the following functions for r ≥ 0:

gr(t) :=





f(t), t ∈ Bc
r,

1

|Γr,κ|
�

Γr,κ

f(t) dt, t ∈ Γr,κ.

Observe that f = g0 +
∑∞

r=0(gr+1 − gr) in L1 and gr+1 − gr = 0 on Bc
r. As

a consequence,
�

Γr,κ

gr+1(t) dt =
�

Γr,κ∩Bcr+1

gr+1(t) dt+
�

Γr,κ∩Br+1

gr+1(t) dt

=
�

Γr,κ∩Bcr+1

f(t) dt+
∑

ξ:Γr+1,ξ⊂Γr,κ

�

Γr+1,ξ

f(t) dt

=
�

Γr,κ

f(t) dt =
�

Γr,κ

gr(t) dt.
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The main step of the proof is to show that

(5.4) |gr(t)| ≤ Ck,γ2r, a.e. t ∈ [0, 1],

for some constant Ck,γ only depending on k and γ. Once this inequality is

proved, we take φ0 ≡ 1, η0 =
	1
0 f(u) du and

φr,κ :=
(gr+1 − gr)1Γr,κ
Ck,γ2r|Γr,κ|

, ηr,κ = Ck,γ2r|Γr,κ|

and observe that f = η0φ0 +
∑

r,κ ηr,κφr,κ is the desired atomic decomposi-
tion of f since

∑

r,κ

ηr,κ ≤ Ck,γ
∑

r,κ

2r|Γr,κ| = Ck,γ
∑

r

2r|Br|

.k,γ

∑

r

2r|Er| . ‖S‖1.

Thus it remains to prove inequality (5.4).

To do so, we first assume t ∈ Bc
r. Additionally, assume that t is such that

the series
∑

n anfn(t) converges to f(t) and t is not in (tn). By Theorem
3.5, this holds for a.e. ∈ [0, 1]. We fix m and let Vm be the maximal interval
where the function Sm :=

∑
n≤m anfn is a polynomial of order k and that

contains t. Then Vm 6⊂ Br and since Vm is an interval containing t,

|Vm ∩ Ecr | ≥ (1− ck,γ)|Vm| ≥ |Vm|/2.
Since |Sm| ≤ 2r on Ecr , the above display and Proposition 3.2 imply that
|Sm| .k 2r on Vm and in particular |Sm(t)| .k 2r. Now, Sm(t) → f(t) as
m→∞ by the assumptions on t, and thus

|gr(t)| = |f(t)| .k 2r.

This concludes the proof of (5.4) in the case of t ∈ Bc
r.

Next, we fix κ and consider gr on Γ := [α, β] := Γr,κ. Let nΓ be the first
index such that there are k + 1 points from TnΓ contained in Γ , i.e., there

exists a support D
(k)
nΓ ,i

of a B-spline function of order k in the grid TnΓ that
is contained in Γ . Additionally, we define

U0 := [τnΓ ,i−k, τnΓ ,i], W0 := [τnΓ ,i+k, τnΓ ,i+2k].

Note that if α ∈ TnΓ , then α is a common endpoint of U0 and Γ , otherwise α
is an interior point of U0. Similarly, if β ∈ TnΓ , then β is a common endpoint
of W0 and Γ , otherwise β is an interior point of W0. By k-regularity of
(tn), we have max(|U0|, |W0|) .k,γ |Γ |. We first estimate the part SΓ :=∑

n≤nΓ anfn and show that |SΓ | .k,γ 2r on Γ . Observe that on ∆ := U0 ∪
Γ ∪W0, SΓ can be represented as a linear combination of B-splines (Nj) on
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the grid TnΓ of the form

SΓ (t) = h(t) :=

i+2k−1∑

j=i−2k+1

bjNj(t),

for some coefficients (bj). For j = i − 2k + 1, . . . , i + 2k − 1, let Jj be a
maximal interval of suppNj and observe that due to k-regularity, |Jj | ∼k,γ
|Γ | ∼k,γ |supph|.

If we assume that maxJj |SΓ | > Ck2
r, where Ck is the constant of Propo-

sition 3.2 for ρ = 1/2, then Proposition 3.2 implies that |SΓ | > 2r on a subset
Ij of Jj with measure ≥ |Jj |/2. Hence

|supph ∩ Er| ≥ |Jj ∩ Er| ≥ |Jj |/2 &k,γ |supph|.

We choose the constant ck,γ in the definition of Br sufficiently small to
guarantee that this last inequality implies supph ⊂ Br. This contradicts
the choice of Γ , which implies that our assumption maxJj |SΓ | > Ck2

r is
not true and thus

max
Jj
|SΓ | ≤ Ck2r, j = i− 2k + 1, . . . , i+ 2k − 1.

By local stability of B-splines, i.e., inequality (3.2) in Proposition 3.3, this
implies

|bj | .k 2r, j = i− 2k + 1, . . . , i+ 2k − 1,

and so |SΓ | .k 2r on ∆. This means

(5.5)
�

Γ

|SΓ | .k 2r|Γ |,

which is inequality (5.4) for the part SΓ .

In order to estimate the remaining part, we inductively define two se-
quences (us, Us)i≥0 and (ws,Ws)s≥0 consisting of integers and intervals. Set
u0 = w0 = nΓ and inductively define us+1 to be the first n > us such that
tn ∈ Us. Moreover, define Us+1 to be the B-spline support Dus+1,i(k)

in the

grid Tus+1 , where i is minimal such that D
(k)
us+1,i

∩Γ 6= ∅. Similarly, we define
ws+1 to be the first n > ws such that tn ∈Ws and Ws+1 as the B-spline sup-

port D
(k)
ws+1,i

in the grid Tws+1 , where i is maximal such that D
(k)
ws+1,i

∩Γ 6= ∅.
It can easily be seen that this construction implies Us+1 ⊂ Us, Ws+1 ⊂ Ws

and α ∈ Us, β ∈ Ws for all s ≥ 0, or more precisely: if α ∈ Tus , then α is
either a common endpoint of Us and Γ , or an inner point of Us, and similarly
if β ∈ Tus , then β is either a common endpoint of Ws and Γ , or an inner
point of Ws.
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For a pair of indices `,m, let

x` :=
k−1∑

ν=0

Nu`,i+ν1U` , ym :=
k−1∑

ν=0

Nwm,j−ν1Wm ,

where Nu`,i is the B-spline function on the grid Tu` with support U`, and
Nwm,j is the B-spline function on Twm with support Wm. The function

φ`,m := x` + 1Γ\(U`∪Wm) + ym

is zero on (U`∪Γ ∪Wm)c, one on Γ \ (U`∪Wm) and a piecewise polynomial
function of order k in between. For `,m ≥ 0, consider the following subsets
of {n : n > nΓ }:

L(`) := {n : u` < n ≤ u`+1}, R(m) := {n : wm < n ≤ wm+1}.
If n ∈ L(`) ∩R(m), we clearly have 〈fn, φ`,m〉 = 0 and thus

(5.6)
�

Γ

fn(t) dt =
�

Γ

fn(t) dt−
1�

0

fn(t)φ`,m(t) dt = A`(fn) +Bm(fn),

where

A`(fn) :=
�

Γ∩U`
fn(t) dt−

�

U`

fn(t)x`(t) dt,

Bm(fn) :=
�

Γ∩Wm

fn(t) dt−
�

Wm

fn(t)ym(t) dt.

This implies

(5.7)
∣∣∣
�

Γ

∞∑

n=nΓ+1

anfn(t) dt
∣∣∣ =

∣∣∣
∞∑

`,m=0

∑

n∈L(`)∩R(m)

an
(
A`(fn) +Bm(fn)

)∣∣∣

≤ 2

∞∑

`=0

�

U`

∣∣∣
∑

n∈L(`)
anfn(t)

∣∣∣ dt+ 2

∞∑

m=0

�

Wm

∣∣∣
∑

n∈R(m)

anfn(t)
∣∣∣ dt.

Consider the first sum on the right hand side. On U` = D
(k)
u`,i

, the function∑
n∈L(`) anfn can be represented as a linear combination of B-splines (Nj)

on the grid Tu` of the form

∑

n∈L(`)
anfn = h` :=

i+k−1∑

j=i−k+1

bjNj ,

for some coefficients (bj). For j = i − k + 1, . . . , i + k − 1, let Jj be a
maximal grid interval of suppNj and observe that due to k-regularity,
|Jj | ∼k,γ |U`| ∼k,γ |supph`|. On Jj , the function

∑
n∈L(`) anfn is a poly-

nomial of order k. If we assume maxJj
∣∣∑

n∈L(`) anfn
∣∣ > Ck2

r+1, where Ck
is the constant of Proposition 3.2 for ρ = 1/2, then Proposition 3.2 implies
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that
∣∣∑

n∈L(`) anfn
∣∣ > 2r+1 on a set J∗j ⊂ Jj with |J∗j | = |Jj |/2; but this

means max(|∑n≤u` anfn|, |
∑

n≤u`+1
anfn|) > 2r on J∗j . Hence

|Er ∩ supph`| ≥ |Er ∩ Jj | ≥ |J∗j | ≥ |Jj |/2 &k |supph`|.
We choose the constant ck,γ in the definition of Br sufficiently small to
guarantee that this last inequality implies supph` ⊂ Br. This contradicts
the choice of Γ , which implies that our assumption maxJj

∣∣∑
n∈L(`) anfn

∣∣ >
Ck2

r is not true and thus

max
Jj

∣∣∣
∑

n∈L(`)
anfn

∣∣∣ ≤ Ck2r, j = i− k + 1, . . . , i+ k − 1.

By local stability of B-splines, i.e., inequality (3.2), this implies

|bj | .k 2r, j = i− k + 1, . . . , i+ k − 1,

and so
∣∣∑

n∈L(`) anfn
∣∣ .k 2r on U`, which gives

�

U`

∣∣∣
∑

n∈L(`)
anfn

∣∣∣ .k 2r|U`|.

Combining Lemma 3.1, the inclusions U`+1 ⊂ U` and the inequality |U0| .k,γ

|Γ |, we see that
∑∞

`=0 |U`| .k,γ |Γ |. Thus we get

∞∑

`=0

�

U`

∣∣∣
∑

n∈L(`)
anfn

∣∣∣ .k,γ 2r|Γ |.

The second sum on the right hand side of (5.7) is estimated similarly, which
gives

∞∑

m=0

�

Wm

∣∣∣
∑

n∈R(m)

anfn

∣∣∣ .k,γ 2r|Γ |.

Combining these estimates with (5.7) and (5.5), we find
∣∣∣
�

Γ

f(t) dt
∣∣∣ =

∣∣∣
�

Γ

∑

n

anfn(t) dt
∣∣∣ .k,γ 2r|Γ |,

which implies (5.4) on Γ , and thus the proof is complete.

6. Proof of the main theorem. For the proof of the necessity part of
Theorem 2.4, we will use the following:

Proposition 6.1. Let (tn) be a k-admissible sequence of knots that is
k-regular with parameter γ, but not (k − 1)-regular. Then

sup
∥∥∥ sup

n
|an(φ)fn|

∥∥∥
1

=∞,

where the first sup is taken over all atoms φ, and an(φ) := 〈φ, fn〉.
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Proposition 6.1 implies in particular that Proposition 5.3 cannot be ex-
tended to arbitrary partitions. For the proof of Proposition 6.1 we need the
following technical lemma.

Lemma 6.2. Let (tn) be a k-admissible sequence of knots that is k-regular
with parameter γ ≥ 1, but not (k − 1)-regular. Let ` be an arbitrary posi-
tive integer. Then, for all A ≥ 2, there exists a finite increasing sequence
(nj)

`−1
j=0 such that if τnj ,ij is the new point in Tnj not present in Tnj−1

and

Λj := [τnj ,ij−k, τnj ,ij−1), Lj := [τnj ,ij−1, τnj ,ij ), Rj := [τnj ,ij , τnj ,ij+1),

then for all i, j with 0 ≤ i < j ≤ `− 1 we have:

(1) Ri ∩Rj = ∅,
(2) Λi = Λj,
(3) (2γ − 1)|Lj | ≥ |[τnj ,ij−k−1, τnj ,ij−k]| ≥ |Lj |/(2γ),
(4) |Rj | ≤ (2γ − 1)|Lj |,
(5) |Lj | ≤ 2(γ + 1)k|Rj |,
(6) min(|Lj |, |Rj |) ≥ A|Λj |.

Proof. First, we choose a sequence (nj)
lk
j=0 so that (1)–(4) hold. Next,

we choose a subsequence (nmj )
l−1
j=0 so that (5) and (6) hold as well.

Since (tn) is not (k − 1)-regular, for all C0 there exist n0 and i0 such
that

(6.1) either C0|D(k−1)
n0,i0−k| ≤ |D

(k−1)
n0,i0−k+1| or |D(k−1)

n0,i0−k| ≥ C0|D(k−1)
n0,i0−k+1|.

We choose C0 sufficiently large such that with Cj := Cj−1/γ−1 for j ≥ 1 we
have Ck` ≥ 2γ. We will make an additional restriction on C0 at the end of
the proof. Without loss of generality, we can assume that the first inequal-
ity in (6.1) holds. Taking Λ0 = [τn0,i0−k, τn0,i0−1) and L0 = [τn0,i0−1, τn0,i0),
R0 = [τn0,i0 , τn0,i0+1), we have

(6.2) |[τn0,i0−k+1, τn0,i0 ]| ≥ C0|Λ0|.
A direct consequence of (6.2) is

(6.3) |L0| ≥ (C0 − 1)|Λ0|.
By k-regularity we have

|D(k)
n0,i0−k−1| ≥

|D(k)
n0,i0−k|
γ

=
|Λ0|+ |L0|

γ
,

which implies
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|[τn0,i0−k−1, τn0,i0−k]| = |D
(k)
n0,i0−k−1| − |Λ0| ≥

|Λ0|+ |L0|
γ

− |Λ0|(6.4)

≥ |L0|
2γ

+
|Λ0|
γ

+
C0 − 1

2γ
|Λ0| − |Λ0|

=
|L0|
2γ

+

(
C0 + 1

2γ
− 1

)
|Λ0| ≥

|L0|
2γ

,

i.e., the right hand inequality of (3) for j = 0. To get the upper estimate,
note that by k-regularity,

|Λ0|+ |[τn0,i0−k−1, τn0,i0−k]| ≤ γ(|Λ0|+ |L0|),
hence by (6.3),

(6.5) |[τn0,i0−k−1, τn0,i0−k]| ≤ γ|L0|+ (γ − 1)|Λ0| ≤ (2γ − 1)|L0|.
This and the previous calculation give (3) for j = 0. Therefore, the con-
struction can be continued either to the right or to the left of Λ0.

We continue the construction to the right of Λ0 by induction. Having
defined nj , Λj , Lj and Rj , we take

nj+1 := min{n > nj : tn ∈ Λj ∪ Lj}, j ≥ 0.

By definition of Rj and nj+1, property (1) is satisfied for all j ≥ 0. We
identify tnj+1 = τnj+1,ij+1 . Thus, by construction, tnj = τnj ,ij is a common
endpoint of Lj and Rj for j ≥ 1.

In order to prove (2), we will show by induction that

(6.6) |[τnj ,ij−k+1, τnj ,ij ]| ≥ Cj |Λj | and Λj+1 = Λj

for all j = 0, . . . , k`. We remark that the equality Λj+1 = Λj is equivalent
to the condition τnj+1,ij+1 ∈ Lj .

The inequality of (6.6) for j = 0 is exactly (6.2). If the identity in (6.6)
were not satisfied for j = 0, i.e., τn1,i1 ∈ Λ0, by k-regularity of (tn), applied
to the partition Tn1 , we would have

|Λ0| ≥
1

γ
|L0|,

which contradicts (6.3) for our choice of C0. This means Λ1 = Λ0, and so
(6.6) is true for j = 0. Next, assume that (6.6) is satisfied for j − 1, where
1 ≤ j ≤ k`−1. By k-regularity, applied to Tnj , and employing (6.6) for j−1
repeatedly, we obtain

|Λj |+ |Lj | = |Λj ∪ Lj | ≥
1

γ
(τnj ,ij+1 − τnj ,ij−k+1)

=
1

γ
(τnj−1,ij−1 − τnj−1,ij−1−k+1)

≥ Cj−1
γ
|Λj−1| =

Cj−1
γ
|Λj |.
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This means, by the recursive definition of Cj , that

(6.7) |Lj | ≥ Cj |Λj |,
and in particular the first identity in (6.6) is true for j. If the identity in
(6.6) were not satisfied for j, i.e., τnj+1,ij+1 ∈ Λj , by k-regularity of (tn),
applied to Tnj+1 , we would have

|Λj | ≥
1

γ
|Lj |,

which contradicts (6.7) and our choice of C0. This proves (6.6) for j, and
thus property (2) is true for all j = 0, . . . , k`.

Moreover, choosing C0 sufficiently large, namely such that Ckl ≥
2(γ + 1)kA, (6.7) implies

(6.8) |Lj | ≥ 2(γ + 1)kA|Λj |,
which is a part of (6).

The lower estimate in (3) is proved by repeating the argument giving
(6.4) and using (6.7) instead of (6.4). The upper estimate uses the same
arguments as the proof of (6.5), but now we have to use (6.7) as well.

Next, we look at (4). By k-regularity and (6.7), as Cj > 1, we have

|Rj |+ |Lj | ≤ γ(|Lj |+ |Λj |) ≤ 2γ|Lj |,
which is exactly (4).

We prove (5) by choosing a suitable subsequence of (nj)
k`
j=0. First, assume

that (5) fails for k consecutive indices, i.e., for some s,

(6.9) |Rs+r| < α|Ls+r| ≤ α|Ls|, r = 1, . . . , k,

where α := (2(γ + 1)k)−1. We have Lj = Lj+1 ∪ Rj+1 for 0 ≤ j ≤ k` − 1.
Thus, on the one hand,

(6.10) |Ls \ Ls+k| =
k∑

r=1

|Rs+r| ≤ αk|Ls|

by (6.9); on the other hand, by k-regularity of Tns+k ,

(6.11) |Ls \ Ls+k| ≥
1

γ
|Ls+k| =

1

γ

(
|Ls| −

k∑

r=1

|Rs+r|
)
≥ 1− αk

γ
|Ls|.

Now, (6.10) contradicts (6.11) for our choice of α. We have thus proved that
there is at least one index s+r, 1 ≤ r ≤ k, such that (5) is satisfied for s+r.
Hence we can extract a sequence of length ` from (nj)

k`
j=1 satisfying (5). For

simplicity, this subsequence is called (nj)
`−1
j=0 again.

Property (6) for Rj is now a simple consequence of (6.8), property (5)

and the choice of (nj)
`−1
j=0. Thus, the proof of the lemma is complete.
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Now, we are ready to proceed to the proof of Proposition 6.1.

Proof of Proposition 6.1. Let ` be an arbitrary positive integer and A ≥ 2
a number to be chosen later. Lemma 6.2 gives a sequence (nj)

`−1
j=0 such that

conditions (1)–(6) in Lemma 6.2 are satisfied. We assume that |Λ0| > 0. Let
τ := τn0,i0−1, x := τ − 2|Λ0| and y := τ + 2|Λ0|. Then we define an atom φ
by

φ ≡ 1

4|Λ0|
(1[x,τ ] − 1[τ,y])

and let j be an arbitrary integer with 0 ≤ j ≤ `− 1. By partial integration,
the expression anj (φ) = 〈φ, fnj 〉 can be written as

4|Λ0|anj (φ) =

τ�

x

fnj (t) dt−
y�

τ

fnj (t) dt

=

τ�

x

fnj (t)− fnj (τ) dt−
y�

τ

fnj (t)− fnj (τ) dt

=

τ�

x

(x− t)f ′nj (t) dt−
y�

τ

(y − t)f ′nj (t) dt.

In order to estimate |anj (φ)| from below, we estimate the absolute values
of I1 :=

	τ
x(x − t)f ′nj (t) dt from below and of I2 :=

	y
τ (y − t)f ′nj (t) dt from

above. We begin with I2.

Consider the function gnj , connected with fnj via fnj = gnj/‖gnj‖2 and

‖gnj‖2 ∼k |Jnj |−1/2 (cf. (4.1) and Lemma 4.3). In the notation of Lemma 6.2,
gnj is obtained by inserting the point tnj = τnj ,ij in Tnj−1, and it is a com-
mon endpoint of intervals Li and Ri. By construction of the characteristic
interval Jnj , properties (4)–(6) of Lemma 6.2, and the k-regularity of (tn),
we have

(6.12) |Jnj | ∼k,γ |Lj | ∼k,γ |Rj |.
By property (6), we have [τ, y] ⊂ Lj , and therefore on [τ, y], the derivative

of gnj has the representation (cf. (3.1))

g′nj (u) = (k − 1)

ij−1∑

i=ij−k+1

ξiN
(k−1)
nj ,i

(u), u ∈ [τ, y],

where ξi = (wi − wi−1)/|D(k−1)
nj ,i

| and the coefficients wi are given by (4.3)

associated to the partition Tnj . For i = ij − k + 1, . . . ij − 1 we have Lj ⊂
D

(k−1)
nj ,i

, which together with the k-regularity of (tn) and property (6) implies

(6.13) |Jnj | ∼k |Lj | ∼k,γ |D
(k−1)
nj ,i

|, i = ij − k + 1, . . . , ij − 1.
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Moreover, by Lemma 4.4,

|wi| .k
1

|Jnj |
, 1 ≤ i ≤ nj + k − 1.

Therefore

|f ′nj (t)| ∼k |Jnj |1/2|g′nj (t)| .k,γ |Lj |−3/2 for t ∈ [τ, y].

Consequently, putting the above facts together,

(6.14) |I2| .k,γ |Λ0|2 · |Lj |−3/2.
We now estimate I1. By properties (3) and (6) of Lemma 6.2 (with

A ≥ 2γ), we have [x, τ ] ⊂ [τnj ,ij−k−1, τnj ,ij−1], and therefore on [x, τ ], g′nj
has the representation (cf. (3.1))

g′nj (u) = (k − 1)

ij−2∑

i=ij−2k+1

ξiN
(k−1)
nj ,i

(u), u ∈ [x, τ ].

We split I1 = I1,1 + I1,2 according to whether i 6= ij − k or i = ij − k in the
above representation of g′nj on [x, τ ].

Note that [τnj ,ij−k−1, τnj ,ij−k] ⊂ D
(k−1)
nj ,i

for ij − 2k + 1 ≤ i < ij − k and

Lj ⊂ D
(k−1)
nj ,i

for ij − k < i ≤ ij − 2. Therefore, by properties (3) and (6) of

Lemma 6.2 and the k-regularity of the sequence of knots we have

|D(k−1)
nj ,i

| ∼k,γ |Lj | for ij − 2k + 1 ≤ i ≤ ij − 2, i 6= ij − k.
So, by arguments analogous to the proof of (6.14) we get

(6.15)

|I1,1| ∼k |Jnj |1/2
∣∣∣
τ�

x

(t− x)

ij−2∑

i=ij−2k+1
i 6=ij−k

ξiN
(k−1)
nj ,i

(t) dt
∣∣∣ .k,γ |Λ0|2 · |Lj |−3/2.

Moreover, for i = ij − k, we have D
(k−1)
nj ,ij−k = Λ0, so

|I1,2| ∼k |Jnj |1/2
∣∣∣
τ�

x

(t− x)ξij−kN
(k−1)
nj ,ij−k(t) dt

∣∣∣(6.16)

≥ |ξij−k| |Jnj |1/2|Λ0|
τ�

x

N
(k−1)
nj ,ij−k(t) dt

= |ξij−k| |Λ0| |Jnj |1/2
|D(k−1)

nj ,ij−k|
k − 1

= |ξij−k| |Jnj |1/2
|Λ0|2
k − 1

,

because t− x ≥ |Λ0| for t ∈ suppN
(k−1)
nj ,ij−k. Since the sequence wj is checker-
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board (cf. (4.4)),

|ξij−k| =
|wij−k|+ |wij−k−1|

|D(k−1)
nj ,ij−k|

≥ |wij−k|
|D(k−1)

nj ,ij−k|
.

By definition of wij−k,

|wij−k| ≥ |αij−k| |bij−k,ij−k|,
where αij−k is the factor from formula (4.2) and bij−k,ij−k is an entry of the
inverse of the B-spline Gram matrix, both corresponding to the partition
Tnj . Formulas (4.2) and (6.12) imply that αij−k is bounded from below by a

positive constant that only depends on k and γ (1). Moreover, |bij−k,ij−k| ≥
‖N (k)

nj ,ij−k‖
−2
2 &k |D(k)

nj ,ij−k|
−1 (cf. (3.6)). Note that D

(k)
nj ,ij−k = Λ0 ∪ Lj , so

|D(k)
nj ,ij−k| ∼k,γ |Lj |. Thus, |ξij−k| &k,γ |Λ0|−1|Lj |−1. Inserting the above

calculations in (6.16), we find

(6.17) |I1,2| &k,γ |Jnj |1/2
|Λ0|
|Lj |

∼k,γ |Λ0| |Lj |−1/2.

We now impose conditions on the constant A ≥ 2γ from the beginning
of the proof and property (6) in Lemma 6.2. It follows from (6.17), (6.15)
and (6.14) that there are Ck,γ > 0 and ck,γ > 0, depending only on k and γ,
such that

4|Λ0| |anj (φ)| ≥ |I1,2| − |I1,1| − |I2| ≥ Ck,γ |Λ0| |Lj |−1/2 − ck,γ |Λ0|2|Lj |−3/2

= |Λ0| |Lj |−1/2(Ck,γ − ck,γ |Λ0| |Lj |−1).
By property (6) in Lemma 6.2 we have |Λ0| |Lj |−1 ≤ 1/A. Choosing A
sufficiently large to guarantee

Ck,γ −
ck,γ
A
≥ Ck,γ

2
,

we get a constant mk,γ , depending only on k and γ, such that

(6.18) mk,γ |Lj |−1/2 ≤ |anj (φ)|, j = 0, . . . , `− 1.

Next, we estimate
	
Rj
|gnj (t)| dt from below. First, Proposition 3.3, prop-

erty (6) of Lemma 6.2 and the k-regularity of (tn) yield
�

Rj

|gnj (t)| dt &k,γ |Rj | |wij |,

(1) Formula (4.2) is applied with Tn = Tnj and corresponding to τi0 = τnj ,ij . Then
[τi0−1, τi0 ] = Lj and [τi0 , τi0+1] = Rj . By k-regularity and |Λ0 ∪ Lj | ∼k,γ |Lj |, each
denominator in (4.2) is ∼k,γ |Lj |. Each numerator in (4.2) is greater than either Lj or Rj ,
so by (6.12) and k-regularity it is ∼k,γ |Lj | as well.
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where wij corresponds to the partition Tnj . By definition of wij ,
�

Rj

|gnj (t)| dt &k,γ |Rj | |αij | |bij ,ij |.

By arguments similar to those above, |αij | is bounded from below by a

constant only depending on k and γ, and |bij ,ij | &k |D(k)
nj ,ij
|−1. Since by

k-regularity, |Rj | ∼k,γ |D(k)
nj ,ij
|, we finally get
�

Rj

|gnj (t)| dt &k,γ 1,

which means for fnj that
�

Rj

|fnj (t)| dt &k,γ |Jnj |1/2 &k,γ |Lj |1/2.

Combining this last estimate with (6.18) and (1) of Lemma 6.2 gives

1�

0

sup
n
|an(φ)fn(t)| dt ≥

∑̀

j=1

�

Rj

|anj (φ)fnj (t)| dt &k,γ `.

This construction applies to every positive integer `, proving the assertion
of the proposition for |Λ0| > 0.

The case |Λ0| = 0 is handled similarly, with the difference that the atom
φ is defined to be centered at τn0,i0−1 and the length of the support is
sufficiently small, depending on ` and |L0|.

With Proposition 6.1 and the results of Section 5 at hand, the proof of
Theorem 2.4 follows the proof of Theorem 2.2 in [15], but we present it here
for the sake of completeness.

Proof of Theorem 2.4. We start by proving the unconditional basis prop-

erty of (fn) = (f
(k)
n ) assuming the (k−1)-regularity of (tn). If (tn) is (k−1)-

regular, it is not difficult to check that it is also k-regular. As a consequence,
Theorem 2.3 implies that (fn) is a basis in H1. Let f ∈ H1 with f =

∑
anfn

and ε ∈ {−1, 1}Z. We need to prove the convergence of
∑
εnanfn in H1.

Let m1 ≤ m2. Then

∥∥∥
m2∑

n=m1

εnanfn

∥∥∥
H1

.k,γ

∥∥∥S
( m2∑

n=m1

εnanfn

)∥∥∥
1
.k

∥∥∥P
( m2∑

n=m1

εnanfn

)∥∥∥
1

=
∥∥∥P
( m2∑

n=m1

anfn

)∥∥∥
1
.k,γ

∥∥∥
m2∑

n=m1

anfn

∥∥∥
H1
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where we have used Propositions 5.4, 5.2 and 5.3 (cf. also the diagram on
page 135). So, since

∑
anfn converges in H1, so does fε :=

∑
εnanfn, and

the same calculation as above shows

‖fε‖H1 .k,γ ‖f‖H1 .

This implies that (fn) is an unconditional basis in H1.

We now prove the converse: (fn) being an unconditional basis in H1

implies (k − 1)-regularity. First, if (tn) is not k-regular, (fn) is not a ba-
sis in H1 by Theorem 2.3. Thus, it remains to consider the case when (tn)
is k-regular, but not (k − 1)-regular. By Theorem 2.3 again, (fn) is then
a basis in H1. Suppose that (fn) is an unconditional basis in H1. Then,
for f =

∑
anfn and ε ∈ {−1, 1}Z, the function fε :=

∑
εnanfn is also

in H1. Since ‖ · ‖1 ≤ ‖ · ‖H1 , the series
∑
anfn also converges uncondi-

tionally in L1, and thus Proposition 5.1 (i.e., Khinchin’s inequality) im-
plies

‖Pf‖1 . sup
ε
‖fε‖1 ≤ sup

ε
‖fε‖H1 . ‖f‖H1 ,

which is impossible due to Proposition 6.1, even for atoms. This concludes
the proof of Theorem 2.4.

As an immediate consequence of Theorem 2.4, a fifth condition equiva-
lent to (A)–(D) is the unconditional convergence of

∑
n anfn in H1:

Corollary 6.3. Let (tn) be a k-admissible and (k−1)-regular sequence
of points, with (fn) the corresponding orthonormal spline system of order k.
Let (an) be a sequence of coefficients. Then conditions (A)–(D) from Sec-
tion 5 are equivalent. Moreover, they are equivalent to

(E) The series
∑

n anfn converges unconditionally in H1.

In addition, for f ∈ H1, f =
∑

n anfn, we have

‖f‖H1 ∼ ‖Sf‖1 ∼ ‖Pf‖1 ∼ sup
ε∈{−1,1}Z

∥∥∥
∑

n

εnanfn

∥∥∥
1
,

with the implied constants depending only on k and the parameter of (k−1)-
regularity of (tn).
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a b s t r a c t

The main result of this paper is a proof that for any integrable
function f on the torus, any sequence of its orthogonal projections
(Pnf ) onto periodic spline spaces with arbitrary knots ∆n and
arbitrary polynomial degree converges to f almost everywhere
with respect to the Lebesguemeasure, provided themesh diameter
| ∆n | tends to zero. We also give a new and simpler proof of the
fact that the operatorsPn are bounded on L∞ independently of the
knots ∆n.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Splines on an interval

In this article we prove some results about the periodic spline orthoprojector. In order to achieve
this, we rely on existing results for the non-periodic spline orthoprojector on a compact interval, sowe
first describe some of those results for the latter operator. Let k ∈ N and ∆ = (ti)r+k

i=ℓ a knot sequence
satisfying

ti ≤ ti+1, ti < ti+k,

tℓ = · · · = tℓ+k−1, tr+1 = · · · = tr+k.

✩ Communicated by A. Hinrichs.

E-mail address:markus.passenbrunner@jku.at.

http://dx.doi.org/10.1016/j.jco.2017.04.001
0885-064X/© 2017 Elsevier Inc. All rights reserved.
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Associated to this knot sequence, we define (Ni)
r
i=ℓ as the sequence of L∞-normalized B-spline

functions of order k on ∆ that have the properties

suppNi = [ti, ti+k], Ni ≥ 0,
r

i=ℓ

Ni ≡ 1.

We write |∆| = maxℓ≤j≤r(tj+1 − tj) for the maximal mesh width of the partition ∆. Then, define
the space Sk(∆) as the set of polynomial splines of order k (or at most degree k − 1) with knots
∆, which is the linear span of the B-spline functions (Ni)

r
i=ℓ. Moreover, let P∆ be the orthogonal

projection operator onto the space Sk(∆) with respect to the ordinary (real) inner product ⟨f , g⟩ = tr+1
tℓ

f (x)g(x) dx, i.e.,

⟨P∆f , s⟩ = ⟨f , s⟩ for all s ∈ Sk(∆).

The operator P∆ is also given by the formula

P∆f =

r
i=ℓ

⟨f ,Ni⟩N∗

i , (1.1)

where (N∗

i )ri=ℓ denotes the dual basis to (Ni) defined by the relations ⟨N∗

i ,Nj⟩ = 0 when j ≠ i and
⟨N∗

i ,Ni⟩ = 1 for all i = ℓ, . . . , r . A famous theorem by A. Shadrin states that the L∞-norm of this
projection operator is bounded independently of the knot sequence ∆:

Theorem 1.1 ([8]). There exists a constant ck depending only on the spline order k such that for all knot
sequences ∆ = (ti)r+k

i=ℓ as above,

∥P∆ : L∞
[tℓ, tr+1] → L∞

[tℓ, tr+1]∥ ≤ ck.

We are also interested in the following equivalent formulation of this theorem, which is proved
in [1]: for a knot sequence ∆, let (aij) be the matrix (⟨N∗

i ,N∗

j ⟩), which is the inverse of the banded
matrix (⟨Ni,Nj⟩). Then, the assertion of Theorem 1.1 is equivalent to the existence of two constants
K0 > 0 and γ0 ∈ (0, 1) depending only on the spline order k such that

|aij| ≤
K0γ

|i−j|
0

max{κi, κj}
, ℓ ≤ i, j ≤ r, (1.2)

where κi denotes the length of suppNi. The proof of this equivalence uses Demko’s theorem [4] on the
geometric decay of inverses of bandmatrices and de Boor’s stability (see [2] or [5, Chapter 5, Theorem
4.2]) which states that for 0 < p ≤ ∞, the Lp-norm of a B-spline series is equivalent to a weighted
ℓp-norm of its coefficients, i.e. there exists a constant Dk depending only on the spline order k such
that:

Dkk−1/p


j

|cj|pκj

1/p
≤


j

cjNj


Lp

≤


j

|cj|pκj

1/p
.

In fact, for aij, we actually have the following improvement of (1.2) (see [6]): There exist two
constants K > 0 and γ ∈ (0, 1) that depend only on the spline order k such that

|aij| ≤
Kγ |i−j|

hij
, ℓ ≤ i, j ≤ r, (1.3)

where hij denotes the length of the convex hull of suppNi ∪ suppNj. This inequality can be used to
obtain almost everywhere convergence for spline projections of L1-functions:

Theorem 1.2 ([6]). For all f ∈ L1[tℓ, tr+1] there exists a subset A ⊂ [tℓ, tr+1] of full Lebesgue measure
such that for all sequences (∆n) of partitions of [tℓ, tr+1] such that |∆n| → 0, we have

lim
n→∞

P∆n f (x) = f (x), x ∈ A.
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Our aim in this article is to prove an analogue of Theorem 1.2 for orthoprojectors on periodic
spline spaces. In this case, we do not have a version of (1.3) at our disposal, since the proof of this
inequality does not carry over to the periodic setting. However, by comparing orthogonal projections
onto periodic spline spaces to suitable non-periodic projections, we are able to obtain a periodic
version of Theorem 1.2.

In the course of the proof of the periodic version of Theorem 1.2, we also need a periodic version of
Theorem 1.1, which can be proved by first establishing the same assertion for infinite point sequences
and then by viewing periodic functions as defined on the whole real line [9]. The proof of Theorem 1.1
for infinite point sequences is announced in [8] and carried out [3]. In this article we give a different
proof of the periodic version of Shadrin’s theorem by employing a similar comparison of periodic
and non-periodic projection operators as in the proof of the periodic version of Theorem 1.2. This
proof directly passes from the interval case to the periodic result without recourse to infinite point
sequences.

1.2. Periodic splines

Let n ≥ k be a natural number and ∆ = (sj)n−1
j=0 be a sequence of distinct points on the torus

T = R/Z identified canonically with [0, 1), such that for all jwe have

sj ≤ sj+1, sj < sj+k,

and we extend (sj)n−1
j=0 periodically by

srn+j = r + sj
for r ∈ Z \ {0} and 0 ≤ j ≤ n − 1.

Now, the main result of this article reads as follows:

Theorem 1.3. For all functions f ∈ L1(T) there exists a set A of full Lebesgue measure such that for all
sequences of partitions (∆n) on T as above with |∆n| → 0, we have

lim
n→∞

Pnf (x) = f (x), x ∈ A,

wherePn denotes the orthogonal projection operator onto the periodic spline space of order kwith knots∆n.

In order to prove this result, we also need a periodic version of Theorem 1.1:

Theorem 1.4. There exists a constant ck depending only on the spline order k such that for all knot
sequences ∆ = (sj)n−1

j=0 on T, the associated orthogonal projection operator P satisfies the inequality

∥P : L∞(T) → L∞(T)∥ ≤ ck.

The idea of the proofs of Theorems 1.3 and 1.4 is to estimate the difference between the periodic
projection operator P and the non-periodic projection operator P for certain non-periodic point
sequences associated to ∆ = (si)n−1

i=0 .
The article is organized as follows. In Section 2, we prove a simple lemma on the growth behaviour

of linear combinations of non-periodic B-spline functions which is needed frequently later in the
proofs of both Theorems 1.3 and 1.4. Section 3 is devoted to the proof of Theorem 1.4, which is needed
for the proof of Theorem 1.3 in Section 4. Finally, in Section 5, we also apply our method of proof to
recover Shadrin’s theorem for infinite point sequences (see [3,8]).

2. A simple upper estimate for B-spline sums

Let A be a subset of [tℓ, tr+1]. Then, define the set of indices i(A)whose B-splines are not identically
zero on A as

i(A) := {i : A ∩ int(suppNi) ≠ ∅},
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where intU denotes the interior of the set U . We also write i(x) for i({x}). If we have two subsets U, V
of indices, we write d(U, V ) for the distance between U and V induced by the metric d(i, j) = |i − j|.

We will use the notation A(t) . B(t) to indicate the existence of a constant C that depends only
on the spline order k such that for all t we have A(t) ≤ CB(t), where t denotes all explicit or implicit
dependencies that the expressions A and B might have.

The fact that B-spline functions are localized, so a fortiori the set i(x) is localized for any x ∈

[tℓ, tr+1], can be used to derive the following lemma:

Lemma 2.1. Let J be a subset of the index set {ℓ, ℓ+1, . . . , r−1, r}, f =


j∈J⟨h,Nj⟩N∗

j and p ∈ [1, ∞].
Then, for all x ∈ [tℓ, tr+1], we have the estimates

|f (x)| . γ d(i(x),J)
∥h∥p max

m∈i(x),j∈J

κ
1/p′

j

hjm
(2.1)

≤ γ d(i(x),J)
∥h∥p max

m∈i(x),j∈J


max{κm, κj}

−1/p (2.2)

≤ γ d(i(x),J)
∥h∥p · |I(x)|−1/p, 1 ≤ p ≤ ∞, (2.3)

where γ ∈ (0, 1) is the constant appearing in (1.3), I(x) is the interval I = [ti, ti+1) containing the point
x and the exponent p′ is such that 1/p + 1/p′

= 1.

Proof. Since N∗

j =


m ajmNm,

f (x) =


j∈J


m∈i(x)

ajm⟨h,Nj⟩Nm(x).

This implies

|f (x)| . max
m∈i(x)


j∈J

γ |j−m|

hjm
∥h∥p∥Nj∥p′


,

wherewe used inequality (1.3) for ajm, Hölder’s inequalitywith the conjugate exponent p′
= p/(p−1)

to p and the fact that the B-spline functions Nm form a partition of unity. Using again the uniform
boundedness of Nj, we obtain

|f (x)| . ∥h∥p max
m∈i(x)


j∈J

γ |j−m|

hjm
κ
1/p′

j


.

Estimating this last sum by


j∈J γ
|j−m|

·maxj∈J κ
1/p′

j /hjm and summing the resulting geometric series
now yields (2.1). In order to get (2.2) from (2.1), observe that max{κj, κm} ≤ hjm and 1/p′

+ 1/p = 1.
For the deduction of (2.3) from (2.2), we note that for all m ∈ i(x), by definition, |I(x)| ≤ κm, which
directly implies (2.3). �

Remark 2.2. We note that we directly obtain the second estimate in the above lemma if we use the
weaker inequality (1.2) instead of (1.3). We also observe that the form of f in the above lemmameans
that ⟨f ,Nj⟩ = 0 for j ∉ J .

3. The periodic spline orthoprojector is uniformly bounded on L∞

In this section, we give a direct proof of Theorem 1.4 on the boundedness of periodic spline
projectors without recourse to infinite knot sequences. Here, we will only use the geometric decay
of the matrix (ajm) defined above for splines on an interval.

A vital tool in the proofs of both Theorems 1.1 and 1.2 are B-spline functions.Wewill also use them
extensively and introduce their periodic version, cf. [7, Chapter 8.1, pp. 297–308]. Associated to the
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periodic point sequence (sj)n−1
j=0 and its periodic extension as in Section 1.2 we define the non-periodic

point sequence

tj = sj, for j = −k + 1, . . . , n + k − 1

and denote the corresponding non-periodic B-spline functions by (Nj)
n−1
j=−k+1 with suppNj = [tj, tj+k].

Then we define for x ∈ [0, 1)Nj(x) = Nj(x), j = 0, . . . , n − k,

if we canonically identify Twith [0, 1). Moreover, for j = n − k + 1, . . . , n − 1,

Nj(x) =


Nj−n(x), if x ∈ [0, sj],
Nj(x), if x ∈ (sj, 1).

We denote byP the orthogonal projection operator onto the space of periodic splines of order k
with knots (sj)n−1

j=0 , which is the linear span of the B-spline functions (Nj)
n−1
j=0 and similarly to the non-

periodic case we define

i(A) = {0 ≤ j ≤ n − 1 : A ∩ int(suppNj) ≠ ∅}, A ⊂ T.

Lemma 3.1. Let fi be a function on Twith supp fi ⊂ [si, si+1] for some index i in the range 0 ≤ i ≤ n−1.
Then, for any x ∈ T,

|Pfi(x)| . γ
d(i(x),i(supp fi))∥fi∥∞,

whered is the distance function induced by the canonical metric in Z/nZ and γ ∈ (0, 1) is the constant
appearing in inequality (1.3).

Proof. We assume that the index i is chosen such that si < si+1, since if si = si+1, the function fi is
identically zero in L∞. Also, without loss of generality, we can assume that i = 0, since otherwise we
could just shift the point sequence.

Given a function f on T, we associate a non-periodic function Tf defined on [s0, sn+1] given by

Tf (t) = f (π(t)), t ∈ [s0, sn+1],

where π(t) is the quotient mapping fromR to T. We observe that T is a linear operator, ∥T : L2(T) →

L2([s0, sn+1])∥ =
√
2 and ∥T : L∞(T) → L∞([s0, sn+1])∥ = 1. Moreover, for x ∈ T, let r(x) be the

representative of x in the interval [s0, sn). We want to estimate Pf0(x). In order to do this, we first
decompose

Pf0(x) = TPf0(r(x)) = PTf0(r(x)) + (TPf0 − PTf0)(r(x)), (3.1)

where P is the orthogonal projection operator onto the space of splines of order k corresponding to
the point sequence∆ = (tj)n+k

j=−k+1 associated to the non-periodic grid points in the interval [s0, sn+1],
i.e.,

tj = sj, j = 0, . . . , n + 1,
t−k+1 = · · · = t−1 = s0, tn+2 = · · · = tn+k = sn+1.

Also, let (Nj)
n
j=−k+1 be the L∞-normalized B-spline basis corresponding to this point sequence.

We estimate the first term PTf0(r(x)) from the decomposition in (3.1) of Pf0(x). Since P is a
projection operator onto splines on an interval, we use representation (1.1) to get

PTf0(r(x)) =

n
j=−k+1

⟨Tf0,Nj⟩N∗

j (r(x)),
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and, since supp Tf0 ⊂ [s0, s1] ∪ [sn, sn+1] = [t0, t1] ∪ [tn, tn+1] by definition of f0 and T and
suppNj ⊂ [tj, tj+k] for all j = −k + 1, . . . , n,

PTf0(r(x)) =


j∈J1

⟨Tf0,Nj⟩N∗

j (r(x)),

with J1 = {−k + 1, . . . , 0} ∪ {n − k + 1, . . . , n}. Employing now inequality (2.3) of Lemma 2.1 with
p = ∞ to this sum, we obtain

|PTfi(r(x))| . γ d(i(r(x)),J1)∥Tfi∥∞ . γ
d(i(x),i(supp fi))∥fi∥∞. (3.2)

Now we turn to the second term on the right hand side of (3.1). Let g := (TP − PT )f0 =

(TP − T )f0 + (T − PT )f0. Observe that g ∈ Sk(∆) since the range of both TP and P is contained
in Sk(∆). Moreover,

⟨(TP − T )f0,Nj⟩ = ⟨Pf0 − f0,Nj⟩, j = 0, . . . , n − k + 1.

This equation is true in the given range of the parameter j, since in this case, the functions Nj and Nj

coincide. The fact thatP is an orthogonal projection onto the span of the functions (Nj)
n−1
j=0 then implies

⟨TPf0 − Tf0,Nj⟩ = ⟨Pf0 − f0,Nj⟩ = 0, j = 0, . . . , n − k + 1.

Combining this with the fact

⟨Tf0 − PTf0,Nj⟩ = 0, j = −k + 1, . . . , n,

since P is an orthogonal projection onto a spline space as well, we obtain that

⟨g,Nj⟩ = 0, j = 0, . . . , n − k + 1.

Therefore, we can expand g as a B-spline sum

g =


j∈J2

⟨g,Nj⟩N∗

j ,

with J2 = {−k + 1, . . . ,−1} ∪ {n − k + 2, . . . , n}. Now, we employ inequality (2.2) of Lemma 2.1 on
the function g with the parameter p = 2 to get for the point y = r(x)

|g(y)| . γ d(i(y),J2)∥g∥2 max
j∈J2

| suppNj|
−1/2.

Since g = (TP − PT )f0 and the operator TP − PT has norm ≤ 2
√
2 on L2, we get

|g(y)| . γ d(i(y),J2)∥f0∥2| supp f0|−1/2,

where we also used the fact that suppNj ⊃ [s0, s1] = [t0, t1] or suppNj ⊃ [sn, sn+1] = [tn, tn+1] for
j ∈ J2. Since d(i(y), J2) ≥d(i(x), i(supp f0)) and ∥f0∥2 ≤ ∥f0∥∞| supp f0|1/2, we finally get

|g(y)| . γ
d(i(x),i(supp f0))∥f0∥∞.

Looking at (3.1) and combining the latter estimate with (3.2), the proof is completed. �

This lemma can be used directly to prove Theorem 1.4 on the uniform boundedness of periodic
orthogonal spline projection operators on L∞:

Proof of Theorem 1.4. We just decompose the function f as f =
n−1

i=0 f · 1[si,si+1) and apply
Lemma 3.1 to each summand and the assertion ∥Pf ∥∞ . ∥f ∥∞ follows after summation of a
geometric series. �

Remark 3.2. (i) SinceP is a selfadjoint operator, Theorem 1.4 also implies thatP is bounded as an
operator from L1(T) to L1(T) by the same constant ck as in the above theorem. Moreover, by
interpolation,P is also bounded by ck as an operator from Lp(T) to Lp(T) for any p ∈ [1, ∞].
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(ii) In the proof of Lemma3.1,we only use inequality (2.2) of Lemma2.1which follows from inequality
(1.2) on the inverse of the B-splineGrammatrix anddoes not need its stronger form (1.3). Similarly
to the equivalence of Shadrin’s theorem and (1.2) in the non-periodic case, we can derive the
equivalence of Theorem 1.4 and the estimate

|aij| ≤
Kγ

d(i,j)
max(κi,κj)

, 0 ≤ i, j ≤ n − 1,

where (aij) denotes the inverse of the Gram matrix (⟨Ni,Nj⟩), K > 0 and γ ∈ (0, 1) are constants
depending only on the spline order k,κi denotes the length of the support ofNi andd is the canonical
distance in Z/nZ. The proof of this equivalence uses the same tools as the proof in the non-periodic
case: a periodic version of both Demko’s theorem and de Boor’s stability.

4. Almost everywhere convergence

In this section we prove Theorem 1.3 on the a.e. convergence of periodic spline projections.

Proof of Theorem 1.3. Without loss of generality, we assume that∆n has n points. Let∆n = (s(n)j )n−1
j=0

and (N (n)
j )n−1

j=0 be the corresponding periodic B-spline functions. Associated to it, define the non-
periodic point sequence ∆n = (t(n)j )n+k−1

j=−m with the boundary points 0 and 1 as

t(n)j = s(n)j , j = 0, . . . , n − 1,

t(n)−m = · · · = t(n)
−1 = 0, t(n)n = · · · = t(n)n+k−1 = 1.

We choose the integer m such that the multiplicity of the point 0 in ∆n is k and denote by (N (n)
j )n−1

j=−m
the non-periodic B-spline functions corresponding to this point sequence and by Pn the orthogonal
projection operator onto the span of (N (n)

j )n−1
j=−m.

We will show thatPnf (x) → f (x) for all x in the set A from Theorem 1.2 of full Lebesgue measure
such that lim PnTf (x) = Tf (x) for all x ∈ A, where T is just the operator that canonically identifies a
function defined on Twith the corresponding function defined on [0, 1) and we write x for a point in
T as well as for its representative in the interval [0, 1). Observe that this operator T is different from
the operator T in the proof of Lemma 3.1.

So, choose an arbitrary (non-zero) point x ∈ A and decomposePnf (x):Pnf (x) = TPnf (x) = PnTf (x) +

TPnf (x) − PnTf (x)


. (4.1)

For the first term of (4.1), PnTf (x), we have that limn→∞ PnTf (x) = Tf (x) = f (x) since x ∈ A.
It remains to estimate the second term gn(x) = TPnf (x) − PnTf (x) = TPnf (x) − Tf (x) + Tf (x) −

PnTf (x) of (4.1). In order to do this, wewrite gn ∈ Sk(∆n) like the function g in the proof of Lemma 3.1:

gn =


j∈Jn

⟨gn,N
(n)
j ⟩N (n)∗

j ,

with Jn = {−m, . . . ,−1}∪{n−k, . . . , n−1} and (N (n)∗
j ) being the dual basis to (N (n)

j ). We now apply
inequality (2.1) of Lemma 2.1 with p = 1 to gn and get

|gn(x)| . γ d(in(x),Jn)∥gn∥1 max
ℓ∈in(x),j∈Jn

1

h(n)
ℓj

,

where h(n)
ℓj denotes the length of the convex hull of suppN (n)

ℓ ∪ suppN (n)
j and in(x) is the set of indices

i such that x is contained in the support ofN (n)
i . Since for ℓ ∈ in(x), the point x is contained in suppN (n)

ℓ

and for j ∈ Jn either the point 0 or the point 1 is contained in suppN (n)
j , we can further estimate

|gn(x)| . γ d(in(x),Jn)∥gn∥1
1

min(x, 1 − x)
.
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Now, ∥gn∥1 = ∥(TPn−PnT )f ∥1 . ∥f ∥1, since the operator T has norm one on L1 andPn and Pn are both
bounded on L1 uniformly in n by Theorem 1.4 (cf. Remark 3.2) and Theorem 1.1, respectively. Since
|∆n| tends to zero, and a fortiori the same is true for |∆n|, we have that d(in(x), Jn) tends to infinity as
n → ∞. This implies limn→∞ gn(x) = 0, and therefore, by the choice of the point x and decomposition
(4.1), limPnf (x) = f (x). Since x ∈ Awas arbitrary and A is a set of full Lebesgue measure, we obtain

lim
n→∞

Pnf (y) = 0, for a.e. y ∈ T,

and the proof is completed. �

5. The case of infinite point sequences

In this last section, we use the methods introduced in the previous sections to recover Shadrin’s
theorem for infinite point sequences (see [8,3]).

Let (si)i∈Z be a biinfinite point sequence in R satisfying

si ≤ si+1, si < si+k,

with the corresponding B-spline functions (Ni)i∈Z satisfying suppNi = [si, si+k]. Furthermore, we
denote byP the orthogonal projection operator onto the closed linear span of the functions (Ni)i∈Z.

Lemma 5.1. Let f be a function on (inf si, sup si) with compact support. Then, for any x ∈ (inf si, sup si),

|Pf (x)| . γ d(i(x),i(supp f ))
∥f ∥∞,

where γ ∈ (0, 1) is the constant appearing in inequality (1.3).

Proof. For notational simplicity, we assume in this proof that the sequence (si) is strictly increasing.
Let x ∈ (inf si, sup si) and let I(x) be the interval I = [si, si+1) containing x. Since f has compact support
and the sequence (si) is biinfinite, we can choose the indices ℓ and r such that {x}∪supp f ⊂ [sℓ, sr+1)
and with J = {ℓ − k + 1, . . . , ℓ − 1} ∪ {r − k + 2, . . . , r}, the inequality

γ d(i(x),J)
| supp f |1/2|I(x)|−1/2

≤ γ d(i(x),i(supp f ))

is true.
Next, define the point sequence ∆ = (ti)r+k

i=ℓ−k+1 by

ti = si, i = ℓ, . . . , r + 1,
a = tℓ−k+1 = · · · = tℓ = sℓ, b = tr+k = · · · = tr+1 = sr+1,

and let the collection (Ni)
r
i=ℓ−k+1 be the corresponding B-spline functions and P the associated

orthogonal projector. Let T be the operator that restricts a function defined on (inf si, sup si) to the
interval [a, b]. Note that this operator T is different from those in the proofs of Lemma 3.1 and
Theorem 1.3. In order to estimatePf (x), we decomposePf (x) = TPf (x) = PTf (x) +


TPf (x) − PTf (x)


. (5.1)

Observe that PTf =


n∈F ⟨f ,Nn⟩N∗
n , where F = i(supp f ). Applying inequality (2.3) of Lemma 2.1

with the exponent p = ∞, we obtain

|PTf (x)| . γ d(i(x),F)
∥f ∥∞.

We now consider the second part of the decomposition (5.1), the function g = (TP − PT )f =

(TP − T + T − PT )f . Again, as we did for the function g in the proof of Lemma 3.1, we can write
g ∈ Sk(∆) as

g =


j∈J

⟨g,Nj⟩N∗

j
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with J = {ℓ − k + 1, . . . , ℓ − 1} ∪ {r − k + 2, . . . , r} as defined above. Now, by inequality (2.3) of
Lemma 2.1 with the exponent p = 2, we get

|g(x)| . γ d(i(x),J)
∥g∥2 · |I(x)|−1/2 . γ d(i(x),J)

∥f ∥2 · |I(x)|−1/2

≤ γ d(i(x),J)
| supp f |1/2|I(x)|−1/2

∥f ∥∞.

Finally, due to the choice of ℓ and r ,

γ d(i(x),J)
| supp f |1/2|I(x)|−1/2

≤ γ d(i(x),i(supp f )),

which proves the lemma. �

We can now use this lemma to definePf for functions f ∈ L∞(inf si, sup si) that are not necessarily
in L2(inf si, sup si) if inf si = −∞ or sup si = +∞. If we let fi := f 1[si,si+1), then fi has compact support
and the above lemma implies that the pointwise seriesPf (x) :=


i∈Z

Pfi(x), x ∈ (inf si, sup si),

is absolutely convergent and, moreover, there exists a constant C depending only on the spline order
k such that

∥Pf ∥∞ ≤ C∥f ∥∞.

This operator enjoys the characteristic property of an orthogonal projection:

⟨Pf − f ,Ni⟩ = 0, i ∈ Z.

Remark 5.2. One can combine the proofs of Lemmas 5.1 and 3.1 to also obtain the uniform
boundedness of the spline orthoprojector on L∞ for one-sided infinite point sequences.
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Unconditionality of periodic orthonormal
spline systems in Lp

by

Karen Keryan (Yerevan) and Markus Passenbrunner (Linz)

Abstract. Given any natural number k and any dense point sequence (tn) on the
torus T, we prove that the corresponding periodic orthonormal spline system of order k
is an unconditional basis in Lp for 1 < p < ∞.

1. Introduction. In this work, we are concerned with periodic or-
thonormal spline systems of arbitrary order k with arbitrary partitions. We
let (sn)∞n=1 be a dense sequence of points in the torus T such that each point
occurs at most k times. Such point sequences are called admissible.

For n ≥ k, we define Ŝn to be the space of polynomial splines of order k
with grid points (sj)

n
j=1. For each n ≥ k + 1, the space Ŝn−1 has codimen-

sion 1 in Ŝn, and therefore there exists a function f̂n ∈ Ŝn with ‖f̂n‖2 = 1

that is orthogonal to Ŝn−1. Observe that this function f̂n is unique up to
sign. In addition, let (f̂n)kn=1 be an orthonormal basis for Ŝk. The system of

functions (f̂n)∞n=1 is called a periodic orthonormal spline system of order k
corresponding to the sequence (sn)∞n=1. We remark that if a point x occurs

m times in the sequence (sn)∞n=1 before index N , the space ŜN consists of
splines that are in particular k−1−m times continuously differentiable at x,
where for k − 1 −m ≤ −1 we mean that no restrictions at the point x are
imposed. This means that if m = k and also sN = x, we have ŜN−1 = ŜN
and therefore it makes no sense to consider non-admissible point sequences.

The main result of this article is the following

Theorem 1.1. Let k ∈ N and (sn)n≥1 be an admissible sequence of knots
in T. Then the corresponding periodic orthonormal spline system of order k
is an unconditional basis in Lp(T) for every 1 < p <∞.
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This is the periodic version of the main result in [13]. We now give a few
comments on the history of this result. We can similarly define the spaces
Sn corresponding to an admissible point sequence (tn) on the interval [0, 1].
A celebrated result of A. Shadrin [16] states that the orthogonal projec-
tion operator onto Sn is bounded on L∞[0, 1] by a constant that depends
only on the spline order k. As a consequence, (fn)n (also similarly defined

to f̂n) is a Schauder basis in Lp[0, 1], 1 ≤ p < ∞, and in the space C[0, 1]
of continuous functions. There are various results on the unconditionality of
spline systems restricting either the spline order k or the partition (tn)n≥0.
The first result in this direction is [1], where it is proved that the clas-
sical Franklin system—that is, the orthonormal spline systems of order 2
corresponding to the dyadic knot sequence (1/2, 1/4, 3/4, 1/8, 3/8, . . .)—is
an unconditional basis in Lp[0, 1], 1 < p < ∞. This argument was ex-
tended in [3] to prove unconditionality of orthonormal spline systems of
arbitrary order, but still restricted to dyadic knots. Considerable effort has
been made in the past to weaken the restriction to dyadic knot sequences.
In a series of papers [9, 11, 10] this restriction was removed step-by-step
for general Franklin systems, with the final result that for each admissi-
ble point sequence (tn)n≥0 with parameter k = 2, the associated general
Franklin system forms an unconditional basis in Lp[0, 1], 1 < p < ∞. By
combining the methods used in [11, 10] with some new inequalities from
[15] it was proved in [13] that non-periodic orthonormal spline systems are
unconditional bases in Lp[0, 1], 1 < p < ∞, for any spline order k and any
admissible point sequence (tn).

The periodic analogue of Shadrin’s theorem can be obtained from Shad-
rin’s result [16] using [5]. Alternatively, [14] gives a direct proof. In the case
of dyadic knots, J. Domsta [8] obtained exponential decay for the inverse
of the Gram matrix of periodic B-splines, which were exploited to prove
the unconditionality of the periodic orthonormal spline systems with dyadic
knots in Lp for 1 < p <∞. In [12] it was proved that for any admissible point
sequence the corresponding periodic Franklin system (i.e. the case k = 2)
forms an unconditional basis in Lp[0, 1], 1 < p < ∞. Here we obtain an
estimate for general periodic orthonormal spline functions, which combined
with the methods developed in [10] yields the unconditionality of periodic
orthonormal spline systems in Lp(T).

The main idea of the proofs of (fn) or (f̂n) being an unconditional basis
in Lp, p ∈ (1,∞), in [10, 12, 13] is that to a single function fn, a grid point
interval is associated on which most of the mass of fn is concentrated. In
the case of Haar functions hn, its support splits into two intervals I and J ,
where the function hn is positive on I and negative on J . As the associated
interval, we could just use the smaller of I and J .
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The organization of the present article is as follows. In Section 2, we give
some preliminary results concerning polynomials, splines and non-periodic
orthonormal spline functions. Section 3 develops crucial estimates for the
periodic orthonormal spline functions f̂n and gives several relations between
f̂n and its non-periodic counterpart. In Section 4 we prove a few technical
lemmata used in the proof of Theorem 1.1, and Section 5 finally proves
Theorem 1.1.

We remark that the results and most of the proofs in Sections 4 and 5
closely follow [10]. However, the proof of the crucial Lemma 4.4 is new and
much shorter than in [10].

2. Preliminaries. Let k be a positive integer. The parameter k will
always be used for the order of the underlying polynomials or splines. We
use the notation A(t) ∼ B(t) to indicate the existence of two constants
c1, c2 > 0 that depend only on k, such that c1B(t) ≤ A(t) ≤ c2B(t) for
all t, where t denotes all implicit and explicit dependences that the ex-
pressions A and B might have. If the constants c1, c2 depend on an ad-
ditional parameter p, we write this as A(t) ∼p B(t). Correspondingly, we
use the symbols ., &, .p, &p. For a subset E of the real line, we denote
by |E| the Lebesgue measure of E and by 1E the characteristic function
of E.

We will need the classical Remez inequality:

Theorem 2.1 (Remez). Let V ⊂ R be a compact interval and E ⊂ V a
measurable subset. Then, for all polynomials p of order k on V ,

‖p‖L∞(V ) ≤
(

4
|V |
|E|

)k−1
‖p‖L∞(E).

This immediately yields the following corollary:

Corollary 2.2. Let p be a polynomial of order k on a compact interval
V ⊂ R. Then

∣∣{x ∈ V : |p(x)| ≥ 8−k+1‖p‖L∞(V )

}∣∣ ≥ |V |/2.

Proof. This is a direct application of Theorem 2.1 with E := {x ∈ V :
|p(x)| ≤ 8−k+1‖p‖L∞(V )}.

Let

(2.1)

T = (0 = τ−k = · · · = τ−1 < τ0 ≤ · · · ≤ τn−1 < τn = · · · = τn+k−1 = 1)

be a partition of [0, 1] consisting of knots of multiplicity at most k, that is,
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τi < τi+k for all 0 ≤ i ≤ n− 1. Let ST be the space of polynomial splines of
order k with knots T . The basis of L∞-normalized B-spline functions in ST
is denoted by (Ni,k)

n−1
i=−k or for short (Ni)

n−1
i=−k. Corresponding to this basis,

there exists a biorthogonal basis of ST , which is denoted by (N∗i,k)
n−1
i=−k or

(N∗i )n−1i=−k. Moreover, we write νi = τi+k − τi = |suppNi|.
We now recall a few important results for B-splines Ni and their dual

functions N∗i .

Theorem 2.3 (Shadrin [16]). Let P be the orthogonal projection operator
onto ST with respect to the canonical inner product in L2[0, 1]. Then there
exists a constant Ck depending only on the spline order k such that

‖P : L∞[0, 1]→ L∞[0, 1]‖ ≤ Ck.

Proposition 2.4 (B-spline stability). Let 1≤p≤∞ and g=
∑n−1

j=−k ajNj

be a linear combination of B-splines. Then

(2.2) |aj | . |Lj |−1/p‖g‖Lp(Lj), −k ≤ j ≤ n− 1,

where Lj is a subinterval [τi, τi+1] of [τj , τj+k] of maximal length. Addition-
ally,

(2.3) ‖g‖p ∼
( n−1∑

j=−k
|aj |pνj

)1/p
= ‖(ajν1/pj )n−1j=−k‖`p .

Moreover, if h =
∑n−1

j=−k bjN
∗
j , then

(2.4) ‖h‖p ∼
( n−1∑

j=−k
|bj |pν1−pj

)1/p
= ‖(bjν1/p−1j )n−1j=−k‖`p .

Inequalites (2.2) and (2.3) are respectively Lemmas 4.1 and 4.2 in [7,
Chapter 5]. Inequality (2.4) is a consequence of Theorem 2.3. For a deduction
of the lower estimate in (2.4) from this result, see [4, Property P.7]. The proof
of the upper estimate uses a simple duality argument which we shall present
here:

Proof of the upper estimate in (2.4). We only consider the case p < ∞
and we assume without loss of generality that bj ≥ 0. Let Nj,p = ν

−1/p
j Nj be

the p-normalized B-spline function and N∗j,p = ν
1/p
j N∗j be the corresponding

p-normalized dual B-spline function. By definition, the system N∗j,p forms a
dual basis to the system of functions Nj,p. By choosing p′ = p/(p − 1) and
α = 2/p′ (so 2− α = 2/p) we obtain, by (2.3),
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∑

j

b2j =
〈∑

j

bαjN
∗
j,p,
∑

j

b2−αj Nj,p

〉
≤
∥∥∥
∑

j

b2−αj Nj,p

∥∥∥
p

∥∥∥
∑

j

bαjN
∗
j,p

∥∥∥
p′

=
∥∥∥
∑

j

b2−αj ν
−1/p
j Nj

∥∥∥
p

∥∥∥
∑

j

bαj ν
1/p
j N∗j

∥∥∥
p′

.
(∑

j

b2j

)1/p∥∥∥
∑

j

bαj ν
1/p
j N∗j

∥∥∥
p′
.

So we get

(2.5)
(∑

j

b2j

)1/p′
.
∥∥∥
∑

j

bαj ν
1/p
j N∗j

∥∥∥
p′
.

Setting aj = bαj ν
1/p
j , we see that b2j = (ajν

−1/p
j )2/α = ap

′
j ν
−p′/p
j = ap

′
j ν

1−p′
j ,

and therefore we may write (2.5) as
(∑

j

ap
′
j ν

1−p′
j

)1/p′
.
∥∥∥
∑

j

ajN
∗
j

∥∥∥
p′
,

which is the upper estimate in (2.4).

It can be shown that Shadrin’s theorem actually implies the following
estimate on the B-spline Gram matrix inverse:

Theorem 2.5 ([15]). Let k ∈ N, let the partition T be defined as in
(2.1) and let (aij) be the inverse of the Gram matrix (〈Ni, Nj〉) of B-spline
functions. Then

|aij | ≤ C
q|i−j|

|conv(suppNi ∪ suppNj)|
, −k ≤ i, j ≤ n− 1,

where the constants C > 0 and 0 < q < 1 depend only on the spline order
k and where by conv(U) for U ⊂ [0, 1] we denote the smallest subinterval of
[0, 1] that contains U .

Let f ∈ Lp[0, 1] for some 1 ≤ p <∞. Since the orthonormal spline system
(fn)n≥−k+2 is a basis in Lp[0, 1], we can write f =

∑∞
n=−k+2 anfn. In terms of

this expansion, we define the maximal function Mf := supm
∣∣∑

n≤m anfn
∣∣.

Given a measurable function g, we denote by Mg the Hardy–Littlewood
maximal function of g defined as

Mg(x) := sup
I3x
|I|−1

�

I

|g(t)|dt,

where the supremum is taken over all intervals I containing the point x.
A corollary of Theorem 2.5 is the following relation between M andM:

Theorem 2.6 ([15]). If f ∈ L1[0, 1], then

Mf(t) .Mf(t), t ∈ [0, 1].
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2.1. Orthonormal spline functions, non-periodic case. This sec-

tion recalls some facts about orthonormal spline functions fn = f
(k)
n for

fixed k ∈ N and n ≥ 2 induced by the admissible sequence (tn).
We again consider the mesh T as before:

T = (0 = τ−k = · · · = τ−1 < τ0 ≤ · · · ≤ τi0
≤ · · · ≤ τn−1 < τn = · · · = τn+k−1 = 1),

where we singled out the point τi0 ; and the partition T̃ is defined to be the
same as T , but with τi0 removed. In the same way we denote by (Ni : −k ≤
i ≤ n− 1) the B-spline functions corresponding to T and by (Ñi : −k ≤ i ≤
n− 2) the B-spline functions corresponding to T̃ . Böhm’s formula [2] gives

us the following relationship between Ni and Ñi:

(2.6)

Ñi(t) =





Ni(t) if −k ≤ i ≤ i0 − k − 1,
τi0 − τi
τi+k − τi

Ni(t) +
τi+k+1 − τi0
τi+k+1 − τi+1

Ni+1(t) if i0 − k ≤ i ≤ i0 − 1,

Ni+1(t) if i0 ≤ i ≤ n− 2.

In order to calculate the orthonormal spline function corresponding to
the partitions T̃ and T , we first determine a function g ∈ span{Ni : −k ≤
i ≤ n− 1} such that g ⊥ Ñj for all −k ≤ j ≤ n− 2. Up to a multiplicative
constant, the function g is of the form

(2.7) g =

i0∑

j=i0−k
αjN

∗
j ,

where (N∗j : −k ≤ j ≤ n − 1) is the system biorthogonal to the functions
(Ni : −k ≤ i ≤ n− 1) and

(2.8)

αj = (−1)j−i0+k
( j−1∏

`=i0−k+1

τi0 − τ`
τ`+k − τ`

)( i0−1∏

`=j+1

τ`+k − τi0
τ`+k − τ`

)
, i0−k ≤ j ≤ i0.

Alternatively, the coefficients αj can be described by the recursion

(2.9) αi+1
τi+k+1 − τi0
τi+k+1 − τi+1

+ αi
τi0 − τi
τi+k − τi

= 0.

In order to give estimates for g, and a fortiori for the normalized function
f = g/‖g‖2, we assign to each g a characteristic interval that is a grid point
interval [τi, τi+1] and lies in the proximity of the newly inserted point τi0 :

Definition 2.7 ([13], Characteristic interval for non-periodic sequences).

Let T , T̃ be as above and τi0 be the new point in T that is not present in T̃ .
We define the characteristic interval J corresponding to τi0 as follows.
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(1) Let

Λ(0) :=
{
i0 − k ≤ j ≤ i0 : |[τj , τj+k]| ≤ 2 min

i0−k≤`≤i0
|[τ`, τ`+k]|

}

be the set of all indices j for which the corresponding support of the
B-spline function Nj is approximately minimal. Observe that Λ(0) is
non-empty.

(2) Define

Λ(1) :=
{
j ∈ Λ(0) : |αj | = max

`∈Λ(0)
|α`|
}
.

For an arbitrary but fixed index j(0) ∈ Λ(1), set J (0) := [τj(0) , τj(0)+k].

(3) The interval J (0) can now be written as the union of k grid intervals

J (0) =
k−1⋃

`=0

[τj(0)+`, τj(0)+`+1] with j(0) as above.

We define the characteristic interval J = J(τi0) to be one of the above
k intervals that has maximal length.

Using this definition of J , we recall the following estimates for g:

Lemma 2.8 ([13]). Let T , T̃ be as above and let g =
∑i0

j=i0−k αjN
∗
j =∑n−1

j=−k wjNj be the function from (2.7), where the coefficients (wj) are de-

fined by this equation. Moreover, let f = g/‖g‖2 be the L2-normalized or-
thogonal spline function corresponding to the mesh point τi0. Then

‖g‖Lp(J) ∼ ‖g‖p ∼ |J |1/p−1, 1 ≤ p ≤ ∞,
and therefore

‖f‖Lp(J) ∼ ‖f‖p ∼ |J |1/p−1/2, 1 ≤ p ≤ ∞,
where J is the characteristic interval associated to the point τi0 given in
Definition 2.7.

Additionally, if dT (z) denotes the number of grid points from T that lie
between J and z including z and the endpoints of J , then there exists a
q ∈ (0, 1) depending only on k such that

(2.10) |wj | .
qdT (τj)

|J |+ dist(suppNj , J) + νj
for all −k ≤ j ≤ n− 1.

Moreover, if x < inf J , then

(2.11) ‖f‖Lp(0,x) .
qdT (x)|J |1/2

(|J |+ dist(x, J))1−1/p
, 1 ≤ p ≤ ∞.

Similarly, for x > sup J ,

(2.12) ‖f‖Lp(x,1) .
qdT (x)|J |1/2

(|J |+ dist(x, J))1−1/p
, 1 ≤ p ≤ ∞.
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2.2. Combinatorics of characteristic intervals. We additionally
have a combinatorial lemma concerning the collection of characteristic inter-
vals corresponding to all grid points of an admissible sequence (tn) of points
and the corresponding orthonormal spline functions (fn)∞n=−k+2 of order k.
For n ≥ 2, the partitions Tn associated to fn are defined to consist of the
grid points (tj)

n
j=−1, the knots t−1 = 0 and t0 = 1 having both multiplicity

k in Tn and we enumerate them as

Tn = (0 = τn,−k = · · · = τn,−1 < τn,0

≤ · · · ≤ τn,n−1 < τn,n = · · · = τn,n+k−1 = 1).

If n ≥ 2, we denote by J
(0)
n and Jn the characteristic intervals J (0) and

J from Definition 2.7 associated to the new grid point tn, which is defined
to be the characteristic interval associated to (Tn−1, Tn). If n is in the range
−k + 2 ≤ n ≤ 1, we additionally set Jn := [0, 1].

Lemma 2.9 ([13]). Let V be an arbitrary subinterval of [0, 1] and let
β > 0. Then there exists a constant Fk,β only depending on k and β such
that

card{n : Jn ⊆ V, |Jn| ≥ β|V |} ≤ Fk,β,
where cardE denotes the cardinality of the set E.

3. Periodic splines. In this section, we give estimates for periodic
orthonormal spline functions (f̂n) similar to the ones in Lemma 2.8 for non-
periodic orthonormal splines. The main difficulty in proving such estimates
is that we do not have a periodic version of Theorem 2.5 at our disposal. In-
stead, we estimate the differences between f̂n and two suitable non-periodic
orthonormal spline functions fn.

Let n ≥ k and (N̂i)
n−1
i=0 be periodic B-spline functions of order k with an

arbitrary admissible grid (σj)
n−1
j=0 on T canonically identified with [0, 1):

T̂ = (0 ≤ σ0 ≤ σ1 ≤ · · · ≤ σn−1 < 1).

Moreover, let (N̂∗i )n−1i=0 be the dual basis to (N̂i)
n−1
i=0 and ŜT̂ be the linear

span of (N̂i)
n−1
i=0 . First, we recall a periodic version of Shadrin’s theorem:

Theorem 3.1. Let P̂ be theL2(T)-orthogonal projection operator onto ŜT̂ .
Then there exists a constant Ck depending only on the spline order k such
that

‖P̂ : L∞(T)→ L∞(T)‖ ≤ Ck.
We refer to the articles [16, 5] for a proof of this result for infinite knot

sequences on the real line, which can then be carried over to T. Alternatively,
we refer to [14] for a direct proof.

Next, note that B-spline stability carries over to the periodic setting:

CHAPTER 6. UNCONDITIONALITY OF PERIODIC SPLINE SYSTEMS IN LP 119



Unconditionality of spline systems in Lp 65

Proposition 3.2. Let n≥2k and 1≤p≤∞. Then, for g=
∑n−1

j=0 ajN̂j,
we have

‖g‖p ∼
( n−1∑

j=0

|aj |p|supp N̂j |
)1/p

= ‖(aj · |supp N̂j |1/p)n−1j=0 ‖`p .

The matrix (âij)
n−1
i,j=0 := (〈N̂∗i , N̂∗j 〉)n−1i,j=0 satisfies the following geometric

decay inequality, which is a consequence of Theorem 3.1 on the uniform
boundedness of the periodic orthogonal spline projection operator:

Proposition 3.3. Let n ≥ 2k. Then there exists a constant q ∈ (0, 1)
depending only on the spline order k such that

|âij | .
qd̂(i,j)

max(|supp N̂i|, |supp N̂j |)
, 0 ≤ i, j ≤ n− 1,

where d̂ is the periodic distance function on {0, . . . , n− 1}.
The proof of this proposition runs along the same lines as in the non-

periodic case, where B-spline stability and Demko’s theorem [6] on the ge-
ometric decay of inverses of band matrices is used. The proof in the non-
periodic case can be found in [4].

Observe that the estimate contained in this proposition for periodic
splines is not as good as the one from Theorem 2.5 for non-periodic splines
due to the different term in the denominator. Next, we also get stability of
the periodic dual B-spline functions (N∗i ):

Proposition 3.4. Let n ≥ 2k, 1 ≤ p ≤ ∞ and h =
∑n−1

j=0 bjN̂
∗
j . Then

‖h‖p ∼
( n−1∑

j=0

|bj |p|supp N̂j |1−p
)1/p

= ‖(bj · |supp N̂j |1/p−1)n−1j=0 ‖`p .

Proof. We only prove the assertion for p ∈ (1,∞). The boundary cases
follow by obvious modifications. By Propositions 3.3, 3.2, and Hölder’s in-
equality,
∥∥∥
∑

j

ajν
1/p′

j N̂∗j
∥∥∥
p

p
=
∥∥∥
∑

j

ajν
1/p′

j

∑

i

âijN̂i

∥∥∥
p

p
=
∥∥∥
∑

i

(∑

j

ajν
1/p′

j âij

)
N̂i

∥∥∥
p

p

≤
∑

i

∣∣∣
∑

j

ajν
1/p′

j âij

∣∣∣
p
νi .

∑

i

(∑

j

|aj |ν1/p
′

j ν
1/p
i

qd̂(i,j)

max(νi, νj)

)p

≤
∑

i

(∑

j

|aj |qd̂(i,j)
)p
≤
∑

i

(∑

j

|aj |pqd̂(i,j)
p
2

)
·
(∑

j

q
d̂(i,j) p

2(p−1)

)p−1

.
∑

i

∑

j

|aj |pqd̂(i,j)
p
2 . ‖a‖pp.
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Setting bj = ajν
1/p′

j yields the first inequality of dual B-spline stability. The
other inequality is proved similarly to the result for the non-periodic case in
Proposition 2.4.

3.1. Periodic orthonormal spline functions. We now consider the
same situation as for the non-periodic case: Let

T̂ = (0 ≤ σ0 ≤ σ1 ≤ · · · ≤ σi0 ≤ · · · ≤ σn−2 ≤ σn−1 < 1)

be a partition of T canonically identified with [0, 1), and
˜̂T be the same

partition, but with σi0 removed. Similarly, we denote by (N̂j)
n−1
j=0 the peri-

odic B-spline functions of order k with respect to T̂ and by (
˜̂
Nj)

n−2
j=0 the

periodic B-spline functions of order k with respect to
˜̂T . Here, we use

the periodic extension of the sequence (σj)
n−1
j=0 , i.e. σrn+j = r + σj for

j ∈ {0, . . . , n − 1} and r ∈ Z, and the indices of B-spline functions are
taken modulo n.

To calculate the periodic orthonormal spline functions corresponding to
the above grids, we determine a function ĝ ∈ span{N̂i : 0 ≤ i ≤ n− 1} such

that ĝ ⊥ ˜̂
Nj for all 0 ≤ j ≤ n− 2. That is, we assume that

ĝ =
n−1∑

j=0

α̂jN̂
∗
j ,

where (N̂∗j : 0 ≤ j ≤ n − 1) is the system biorthogonal to the functions

(N̂i : 0 ≤ i ≤ n − 1) and α̂j = 〈g, N̂j〉. For ĝ to be orthogonal to
˜̂
Nj for

0 ≤ j ≤ n− 2, it has to satisfy the identities

0 = 〈ĝ, ˜̂
Ni〉 =

n−1∑

j=0

α̂j〈N̂∗j , ˜̂
Ni〉, 0 ≤ i ≤ n− 2.

We can look at the indices j here periodically, meaning that α̂j 6= 0 only
for j ∈ {i0 − k, . . . , i0}. Observe that formula (2.6) extends to the periodic
setting, which implies the following recursion for the coefficients (α̂j):

(3.1) α̂i+1
σi+k+1 − σi0
σi+k+1 − σi+1

+ α̂i
σi0 − σi
σi+k − σi

= 0, i0 − k ≤ i ≤ i0 − 1.

With the starting value

α̂i0−k =

i0−1∏

`=i0−k+1

σ`+k − σi0
σ`+k − σ`

,

we get the explicit formula
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(3.2)

α̂j =(−1)j−i0+k
( j−1∏

`=i0−k+1

σi0 − σ`
σ`+k − σ`

)
·
( i0−1∏

`=j+1

σ`+k − σi0
σ`+k − σ`

)
, i0−k≤j≤ i0.

Now, similarly to Definition 2.7, we are able to define characteristic in-
tervals for periodic grids as follows:

Definition 3.5 (Characteristic interval for periodic sequences). Let

T̂ , ˜̂T be as above and σi0 be the new point in T̂ that is not present in
˜̂T .

Under the restriction n ≥ 2k, we define the (periodic) characteristic interval
Ĵ corresponding to σi0 as follows:

(1) Let

Λ(0) :=
{
i0 − k ≤ j ≤ i0 : |[σj , σj+k]| ≤ 2 min

i0−k≤`≤i0
|[σ`, σ`+k]|

}

be the set of all indices j in the vicinity of the index i0 for which the
corresponding support of the periodic B-spline function N̂j is approxi-
mately minimal. Observe that Λ(0) is non-empty.

(2) Define

Λ(1) :=
{
j ∈ Λ(0) : |α̂j | = max

`∈Λ(0)
|α̂`|
}
.

For an arbitrary but fixed index j(0) ∈ Λ(1), set Ĵ (0) := [σj(0) , σj(0)+k].

(3) The interval Ĵ (0) can now be written as the union of k grid intervals

Ĵ (0) =
k−1⋃

`=0

[σj(0)+`, σj(0)+`+1] with j(0) as above.

Define the (periodic) characteristic interval Ĵ = Ĵ(σi0) to be one of the
above k intervals that has maximal length.

3.2. Lp norms of ĝ

Proposition 3.6. Let n ≥ 2k + 2. Then

‖ĝ‖p ∼ |Ĵ |1/p−1, 1 ≤ p ≤ ∞.
Proof. We can arrange the periodic point sequence (σj)

n−1
j=0 so that σ0>0

and i0 = bn/2c. Corresponding to this sequence, we define a non-periodic
sequence (τj)

n+k−1
j=−k by τj = σj for j ∈ {0, . . . , n − 1}, τ−k = · · · = τ−1 = 0

and τn = · · · = τn+k−1 = 1. With this choice and the assumption n ≥ 2k+2,
the conditions i0 ≥ k and i0 ≤ n−k−1 are satisfied. Therefore, by comparing
(2.8) with (3.2), we get αj = α̂j for i0 − k ≤ j ≤ i0, which yields

ĝ =

i0∑

j=i0−k
α̂jN̂

∗
j , g =

i0∑

j=i0−k
α̂jN

∗
j .
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Also, comparing the two definitions of J and Ĵ , in the present case we see
that |J | = |Ĵ |, and thus we use B-spline stability to get

‖ĝ‖pp ∼
i0∑

j=i0−k
|α̂j |p|suppNj |1−p ∼ ‖g‖pp ∼ |Ĵ |p−1,

where the last equivalence follows from Lemma 2.8.

Lemma 3.7. Let n ≥ 2k + 2. If ĝ =
∑n−1

i=0 ŵiN̂i, then

|ŵi| . qd̂(i,i0) max
i0−k≤j≤i0

1

max(|supp N̂i|, |supp N̂j |)
where we take the index j modulo n and d̂ is the periodic distance function
on {0, . . . , n− 1}.

Proof. By looking at formula (3.2), we see that |α̂j | ≤ 1 for all j, and
therefore, by Proposition 3.3,

|wi| =
∣∣∣

i0∑

j=i0−k
α̂j âij

∣∣∣ .
i0∑

j=i0−k
|âij | .

i0∑

j=i0−k

qd̂(i,j)

max(|supp N̂i|, |supp N̂j |)
.

This readily implies the assertion.

Proposition 3.8. There exists an index N(k) that depends only on k
such that for all partitions T̂ with n ≥ N(k), we have

‖ĝ‖Lp(Ĵ) & |Ĵ |1/p−1, p ∈ [1,∞].

Proof. Assuming again that i0 = bn/2c and n ≥ 2k+2, we begin by con-
sidering the difference between the periodic function ĝ and the non-periodic
function g corresponding to the partition T = (τj)

n+k−1
j=−k with τj = σj for

j ∈ {0, . . . , n− 1}, τ−k = · · · = τ−1 = 0 and τn = · · · = τn+k−1 = 1:

u := g − ĝ =

n−1∑

j=−k
βjN

∗
j ,

where the coefficients βj are so chosen that this equation is true. This is pos-
sible since both g and ĝ are contained in the linear span of the functions N∗j .
By defining the set of boundary indices B in T by

B = {−k, . . . ,−1} ∪ {n− k, . . . , n− 1} ⊂ {−k, . . . , n− 1},
we see that for j ∈ Bc,

βj = 〈u,Nj〉 = 〈g − ĝ, Nj〉 = 〈g,Nj〉 − 〈ĝ, N̂j〉 = αj − α̂j = 0,

where the last equality follows from the fact that αj = α̂j for all indices j
in our current definition of T . Therefore, u = g − ĝ can be expressed as

(3.3) u =
∑

j∈B
βjN

∗
j .
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Now, we estimate the coefficients βj for j ∈ B by Lemma 3.7:

|βj | = |〈g − ĝ, Nj〉| = |〈ĝ, Nj〉|

=
∣∣∣
n−1∑

i=0

ŵi〈N̂i, Nj〉
∣∣∣ .

n−1∑

i=0

|ŵi| · |supp N̂i ∩ suppNj |

.
n−1∑

i=0

qd̂(i,i0)
i0

max
m=i0−k

1

max(|supp N̂i|, |supp N̂m|)
· |supp N̂i ∩ suppNj |

≤
∑

i: |supp N̂i∩ suppNj |>0

qd̂(i,i0),

and since j ∈ B = {−k, . . . ,−1} ∪ {n− k, . . . , n− 1}, we have

(3.4) |βj | . qd̂(0,i0) . qn/2, j ∈ B.
So, we estimate for x ∈ Ĵ :

|u(x)| =
∣∣∣
∑

j∈B
βjN

∗
j (x)

∣∣∣ =
∣∣∣
∑

j∈B
βj

n−1∑

i=−k
aijNi(x)

∣∣∣

=
∣∣∣
∑

j∈B
βj

∑

i: Ĵ⊂suppNi

aijNi(x)
∣∣∣

.
∑

j∈B
|βj | max

i: Ĵ⊂suppNi
|aij |.

Hence, by (3.4) and the estimate in Theorem 2.5 for the non-periodic matrix
(aij),

|u(x)| . qn/2 max
i: Ĵ⊂suppNi

max
j∈B

q|i−j|

hij
,

where hij = |conv(suppNi ∪ suppNj)|. Since Ĵ ⊂ suppNi for the above

indices i, we have hij ≥ |Ĵ | = |J |, and therefore

|u(x)| = |(g − ĝ)(x)| . qn|J |−1.
This means that on J , we can estimate ĝ from below: if x ∈ J is such that
|g(x)| ≥ ‖g‖L∞(J)/2, then |g(x)| & |J |−1 by Lemma 2.8 and we get

|ĝ(x)| = |g(x)− (g(x)− ĝ(x))| ≥ |g(x)| − |g(x)− ĝ(x)|
≥ C1|J |−1 − C2|J |−1qn,

where C1 and C2 are constants that only depend on k and q < 1. So there
exists an index N(k) such that for all n ≥ N(k),

‖ĝ‖L∞(Ĵ) & |Ĵ |−1.
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Since ĝ is a polynomial on Ĵ , by Corollary 2.2 we now get, for any p ∈ [1,∞],

‖ĝ‖Lp(Ĵ) & |Ĵ |1/p−1,
which is the assertion.

3.3. More estimates for ĝ. We now change our point of view slightly
and compare the function ĝ with a non-periodic function g where we shift
the sequence T̂ = (σj)

n−1
j=0 in such a way that we split a largest grid point

interval in the middle:

σ0 = 1− σn−1 =
1

2
max

0≤j≤n−1
(σj − σj−1),

and, as before, choose T = (τj)
n+k−1
j=−k such that τj = σj for j ∈ {0, . . . , n−1}

so that

τ0 − τ−1 = τn − τn−1 =
1

2
max

0≤j≤n−1
(σj − σj−1).

We refer to this choice of T as the maximal splitting of T̂ . Similar to the

above, we define
˜̂T and T̃ to be the partitions T̂ and T respectively with

the grid points σi0 and τi0 removed.

If we work under this assumption, it is not necessarily the case that
|J | = |Ĵ | as it can happen that J lies near τ0 or τn, but we have

Proposition 3.9. Let J be the characteristic interval corresponding to
the point sequences (T , T̃ ) and let Ĵ be the periodic characteristic interval

corresponding to (T̂ , ˜̂T ) with the above maximal splitting. Then

|J | ∼ |Ĵ |.
Proof. Definitions 2.7 and 3.5 yield

(3.5) |J | ∼ min
i0−k≤j≤i0

|suppNj |, |Ĵ | ∼ min
i0−k≤j≤i0

|supp N̂j |,

where the periodic indices are interpreted in the sense of the usual periodic
continuation of subindices. Then the very definition of the point sequence
T in terms of T̂ implies

|suppNj | ≤ |supp N̂j |, −k ≤ j ≤ n− 1,

so, in combination with (3.5), we get |J | . |Ĵ |. To show the converse in-
equality, we show

(3.6) min
i0−k≤j≤i0

|supp N̂j | . min
i0−k≤j≤i0

|suppNj |.

We assume that j0 is an index such that |suppNj0 | = mini0−k≤j≤i0 |suppNj |.
If j0 /∈ B = {−k, . . . ,−1} ∪ {n − k, . . . , n − 1}, we even have |suppNj0 | =
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|supp N̂j0 |. If j0 ∈ B, then due to the choice of the maximal splitting,

|suppNj0 | ≥
1

2
max

0≤j≤n−1
(σj+1 − σj) ≥

1

2k
|supp N̂j |

for all indices j. So, in particular, (3.6) holds. Thus we have shown the
converse inequality |Ĵ | . |J | as well and the proof is complete.

We also have the following relation between the dual B-spline coefficients
of g and ĝ:

Proposition 3.10. For the maximal splitting, there exists a constant
c ∼ 1 such that for all j /∈ B,

αj = c · α̂j .
Proof. Comparing the recursion formulas (2.9) for αj and (3.1) for α̂j ,

we see that for j ∈ {i0 − k, . . . , i0 − 1},

(3.7)
α̂j+1

α̂j
=
αj+1

αj
, {j, j + 1} ⊂ Bc,

since by definition τi = σi for 0 ≤ i ≤ n − 1. So, now take an arbitrary
j ∈ Bc. Looking at the formulas for αj and α̂j we write

α̂j
αj

=

( j−1∏

`=i0−k+1

σi0 − σ`
τi0 − τ`

)( j−1∏

`=i0−k+1

τ`+k − τ`
σ`+k − σ`

)

·
( i0−1∏

`=j+1

σ`+k − σi0
τ`+k − τi0

)( i0−1∏

`=j+1

τ`+k − τ`
σ`+k − σ`

)
.

Note that for every s, t ∈ {i0− k+ 1, . . . , i0 + k− 1} such that 0 < s− t ≤ k
either σs − σt = τs − τt or σs − σt > τs − τt, and the latter can only happen
when [τ−1, τ0] or [τn−1, τn] is a subset of [τt, τs], so

σs − σt ≥ τs − τt ≥
1

2
max

0≤j≤n−1
(σj+1 − σj) ≥

1

2k
(σs − σt).

Hence we obtain σs − σt ∼ τs − τt. Therefore αj ∼ α̂j . This in combination
with (3.7) proves the proposition.

Proposition 3.11. Let x ∈ [σ`, σ`+1]. Then there exists an interval
C = C(x) ⊂ T which is minimal (with respect to inclusion) with

Ĵ ∪ [σ`, σ`+1] ⊂ C
such that if K(C) is the number of grid points of T̂ contained in C, then

|ĝ(x)| . q̂K(C)

|C| ,

where q̂ ∈ (0, 1) depends only on k.
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Proof. In order to estimate ĝ, we consider the difference u := g − c · ĝ
and g separately, where g is the orthogonal spline function corresponding to
(T̃ , T ) that arises from the maximal splitting and c ∼ 1 denotes the constant
from Proposition 3.10. We can write

u =
n−1∑

j=−k
βjN

∗
j

for some coefficients βj . This is possible since g and ĝ are in the linear span
of (N∗j )n−1j=−k. For j /∈ B = {−k, . . . ,−1} ∪ {n− k, . . . , n− 1}, we calculate

βj = 〈g − c · ĝ, Nj〉 = 〈g,Nj〉 − c · 〈ĝ, N̂j〉 = αj − c · α̂j = 0,

where the last equality follows from Proposition 3.10. Therefore, the function
u = g − c · ĝ can be expressed as

(3.8) u =
∑

j∈B
βjN

∗
j

and its coefficients βj can be estimated by

|βj | = |〈g − cĝ,Nj〉| . |〈g,Nj〉|+ |〈ĝ, Nj〉|

=
∣∣∣
n−1∑

i=−k
wi〈Ni, Nj〉

∣∣∣+
∣∣∣
n−1∑

i=0

ŵi〈N̂i, Nj〉
∣∣∣ =: Σ1 +Σ2.

Now, by using (2.10) and the fact that j ∈ B,

Σ1 ≤
n−1∑

i=−k
|wi| |suppNi ∩ suppNj |

.
n−1∑

i=−k

qdT (τi)

|J |+ dist(suppNi, J) + |suppNi|
|suppNi ∩ suppNj |

≤
∑

i: |suppNi∩ suppNj |>0

qd(i,i0) ≤ qd̂(0,i0).

The term Σ2 is estimated similarly by using Lemma 3.7:

Σ2 ≤
n−1∑

i=0

|ŵi| · |supp N̂i ∩ suppNj |

.
n−1∑

i=0

qd̂(i,i0) max
i0−k≤m≤i0

1

max(|supp N̂i|, |supp N̂m|)
· |supp N̂i ∩ suppNj |

≤
∑

i: |supp N̂i∩ suppNj |>0

qd̂(i,i0) . qd̂(0,i0).
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Combining the estimates for Σ1 and Σ2, we get |βj | . qd̂(0,i0). Consequently,
for x ∈ [τ`, τ`+1),

|u(x)| =
∣∣∣
∑

j∈B
βjN

∗
j (x)

∣∣∣ =
∣∣∣
∑

j∈B
βj

n−1∑

i=−k
aijNi(x)

∣∣∣ =
∣∣∣
∑

j∈B
βj

∑̀

i=`−k+1

aijNi(x)
∣∣∣

≤
∑

j∈B
|βj |

`
max

i=`−k+1
|aij |.

By the above calculation and the estimate for the non-periodic Gram matrix
inverse in Theorem 2.5, we get

|u(x)| . qd̂(0,i0)
`

max
i=`−k+1

max
j∈B

q|i−j|

hij
,

where hij = |conv(suppNi∪ suppNj)|. Since for j ∈ B, either hij ≥ τ0−τ−1
or hij ≥ τn − τn−1, the defining property of the maximal splitting yields
hij ≥ 1

2 max0≤m≤n−1(σm − σm−1), and therefore

(3.9) |u(x)| . qd̂(i0,`)

maxm(σm − σm−1)
,

since also d̂(i0, `) ≤ d̂(i0, 0)+ d̂(0, `) ≤ d̂(i0, 0)+2k+minj∈B,`−k+1≤i≤` |i−j|.
Thus, by Lemma 2.8 and (3.9),

|ĝ(x)| ≤ c−1|g(x)|+ |ĝ(x)− c−1g(x)|

. qd(i0,`)

|conv([τ`, τ`+1] ∪ J)| +
qd̂(i0,`)

maxm(σm − σm−1)
,

which, with the use of Proposition 3.9 and the definitions of the character-
istic intervals J and Ĵ , finishes the proof.

So, by defining the normalized orthonormal spline function f̂ = ĝ/‖ĝ‖2,
we immediately obtain

Corollary 3.12. Let U be an arbitrary subset of T. Then

�

U

|f̂(x)|p dx . |Ĵ |p/2
∑

`: [σ`,σ`+1]∩U 6=∅

q̂pK(C(σ`))

|C(σ`)|p
|U ∩ [σ`, σ`+1]|

where q̂ ∈ (0, 1) depends only on k.

We will also need the pointwise estimate of the maximal spline projection
operator by the Hardy–Littlewood maximal function in the periodic case,
which is true in (the non-periodic case is Theorem 2.6):

Theorem 3.13. Let P̂ be the orthogonal projection onto ŜT̂ . Then

|P̂ h(t)| . M̂h(t), h ∈ L1(T),
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where M̂h(t) = supI3t |I|−1
	
I |h(y)|dy is the periodic Hardy–Littlewood

maximal function operator and the sup is taken over all intervals I ⊂ T
containing the point t.

Proof. Let h be such that supph ⊂ [σ`, σ`+1] for some ` ∈ {0, . . . , n−1}.
The first thing we show is that for any index r,

‖P̂ h‖L1[σr,σr+1] . qd̂(r,`)‖h‖L1 .

For this we write, when t ∈ [σr, σr+1],

P̂ h(t) =
∑

j: supp N̂j3t

∑

i: supp N̂i⊃[σ`,σ`+1]

âij〈h, N̂i〉N̂j(t).

After using Proposition 3.3 and a simple Hölder, this is less than

‖h‖L1 ·
∑

j: supp N̂j3t

∑

i: supp N̂i⊃[σ`,σ`+1]

qd̂(i,j)

max(|supp N̂i|, |supp N̂j |)
N̂j(t).

Integrating this estimate over [σr, σr+1], we get

(3.10) ‖P̂ h‖L1[σr,σr+1] . ‖h‖L1qd̂(`,r).

The same can be proved for the non-periodic projection operator P , since
we can use the same estimates.

Now, we take an arbitrary function h and localize it by setting

h` = h · 1[σ`,σ`+1].

We fix a point t ∈ [σm, σm+1] and associate to P̂ the non-periodic projection
operator P corresponding to the maximal splitting. Then

(3.11) P̂ h(t) = Ph(t) +
(
P̂ h(t)− Ph(t)

)
.

In order to show P̂ h(t) . M̂h(t), we first recall that Theorem 2.6 yields
|Ph(t)| .Mh(t) ≤ M̂h(t). For the second term (P̂ − P )h, we write

(P̂ − P )h =
n−1∑

`=0

(P̂ − P )h`

and prove an estimate for g`(t) := (P̂ − P )h`. Observe that

g`(t) =
∑

i∈B
〈g`, Ni〉N∗i (t) =

m∑

j=m−k+1

∑

i∈B
aij〈g`, Ni〉Nj(t),

since the range of both P̂ and P is contained in the linear span of the
functions N∗i and h` − P̂ h` and h` − Ph` are both orthogonal to the span
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of Ni, i /∈ B. Therefore, by using Theorem 2.5 for aij ,

|g`(t)| .
m∑

j=m−k+1

∑

i∈B

q|i−j|

hij
‖g`‖L1(suppNi).

Consequently, by (3.10) and its non-periodic counterpart,

(3.12) |g`(t)| .
m∑

j=m−k+1

∑

i∈B

q|i−j|

hij
qd̂(i,`)‖h`‖L1 .

Since we have performed the maximal splitting for our periodic partition,
we get

hij ≥
1

2
max
ν

(σν − σν−1), i ∈ B.

Denoting by C`m the convex set that contains [σ`, σ`+1] ∪ [σm, σm+1] and
has the minimal number of grid points, we get

hij &
|C`m|
d̂(`,m)

, i ∈ B.

Thus, we estimate (3.12) by

m∑

j=m−k+1

∑

i∈B
q|i−j|+d̂(i,`)d̂(`,m)

‖h‖L1[σ`,σ`+1]

|Cm`|

. d̂(`,m) max
i∈B

(q|i−m|+d̂(i,`)) · M̂h(t)

for all t ∈ [σm, σm+1]. By the triangle inequality, d̂(`,m) ≤ d̂(i,m)+ d̂(i, `) ≤
|i−m|+ d̂(i, `) and thus we can estimate further

|g`(t)| . max
i∈B

α|i−m|+d̂(i,`)M̂h(t),

where α can be chosen as q1/2. Summing this over `, we finally obtain

|(P̂ − P )h(t)| . αd̂(0,m)M̂h(t) ≤ M̂h(t),

which in combination with (3.11) and the result for Ph(t) yields the assertion
of the theorem.

3.4. Combinatorics of characteristic intervals. Similarly to the
non-periodic case we can analyze the combinatorics of subsequent charac-
teristic intervals. Let (sn)∞n=1 be an admissible sequence of points in T and

(f̂n)∞n=1 be the corresponding periodic orthonormal spline functions of or-

der k. For n ≥ 1, the partitions T̂n associated to f̂n are defined to consist of
the grid points (sj)

n
j=1 and we enumerate them as

T̂n = (0 ≤ σn,0 ≤ · · · ≤ σn,n−1 < 1).
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If n ≥ 2k, we denote by Ĵ
(0)
n and Ĵn the characteristic intervals Ĵ (0) and

Ĵ from Definition 3.5 associated to the new grid point sn. For any x ∈ T,
let Cn(x) be the interval from Proposition 3.11 associated to Ĵn. We define

d̂n(x) to be the number of grid points in T̂n between x and Ĵn contained in
Cn(x) counting x and the endpoints of Ĵn. Moreover, for a subinterval V

of T, we denote d̂n(V ) = minx∈V d̂n(x).

An immediate consequence of the definition of Ĵn is that the sequence
(Ĵn) of characteristic intervals forms a nested collection of sets, i.e., two sets
in it are either disjoint or one is contained in the other.

Since the definition of Ĵn only involves local properties of the point se-
quence (sj), and the definition of Ĵn is the same as the definition of Jn
for any identification of T with [0, 1) such that between the newly inserted
point si0 and 0 or 1 there are more than k grid points of Tn, we also get the
periodic version of Lemma 2.9.

Lemma 3.14. Let V be an arbitrary subinterval of T and let β > 0. Then
there exists a constant Fk,β only depending on k and β such that

card{n ≥ 2k : Ĵn ⊆ V, |Ĵn| ≥ β|V |} ≤ Fk,β.
Additionally, Lemma 3.14 has the following corollary:

Corollary 3.15. Let (Ĵni)
∞
i=1 be a decreasing sequence of characteristic

intervals, i.e. Ĵni+1 ⊆ Ĵni. Then there exists a number κ ∈ (0, 1) and a
constant Ck, both depending only on k, such that

|Ĵni | ≤ Ckκi|Ĵn1 |, i ∈ N.

4. Technical estimates. The lemmas proved in this section are similar
to the corresponding results in [10] or [13], and also the proofs are more or
less the same. The exception is Lemma 4.4 for which we give a new, shorter
proof.

Lemma 4.1. Let N(k) be given by Proposition 3.8, f =
∑∞

n≥N(k) anf̂n
and V be a subinterval of T. Then

�

V c

∑

j∈Γ
|aj f̂j(t)| dt .

�

V

(∑

j∈Γ
|aj f̂j(t)|2

)1/2
dt,(4.1)

where

Γ := {j : Ĵj ⊂ V and N(k) ≤ j <∞}.
Proof. If |V | = 1, then (4.1) holds trivially, so assume that |V | < 1. For

fixed n ∈ Γ , Corollary 3.12 and Proposition 3.8 imply

(4.2)
�

V c

|f̂n(t)|dt . q̂d̂n(V
c)|Ĵn|1/2 . q̂d̂n(V

c)
�

Ĵn

|f̂n(t)|dt.
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Now choose β = 1/4 and let Ĵβn be the unique closed interval that satisfies

|Ĵβn | = β|Ĵn| and center(Ĵβn ) = center(Ĵn).

Since fn is a polynomial of order k on the interval Jn, we apply Corollary
2.2 to (4.2) and estimate further

(4.3)
�

V c

|anf̂n(t)|dt . q̂d̂n(V
c)

�

Ĵβn

|anf̂n(t)|dt ≤ q̂d̂n(V c)
�

Ĵβn

(∑

j∈Γ
|aj f̂j(t)|2

)1/2
dt.

Define Γs := {j ∈ Γ : d̂j(V
c) = s} for s≥ 0. If (Ĵnj )

N
j=1 is a decreasing se-

quence of characteristic intervals with nj∈Γs, we can split (Ĵnj ) into at most
two groups so that the intervals in each group have one endpoint in common.

Lemma 3.14 implies that there exists a constant Fk, only depending on k,
such that each point t ∈ V belongs to at most Fk intervals Ĵβj , j ∈ Γs. Thus,
summing over j ∈ Γs, we see from (4.3) that

∑

j∈Γs

�

V c

|aj f̂j(t)|dt .
∑

j∈Γs
q̂s

�

Ĵβj

(∑

`∈Γ
|a`f̂`(t)|2

)1/2
dt

. q̂s
�

V

(∑

`∈Γ
|a`f̂`(t)|2

)1/2
dt.

Finally, we sum over s ≥ 0 to obtain inequality (4.1).

Let g be a real-valued function defined on the torus T. In the following,
we denote by [g > λ] the set {x ∈ T : g(x) > λ} for any λ > 0.

Lemma 4.2. Let f =
∑∞

n=1 anf̂n with only finitely many non-zero coef-
ficients an, λ > 0, r < 1 and

Eλ = [Sf > λ], Bλ,r = [M̂1Eλ > r],

where Sf(t)2 =
∑∞

n=1 a
2
nf̂n(t)2 is the spline square function. Then

Eλ ⊂ Bλ,r.
Proof. Fix t ∈ Eλ. The square function Sf = (

∑∞
n=1 |anf̂n|2)1/2 is con-

tinuous except possibly at finitely many grid points, where Sf is at least
continuous from one side. As a consequence, for t ∈ Eλ, there exists an
interval I ⊂ Eλ such that t ∈ I. This implies

(M̂1Eλ)(t) = sup
t3U
|U |−1

�

U

1Eλ(x) dx

= sup
t3U

|Eλ ∩ U |
|U | ≥ |Eλ ∩ I||I| =

|I|
|I| = 1 > r,

so t ∈ Bλ,r, proving the lemma.
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Lemma 4.3. Let f =
∑

n≥N(k) anf̂n with only finitely many non-zero

coefficients an, λ > 0 and r < 1, where N(k) is given by Proposition 3.8.
Define

Eλ := [Sf > λ], Bλ,r := [M̂1Eλ > r],

where Sf(t)2 =
∑

n≥N(k) a
2
nf̂n(t)2 is the spline square function. If

Λ = {n : Ĵn 6⊂ Bλ,r and N(k) ≤ n <∞} and g =
∑

n∈Λ
anf̂n,

then

(4.4)
�

Eλ

Sg(t)2 dt .r

�

Ecλ

Sg(t)2 dt.

Proof. First, we observe that if Bλ,r = T then Λ is empty and (4.4) holds
trivially. So assume Bλ,r 6= T. By Propositions 3.6 and 3.8,

�

Eλ

Sg(t)2 dt =
∑

n∈Λ

�

Eλ

|anf̂n(t)|2 dt .
∑

n∈Λ

�

Ĵn

|anf̂n(t)|2 dt.

We split the latter expression into

I1 :=
∑

n∈Λ

�

Ĵn∩Ecλ

|anf̂n(t)|2 dt, I2 :=
∑

n∈Λ

�

Ĵn∩Eλ

|anf̂n(t)|2 dt.

Clearly,

(4.5) I1 ≤
∑

n∈Λ

�

Ecλ

|anf̂n(t)|2 dt =
�

Ecλ

Sg(t)2 dt.

To estimate I2, we first observe that Eλ ⊂ Bλ,r by Lemma 4.2. Since the set

Bλ,r = [M̂1Eλ > r] is open in T, we decompose it into a countable collection
(Vj)

∞
j=1 of disjoint open subintervals of T. Utilizing this decomposition, we

estimate

(4.6) I2 ≤
∑

n∈Λ

∑

j: |Ĵn∩Vj |>0

�

Ĵn∩Vj

|anf̂n(t)|2 dt.

If n ∈ Λ and |Ĵn ∩ Vj | > 0, then, by definition of Λ, Ĵn is an interval
containing at least one endpoint x of Vj for which

M̂1Eλ(x) ≤ r.
This implies

|Eλ∩Ĵn∩Vj | ≤ r·|Ĵn∩Vj | or equivalently |Ecλ∩Ĵn∩Vj | ≥ (1−r)·|Ĵn∩Vj |.
Using this inequality and the fact that |f̂n|2 is a polynomial of order 2k− 1
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on Ĵn allows us to use Corollary 2.2 to deduce from (4.6) that

I2 .r

∑

n∈Λ

∑

j: |Ĵn∩Vj |>0

�

Ecλ∩Ĵn∩Vj

|anf̂n(t)|2 dt

≤
∑

n∈Λ

�

Ecλ∩Ĵn∩Bλ,r

|anf̂n(t)|2 dt

≤
∑

n∈Λ

�

Ecλ

|anf̂n(t)|2 dt =
�

Ecλ

Sg(t)2 dt.

The latter inequality combined with (4.5) completes the proof.

Lemma 4.4. Let V be an open subinterval of T and f =
∑

n ânf̂n ∈
Lp(T) for p ∈ (1,∞) with supp f ⊂ V . Then there exists a number R > 1
depending only on k such that

(4.7)
∑

n

Rpd̂n(V )|ân|p‖f̂n‖p
Lp(Ṽ c)

.p,R ‖f‖pp,

with Ṽ being the interval with the same center as V but with three times its
diameter.

Proof. We can assume that |V | ≤ 1/3, since otherwise |Ṽ c| = 0 and the
left hand side of (4.7) is zero.

We start by estimating |ân|. Depending on n, we partition V into inter-
vals (An,j)

Nn
j=1, where except at most two intervals at the boundary of V , we

choose An,j to be a grid point interval in the grid T̂n. Let In,` := [σn,`, σn,`+1]

be the `th grid point interval in T̂n. Moreover, for a grid point interval I in T̂n
and all subsets E ⊂ I, we set Cn(E) to be the interval given by Proposition
3.11 that satisfies

Cn(E) ⊃ I ∪ Ĵn
and we denote by Kn(Cn(I)) the number of grid points from T̂n that are
contained in Cn(I). Next, we define rn = min

`: In,`∩Ṽ c 6=∅Kn(Cn(In,`)), an,j =

Kn(Cn(An,j)) and we choose a number S > 1 which we will specify later
and estimate by Hölder’s inequality (with p′ = p/(p− 1))

|ân| = |〈f, f̂n〉| =
∣∣∣
Nn∑

j=1

�

An,j

f(t)f̂n(t) dt
∣∣∣

≤
Nn∑

j=1

( �

An,j

|f(t)|p dt
)1/p( �

An,j

|f̂n(t)|p′ dt
)1/p′
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=

Nn∑

j=1

S−an,jSan,j
( �

An,j

|f(t)|p dt
)1/p( �

An,j

|f̂n(t)|p′ dt
)1/p′

≤
( Nn∑

j=1

S−p
′an,j

)1/p′( Nn∑

j=1

Span,j
�

An,j

|f(t)|p dt ·
( �

An,j

|f̂n(t)|p′ dt
)p−1)1/p

.

Since the first sum above is a geometric series, and by using Corollary 3.12
for the integral of f̂n, we obtain

(4.8) |ân| .
( Nn∑

j=1

Span,j
�

An,j

|f(t)|p dt · |Ĵn|p/2
q̂pan,j |An,j |p−1
|Cn(An,j)|p

)1/p

.

We also estimate ‖f̂n‖p
Lp(Ṽ c)

by applying Corollary 3.12:

‖f̂n‖p
Lp(Ṽ c)

. |Ĵn|p/2q̂prn
∑

`: Ṽ c∩In,` 6=∅

|Ṽ c ∩ In,`|
|Cn(In,`)|p

= |Ĵn|p/2q̂prn
�

Ṽ c

∑

`: Ṽ c∩In,` 6=∅

1In,`(t)

|Cn(In,`)|p
dt.

By integration of the function t 7→ t−p, this is dominated by

(4.9)
|Ĵn|p/2q̂prn

min
`: Ṽ c∩In,` 6=∅ |Cn(In,`)|p−1

.

For every E ⊂ T, let `0(E) be an index such that In,`0(E) ∩ E 6= ∅ and

|Cn(In,`0(E))| = min
`: In,`∩E 6=∅

|Cn(In,`)|.

Now we introduce one more notation: let Bn(E) ⊂ Cn(In,`0(E)) be the largest

interval B such that B ∩ E = Ĵn ∩ E. Obviously Bn(E) ⊃ Ĵn for every E.
Using this notation, we estimate (4.9) and conclude

(4.10) ‖f̂n‖p
Lp(Ṽ c)

. |Ĵn|p/2q̂prn
|Bn(Ṽ c)|p−1

.

Combining (4.8) and (4.10) yields
∑

n

Rpd̂n(V )|ân|p‖f̂n‖p
Lp(Ṽ c)

.
∑

n

|Ĵn|pq̂prnRpd̂n(V )|Bn(Ṽ c)|1−p

·
( Nn∑

j=1

(q̂S)pan,j
�

An,j

|f(t)|p dt · |An,j |
p−1

|Cn(An,j)|p
)
.

CHAPTER 6. UNCONDITIONALITY OF PERIODIC SPLINE SYSTEMS IN LP 135



Unconditionality of spline systems in Lp 81

Since (An,j)
Nn
j=1 is a partition of V for any n, we further write

∑

n

Rpd̂n(V )|ân|p‖f̂n‖p
Lp(Ṽ c)

.
�

V

∑

n

( |Ĵn|
|Bn(Ṽ c)|

)p−1
q̂prnRpd̂n(V )

×
Nn∑

j=1

(q̂S)pan,j
|Ĵn| |An,j |p−1
|Cn(An,j)|p

1An,j (t)|f(t)|p dt.

To estimate this by
	
V |f(t)|p dt, we will estimate pointwise for fixed t ∈ V .

To do this, we first observe that we have to estimate the expression

∑

n

( |Ĵn|
|Bn(Ṽ c)|

)p−1
q̂prnRpd̂n(V )(q̂S)pan,j(n)

|Ĵn| |An,j(n)|p−1
|Cn(An,j(n))|p

,

where An,j(n) is just the interval An,j such that t ∈ An,j . Next, we split the
summation index set into

⋃
Ts, where

Ts = {n : rn + an,j(n) = s}.
Since d̂n(V ) ≤ an,j(n), we see that if R,S > 1 with RSq̂ < 1, then there
exists α < 1, depending only on k, such that the above expression is .

(4.11)
∞∑

s=0

αs
∑

n∈Ts

( |Ĵn|
|Bn(Ṽ c)|

)p−1 |Ĵn| |An,j(n)|p−1
|Cn(An,j(n))|p

.

Now, we split the analysis of this expression into two cases:

Case 1: Summing over n ∈ Ts,1 := {n ∈ Ts : |Bn(Ṽ c)| ≤ |Bn(V )| or

|V | ≤ |Ĵn|}. The inner sum in (4.11), taken over n ∈ Ts,1, is immediately
estimated by

∑

n∈Ts,1

|Ĵn| |An,j(n)|p−1
|Cn(An,j(n))|p

.

To estimate this sum, we further split Ts,1 into

S1 = {n ∈ Ts,1 : Ĵn contains at least one of the two endpoints of V },
S2 = Ts,1 \ S1.

By the conditions of Case 1 and the definition of Ṽ , if n ∈ S1 we have
|Ĵn| ≥ |V | and a geometric decay in the length of Ĵn by Corollary 3.15, and
therefore

∑

n∈S1

|Ĵn| |An,j(n)|p−1
|Cn(An,j(n))|p

≤
∑

n∈S1

|Ĵn| |V |p−1
|Cn(An,j(n))|p

≤
∑

n∈S1

( |V |
|Ĵn|

)p−1
. 1.

Next, observe that under the conditions in Case 1 and the definition
of S2, we have |Ĵn ∩ V | = 0 for n ∈ S2. Since additionally (An,j(n)) is a
decreasing family of subsets of V and since rn + an,j(n) = s for n ∈ Ts,
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we can split S2 into S2,1 and S2,2 such that for any distinct n1, n2 ∈ S2,i
for i ∈ {1, 2}, the corresponding intervals Ĵn1 and Ĵn2 are either disjoint or
share an endpoint.

If n ∈ S2,i then an endpoint a of Bn(V ) coincides with an endpoint

of V (since Ĵn ⊂ V c). In this case, for t ∈ Bn(V ) we let Bn(t) ⊂ Bn(V )

be the interval with endpoints t and a. Let Ĵβn for β = 1/4 be the interval
characterized by the properties

Ĵβn ⊂ Ĵn, center(Ĵβn ) = center(Ĵn), |Ĵβn | = |Ĵn|/4.
By Lemma 3.14, for each point u ∈ T, there exist at most Fk indices in S2,i
such that u ∈ Ĵβn . We now enumerate the intervals Ĵn with n ∈ S2,i in the

following way: Since the intervals are nested, we write Ĵn`,1 for the maximal

ones and we assume that Ĵn`,j+1
⊂ Ĵn`,j for all j. Since the two intervals

Ĵn2 ⊂ Ĵn1 for n1, n2 ∈ S2,i have one endpoint in common, for each maximal

interval Ĵn`,1 we have at most two sequences of this form.

Using this enumeration, we write

∑

n∈S2,i

|An,j(n)|p−1|Ĵn|
|Cn(An,j(n))|p

≤ 2β−1|V |p−1
∑

`,j

�

Ĵβn`,j

dt

|Bn`,j (t)|p
.

Observe that the function

x 7→ |{`, j, t : t ∈ Ĵβn`,j , x = |Bn`,j (t)|}|
is uniformly bounded by 4Fk for all x ≥ 0. Since we also have the estimate

|V |/2 ≤ |Bn(t)|, n ∈ S2,i, t ∈ Ĵβn ,
we conclude that

β−1|V |p−1
∑

`,j

�

Ĵβn`,j

dt

|Bn`,j (t)|p
≤ 4Fkβ

−1|V |p−1
∞�

|V |/2

dx

xp
≤ Ck

where Ck is some constant only depending on k. This finishes the proof in
the case n ∈ Ts,1.

Case 2: Summing over Ts,2 := {n ∈ Ts : |Bn(V )| ≤ |Bn(Ṽ c)| and

|Ĵn| ≤ |V |}. Observe that for n ∈ Ts,2 we have Ĵn ⊂ Ṽ . Next, we subdi-
vide Ts,2 into generations Gs,` such that for two indices n1, n2 in the same

generation, the corresponding characteristic intervals Ĵn1 and Ĵn2 are dis-
joint. We observe that the geometric decay of characteristic intervals yields
|Ĵn|/|V | . κ` for some κ < 1 and n ∈ Gs,`. Therefore, by introducing β < 1
such that β(p−1) < 1 we continue estimating (4.11) by using the inequality
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|V | . |Bn(Ṽ c)| for n ∈ Ts,2,

∑

n∈Ts,2

( |Ĵn|
|Bn(Ṽ c)|

)p−1 |Ĵn| |An,j(n)|p−1
|Cn(An,j(n))|p

.
∞∑

`=0

κ`(1−β)(p−1)
∑

n∈Gs,`

|Ĵn|1+β(p−1)|An,j(n)|p−1
|V |β(p−1)|Cn(An,j(n))|p

.

We further split Gs,` into

G(1)s,` = {n ∈ Gs,` : |Cn(An,j(n))| ≥ 1− 2|V |}, G(2)s,` = Gs,` \ G(1)s,` .

Since |V | ≤ 1/3 and the intervals Ĵn for n ∈ G(1)s,` are disjoint, we immediately

see that
∑

n∈G(1)s,`

|Ĵn| |An,j(n)|p−1 ≤ 1, so we next consider

(4.12)
∑

n∈G(2)s,`

|Ĵn|1+β(p−1)|An,j(n)|p−1
|V |β(p−1)|Cn(An,j(n))|p

.

To analyze this expression, we defineC ′n(An,j(n)) asCn(An,j(n)) if∂Cn(An,j(n))

∩ An,j(n) 6= ∅, and as the smallest interval which is a subset of Cn(An,j(n))

that contains Ĵn and ∂V ∩An,j(n) if ∂Cn(An,j(n))∩An,j(n) = ∅. The canonical
case is the first one; the second case can only occur ifAn,j(n) is not a grid point
interval in grid n, which happens only if An,j(n) lies at the boundary of V .
With this definition, we consider the set of different endpoints of C ′n(An,j(n))

intersecting An,j(n), i.e.,

Es,` = {x ∈ ∂C ′n(An,j(n)) ∩An,j(n) : n ∈ G(2)s,` },
enumerate it as the sequence (xr)

∞
r=1 which by definition is entirely contained

in V , and split the collection G(2)s,` according to those different endpoints into

G(2)s,`,r = {n ∈ G(2)s,` : r is minimal with xr ∈ ∂C ′n(An,j(n)) ∩An,j(n)}.

If we set Λs,` = {r : G(2)s,`,r 6= ∅}, we can write (4.12) as

∑

r∈Λs,`

∑

n∈G(2)s,`,r

|Ĵn|1+β(p−1)|An,j(n)|p−1
|V |β(p−1)|Cn(An,j(n))|p

. 1

|V |β(p−1)
∑

r∈Λs,`

∑

n∈G(2)s,`,r

|Ĵn|
|C ′n(An,j(n))|1−β(p−1)

.

Since the Ĵn’s in the above sum are disjoint, Ĵn ⊂ Ṽ and xr is an endpoint

138 CHAPTER 6. UNCONDITIONALITY OF PERIODIC SPLINE SYSTEMS IN LP



84 K. Keryan and M. Passenbrunner

of C ′n(An,j(n)) for all n ∈ G(2)s,`,r, we can estimate

1

|V |β(p−1)
∑

r∈Λs,`

∑

n∈G(2)s,`,r

|Ĵn|
|C ′n(An,j(n))|1−β(p−1)

. 1

|V |β(p−1)
∑

r∈Λs,`

2|V |�

0

1

t1−β(p−1)
dt . |Λs,`|.

In order to finish our estimate, we show that |Λs−1,`| < 8s2 + 1 =: N . If
we assume the contrary, let (ni)

N
i=1 be an increasing sequence such that

ni ∈ G(2)s,`,rni

for some different values rni . Consider F := AnN ,j(nN ). Since the Ĵn’s corre-

sponding to ni are disjoint, one of the two connected components of Ṽ \ F
contains (N − 1)/2 = 4s2 intervals Ĵni , i = 1, . . . , N . Enumerate them as

Ĵm1 , . . . , Ĵm(N−1)/2
.

Since any real sequence of length s2 + 1 has a monotone subsequence of
length s, we only have the following two possibilities:

(1) There is a subsequence (`i)
s
i=1 of (mi) such that, for each i,

conv(Ĵ`i ∪ F ) ⊂ conv(Ĵ`i+1
∪ F ).

(2) There is a subsequence (`i)
s
i=1 of (mi) such that, for each i,

conv(Ĵ`i+1
∪ F ) ⊂ conv(Ĵ`i ∪ F ).

Here by conv(U) for U ⊂ Ṽ we mean the smallest interval contained in Ṽ
that contains U .

We observe that conv(Ĵni ∪F ) ⊂ C(Ani,j(ni)) for all i since the sequence
(Ani,j(ni))i is decreasing and therefore, in case (1), we have a`i,j(`i) ≥ i and
hance a`s,j(`s) ≥ s, which is in conflict with the definition of Ts−1,2.

We now recall that rn = min
r∈In(Ṽ c)Kn(Cn(In,`)). We let i(n) be an

index such that

rn = Kn(Cn(In,i(n))).

In case (2), we distinguish two cases:

(a) C`s(I`s,i(`s)) ⊃
⋃s
j=1 Ĵ`j ,

(b) C`s(I`s,i(`s)) contains {xr`1 , . . . , xr`s}.
If we are in case (a), we have of course rn ≥ s, in contradiction to the
definition of Tm,2. If we are in case (b), since the points xr`i are all different

by definition of G(2)s,`,r and they are all (except possibly the two endpoints

of V ) part of the grid points in the grid corresponding to the index `s, we
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have rn ≥ s as well, which shows that |Λs−1,`| ≤ 8s2 + 1; therefore, by
collecting all estimates and summing geometric series over ` and s,

∑

n

Rpd̂n(V )|ân|p‖f̂n‖p
Lp(Ṽ c)

. ‖f‖pp,

which finishes the proof of the lemma.

5. Proof of the main theorem. In this section, we prove our main
result Theorem 1.1, that is, unconditionality of periodic orthonormal spline
systems corresponding to an arbitrary admissible point sequence (sn)n≥1 in
Lp(T) for p ∈ (1,∞).

Proof of Theorem 1.1. We recall the notation

Sf(t) =
( ∑

n≥N(k)

|anf̂n(t)|2
)1/2

, Mf(t) = sup
m≥N(k)

∣∣∣
m∑

n=N(k)

anf̂n(t)
∣∣∣

when
f =

∑

n≥N(k)

anf̂n.

Since (f̂n)∞n=1 is a basis in Lp(T), 1 ≤ p < ∞, by Theorem 3.1, to show

its unconditionality, it suffices to show that (f̂n)n≥N(k) is an unconditional
basic sequence in Lp(T). Khinchin’s inequality implies that a necessary and
sufficient condition for this is

(5.1) ‖Sf‖p ∼p ‖f‖p, f ∈ Lp(T).

We will prove (5.1) for 1 < p < 2 since the cases p > 2 then follow by a
duality argument.

We first prove the inequality

(5.2) ‖f‖p .p ‖Sf‖p.
To begin, let f ∈ Lp(T) with f =

∑∞
n=N(k) anfn. Without loss of generality,

we may assume that the sequence (an)n≥N(k) has only finitely many non-
zero entries. We will prove (5.2) by showing that ‖Mf‖p .p ‖Sf‖p. We first
observe that

(5.3) ‖Mf‖pp = p

∞�

0

λp−1ψ(λ) dλ

with ψ(λ) := [Mf > λ] := {t ∈ T : Mf(t) > λ}. Next we decompose f into
two parts ϕ1, ϕ2 and estimate the corresponding distribution functions. We
first set, for λ > 0,

Eλ := [Sf > λ], Bλ := [M̂1Eλ > 1/2],

Γ := {n : Ĵn ⊂ Bλ, N(k) ≤ n <∞}, Λ := Γ c,
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where we recall that Ĵn is the characteristic interval corresponding to the
grid point sn and the function f̂n. Then let

ϕ1 :=
∑

n∈Γ
anf̂n and ϕ2 :=

∑

n∈Λ
anf̂n.

Now we estimate ψ1 = [Mϕ1 > λ/2]:

ψ1(λ) = |{t ∈ Bλ : Mϕ1(t) > λ/2}|+ |{t /∈ Bλ : Mϕ1(t) > λ/2}|

≤ |Bλ|+
2

λ

�

Bcλ

Mϕ1(t) dt ≤ |Bλ|+
2

λ

�

Bcλ

∑

n∈Γ
|anf̂n(t)|dt.

We decompose the open set Bλ into a disjoint collection of open subintervals
of T and apply Lemma 4.1 to each of those intervals to conclude from the
latter expression:

ψ1(λ) . |Bλ|+
1

λ

�

Bλ

Sf(t) dt

= |Bλ|+
1

λ

�

Bλ\Eλ
Sf(t) dt+

1

λ

�

Eλ∩Bλ
Sf(t) dt

≤ |Bλ|+ |Bλ \ Eλ|+
1

λ

�

Eλ

Sf(t) dt,

where in the last inequality, we have simply used the definition of Eλ. Since
the Hardy–Littlewood maximal function operator M̂ is of weak type (1, 1),
|Bλ| . |Eλ| and thus finally

(5.4) ψ1(λ) . |Eλ|+
1

λ

�

Eλ

Sf(t) dt.

From Theorem 3.13 and the fact that M̂ is a bounded operator on L2[0, 1],
we obtain

ψ2(λ) . 1

λ2
‖M̂ϕ2‖22 .

1

λ2
‖ϕ2‖22 =

1

λ2
‖Sϕ2‖22

=
1

λ2

( �

Eλ

Sϕ2(t)
2 dt+

�

Ecλ

Sϕ2(t)
2 dt
)
.

We apply Lemma 4.3 to get

(5.5) ψ2(λ) . 1

λ2

�

Ecλ

Sϕ2(t)
2 dt.

Thus, by combining (5.4) and (5.5),

CHAPTER 6. UNCONDITIONALITY OF PERIODIC SPLINE SYSTEMS IN LP 141



Unconditionality of spline systems in Lp 87

ψ(λ) ≤ ψ1(λ) + ψ2(λ)

. |Eλ|+
1

λ

�

Eλ

Sf(t) dt+
1

λ2

�

Ecλ

Sf(t)2 dt.

Inserting this inequality into (5.3) gives

‖Mf‖pp . p

∞�

0

λp−1|Eλ|dλ+ p

∞�

0

λp−2
�

Eλ

Sf(t) dt dλ

+ p

∞�

0

λp−3
�

Ecλ

Sf(t)2 dt dλ

= ‖Sf‖pp + p

1�

0

Sf(t)

Sf(t)�

0

λp−2 dλ dt

+ p

1�

0

Sf(t)2
∞�

Sf(t)

λp−3 dλ dt,

and thus, since 1 < p < 2,

‖Mf‖p .p ‖Sf‖p.
So, the inequality ‖f‖p .p ‖Sf‖p is proved.

We now turn to the proof of

(5.6) ‖Sf‖p .p ‖f‖p, 1 < p < 2.

It is enough to show that S is of weak type (p, p) for 1 < p < 2. Indeed, S is
(clearly) also of strong type 2 and we can use the Marcinkiewicz interpolation
theorem to obtain (5.6).

Thus we have to show

(5.7) |[Sf > λ]| .p
‖f‖pp
λp

, f ∈ Lp(T), λ > 0.

We fix f and λ > 0, define Gλ := [M̂f > λ] for λ > 0 and observe that

(5.8) |Gλ| .p
‖f‖pp
λp

,

since M̂ is of weak type (p, p), and, by the Lebesgue differentiation theorem,

(5.9) |f | ≤ λ a.e. on Gcλ.

We decompose the open set Gλ ⊂ [0, 1] into a collection (Vj)
∞
j=1 of disjoint

open subintervals of [0, 1] and split the function f into

h := f · 1Gcλ +
∞∑

j=1

TVjf, g := f − h,
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where for fixed j, TVjf is the projection of f · 1Vj onto the space of polyno-
mials of order k on the interval Vj .

We treat the functions h, g separately. The definition of h implies

(5.10) ‖h‖22 =
�

Gcλ

|f(t)|2 dt+
∞∑

j=1

�

Vj

(TVjf)(t)2 dt,

since the intervals Vj are disjoint. For the second summand, by Corollary 2.2,
�

Vj

(TVjf)(t)2 dt ∼ |Vj |−1
( �

Vj

|TVjf(t)|dt
)2
.

Since TVj is bounded on L1 (a very special instance of Shadrin’s theorem,
Theorem 2.3), we have

�

Vj

(TVjf)(t)2 dt . |Vj |−1
( �

Vj

|f(t)|dt
)2

. (M̂f(x))2|Vj | ≤ λ2|Vj |,

where x is a boundary point of Vj and the last inequality follows from the
defining property of Vj . By using this estimate, from (5.10) we obtain

‖h‖22 . λ2−p
�

Gcλ

|f(t)|p dt+ λ2|Gλ|,

and thus, in view of (5.8),

‖h‖22 .p λ
2−p‖f‖pp.

This inequality allows us to estimate

|[Sh > λ/2]| ≤ 4

λ2
‖Sh‖22 =

4

λ2
‖h‖22 .p

‖f‖pp
λp

,

which concludes the proof of (5.7) for the part h.
We turn to the proof of (5.7) for g. Since p < 2, we have

(5.11) Sg(t)p =
( ∑

n≥N(k)

|〈g, fn〉|2fn(t)2
)p/2

≤
∑

n≥N(k)

|〈g, fn〉|p|fn(t)|p.

For each j, we define Ṽj to be the open interval with the same center as

Vj but with five times its length. Then set G̃λ :=
⋃∞
j=1 Ṽj and observe that

|G̃λ| ≤ 5|Gλ|. We get

|[Sg > λ/2]| ≤ |G̃λ|+
2p

λp

�

G̃cλ

Sg(t)p dt.

By (5.8) and (5.11), this becomes

|[Sg > λ/2]| .p λ
−p
(
‖f‖pp +

∞∑

n≥N(k)

�

G̃cλ

|〈g, f̂n〉|p|f̂n(t)|p dt
)
.
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But by definition of g and the fact that TVj is bounded on Lp,

‖g‖pp =
∑

j

�

Vj

|f(t)− TVjf(t)|p dt .p

∑

j

�

Vj

|f(t)|p . ‖f‖pp,

so to prove |[Sg > λ/2]| ≤ λ−p‖f‖pp it is enough to show that

(5.12)
∑

n≥N(k)

�

G̃cλ

|〈g, f̂n〉|p|f̂n(t)|p dt . ‖g‖pp.

We now let gj := g · 1Vj . The supports of gj are disjoint, and so ‖g‖pp =∑∞
j=1 ‖gj‖

p
p. Furthermore g =

∑∞
j=1 gj with convergence in Lp. Thus for

each n,

〈g, f̂n〉 =
∞∑

j=1

〈gj , f̂n〉,

and it follows from the definition of gj that
�

Vj

gj(t)p(t) dt = 0

for each polynomial p on Vj of order k. This implies that 〈gj , f̂n〉 = 0 for
n < n(Vj), where

n(V ) := min{n : T̂n ∩ V 6= ∅}.
Hence for all R > 1 and every n,

|〈g, f̂n〉|p =
∣∣∣

∑

j:n≥n(Vj)
〈gj , f̂n〉

∣∣∣
p
≤
( ∑

j:n≥n(Vj)
Rd̂n(Vj)|〈gj , f̂n〉|R−d̂n(Vj)

)p
(5.13)

≤
( ∑

j:n≥n(Vj)
Rpd̂n(Vj)|〈gj , f̂n〉|p

)( ∑

j:n≥n(Vj)
R−p

′d̂n(Vj)
)p/p′

,

where p′ = p/(p − 1). If we fix n ≥ n(Vj), there is at least one point of the

partition T̂n contained in Vj . This implies that for each fixed s ≥ 0, there

are at most two indices j such that n ≥ n(Vj) and d̂n(Vj) = s. Therefore,

( ∑

j:n≥n(Vj)
R−p

′d̂n(Vj)
)p/p′

.p 1,

and from (5.13) we obtain

|〈g, f̂n〉|p .p

∑

j:n≥n(Vj)
Rpd̂n(Vj)|〈gj , f̂n〉|p.
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Now we insert this in (5.12) to get

∞∑

n=N(k)

�

G̃cλ

|〈g, f̂n〉|p|f̂n(t)|p dt

.p

∞∑

n=N(k)

∑

j:n≥n(Vj)
Rpd̂n(Vj)|〈gj , f̂n〉|p

�

G̃cλ

|f̂n(t)|p dt

≤
∞∑

n=N(k)

∑

j:n≥n(Vj)
Rpd̂n(Vj)|〈gj , f̂n〉|p

�

Ṽ cj

|f̂n(t)|p dt

≤
∞∑

j=1

∑

n≥n(Vj)
Rpd̂n(Vj)|〈gj , f̂n〉|p

�

Ṽ cj

|f̂n(t)|p dt.

We choose R > 1 such that we can apply Lemma 4.4 to obtain
∞∑

n=N(k)

�

G̃cλ

|〈g, f̂n〉|p|f̂n(t)|p dt .p

∞∑

j=1

‖gj‖pp = ‖g‖pp,

proving (5.12) and hence ‖Sf‖pp .p ‖f‖pp. Thus the proof of Theorem 1.1 is
complete.
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On Almost Everywhere Convergence
of Tensor Product Spline Projections

Markus Passenbrunner & Joscha Prochno

Abstract. Let d ∈ N, and let f be a function in the Orlicz class
L(log+ L)d−1 defined on the unit cube [0,1]d in Rd . Given knot se-
quences �1, . . . ,�d on [0,1], we first prove that the orthogonal pro-
jection P(�1,...,�d)(f ) onto the space of tensor product splines with

arbitrary orders (k1, . . . , kd ) and knots �1, . . . ,�d converges to f al-
most everywhere as the mesh diameters |�1|, . . . , |�d | tend to zero.
This extends the one-dimensional result in [9] to arbitrary dimensions.

In the second step, we show that this result is optimal, that is, given
any “bigger” Orlicz class X = σ(L)L(log+ L)d−1 with an arbitrary
function σ tending to zero at infinity, there exist a function ϕ ∈ X and
partitions of the unit cube such that the orthogonal projections of ϕ do
not converge almost everywhere.

1. Introduction and Main Results

The notion of splines is originally motivated by concepts used in shipbuilding de-
sign and was first introduced by Schoenberg in his 1946 paper [13] to approach
problems of approximation. The particular interest in tensor product splines, be-
sides a purely mathematical one, is due to their various applications in high-
dimensional problems. For instance, in statistics, they are used in nonparamet-
ric and semiparametric multiple regression, where high-dimensional vectors of
covariates are considered for each observation (see, e.g., [16]) and in the approx-
imation of finite window roughness penalty smoothers [6]. In data mining, they
appear in predictive modeling with multivariate regression splines in the form
of popular MARS or MARS-like algorithms [17]. Further applications appear
in problems related to high-dimensional numerical integration. With this paper,
we contribute to a better understanding of theoretical aspects of tensor product
splines.

One of the major mathematical achievements in the last years is Shadrin’s
proof of de Boor’s conjecture [15], where he showed that the max-norm of the
orthogonal projection P� onto spline spaces of arbitrary order k with knots � is
bounded independently of the knot-sequence �. In particular, this result implies
the Lp-convergence (1 ≤ p < ∞) of orthogonal spline projections, that is, for all
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f ∈ Lp[a, b],
P�(f )

Lp−→ f,

provided that the mesh diameter |�| tends to zero. A similar result holds for the
L∞-norm if one replaces the space L∞ with the space of continuous functions.
Recently, in [9], Shadrin and the first named author extended this result. They
proved that the max-norm boundedness of P� implies the almost everywhere the
(a.e.) convergence of orthogonal projections P�(f ) with arbitrary knot-sequences
� and f ∈ L1[a, b], provided that the mesh diameter |�| tends to zero. Their
proof is based on a classical approach, where a.e. convergence is proved on a
dense subset of L1, and where it is shown that the maximal projection operator is
of weak (1,1)-type. The main tool in the proof of this theorem is a sharp decay
inequality for inverses of B-spline Gram matrices.

This leaves open the natural question of a corresponding result in higher di-
mensions. In the first step in this work, we extend the one-dimensional result
obtained in [9] to arbitrary dimensions d ∈ N, where the function f , defined on
the unit cube in Rd , belongs to the Orlicz class L(log+ L)d−1 (details are given
further). In the second step, which is the main result of this paper, we prove that
this is in fact optimal.

Let us present our results in more detail. We write P� for the orthogonal pro-
jection operator from L2[0,1]d onto the linear span of the sequence of tensor
product B-splines and denote by |�| the maximal directional mesh width. The
first result of this paper is the a.e. convergence of P�f to f for the Orlicz class
L(log+ L)d−1:

Theorem 1.1. Let f ∈ L(log+ L)d−1. Then, as |�| → 0,

P�f → f a.e.

The second and main result of this work shows that this result is optimal.

Theorem 1.2. For any positive function σ on [0,∞) with lim inft→∞ σ(t) = 0,
there exists a nonnegative function ϕ on [0,1]d such that

(i) the function σ(ϕ) · ϕ · (log+ ϕ)d−1 is integrable, and
(ii) there exist a subset B ⊂ [0,1]d of positive Lebesgue measure and a sequence

of partitions (�n) of [0,1]d with |�n| → 0 such that, for all x ∈ B ,

lim sup
n→∞

|P�nϕ(x)| = ∞.

The paper is organized as follows. In Section 2, we present the notation and no-
tions used throughout this work and present some preliminary results. In Sec-
tion 3, we give the proof of Theorem 1.1. The proof of Theorem 1.2, showing the
optimality of Theorem 1.1, is presented in Section 4. We conclude the paper in
Section 5 with some final remarks and an open problem that we consider to be of
further interest.
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2. Notation and Preliminaries

In this section, we introduce the notation used throughout the text and present
some background material such as a multidimensional version of the Remez in-
equality, which we will use later, and recall the definition of tensor product B-
splines.

2.1. General Notation

We denote by card[A] the cardinality of a set A. The symbol | · | will be used
for the modulus, the mesh width, and the Lebesgue measure; the meaning and the
dimension of the Lebesgue measure will be always clear from the context. Given a
compact metric space M , we denote by C(M) the space of continuous functions
on M . As usual, for 1 ≤ p ≤ ∞ and a measure space (E,�,μ), we denote by
Lp(E) the space of (equivalence classes of) measurable functions f : E → R for
which

‖f ‖Lp(E) :=
(∫

E

|f |p dμ

)1/p

< ∞
for 1 ≤ p < ∞ and

‖f ‖L∞(E) := inf{ρ ≥ 0 : μ(|f | > ρ) = 0} < ∞
for p = ∞. We will also write ‖f ‖p instead of ‖f ‖Lp(E) when the choice of E

is clear from the context. More generally, given a convex function M : [0,∞) →
[0,∞) with M(0) = 0, the set of all (equivalence classes of) measurable functions
f : E → R such that, for some (and thus for all) λ > 0,∫

E

M

( |f |
λ

)
dμ < ∞

is called the Orlicz space associated with M and is denoted by LM(E). This space
becomes a Banach space when it is supplied with the Luxemburg norm

‖f ‖M = inf

{
λ > 0 :

∫
E

M

( |f |
λ

)
dμ ≤ 1

}
.

In this work, we consider functions f defined on the unit cube [0,1]d that belong
to the Orlicz space L(log+ L)j , that is, |f |(log+ |f |)j is integrable over [0,1]d
with respect to the Lebesgue measure, where log+(·) := max{0, log(·)}. More
information and a detailed exposition of the theory of Orlicz spaces can be found,
for instance, in [8; 7; 10; 11].

2.2. Remez Inequality for Polynomials

We will need the following multidimensional version of the Remez theorem
(see [4; 1]). If p(x) = ∑

α∈I aαxα is a d-variate polynomial where I is a fi-
nite set containing d-dimensional multiindices, then the degree of p is defined
as max{∑d

i=1 αi : α ∈ I }. Recall that a convex body in Rd is a compact convex
set with nonempty interior.
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Theorem 2.1 (Remez, Brudnyi, Ganzburg). Let d ∈ N, let V ⊂ Rd be a convex
body, and let E ⊂ V be a measurable subset. Then, for all polynomials p of degree
k on V ,

‖p‖L∞(V ) ≤
(

4d
|V |
|E|

)k

‖p‖L∞(E).

We have the following corollary.

Corollary 2.2. Let p be a polynomial of degree k on a convex body V ⊂ Rd .
Then

|{x ∈ V : |p(x)| ≥ (8d)−k‖p‖L∞(V )}| ≥ |V |/2.

Proof. This follows from an application of Theorem 2.1 to the set E = {x ∈ V :
|p(x)| ≤ (8d)−k‖p‖L∞(V )}. �

2.3. Tensor Product B-Splines

We will now provide some background information on tensor product splines.
For more information, we refer the reader to [14, Section 12.2]. Let d ∈ N, and
for μ ∈ {1, . . . , d}, let kμ be the order of polynomials in the direction of the μth
standard unit vector in Rd , where the order of a univariate polynomial refers to
the degree plus 1. For each such μ, we define the partition of the interval [0,1] by

�μ = (t
(μ)
i )

nμ+kμ

i=1 , nμ ∈ N,

where, for all i < nμ + kμ and j ≤ nμ,

t
(μ)
i ≤ t

(μ)
i+1 and t

(μ)
j < t

(μ)
j+kμ

,

and

t
(μ)
1 = · · · = t

(μ)
kμ

= 0 and 1 = t
(μ)
nμ+1 = · · · = t

(μ)
nμ+kμ

.

A boldface letter always denotes a vector of d entries, and its coordinates are
denoted by the same letter, for instance, n = (n1, . . . , nd), k = (k1, . . . , kd), or
� = (�1, . . . ,�d). We let (N

(μ)
i )

nμ

i=1 be the sequence of B-splines of order kμ on
the partition �μ with the properties

suppN
(μ)
i = [t (μ)

i , t
(μ)
i+kμ

], N
(μ)
i ≥ 0, and

nμ∑
i=1

N
(μ)
i ≡ 1.

The space spanned by those B-spline functions consists of piecewise polynomials
p of order kμ with grid points �μ, which satisfy the following smoothness con-
ditions at those grid points: if the point t occurs m times in �μ, then the function
p is kμ − 1 − m times continuously differentiable at t . In particular, if m = kμ,
then there is no smoothness condition at the point t .

The tensor product B-splines are defined as

Ni(x1, . . . , xd) := N
(1)
i1

(x1) · · ·N(d)
id

(xd), 1 ≤ i ≤ n,
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where 1 is the d-dimensional vector consisting of d entries equal to one, and
where we say that i ≤ n if iμ ≤ nμ for all μ ∈ {1, . . . , d}. Furthermore, P� is
defined to be the orthogonal projection operator from L2[0,1]d onto the linear
span of the functions (Ni)1≤i≤n with respect to the standard inner product 〈·, ·〉.
This operator can be naturally extended to L1-functions since B-splines are con-
tained in L∞ (see Lemma 3.4). For μ ∈ {1, . . . , d}, we define the mesh width in
the direction of μ by |�μ| := maxi |t (μ)

i+1 − t
(μ)
i | and the mesh width by

|�| := max
1≤μ≤d

|�μ|.

3. Almost Everywhere Convergence

In this section, we prove Theorem 1.1 on a.e. convergence. Its proof follows along
the lines of the one-dimensional case proved in [9] and is based on the standard
approach of verifying the following two conditions that imply the a.e. conver-
gence of P�f for f ∈ L(log+ L)d−1 (see [5, pp. 3–4]):

(a) there is a dense subset F of L(log+ L)d−1 on which we have a.e. conver-
gence,

(b) the maximal operator P ∗f := sup� |P�f | satisfies some weak-type inequal-
ity.

Let us now discuss conditions (a) and (b) in more detail. Concerning (a), we first
note that, for d = 1, Shadrin [15] proved that the one-dimensional projection op-
erator P� is uniformly bounded on L∞ for any spline order k, that is,

‖P�‖∞ ≤ ck,

where the constant ck ∈ (0,∞) depends only on k and not on the partition �.
A direct consequence of this result and of the tensor structure of the underlying
operator P� is that this assertion also holds in higher dimensions:

Corollary 3.1. For any d ∈ N, there exists a constant cd,k ∈ (0,∞) that only
depends on d and k such that

‖P�‖∞ ≤ cd,k.

In particular, cd,k is independent of the partitions �.

This can be used to prove the uniform convergence of P�g to g for continuous
functions g as |�| tends to zero:

Proposition 3.2. Let g ∈ C([0,1]d). Then, as |�| → 0,

‖P�g − g‖∞ → 0.

Therefore we may choose F to be the space of continuous functions on [0,1]d ,
which is dense in L(log+ L)d−1 (see, e.g., [7, Chapter 7]).
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We now turn to the discussion of condition (b) and define the strong maximal
function MSf of f ∈ L1[0,1]d by

MSf (x) := sup
Ix

1

|I |
∫

I

|f (y)|dy, x ∈ [0,1]d ,

where the supremum is taken over all d-dimensional rectangles I ⊂ [0,1]d , which
are parallel to the coordinate axes and contain the point x. The strong maximal
function satisfies the weak-type inequality

|{x : MSf (x) > λ}| ≤ cM

∫
[0,1]d

|f (x)|
λ

(
1 + log+ |f (x)|

λ

)d−1

dx, (3.1)

where |A| denotes the d-dimensional Lebesgue measure of a set A, and cM ∈
(0,∞) is a constant independent of f and λ (see, e.g., [3] and [18, Chapter 17]).
To get this kind of weak-type inequality for the maximal operator P ∗, we prove
the following pointwise estimate for P� by the strong maximal function.

Proposition 3.3. There exists a constant c ∈ (0,∞) that only depends on the
dimension d and the spline orders k such that, for all f ∈ L1[0,1]d , x ∈ [0,1]d ,
and all partitions �,

|P�f (x)| ≤ c · MSf (x).

We now present the proof Theorem 1.1 and defer the proofs of Propositions 3.2
and 3.3.

Proof of Theorem 1.1. Let f ∈ L(log+ L)d−1 and define

R(f,x) := lim sup
|�|→0

P�f (x) − lim inf|�|→0
P�f (x).

Let g ∈ C([0,1]d). Since, by Proposition 3.2, R(g,x) ≡ 0 for continuous func-
tions g, and because P� is a linear operator,

R(f,x) ≤ R(f − g,x) + R(g,x) = R(f − g,x).

Let δ > 0. Then by Proposition 3.3 we have

|{x : R(f,x) > δ}| ≤ |{x : R(f − g,x) > δ}|
≤ |{x : 2c · MS(f − g)(x) > δ}|.

Now we employ the weak-type inequality (3.1) for MS to find

|{x : R(f,x) > δ}|

≤ cM

∫
[0,1]d

2c · |(f − g)(x)|
δ

(
1 + log+ 2c · |(f − g)(x)|

δ

)d−1

dx.

By assumption, the expression on the right-hand side of the latter display is finite.
Choosing a suitable sequence of continuous functions (gn) (first approximate f

by a bounded function and then apply Lusin’s theorem), this expression tends to
zero, and we obtain

|{x : R(f,x) > δ}| = 0.
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Since δ > 0 is arbitrary, R(f,x) = 0 for a.e. x ∈ [0,1]d . This means that P�f

converges almost everywhere as |�| → 0. It remains to show that this limit equals
f a.e. This is obtained by a similar argument as before by replacing R(f,x) by
| lim|�|→0 P�f (x) − f (x)|. �

The rest of this section is devoted to the proofs of Propositions 3.2 and 3.3.

Proof of Proposition 3.2. By Corollary 3.1, P� is a bounded projection operator,
and so, for all functions h in the range of P�, we have

‖P�g − g‖∞ ≤ ‖P�(g − h)‖∞ + ‖h − g‖∞ ≤ (1 + cd,k)‖g − h‖∞.

Taking the infimum over all such h, we have

‖P�g − g‖∞ ≤ (1 + cd,k) · E�(g), (3.2)

where E�(g) is the error of best approximation of g by splines in the span of
tensor product B-splines (Ni)1≤i≤n. It is known that

E�(g) ≤ c ·
d∑

μ=1

sup
hμ≤|�μ|

sup
x

|(Dkμ

hμ
gμ,x)(xμ)|,

where gμ,x(s) := g(x1, . . . , xμ−1, s, xμ+1, . . . , xd), and Dhμ is the forward differ-
ence operator with step size hμ (see, e.g., [14, Theorem 12.8 and Example 13.27]).
This is the sum of moduli of smoothness in each direction μ of the function g

with respect to the mesh diameters |�1|, . . . , |�d |, respectively. As these diame-
ters tend to zero, the right-hand side of the inequality also tends to zero since g is
continuous. Together with (3.2), this proves the proposition. �

Next, we present the proof of Proposition 3.3. It is essentially a consequence of
a pointwise estimate involving the Dirichlet kernel of the projection operator P�.
With the notation

I
(μ)
i := [t (μ)

i , t
(μ)
i+1], I

(μ)
ij := convexhull(I (μ)

i , I
(μ)
j ), μ ∈ {1, . . . , d},

its one-dimensional version, where we suppress the superindex (μ), reads as fol-
lows.

Lemma 3.4 ([9, Lemma 2.1]). Let K� be the Dirichlet kernel of the projection
operator P�, that is, K� is defined by the equation

P�f (x) =
∫ 1

0
K�(x, y)f (y)dy, f ∈ L1[0,1], x ∈ [0,1].

Then K� satisfies the inequality

|K�(x, y)| ≤ Cγ |i−j ||Iij |−1, x ∈ Ii, y ∈ Ij ,

where C ∈ (0,∞) and γ ∈ (0,1) are constants that depend only on the spline
order k.
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Proof of Proposition 3.3. We first note that the estimate given in Lemma 3.4 car-
ries over to the Dirichlet kernel K� of P� for dimension d , which is defined by
the relation

P�f (x) =
∫

[0,1]d
K�(x, y)f (y)dy, f ∈ L1[0,1]d , x ∈ [0,1]d . (3.3)

Indeed, since P� is the tensor product of the one-dimensional projections
P�1, . . . ,P�d

, the Dirichlet kernel K� is the product of the one-dimensional
Dirichlet kernels K�1 , . . . ,K�d

. Thus, Lemma 3.4 implies the inequality

|K�(x, y)| ≤ Cγ |i−j|1 |Iij|−1, x ∈ Ii, y ∈ Ij, (3.4)

where we set

|i − j|1 :=
d∑

μ=1

|iμ − jμ|, Ii :=
d∏

μ=1

I
(μ)
i , Iij :=

d∏
μ=1

I
(μ)
ij ,

and C ∈ (0,∞) and γ ∈ (0,1) are constants only depending on d and k.
Let x ∈ [0,1]d and i be such that x ∈ Ii and |Ii| > 0. By equation (3.3),

|P�f (x)| =
∣∣∣∣
∫

[0,1]d
K�(x, y)f (y)dy

∣∣∣∣ =
∣∣∣∣

∑
1≤j≤n

∫
Ij

K�(x, y)f (y)dy

∣∣∣∣.
Using estimate (3.4) on the Dirichlet kernel, we obtain

|P�f (x)| ≤ C
∑

1≤j≤n

γ |i−j|1
|Iij|

∫
Ij

|f (y)|dy,

where C ∈ (0,∞) is the constant in (3.4). Since Ij ⊂ Iij and x ∈ Ii ⊂ Iij, we
conclude

|P�f (x)| ≤ C
∑

1≤j≤n

γ |i−j|1 MSf (x),

which, after summing a geometric series, concludes the proof. �

4. Optimality of the Result

In this section, we prove the optimality result, Theorem 1.2. The choice of the
function ϕ is based on the following result of Saks [12].

Theorem 4.1. For any function σ : [0,∞) → [0,∞) with lim inft→∞ σ(t) = 0,
there exists a nonnegative function ϕ := ϕσ on [0,1]d such that

(i) the function σ(ϕ) · ϕ · (log+ ϕ)d−1 is integrable,
(ii) for all x ∈ [0,1]d ,

lim sup
diam I→0,Ix

1

|I |
∫

I

ϕ(y)dy = ∞,

where lim sup is taken over all d-dimensional rectangles I that are parallel
to the coordinate axes and contain the point x.

CHAPTER 7. A.E. CONVERGENCE OF TENSOR PRODUCT SPLINE PROJECTIONS 155



On a.e. Convergence of Tensor Product Spline Projections 11

Figure 1 First sets in the enumeration (4.1) for N = 5

We will show that the same function ϕ, constructed in the proof of the previ-
ous theorem, also has the properties stated in Theorem 1.2. The definition of ϕ

rests on a construction due to H. Bohr, which appears in the first edition of [2,
pp. 689–691] from 1918 for dimension d = 2. Let us begin by recalling Bohr’s
construction and Saks’ definition of the function ϕ.

Bohr’s Construction

Let N ∈ N, and let S := [a1, b1]×[a2, b2] ⊂ R2 be a rectangle. Using the splitting
parameter N , we define subsets of this rectangle as follows:

I
(1)
j :=

[
a1, a1 + j (b1 − a1)

N

]
×

[
a2, a2 + b2 − a2

j

]
, 1 ≤ j ≤ N.

The part S \ ⋃N
j=1 I

(1)
j consists of N − 1 disjoint rectangles, to which we apply

the same splitting as we did with S (see Figure 1). This procedure is carried out
until the area of the remainder is less than |S|/N2. The remainder is again a dis-
joint union of rectangles J (1), . . . , J (r). Thus, we obtain a sequence of rectangles
whose union is S,

I
(1)
1 , . . . , I

(1)
N ; I (2)

1 , . . . , I
(2)
N ; . . . ; I (s)

1 , . . . , I
(s)
N ;J (1), . . . , J (r). (4.1)

We can generalize this construction to arbitrary dimensions d as follows: first,
notice that the corners of the rectangles I

(1)
j , 1 ≤ j ≤ N , lie on the curve (x −

a1)(y − a2) = (b1 − a1)(b2 − a2)/N = |S|/N . Given a rectangle S := [a1, b1] ×
· · · × [ad, bd ], d > 2, we consider rectangles similar to I

(1)
j whose corners lie on

the variety (x1 − a1)(x2 − a2) · · · (xd − ad) = |S|/Nd−1. For a1 = · · · = ad = 0
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and b1 = · · · = bd = 1, we can write those rectangles using d − 1 parameters as

Ij1,...,jd−1 :=
[

0,
j1

N

]
× · · · ×

[
0,

jd−1

N

]
×

[
0,

1

j1 · · · jd−1

]

for 1 ≤ j1, . . . , jd−1 ≤ N . The volume of the union over all those sets is approxi-
mately (

logN

N

)d−1

,

which can be seen by integration of the function xd = (Nd−1x1 · · ·xd−1)
−1 over

the rectangle [1/N,1]d−1. In what follows, it is important that in Bohr’s construc-
tion, we only choose those rectangles Ij1,...,jd−1 for which the product j1 · · · jd−1
is less than or equal to N , so that the volume V1 of their union is still approxi-
mately N1−d logd−1 N , whereas the volume V2 of their intersection equals N−d .
Therefore the quotient V1/V2 is of the order N logd−1 N . This is crucial for the
construction of the function ϕ in Theorem 4.1.

The function ϕ from Theorem 4.1 is constructed in [12] in such a way that it
satisfies the following additional properties.

Theorem 4.2. The function ϕ from Theorem 4.1 can be chosen in such a way that
there exist a sequence (εi)i∈N ∈ (0,∞)N and a sequence (Ci )i∈N of rectangular
coverings of [0,1]d such that

(i) the function σ(ϕ) · ϕ · (log+ ϕ)d−1 is integrable,
(ii) the sequence (εi)i∈N converges to 0,

(iii) for each i ∈ N, Ci = (Rij )
Mi

j=1 with
⋃Mi

j=1 Rij = [0,1]d we have diamRij <

1/i and

1

|Rij |
∫

Rij

ϕ(x)dx > ε−1
i for all j ∈ {1, . . . ,Mi},

(iv) for each i ∈ N, there exist Li,Ni ∈ N and a partition (Sij )
Li

j=1 of the unit

cube [0,1]d consisting of rectangles with diameter ≤ 1/i such that for all
j ∈ {1, . . . ,Li}, the subcollection of rectangles in Ci that intersect Sij is
given by the rectangles in (4.1) (or its higher-dimensional analogue) corre-
sponding to Sij and the splitting parameter Ni .

Let PI be the orthogonal projection operator onto the space of d-variate polyno-
mials of order (k1, k2, . . . , kd) on the rectangle I . We now use the Remez inequal-
ity to prove that |PIϕ| is large on a large subset of I as long as 1

|I |
∫
I
ϕ dy is large

enough. This is the first important step in proving (ii) of Theorem 1.2.

Lemma 4.3. Let I ⊂ Rd be a rectangle. Then, there exists a constant ck ∈ (0,∞),
only depending on the polynomial orders k = (k1, . . . , kd), such that, for all pos-
itive functions f on I , there exists a subset A ⊂ I with measure |A| ≥ |I |/2 such
that, for all x ∈ A,

|PIf (x)| ≥ ck

|I |
∫

I

f (y)dy.
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Proof. The operator PI is the orthogonal projection onto the space of d-variate
polynomials of order (k1, k2, . . . , kd) on I . Therefore, the characteristic function
χI is contained in the range of PI , and we have

〈PIf,χI 〉 = 〈f,χI 〉.
Hence, in fact, ‖PIf ‖L∞(I ) ≥ |I |−1

∫
I
f (y)dy. Consequently, Corollary 2.2 im-

plies the assertion. �

Considering the properties of ϕ in Theorem 4.2, the previous proposition applied
to ϕ shows that, for any element I ∈ Ci , there exists a subset A := A(I) ⊂ I with
measure ≥ |I |/2, on which |PIϕ| ≥ c/εi for a constant c ∈ (0,∞) only depending
on the polynomial orders (k1, . . . , kd). In Lemma 4.4, we ensure that the union
over those sets A still has large enough measure relatively to the measure of the
union over all I ∈ Ci . To this end, we will use the special structure indicated by
Bohr’s construction and Theorem 4.2(iv).

Lemma 4.4. For all j1, . . . , jd−1 ∈ {1, . . . ,N}, let

Ij1,...,jd−1 =
[

0,
j1

N

]
× · · · ×

[
0,

jd−1

N

]
×

[
0,

1

j1 · · · jd−1

]

and  = {(j1, . . . , jd−1) : j1 · · · jd ≤ N}. For λ ∈ , let Aλ ⊂ Iλ be a Borel mea-
surable subset of Iλ such that

|Aλ| ≥ c|Iλ| = c

Nd−1

for some absolute constant c ∈ (0,∞). Then there exist constants c1, c2 ∈ (0,∞),
depend only on c and d , such that

∣∣∣∣
⋃
λ∈

Aλ

∣∣∣∣ ≥ c2

(
logN

N

)d−1

≥ c1

∣∣∣∣
⋃
λ∈

Iλ

∣∣∣∣.

Proof. Let M ∈ N to be specified later and define q := 1/M . Define the index set

� = {(Mk1 , . . . ,Mkd−1) ∈  : k1, . . . , kd−1 ∈ N0}.
Then we can estimate∣∣∣∣

⋃
λ∈

Aλ

∣∣∣∣ ≥
∣∣∣∣
⋃
λ∈�

Aλ

∣∣∣∣ ≥
∑
λ∈�

|Aλ| − 1

2

∑
λ,μ∈�
λ�=μ

|Aλ ∩ Aμ|

≥ c
∑
λ∈�

|Iλ| − 1

2

∑
λ,μ∈�
λ�=μ

|Iλ ∩ Iμ|.

Now we observe that card[�] = card[{k ∈ Ns
0 : ∑s

j=1 kj ≤ L}] = (�L�+s
s

)
where

L = logM N , s = d − 1, and �L� denotes the largest integer smaller than or equal
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to L. Therefore card[�] ≥ Cs logd−1
M N for some positive constant Cs depending

only on s. Thus,
∣∣∣∣
⋃
λ∈

Aλ

∣∣∣∣ ≥ c · Cd−1

(
logM N

N

)d−1

− 1

2

∑
λ,μ∈�
λ�=μ

|Iλ ∩ Iμ|. (4.2)

Next, observe that if λ,μ ∈ � have the form λ = (M�1, . . . ,M�d−1) and μ =
(Mm1, . . . ,Mmd−1), then

|Iλ ∩ Iμ| = N1−dq
∑d−1

i=1 (max(�i ,mi)−min(�i ,mi)),

which, by summing geometric series and noting that the condition λ �= μ implies
the existence of at least one index i ∈ {1, . . . , d − 1} such that λi �= μi , yields

∑
λ,μ∈�
λ�=μ

|Iλ ∩ Iμ| ≤ q

(1 − q)d−1

∑
λ∈�

N1−d ≤ q

(1 − q)d−1

(
logM N

N

)d−1

.

Inserting this inequality into (4.2), we obtain
∣∣∣∣
⋃
λ∈

Aλ

∣∣∣∣ ≥
(

c · Cd−1 − q

2(1 − q)d−1

)
·
(

logM N

N

)d−1

.

We can choose M = 1/q (depending only on c and d) sufficiently large to guar-
antee that c · Cd−1 − q

2(1−q)d−1 ≥ c · Cd−1/2. Then the assertion of the lemma

follows with the choice c2 = c · Cd−1/(2 logd−1 M). �

Bringing together the previous facts, we are now able to prove our optimality
result.

Proof of Theorem 1.2. We subdivide the proof into two parts. In the first part, we
show that, for all points x in a set of positive measure, there exists a sequence (In)

of intervals containing x whose measure tends to zero and such that |PInϕ(x)| →
∞. Based on that observation, we construct the desired sequence of partitions in
the second step.

Step 1. Since Theorem 4.1 proves the integrability condition (i) of Theo-
rem 1.2, we only need to prove (ii), that is, the existence of a set B ⊂ [0,1]d with
positive Lebesgue measure and of a sequence (�n) of partitions such that, for all
x ∈ B , lim supn→∞ |P�nϕ(x)| = ∞. We fix i ∈ N and consider the corresponding
covering Ci of [0,1]d from Theorem 4.2. Then we define

Bi := {x ∈ [0,1]d : there exists a rectangle I ∈ Ci with x ∈ I

and |PIϕ(x)| ≥ ck/εi},
where ck ∈ (0,∞) is the constant that appears in Lemma 4.3, and (εi) is the
sequence from Theorem 4.2. Recall that εi → 0 as i → ∞. We will show that
|Bi | ≥ c > 0 for all i ∈ N and some suitable constant c ∈ (0,∞).
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Let I ∈ Ci . Due to Theorem 4.2, we have diam I ≤ 1/i and

1

|I |
∫

I

ϕ dx ≥ ε−1
i .

Thus, Lemma 4.3 provides a set A(I) ⊂ I with |A(I)| ≥ |I |/2 such that, for all
x ∈ A(I),

|PIϕ(x)| ≥ ck

εi

.

This means that A(I) ⊂ Bi . For fixed j , let (I
(�)
m ) and (J (�)) be the collections

of rectangles (4.1) contained in Ci forming a covering of Sij (see Theorem 4.2,
part (iv)). As a consequence of the latter bound, Lemma 4.4 and the fact that the
rectangles J (�) are disjoint, we find

|Sij ∩ Bi | ≥
∑

�

∣∣∣∣
Ni⋃

m=1

A(I (�)
m )

∣∣∣∣ +
∑

�

|A(J (�))|

≥ c1

∑
�

∣∣∣∣
Ni⋃

m=1

I (�)
m

∣∣∣∣ + 1

2

∑
�

|J (�)| ≥ c2|Sij |,

where c2 := min{c1,
1
2 }. Consequently,

|Bi | =
Li∑

j=1

|Sij ∩ Bi | ≥ c2

Li∑
j=1

|Sij | = c2|[0,1]d | = c2.

Since all sets Bi satisfy this uniform lower bound, the set B := lim supn Bn has a
positive measure as well, because

|B| = lim
n

∣∣∣∣
⋃
m≥n

Bm

∣∣∣∣ ≥ lim sup
n

|Bn| ≥ c > 0.

Step 2: We now proceed with the construction of the desired sequence of par-
titions (�n). Let (Rij )

Mi

j=1 be the rectangles contained in the collection Ci . For

1 ≤ j ≤ Mi , we define the partition �(i,j) = (�
(i,j)

1 , . . . ,�
(i,j)
d ) such that each

Rij is a grid point interval of �(i,j) and, for μ ∈ {1, . . . , d}, the μth coordinate

projection of the vertices of Rij has multiplicity kμ in the partition �
(i,j)
μ . We give

this multiplicity condition in order to have, for all x ∈ Rij ,

P�(i,j)f (x) = PRij
f (x), f ∈ L1[0,1]d .

Other knots of the partition �(i,j) are chosen arbitrarily, with the only condition
|�(i,j)| ≤ 1/i. Observe that this is possible since diamRij ≤ 1/i. Now we define
the sequence (�n) as

(�n) := (�(1,1), . . . ,�(1,M1),�(2,1), . . . ,�(2,M2), . . .).

Observe that this sequence of partitions is not nested. To prove the assertion of the
theorem, we fix some x ∈ B . By the definition of B , for infinitely many indices i ∈
N, there exists a rectangle Ri�i

in the collection Ci such that x ∈ Ri�i
, diamRi�i

≤
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1/i, and |P�(i,�i )ϕ(x)| = |PRi�i
ϕ(x)| ≥ ck/εi . Therefore, since εi → 0, we have,

for all x ∈ B ,
lim sup
n→∞

|P�nϕ(x)| = ∞.

This completes the proof of the theorem. �

5. Final Remarks and Open Problems

It is natural to ask whether the rather general structure of the partitions �, whose
mesh diameter tends to zero in Theorem 1.1, can be relaxed to obtain a.e. conver-
gence for a class larger than L(log+ L)d−1. A result in this direction is supported
by the fact that in the case of piecewise constant functions, we get a.e. conver-
gence for all L1-functions, provided that the underlying sequence of partitions
is nested. This holds as the sequence of projection operators applied to an L1-
function then forms a martingale. Although it first seems that approaching this
problem for general spline orders under the same framework should lead to a
positive or negative answer, we must say that it is far from clear if such a result
holds. On the other hand, it is unclear how to generalize Saks’ construction from
[12] to this setting, since the sequence of partitions constructed in the proof of
Theorem 1.2 is not nested.

We close this work with the following open problem.

Problem 1. Is it true that the a.e. convergence in Theorem 1.1 holds for all f ∈ L1
under the assumption that the sequence of partitions is nested?

Acknowledgments. We are grateful to the anonymous referees for their valu-
able suggestions that improved the quality of the paper.
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ALMOST EVERYWHERE CONVERGENCE OF SPLINE

SEQUENCES

PAUL F. X. MÜLLER AND MARKUS PASSENBRUNNER

Abstract. We prove the analogue of the Martingale Convergence Theorem
for polynomial spline sequences. Given a natural number k and a sequence (ti)

of knots in [0, 1] with multiplicity ≤ k−1, we let Pn be the orthogonal projec-
tion onto the space of spline polynomials in [0, 1] of degree k−1 corresponding

to the grid (ti)
n
i=1. Let X be a Banach space with the Radon-Nikodým prop-

erty. Let (gn) be a bounded sequence in the Bochner-Lebesgue space L1
X [0, 1]

satisfying

gn = Pn(gn+1), n ∈ N.
We prove the existence of limn→∞ gn(t) in X for almost every t ∈ [0, 1].

Already in the scalar valued case X = R the result is new.

1. Introduction

In this paper we prove a convergence theorem for splines in vector valued L1-
spaces. By way of introduction we consider the analogous convergence theorems
for martingales with respect to a filtered probability space (Ω, (An), µ). We first
review two classical theorems for scalar valued martingales in L1 = L1(Ω, µ). See
Neveu [6].

(M1) Let g ∈ L1. If gn = E(g|An) then ‖gn‖1 ≤ ‖g‖1 and (gn) converges almost
everywhere and in L1.

(M2) Let (gn) be a bounded sequence in L1 such that gn = E(gn+1|An). Then
(gn) converges almost everywhere and g = lim gn satisfies ‖g‖1 ≤ sup ‖gn‖1.

Next we turn to vector valued martingales. We fix a Banach space X and let
L1
X = L1

X(Ω, µ) denote the Bochner-Lebesgue space. The Radon-Nikodým property
(RNP) of the Banach space X is intimately tied to martingales in Banach spaces.
We refer to the book by Diestel and Uhl [3] for the following basic and well known
results.

(M3) Let g ∈ L1
X . If gn = E(g|An) then ‖gn‖L1

X
≤ ‖g‖L1

X
. The sequence (gn)

converges almost everywhere in X and in L1
X . (This holds for any Banach

space X.)
(M4) Let (gn) be a bounded sequence in L1

X such that gn = E(gn+1|An). If the
Banach space X satisfies the Radon-Nikodým property, then (gn) converges
almost everywhere in X and g = lim gn satisfies ‖g‖L1

X
≤ sup ‖gn‖L1

X
.

Moreover the L1
X -density of the µ-absolutely continuous part of the vector
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measure

ν(E) = lim
n→∞

∫

E

gndµ, E ∈ ∪An
determines g = lim gn.

(M5) Conversely if X fails to satisfy the Radon Nikodým property, then there
exists a filtered probability space (Ω, (An), µ) and bounded sequence in
L1
X(Ω, µ) satisfying gn = E(gn+1|An) such that (gn) fails to converge almost

everywhere in X.

In the present paper we establish a new link between probability (almost sure
convergence of martingales, the RNP) and approximation theory (projections onto
splines in [0, 1]).

We review the basic setting pertaining to spline projections. (See for instance
[12], [9], [11].) So, fix an integer k ≥ 2, let (ti) a sequence of grid points in (0, 1)
where each ti occurs at most k − 1 times. We emphasize that in contrast to [9],
in the present paper we don’t assume that the sequence of grid points is dense in
(0, 1).

Let Sn denote the space of splines on the interval [0, 1] of order k (degree k− 1)
corresponding to the grid (ti)

n
i=1. Let λ denote Lebesgue measure on the unit

interval [0, 1]. Let Pn be the orthogonal projection with respect to L2([0, 1], λ) onto
the space of splines Sn. By Shadrin’s theorem [12], Pn admits an extension to
L1([0, 1], λ) such that

sup
n∈N
‖Pn : L1([0, 1], λ)→ L1([0, 1], λ)‖ <∞.

Assuming that the sequence (ti) is dense in the unit interval [0, 1], the second named
author and A. Shadrin [9] proved – in effect – that for any g ∈ L1

X([0, 1], λ) the
sequence gn = Png converges almost everywhere in X. The vector valued version
of [9] holds true without any condition on the underlying Banach space X. Thus
the paper [9] established the spline analogue of the martingale properties (M1) and
(M3) – under the restriction that (ti) is dense in the unit interval [0, 1].

Our main theorem – extending [9] – shows that the vector valued martingale
convergence theorem has a direct counterpart in the context of spline projections.
Theorem 1.1 gives the spline analogue of the martingale properties (M2) and (M4).
The first step in the proof of Theorem 1.1 consists in showing that the restrictive
density condition on (ti) may be lifted from the assumptions in [9].

Theorem 1.1 (Spline Convergence Theorem). Let X be a Banach space with RNP
and (gn) be a sequence in L1

X with the properties

(1) supn ‖gn‖L1
X
<∞,

(2) Pmgn = gm for all m ≤ n.

Then, gn converges λ-a.e. to some L1
X function.

Already in the scalar case X = R Theorem 1.1 is a new result. In the course of its
proof we intrinsically describe the pointwise limit of the sequence (gn). At the end
of Section 6 we formulate a refined version of Theorem 1.1 employing the tools we
developed for its proof. This includes an explicit expression of lim gn in terms of
B-splines.

We point out that only under significant restrictions on the geometry of the
grid points (ti), is it true that the spline projections Pn are Calderon-Zygmund
operators (with constants independent of n). See [4].
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Our present paper should be seen in context with the second named author’s
work [7], where Burkholder’s martingale inequality

∥∥∑±(E(f|An)− E(f|An−1))
∥∥
Lp(Ω,µ)

≤ Cp‖f‖Lp(Ω,µ),

was given a counterpiece for spline projections as follows
∥∥∑±(Pn(g)− Pn−1(g))

∥∥
Lp([0,1])

≤ Cp‖g‖Lp([0,1]),

where 1 < p < ∞, and Cp ∼ p2/(p − 1). The corresponding analogue for vector
valued spline projections is still outstanding. (See however [5] for a special case.)

Organization. The presentation is organized as follows. In Section 2, we collect
some important facts and tools used in this article. Section 3 treats the convergence
of Png for L1

X -functions g. Section 4 contains special spline constructions associated
to the point sequence (ti). In Section 5, we give a measure theoretic lemma that is
subsequently employed and may be of independent interest in the theory of splines.
Finally, in Section 6, we give the proof of the Spline Convergence Theorem.

2. Preliminaries

2.1. Basics about vector measures. We refer to the book [3] by J. Diestel and
J.J. Uhl for basic facts on martingales and vector measures. Let (Ω,A) be a measure
space and X a Banach space. Every σ-additive map ν : A → X is called a vector
measure. The variation |ν| of ν is the set function

|ν|(E) = sup
π

∑

A∈π
‖ν(A)‖X ,

where the supremum is taken over all partitions π of E into a finite numer of
pairwise disjoint members of A. If ν is of bounded variation, i.e., |ν|(Ω) <∞, the
variation |ν| is σ-additive. If µ : A → [0,∞) is a measure and ν : A → X is a
vector measure, ν is called µ-continuous, if limµ(E)→0 ν(E) = 0 for all E ∈ A.

Definition 2.1. A Banach space X has the Radon-Nikodým property (RNP) if
for every measure space (Ω,A), for every positive measure µ on (Ω,A) and for
every µ-continuous vector measure ν of bounded variation, there exists a function
f ∈ L1

X(Ω,A, µ) such that

ν(A) =

∫

A

f dµ, A ∈ A.

Theorem 2.2 (Lebesgue decomposition of vector measures). Let (Ω,A) be a mea-
sure space, X a Banach space, ν : A → X a vector measure and µ : A → [0,∞) a
measure. Then, there exist unique vector measures νc, νs : A → X such that

(1) ν = νc + νs,
(2) νc is µ-continuous,
(3) x∗νs and µ are mutually singular for each x∗ ∈ X∗.

If ν is of bounded variation, νc and νs are of bounded variation as well, |ν|(E) =
|νc|(E) + |νs|(E) for each E ∈ A and |νs| and µ are mutually singular.

The following theorem provides the fundamental link between convergence of
vector valued martingales and the RNP of the underlying Banach space X. See
Diestel-Uhl [3, Theorem V.2.9]. It is the point of reference for our present work on
convergence of spline projections.
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Theorem 2.3 (Martingale convergence theorem). Let (Ω,A) be a measure space
and µ : A → [0,∞) a measure. Let (An) be a sequence of increasing sub-σ-algebras
of A. Let X be a Banach space, let (gn) be a bounded sequence in L1

X(Ω,An, µ),
such that gn = E(gn+1|A) and let

ν(E) = lim
n→∞

∫

E

gndµ, E ∈ ∪An.

Let ν = νc + νs denote the Lebesgue decomposition of ν with respect to µ. Then
limn→∞ gn exists almost everywhere with respect to µ if and only if νc has a Radon-
Nikodým derivative f ∈ L1

X(Ω, µ). In this case

lim
n→∞

gn = E(f |A∞),

where A∞ is the σ-algebra generated by ∪An.
Let X be a Banach space, let v ∈ L1(Ω,A,m) and x ∈ X. We recall that

v ⊗ x : Ω→ X is defined by v ⊗ x(ω) = v(ω)x and that

L1(Ω,A,m)⊗X = span{vi ⊗ xi : vi ∈ L1(Ω,A,m), xi ∈ X}.
The following lemmata are taken from [10].

Lemma 2.4. For any Banach space X, the algebraic tensor product L1(Ω,A,m)⊗
X is a dense subspace of the Bochner-Lebesgue space L1

X(Ω,A,m).

Lemma 2.5. Given a bounded operator T : L1(Ω,A,m) → L1(Ω′,A′,m′) there

exists a unique bounded linear map T̃ : L1
X(Ω,A,m)→ L1

X(Ω′,A′,m′) such that

T̃ (ϕ⊗ x) = T (ϕ)x, ϕ ∈ L1(Ω,A,m), x ∈ X.
Moreover, ‖T̃‖ = ‖T‖.
Lemma 2.6. Let X0 be a separable closed subspace of a Banach space X. Then,
there exists a sequence (x∗n) in the unit ball of the dual X∗ of X such that

‖x‖ = sup
n
|x∗n(x)|, x ∈ X0.

2.2. Tools from Real Analysis. We use the book by E. Stein [13] as our ba-
sic reference to Vitali’s covering Lemma and weak-type estimates for the Hardy-
Littlewood maximal function.

Lemma 2.7 (Vitali covering lemma). Let {Cx : x ∈ Λ} be an arbitrary collection of
balls in Rd such that sup{diam(Cx) : x ∈ Λ} < ∞. Then, there exists a countable
subcollection {Cx : x ∈ J}, J ⊂ Λ of balls from the original collection that are
disjoint and satisfy ⋃

x∈Λ

Cx ⊂
⋃

x∈J
5Cx.

Vitali’s covering Lemma implies weak type estimates for the Hardy-Littlewood
maximal function.

Theorem 2.8. Let f ∈ L1
X and Mf(t) := supI3t

1
λ(I)

∫
I
‖f(s)‖X ds the Hardy-

Littlewood maximal function. Then M satisfies the weak type estimate

λ({Mf > u}) ≤
C‖f‖L1

X

u
, u > 0,

where C > 0 is an absolute constant.
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2.3. Spline spaces. Denote by |∆n| the maximal mesh width of the grid ∆n =
(ti)

n
i=1 augmented with k times the boundary points {0, 1}. Recall that Pn is the

orthogonal projection operator onto the space Sn of splines corresponding to the
grid ∆n, which is a conditional expectation operator for k = 1.

For the following, we introduce the notation A(t) . B(t) to indicate the existence
of a constant c > 0 that only depends on k such that A(t) ≤ cB(t), where t denotes
all explicit or implicit dependences that the expressions A and B might have. As
is shown by A. Shadrin, the sequence (Pn) satisfies L1 estimates as follows:

Theorem 2.9 ([12]). The orthogonal projection Pn admits a bounded extension to
L1 such that

sup
n
‖Pn : L1 → L1‖ . 1.

By Lemma 2.5, the operator Pn can be extended to the vector valued L1 space L1
X

with the same norm so that for all ϕ ∈ L1 and x ∈ X, we have Pn(ϕ⊗x) = (Pnϕ)x.
We also have the identity

(2.1)

∫ 1

0

Png(t) · f(t) dλ(t) =

∫ 1

0

g(t) · Pnf(t) dλ(t), g ∈ L1
X , f ∈ L∞,

which is just the extension of the fact that Pn is selfadjoint on L2.
Fix f ∈ C[0, 1]. Consider the kth forward differences of f given by

Dk
hf(t) =

k∑

j=0

(−1)k−j
(
k

j

)
f(t+ jh).

The kth modulus of smoothness of f in L∞ is defined as

ωk(f, δ) = sup
0≤h≤δ

sup
0≤t≤1−kh

|Dk
hf(t)|,

where 0 ≤ δ ≤ 1/k. We have limδ→0 ωk(f, δ) = 0 for any f ∈ C[0, 1]. Any con-
tinuous function can be approximated by spline functions satisfying the following
quantitative error estimate.

Theorem 2.10 ([11, Theorem 6.27]). Let f ∈ C[0, 1]. Then,

d(f, Sn)∞ . ωk(f, |∆n|),
where d(f, Sn)∞ is the distance between f and Sn in the sup-norm. Therefore, if
|∆n| → 0, we have d(f, Sn)∞ → 0.

Denote by (N
(n)
i )i the B-spline basis of Sn normalized such that it forms a

partition of unity and by (N
(n)∗
i )i its corresponding dual basis in Sn. Observe that

Pnf(t) =
∑

i

〈f,N (n)
i 〉N

(n)∗
i (t), f ∈ L2.

Since the B-spline functions N
(n)
i are contained in C[0, 1], we can also insert L1-

functions as well as measures in the above formula.
If we set a

(n)
ij = 〈N (n)∗

i , N
(n)∗
j 〉, we can expand the dual B-spline functions as a

linear combination of B-spline functions with those coefficients:

(2.2) N
(n)∗
i =

∑

j

a
(n)
ij N

(n)
j .
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Moreover, for t ∈ [0, 1] denote by In(t) a smallest grid point interval of positive
length in the grid ∆n that contains the point t. We denote by in(t) the largest

index i such that In(t) ⊂ suppN
(n)
i . Additionally, denote by h

(n)
ij the length of the

convex hull of the union of the supports of N
(n)
i and N

(n)
j .

With this notation, we can give the following estimate for the numbers a
(n)
ij and,

a fortiori, for N
(n)∗
i :

Theorem 2.11 ([9]). There exists q ∈ (0, 1) depending only on the spline order k,

such that the numbers a
(n)
ij = 〈N (n)∗

i , N
(n)∗
j 〉 satisfy the inequality

|a(n)
ij | .

q|i−j|

h
(n)
ij

,

and therefore, in particular, for all i,

|N (n)∗
i (t)| . q|i−in(t)|

max
(
λ(In(t)), λ(suppN

(n)
i )

) , t ∈ [0, 1].

Proof. The first inequality is proved in [9] and the second one is an easy consequence

of the first one inserted in formula (2.2) for N
(n)∗
i . �

An almost immediate consequence of this estimate is the following pointwise
maximal inequality for Png:

Theorem 2.12 ([9]). For all g ∈ L1
X ,

sup
n
‖Png(t)‖X .Mg(t), t ∈ [0, 1],

where Mg(t) = supI3t
1

λ(I)

∫
I
‖g(s)‖X ds denotes the Hardy-Littlewood maximal

function.

This result and Theorem 2.10, combined with Theorem 2.8, imply the a.e. con-
vergence of Png to g for any L1-function g provided that the point sequence (ti) is
dense in the unit interval [0, 1], cf. [9].

As the spline spaces Sn form an increasing sequence of subspaces of L2, we

can write the B-spline function N
(n)
i as a linear combination of the finer B-spline

functions (N
(n+1)
j ). The exact form of this expansion is given by Böhm’s algorithm

[1] and it states in particular that the following result is valid:

Proposition 2.13. Let f =
∑
i αiN

(m)
i ∈ Sm for some m. Then, there exists a

sequence (βi) of coefficients so that

f ≡
∑

i

βiN
(m+1)
i

and, for all i, βi is a convex combination of αi−1 and αi.

By induction, an immediate consequence of this result is

Corollary 2.14. For any positive integers n ≥ m and any index i, the B-spline

function N
(m)
i can be represented as

N
(m)
i ≡

∑

j

λjN
(n)
j ,

with coefficients λj ∈ [0, 1] for all j.
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In the following theorem it is convenient to display explicitly the order k of the

B-splines N
(n)
i = N

(n)
i,k . The relation between the sequences (N

(n)
i,k )i and (N

(n)
i,k−1)i

is given by well known recursion formulae, for which we refer [2]. See also [11].

Theorem 2.15. Let [a, b] = suppN
(n)
i,k . Then, the B-spline function N

(n)
i,k of order

k can be expressed in terms of two B-spline functions of order k − 1 as follows:

N
(n)
i,k (t) =

t− a
λ(suppN

(n)
i,k−1)

N
(n)
i,k−1(t) +

b− t
λ(suppN

(n)
i+1,k−1)

N
(n)
i+1,k−1(t).

3. Convergence of Png

As we are considering arbitrary sequences of grid points (ti) which are not neces-
sarily dense in [0, 1], as a first stage in the proof of the Spline Convergence Theorem,
we examine the convergence of Png for g ∈ L1

X .
We first notice that Png converges in L1. Indeed, this is a consequence of the

uniform boundedness of Pn on L1 as we will now show. Observe that for g ∈ L2,
we get that if we define S∞ as the L2 closure of ∪Sn and P∞ as the orthogonal
projection onto S∞,

‖Png − P∞g‖L2 → 0.

Next, we show that this definition of P∞ can be extended to L1 functions g. So, let
g ∈ L1 and ε > 0. Since L2 is dense in L1, we can choose f ∈ L2 with the property
‖g − f‖1 < ε. Now, choose N0 sufficiently large that for all m,n > N0, we have
‖(Pn − Pm)f‖2 < ε. Then, we obtain

‖(Pn − Pm)g‖L1 ≤ ‖(Pn − Pm)(g − f)‖L1 + ‖(Pn − Pm)f‖L1

≤ 2Cε+ ‖(Pn − Pm)f‖L2

≤ (2C + 1)ε

for a constant C depending only on k by Theorem 2.9. This means that Png
converges in L1 to some limit that we will again call P∞g. It actually coincides
with the operator P∞ on L2 and satisfies the same L1 bound as the sequence (Pn).
Summing up we have

‖Png − P∞g‖L1 → 0,

for any g ∈ L1. Applying Lemma 2.5 to (Pn − P∞) we obtain the following vector
valued extension. For any Banach space X

‖Png − P∞g‖L1
X
→ 0,

for g ∈ L1
X .

The next step is to show pointwise convergence of Png for continuous functions g.
We define U to be the complement of the set of all accumulation points of the given
knot sequence (ti). This set U is open, so it can be written as a disjoint union of
open intervals

U = ∪∞j=1Uj .

Lemma 3.1. Let g ∈ C[0, 1]. Then, Png converges pointwise a.e. to P∞g with
respect to Lebesgue measure.

Proof. We first show that on each interval Uj , Png converges locally uniformly.
Let A ⊂ Uj be a compact subset. Then the definition of Uj implies that s :=
inf{λ(In(t)) : t ∈ A,n ∈ N} is positive. Observe that of course, since in particular
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g ∈ L1[0, 1], the sequence Png converges in L1. Therefore, for ε > 0, we can choose
M so large that for all n,m ≥ M , ‖Png − Pmg‖L1 ≤ εs. We then estimate by
Theorem 2.11 for n ≥ m ≥M and t ∈ A:

|(Pn − Pm)g(t)| = |Pn(Pn − Pm)g(t)|

=
∣∣∣
∑

i

〈(Pn − Pm)g,N
(n)
i 〉N

(n)∗
i (t)

∣∣∣

.
∑

i

q|i−in(t)|

λ(In(t))
‖(Pn − Pm)g‖

L1(suppN
(n)
i )

≤ ‖(Pn − Pm)g‖L1([0,1])

∑

i

q|i−in(t)|

s

.
‖(Pn − Pm)g‖L1[0,1]

s
≤ ε,

so Png converges uniformly on A.
If t ∈ U c, we can assume that on both sides of t, there is a subsequence of grid

points converging to t, since if there is a side that does not have a sequence of grid
points converging to t, the point t would be an endpoint of an interval Uj and the
union over all endpoints of Uj is countable and therefore a Lebesgue zero set. Let
ε > 0 and let ` be such that

(3.1) q`‖g‖L∞ ≤ ε.

We choose M so large that for any m ≥M on each side of t there are ` grid points
of ∆m and each of those grid point intervals has the property that the length is
< δ with δ > 0 being such that ωk(g, δ) < ε, where ωk is the kth modulus of
smoothness. With this choice, by Theorem 2.10, there exists a function f ∈ SM
with ‖f‖L∞ . ‖g‖L∞ that approximates g well on the smallest interval B that
contains ` − k grid points to the left of t and ` − k grid points to the right of t in
∆M in the sense that

(3.2) ‖f − g‖L∞(B) . ωk(g, δ) ≤ ε.

Therefore, we can write for n,m ≥M

(Pn − Pm)g(t) = Pn(g − f)(t) + Pm(f − g)(t).

Next, estimate Pn(g − f)(t) for n ≥M by Theorem 2.11:

|Pn(g − f)(t)| =
∣∣∣
∑

i

〈g − f,N (n)
i 〉N

(n)∗
i (t)

∣∣∣

.
∑

i

‖g − f‖
L∞(supp(N

(n)
i ))

λ(suppN
(n)
i )

q|i−in(t)|

λ(suppN
(n)
i )

=
∑

i

q|i−in(t)|‖g − f‖
L∞(suppN

(n)
i )

.

In estimating the above series we distinguish two cases for the value of i:

|i− in(t)| ≤ `− 2k, and |i− in(t)| > `− 2k.

CHAPTER 8. ALMOST EVERYWHERE CONVERGENCE OF SPLINE SEQUENCES 171



ALMOST EVERYWHERE CONVERGENCE OF SPLINE SEQUENCES 9

Using ‖g − f‖
L∞(suppN

(n)
i )
≤ ‖g − f‖L∞(B) and (3.2) we get

∑

i:|i−in(t)|≤`−2k

q|i−in(t)|‖g − f‖
L∞(suppN

(n)
i )
. ε.

Using ‖g − f‖
L∞(suppN

(n)
i )
. ‖g‖L∞ and (3.1) gives

∑

i:|i−in(t)|>`−2k

q|i−in(t)|‖g − f‖
L∞(suppN

(n)
i )
. ε.

This yields |Pn(g − f)(t)| . ε for n ≥ M and therefore Png(t) converges as n →
∞. �

The following theorem establishes the spline analogue of the martingale results
(M1) and (M3). The role of Lemma 3.1 in the proof given below is to free the main
theorem in [9] from the restriction that the sequence of knots (ti) is dense in [0, 1].

Theorem 3.2. Let X be any Banach space. For f ∈ L1
X , there exists E ⊂ [0, 1]

with λ(E) = 0 such that

lim
n→∞

Pnf(t) = P∞f(t),

for any t ∈ [0, 1] \ E.

Proof. The proof uses standard arguments involving Lemma 3.1, Theorems 2.12
and 2.8. (See [9].)

Step 1: (The scalar case.) Fix v ∈ L1 and ` ∈ N. Put

A(`)(v) =
⋂

N

⋃

m,n≥N
{t : |Pnv(t)− Pmv(t)| > 1/`}.

By Lemma 3.1, for any u ∈ C[0, 1],

λ(A(`)(v)) = λ(A(`)(v − u))

Let P ∗(v − u)(t) = supn |Pn(v − u)(t)|. Clearly we have

λ(A(`)(v − u)) ≤ λ({t : 2P ∗(v − u)(t) ≥ 1/`}).
By Theorem 2.12, P ∗ is dominated pointwise by the Hardy-Littlewood maximal
function and the latter is of weak type 1-1. Hence

λ({t : P ∗(v − u)(t) ≥ 1/`}) . `‖v − u‖L1

Now fix ε > 0. Since C[0, 1] is dense in L1, there exists u ∈ C[0, 1] such that
‖v−u‖L1 ≤ ε/`. Thus, we obtained λ(A(`)(v)) < ε for any ε > 0, or λ(A(`)(v)) = 0.
It remains to observe that

λ({t : Pnv(t) does not converge}) = λ
(⋃

`

A(`)(v)
)

= 0.

Step 2:(Vector valued extension.) Let gm = vm ⊗ xm where vm ∈ L1 and
xm ∈ X and let g ∈ L1 ⊗X be given as

g =

M∑

m=1

gm.
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Applying Step 1 to vm shows that Png(t) converges inX for λ-almost every t ∈ [0, 1].
Taking into account that L1⊗X is dense in L1

X , we may now repeat the argument
above to finish the proof. Details are as follows: Fix f ∈ L1

X and ` ∈ N. Put

A(`)(f) =
⋂

N

⋃

m,n≥N
{t : ‖Pnf(t)− Pmf(t)‖X > 1/`}.

Then

λ({t : Pnf(t) does not converge in X}) = λ
(⋃

`

A(`)(f)
)
.

It remains to prove that λ(A(`)(f)) = 0. To this end observe that for g ∈ L1 ⊗X
we have λ(A(`)(f)) = λ(A(`)(f − g)). Define the maximal function P ∗(f − g)(t) =
supn ‖Pn(f − g)(t)‖X . Clearly we have

λ(A(`)(f − g)) ≤ λ({t : 2P ∗(f − g)(t) ≥ 1/`}).
By Theorem 2.12, and the weak type 1-1 estimate for the Hardy-Littlewood maxi-
mal function,

λ({t : P ∗(f − g)(t) ≥ 1/`}) . `‖f − g‖L1
X
.

Fix ε > 0, choose g ∈ L1⊗X such that ‖f − g‖L1
X
≤ ε/`. This gives λ(A(`)(f)) . ε

for any ε > 0, proving that λ(A(`)(f)) = 0. �

4. B-spline constructions

Recall that we defined U to be the complement of the set of all accumulation
points of the sequence (ti). This set U is open, so it can be written as a disjoint
union of open intervals

U = ∪∞j=1Uj .

Observe that, since a boundary point a of Uj is an accumulation point of the
sequence (tj), there exists a subsequence of grid points converging to a. Let

Bj := {a ∈ ∂Uj : there is no sequence of grid points

contained in Uj that converges to a}
Now we set Vj := Uj ∪Bj and V := ∪jVj .

Consider an arbitrary interval Vj0 and set a = inf Vj0 , b = supVj0 . We define the

sequences (sj) and (s
(n)
j ) – rewritten in increasing order with multiplicities included

– to be the points in (tj) and (tj)
n
j=1, respectively, that are contained in Vj0 . If

a ∈ Vj0 , the sequence (sj) is finite to the left and we extend the sequences (sj)

and (s
(n)
j ) so that they contain the point a k times and they are still increasing.

Similarly, if b ∈ Vj0 , the sequence (sj) is finite to the right and we extend the

sequences (sj) and (s
(n)
j ) so that they contain the point b k times and they are still

increasing. Observe that if a /∈ Vj0 or b /∈ Vj0 , the sequence (sj) is infinite to the left
or infinite to the right, respectively. We choose the indices of the sequences (sj) and

(s
(n)
j ) so that for fixed j and n sufficiently large, we have sj = s

(n)
j . Let (N̄j) and

(N̄
(n)
j ) be the sequences of B-spline functions corresponding to the sequences (sj)

and (s
(n)
j ), respectively. Observe that the choice of the sequences (sj) and (s

(n)
j )

implies for all j that N̄j ≡ N̄ (n)
j if n is sufficiently large. Let (N

(n)
j ) be the sequence

of those B-spline functions from Section 2 whose supports intersect the set Vj0 on
a set of positive Lebesgue measure, but do not contain any of the points ∂Uj0 \Bj0
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and without loss of generality, we assume that this sequence is enumerated in such
a way that starting index and ending index coincide with the ones of the sequence

(N̄
(n)
j )j . Then, the relation between (N

(n)
j )j and (N̄j)j is given by the following

lemma:

Lemma 4.1. For all j, the sequence of functions (N
(n)
j 1Vj0

) converges uniformly

to some function that coincides with N̄j on Uj0 .

Proof. If the support of N
(n)
i is a subset of Vj0 for sufficiently large n, the se-

quence n 7→ N
(n)
i is eventually constant and coincides by definition with N̄i. In the

other case, this follows by the recursion formula (Theorem 2.15) for B-splines and
observing that for piecewise linear B-splines, this is clear. �

In view of the above lemma, we may assume that N̄i coincides with the uniform

limit of the sequence (N
(n)
i 1Vj0

). Define (N̄
(n)∗
j ) to be the dual B-splines to (N̄

(n)
j ).

For t ∈ [0, 1] denote by Īn(t) a smallest grid point interval of positive length in the

grid (s
(n)
j ) that contains the point t. We denote by īn(t) the largest index i such

that Īn(t) ⊂ supp N̄
(n)
i . Additionally, denote by h̄

(n)
ij the length of the convex hull

of the union of the supports of N̄
(n)
i and N̄

(n)
j . Similarly we let Ī(t) denote a

smallest grid point interval of positive length in the grid (sj) containing t ∈ [0, 1].
We denote by ī(t) the largest index i such that Ī(t) ⊂ supp N̄i. Next, we identify
dual functions to the sequence (N̄j):

Lemma 4.2. For each j, the sequence N̄
(n)∗
j converges uniformly on each interval

[si, si+1] to some function N̄∗j that satisfies

(1) 〈N̄∗j , N̄i〉 = δij for all i,
(2) for all t ∈ Uj0 ,

(4.1) |N̄∗j (t)| . q|j−ī(t)|

λ(Ī(t))
,

where q ∈ (0, 1) is given by Theorem 2.11.

Proof. We fix the index j, the point t ∈ Uj0 and ε > 0. Next, we choose M
sufficiently large so that for all m ≥ M and all ` with the property |` − ī(t)| ≤ L

we have s
(m)
` = s`, where L is chosen so that qL/λ(Ī(t)) ≤ ε and |j − ī(t)| ≤ L− k.

For n ≥ m ≥M , we can expand the function N̄
(m)∗
j in the basis (N̄

(n)∗
i ) and write

(4.2) N̄
(m)∗
j =

∑

i

αjiN̄
(n)∗
i .

We now turn to estimating the coefficients αji defined by equation (4.2). Observe

that for ` with |`− ī(t)| ≤ L− k, we have N̄
(m)
` ≡ N̄ (n)

` , and therefore, for such `,

δj` = 〈N̄ (m)∗
j , N̄

(m)
` 〉 = 〈N̄ (m)∗

j , N̄
(n)
` 〉 =

∑

i

αji〈N̄ (n)∗
i , N̄

(n)
` 〉 = αj`,

which means that the expansion (4.2) takes the form

(4.3) N̄
(m)∗
j = N̄

(n)∗
j +

∑

`:|`−ī(t)|>L−k
αj`N̄

(n)∗
` .
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Next we show that |αj`| is bounded by a constant independently of j, ` and m,n.

Recall h̄
(m)
ij denotes the length of the smallest interval containing supp N̄

(m)
i ∪

supp N̄
(m)
j . By Theorem 2.11, applied to the matrix (ā

(m)
ij ) = (〈N̄ (m)∗

i , N̄
(m)∗
j 〉), we

get

|αj`| = |〈N̄ (m)∗
j , N̄

(n)
` 〉| =

∣∣∣
〈∑

i

ā
(m)
ij N̄

(m)
i , N̄

(n)
`

〉∣∣∣

.
∑

i

q|i−j|

h̄
(m)
ij

〈N̄ (m)
i , N̄

(n)
` 〉 ≤

∑

i

q|i−j|

h̄
(m)
ij

λ(supp N̄
(m)
i )

≤
∑

i

q|i−j| . 1.

This can be used to obtain an estimate for the difference between N̄
(m)∗
j (t) and

N̄
(n)∗
j (t) by inserting it into (4.3) and applying again Theorem 2.11:

|(N̄ (m)∗
j − N̄ (n)∗

j )(t)| ≤
∑

`:|`−ī(t)|>L−k
|αj`||N̄ (n)∗

` (t)|

.
∑

`:|`−ī(t)|>L−k

q|`−īn(t)|

λ(Īn(t))
. qL

λ(Ī(t))
≤ ε.

This finishes the proof of the convergence part. Estimate (4.1) now follows from

the corresponding estimate for N̄
(n)∗
j in Theorem 2.11.

Now, we turn to the proof of property (1). Let j, i be arbitrary. Choose M

sufficiently large so that for all n ≥M , we have N̄i ≡ N̄ (n)
i on Uj0 , therefore,

|〈N̄∗j , N̄i〉 − δij | = |〈N̄∗j , N̄i〉 − 〈N̄ (n)∗
j , N̄

(n)
i 〉| = |〈N̄∗j − N̄

(n)∗
j , N̄

(n)
i 〉|

≤ ‖N̄∗j − N̄ (n)∗
j ‖

L∞(supp N̄
(n)
i )
· λ(supp N̄

(n)
i ),

which, by the local uniform convergence of N̄
(n)∗
j to N̄∗j , tends to zero. �

5. A measure estimate

Let σ be a measure defined on the unit interval. Recall that Pn(σ) is defined by
duality. In view of Theorem 2.11, localized and pointwise estimates for Pn(σ) are
controlled by terms of the form

∑

i,j

q|i−j|

h
(n)
ij

|σ|(suppN
(n)
i )N

(n)
j .

Subsequently the following Lemma will be used to show that Pn(σ) converges a.e.
to zero, for any measure σ singular to the Lebesgue measure.

Lemma 5.1. Let Fr be a Borel subset of V c and θ a positive measure on [0, 1] with
θ(Fr) = 0 so that for all x ∈ Fr, we have

lim sup
n

bn(x) > 1/r,

where bn(x) is a positive function satisfying

bn(x) .
∑

i,j

q|i−j|

h
(n)
ij

θ(suppN
(n)
i )N

(n)
j (x), x ∈ Fr.
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Then, λ(Fr) = 0.

Proof. First observe that we can assume that each point in Fr can be approximated
from both sides with points of the sequence (ti), since the set of points in V c for
which this is not possible is a subset of ∪j∂Vj and therefore of Lebesgue measure
zero.

Step 1: For an arbitrary positive number ε, by the regularity of θ, we can take
an open set Uε ⊂ [0, 1] with Uε ⊃ Fr and θ(Uε) ≤ ε. Then, for x ∈ Fr, we choose a

ball Bx ⊂ Uε with center x, define sm(x) = {j : N
(m)
j (x) 6= 0} and calculate

bm(x) .
∑

i,j

q|i−j|

h
(m)
ij

θ(suppN
(m)
i )N

(m)
j (x)

.
∑

j∈sm(x)

∑

i

q|i−j|

h
(m)
ij

θ(suppN
(m)
i )

. max
j∈sm(x)

∑

i

q|i−j|

h
(m)
ij

θ(suppN
(m)
i )

= C max
j∈sm(x)

(Σ
(m)
1,j + Σ

(m)
2,j ),

for some constant C and where

Σ
(m)
1,j :=

∑

i∈Λ
(m)
1

q|i−j|

h
(m)
ij

θ(suppN
(m)
i ), Σ

(m)
2,j :=

∑

i∈Λ
(m)
2

q|i−j|

h
(m)
ij

θ(suppN
(m)
i )

and

Λ
(m)
1 = {i : suppN

(m)
i ⊂ Bx}, Λ

(m)
2 = (Λ

(m)
1 )c

Step 2: Next, we show that it is possible to choose m sufficiently large to have

Σ
(m)
2,j ≤ 1/(2Cr) for all j ∈ sm(x).

To do that, let jm ∈ sm(x) and observe that

Σ
(m)
2,jm

=
∑

i∈Λ
(m)
2

q|i−jm|θ(suppN
(m)
i )

h
(m)
ijm

≤
∑

i∈Λ
(m)
2

q|i−jm|θ(suppN
(m)
i )

d(x, suppN
(m)
i )

=: A
(m)
2,jm

,

where d(x, suppN
(m)
i ) denotes the Euclidean distance between x and suppN

(m)
i .

Now, for n > m sufficiently large, we get

A
(n)
2,jn

=
∑

`∈Λ
(n)
2

q|`−jn|θ(suppN
(n)
` )

d(x, suppN
(n)
` )

≤
∑

i∈Λ
(m)
2

∑

`∈Λ
(n)
2 ,

suppN
(n)
` ⊂suppN

(m)
i

q|`−jn|θ(suppN
(n)
` )

d(x, suppN
(n)
` )

.(5.1)

Define Ln,m to be the cardinality of the set {ti : m < i ≤ n} ∩Bx ∩ [0, x] and Rn,m
the cardinality of {ti : m < i ≤ n} ∩Bx ∩ [x, 1]. Put

Kn,m = min{Ln,m, Rn,m}.
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The term (5.1) admits the following upper bound

qKn,m

∑

i∈Λ
(m)
2

q|i−jm|

d(x, suppN
(m)
i )

∑

`∈Λ
(n)
2 ,

suppN
(n)
` ⊂suppN

(m)
i

θ(suppN
(n)
` )

. qKn,m

∑

i∈Λ
(m)
2

q|i−jm|

d(x, suppN
(m)
i )

θ(suppN
(m)
i ) = qKn,mA

(m)
2,jm

,

Since x can be approximated by grid points from both sides, limn→∞Kn,m = ∞,
and we can choose m sufficiently large to guarantee

Σ
(m)
2,j ≤ A

(m)
2,j ≤

1

2Cr
.

Step 3: Next, we show that for any x ∈ Fr, there exists an open interval
Cx ⊂ Bx such that θ(Cx)/λ(Cx) & 1/(2Cr).

By Step 2 and the fact that lim sup bn(x) > 1/r for x ∈ Fr, there exists an
integer m and an index j0 ∈ sm(x) with

Σ
(m)
1,j0
≥ 1

2Cr
,

which means that

1

2Cr
≤

∑

i∈Λ
(m)
1

q|i−j0|

h
(m)
ij0

θ(suppN
(m)
i )

≤
∑

i∈Λ
(m)
1

q|i−j0|

h
(m)
ij0

θ
(

conv(suppN
(m)
i ∪ suppN

(m)
j0

)
)
,

where conv(A) denotes the convex hull of the set A. Since
∑
i∈Λ

(m)
1

q|i−j0| . 1,

there exists a constant c depending only on q and an index i with suppN
(m)
i ⊂ Bx

and

θ
(

conv(suppN
(m)
i ∪ suppN

(m)
j0

)
)

h
(m)
ij0

≥ c

2Cr
,

which means that there exists an open interval Cx with x ∈ Cx ⊂ Bx with the
property θ(Cx)/λ(Cx) ≥ c/(2Cr).

Step 4: Now we finish with a standard argument using the Vitali covering
lemma (Lemma 2.7): there exists a countable collection J of points x ∈ Fr such
that {Cx : x ∈ J} are disjoint sets and

Fr ⊂
⋃

x∈Fr

Cx ⊂
⋃

x∈J
5Cx.

Combining this with Steps 1-3, we conclude

λ(Fr) ≤ λ
( ⋃

x∈J
5Cx

)
≤ 5

∑

x∈J
λ(Cx) ≤ 10Cr

c

∑

x∈J
θ(Cx) ≤ 10Cr

c
θ(Uε) ≤

10Cr

c
ε.

Since this inequality holds for all ε > 0, we get that λ(Fr) = 0. �
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6. Proof of the Spline Convergence Theorem

In this section, we prove the Spline Convergence Theorem 1.1. For f ∈ Sm, a
consequence of (2.1) is

∫ 1

0

gn(t) · f(t) dλ(t) =

∫ 1

0

gn(t) · Pmf(t) dλ(t) =

∫
Pmgn(t) · f(t) dλ(t)

=

∫ 1

0

gm(t) · f(t) dλ(t), n ≥ m.

This means in particular that for all f ∈ ∪nSn, the limit of
∫ 1

0
gn(t) · f(t) dλ(t)

exists, so we can define the linear operator

T : ∪Sn → X, f 7→ lim
n

∫ 1

0

gn(t) · f(t) dλ(t).

By Alaoglu’s theorem, we may choose a subsequence kn such that the bounded
sequence of measures ‖gkn‖X dλ converges in the weak*-topology to some scalar
measure µ. Then, as each f ∈ ∪nSn is continuous,

(6.1) ‖Tf‖X ≤
∫ 1

0

|f(t)|dµ(t), f ∈ ∪Sn.

We let W denote the L1([0, 1], µ)-closure of ∪nSn. By (6.1), the operator T extends
to W with norm bounded by 1.

We set

(PnT )(t) :=
∑

i

(TN
(n)
i )N

(n)∗
i (t)

which is well defined. Moreover,

(PnT )(t) =
∑

i

(TN
(n)
i )N

(n)∗
i (t)

=
∑

i

lim
m

∫
gmN

(n)
i dλ ·N (n)∗

i (t)

=
∑

i

〈gn, N (n)
i 〉N

(n)∗
i (t) = (Pngn)(t) = gn(t).

Thus we verify a.e. convergence of gn, by showing a.e. convergence of PnT below.

Lemma 6.1. For all f ∈ ∪Sn, the function f1Vj
is contained in W and also f1V

is contained in W . Additionally, on the complement of V = ∪Vj, the σ-algebra
F = {A ∈ B : 1A ∈W} coincides with the Borel σ-algebra B, i.e., V c∩F = V c∩B.

Proof. Since W is a linear space, it suffices to show the assertion for each B-spline

function N
(m)
i contained in some Sm. By Corollary 2.14, it can be written as a

linear combination of finer B-spline functions (n ≥ m)

N
(m)
i =

∑

`

λ
(n)
` N

(n)
` ,

where each coefficient λ
(n)
` satisfies the inequality |λ(n)

` | ≤ 1. We set

hn :=
∑

`∈Λn

λ
(n)
` N

(n)
` ,
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where the index set Λn is defined to contain precisely those indices ` so that

suppN
(n)
` intersects Vj but does not contain any of the points ∂Uj \ Bj . The

function hn is contained in Sn and satisfies |hn| ≤ 1. Observe that supphn ⊂ On
for some open set On and hn ≡ N

(m)
i on some compact set An ⊂ Vj that satisfy

On \An ↓ ∅ as n→∞ and thus,

‖N (m)
i 1Vj − hn‖L1(µ) . µ(On \An)→ 0.

This shows that N
(m)
i 1Vj

∈W .
Since µ is a finite measure, limn µ(∪j≥nVj) = 0, and therefore, f1V = f1∪jVj

is
also contained in W .

Similarly, we see that the collection F = {A ∈ B : 1A ∈ W} is a σ-algebra. So,
in order to show V c∩F = V c∩B we will show that for each interval (c, d) contained
in [0, 1], we can find an interval I ∈ F with the property V c ∩ (c, d) = V c ∩ I. By

the same reasoning as in the approximation of N
(m)
i 1Vj

by finer spline functions,
we can give the following sufficient condition for an interval I to be contained in
F : if for all a ∈ {inf I, sup I} we have either

a ∈ I and there exists a seq. of grid points conv. from outside of I to a

or

a /∈ I and there exists a seq. of grid points conv. from inside of I to a,

then I ∈ F . Let now (c, d) be an arbitrary interval and assume first that c, d /∈
∪j∂Uj . For arbitrary points x ∈ [0, 1], define

I(x) :=

{
Vj , if x ∈ Uj ,
∅, otherwise.

Then, by the above sufficient criterion, the set I = (c, d) \ (I(c)∪ I(d)) is contained
in F . Moreoever, V c ∩ (c, d) = V c ∩ I and this shows that (c, d)∩ V c ∈ F ∩ V c. In
general, since the set ∪j∂Uj is countable, we can find sequences cn ≥ c and dn ≤ d
with cn, dn /∈

⋃
j ∂Uj , cn → c, dn → d, and

(c, d) ∩ V c = (∪n(cn, dn)) ∩ V c ∈ F ∩ V c,
since F ∩ V c is a σ-algebra. This shows the fact that F ∩ V c = B ∩ V c. �

Proof of Theorem 1.1. Part 1: t ∈ V c: By Lemma 6.1, we can decompose

gn(t) = (PnT )(t) =
∑

i

T (N
(n)
i )N

(n)∗
i (t)

=
∑

i

T (N
(n)
i 1V )N

(n)∗
i (t) +

∑

i

T (N
(n)
i 1V c)N

(n)∗
i (t)

=: Σ
(n)
1 (t) + Σ

(n)
2 (t).

Part 1.a: Σ
(n)
1 (t) for t ∈ V c: We will show that Σ

(n)
1 (t) converges to zero a.e.

on V c. This is done by defining the measure

θ(E) := µ
(
E ∩ V

)
, E ∈ B,

and

Fr = {t ∈ V c : lim sup
n
‖Σ(n)

1 (t)‖X > 1/r} ⊂ V c.
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Observe that θ(Fr) = 0 and, by (6.1) and Theorem 2.11,

‖Σ(n)
1 (t)‖X .

∑

i,j

q|i−j|

h
(n)
ij

θ(suppN
(n)
i )N

(n)
j (t), t ∈ Fr,

which allows us to apply Lemma 5.1 on Fr and θ to get λ(Fr) = 0 for all r > 0,

i.e., Σ
(n)
1 (t) converges to zero a.e. on V c.

Part 1.b: Σ
(n)
2 (t) for t ∈ V c: Let BV c = V c ∩ B. Thus BV c is the restriction

of the Borel σ-algebra B to V c. In this case, we define the vector measure ν of
bounded variation on (V c,BV c) by

ν(A) := T (1A), A ∈ BV c .

Here we use the second part of Lemma 6.1 to guarantee that the right hand side is
defined and (6.1) ensures |ν| ≤ µ. Apply Lebesgue decomposition Theorem 2.2 to
get

(6.2) dν = g dλ+ dνs

where g ∈ L1
X and |νs| is singular to λ. Observe that for all f ∈ ∪Sn, we have

(6.3)

∫
f dν = T (f1V c).

Indeed, this holds for indicator functions by definition and each f ∈ ∪Sn can be
approximated in L1(µ) by linear combinations of indicator functions. Therefore,
(6.3) is established, since both sides of (6.3) are continuous in L1(µ). So,

Σ
(n)
2 (t) =

∑

i

∫
N

(n)
i dν ·N (n)∗

i (t)

=
∑

i

∫
N

(n)
i g dλ ·N (n)∗

i (t) +
∑

i

∫
N

(n)
i dνs ·N (n)∗

i (t).

The first part is Png for an L1
X function g and this converges by Theorem 3.2 a.e.

to g.
To treat the second part Pnνs, let A ∈ BV c be a subset of V c with the property

λ(V c \A) = |νs|(A) = 0, which is possible since |νs| is singular to λ. For x∗ ∈ X∗,
we define the set

Fr,x∗ := {t ∈ A : lim sup
n
|(x∗Pnνs)(t)| > 1/r}.

Since by Theorem 2.11

|x∗Pnνs(t)| =
∣∣∣
∑

i,j

a
(n)
ij

∫
N

(n)
i d(x∗ ◦ νs) ·N (n)

j (t)
∣∣∣

.
∑

i,j

q|i−j|

h
(n)
ij

|x∗ ◦ νs|(suppN
(n)
i ) ·N (n)

j (t),

we can apply Lemma 5.1 to Fr,x∗ and the measure θ(B) = |x∗◦νs|(B∩V c) to obtain
λ(Fr,x∗) = 0. Since the closure X0 in X of the set {Pnνs(t) : t ∈ [0, 1], n ∈ N} is a
separable subspace of X, by Lemma 2.6, there exists a sequence (x∗n) of elements
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in X∗ such that for all x ∈ X0 we have ‖x‖ = supn |x∗n(x)|. This means that we
can write

F := {t ∈ A : lim sup
n
‖Pnνs(t)‖ > 0} =

∞⋃

n,`=1

F`,x∗n ,

and thus, λ(F ) = 0, which shows that Pnνs tends to zero almost everywhere on V c

with respect to Lebesgue measure.
Part 2: t ∈ V :
Now, we consider t ∈ V or more precisely t ∈ U . This makes no difference for

considering a.e. convergence since the difference between V and U is a Lebesgue
zero set. We choose the index j0 such that t ∈ Uj0 and based on the location of t,
we decompose (using Lemma 6.1)

gn(t) = PnT (t) =
∑

i

T (N
(n)
i )N

(n)∗
i (t)

=
∑

i

T (N
(n)
i 1Vj0

) ·N (n)∗
i (t) +

∑

i

T (N
(n)
i 1V c

j0
) ·N (n)∗

i (t)

=: Σ
(n)
1 (t) + Σ

(n)
2 (t).

Part 2.a: Σ
(n)
1 (t) for t ∈ Uj0 :

We now consider

Σ
(n)
1 =

∑

i

T (N
(n)
i 1Vj0

)N
(n)∗
i (t), t ∈ Uj0 ,

and perform the construction of the B-splines (N̄j) and their dual functions (N̄∗j )
corresponding to Vj0 described in Section 4. Define the function

(6.4) u(t) :=
∑

j

T (N̄j)N̄
∗
j (t), t ∈ Uj0 ,

and first note that N̄j ∈ W since by Lemma 4.1 it is the uniform limit of the

functions (N
(n)
j 1Vj0

), which, in turn, are contained in W by Lemma 6.1. Therefore,

T (N̄j) is defined. Moreover, the series in (6.4) converges pointwise for t ∈ Uj0 , since
λ(Ī(t)) > 0, the sequence j 7→ N̄∗j (t) admits a geometric decay estimate by (4.1)

and the inequality ‖T (N̄i)‖X ≤ µ(supp N̄i). If one additionally notices that (4.1)
implies the estimate ‖N̄∗j ‖L1 . 1 we see that the convergence in (6.4) takes place

in L1
X as well. This implies 〈u, N̄i〉 = T (N̄i) for all i by Lemma 4.2.

Next, we show that if for all n, (ai) and (a
(n)
i ) are sequences in X so that for all

i we have limn a
(n)
i = ai, and supi ‖ai‖X + supi,n ‖a(n)

i ‖X . 1 it follows that

(6.5) lim
n

∑

i

(a
(n)
i − ai)N (n)∗

i (t) = 0, t ∈ Uj0 .

Indeed, let ε > 0, the integer L such that qL ≤ ε · infn λ(In(t)) and M sufficiently

large that for all n ≥ M and all i with |i − in(t)| ≤ L, we have ‖a(n)
i − ai‖X ≤

ε · infn λ(In(t)). Then, by Theorem 2.11,

∥∥∥
∑

i

(a
(n)
i − ai)N (n)∗

i (t)
∥∥∥
X
≤
∑

i

‖a(n)
i − ai‖X

q|i−in(t)|

λ(In(t))
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=
( ∑

i:|i−in(t)|≤L
+

∑

i:|i−in(t)|>L

)
‖a(n)
i − ai‖X

q|i−in(t)|

λ(In(t))

.
∑

i:|i−in(t)|≤L
εq|i−in(t)| +

∑

i:|i−in(t)|>L

q|i−in(t)|

λ(In(t))
. ε

We now use these remarks to show that

lim
n
‖Σ(n)

1 (t)− Pnu(t)‖X = 0, t ∈ Uj0 .

Indeed, since 〈u, N̄i〉 = T (N̄i) for all i,

Σ
(n)
1 (t)− Pnu(t) =

∑

i

(
T (N

(n)
i 1Vj0

)− 〈u,N (n)
i 〉

)
N

(n)∗
i (t)

=
∑

i

(
T (N

(n)
i 1Vj0

)− T (N̄i)
)
N

(n)∗
i (t)

+
∑

i

(
〈u, N̄i〉 − 〈u,N (n)

i 〉
)
N

(n)∗
i (t).

Now, observe that for all i, we have T (N
(n)
i 1Vj0

)→ T (N̄i) and 〈u,N (n)
i 〉 → 〈u, N̄i〉

since by Lemma 4.1, N
(n)
i converges uniformly to N̄i on Vj0 and u ∈ L1. Moreover

all the expressions T (N
(n)
i 1Vj0

), T (N̄i), 〈u,N (n)
i 〉 are bounded in i and n. As a

consequence, we can apply (6.5) to both of the sums in the above display to conclude

lim
n
‖Σ(n)

1 (t)− Pnu(t)‖X = 0, t ∈ Uj0 .

But we know that Pnu(t) converges a.e. to u(t) by Theorem 3.2, this means that

also Σ
(n)
1 (t) converges to u a.e.

Part 2.b: Σ
(n)
2 (t) for t ∈ Uj0 : We show that Σ

(n)
2 (t) =

∑
i T (N

(n)
i 1V c

j0
) ·

N
(n)∗
i (t) converges to zero for t ∈ Uj0 . Let ε > 0 and set s = infn λ(In(t)), where

we recall that In(t) is the grid interval in ∆n that contains the point t. Since s > 0
we can choose an open interval O with the property µ(O \ Vj0) ≤ εs. Then, due
to the fact that t ∈ Uj0 , we can choose M sufficiently large that both intervals
(inf O, t) and (t, supO) contain L points of the grid ∆M where L is such that
qL ≤ εs/µ([0, 1]). Thus, we estimate for n ≥M by (6.1) and Theorem 2.11

‖Σ(n)
2 (t)‖X ≤

∑

i

µ(suppN
(n)
i ∩ V cj0)

q|i−in(t)|

λ(In(t))

≤ 1

s
·
( ∑

i:suppN
(n)
i ∩Oc 6=∅

+
∑

i:suppN
(n)
i ⊂O

)(
µ(suppN

(n)
i ∩ V cj0)q|i−in(t)|)

. 1

s

(
µ([0, 1])qL + µ(O \ Vj0)

)
. ε.

This proves that Σ
(n)
2 (t) converges to zero for t ∈ Uj0 . �

By looking at the above proof and employing the notation therein, we have
actually proved the following, explicit form of the Spline Convergence Theorem:

Theorem 6.2. Let X be a Banach space with RNP and (gn) be sequence in L1
X

with the properties
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(1) supn ‖gn‖L1
X
<∞,

(2) Pmgn = gm for all m ≤ n.

Then, gn converges a.e. to the L1
X-function

g1V c +
∑

j0

∑

j

T (N̄j0,j)N̄
∗
j0,j1Uj0

.

Here, g is defined by (6.2), and for each j0, (N̄j0,j) and (N̄∗j0,j) are the B-splines
and their dual functions constructed in Section 4 corresponding to Vj0 .

Remark 6.3. In order to emphasize the pivotal role of the set V and its com-
plement we note that the proof of Theorem 6.2 implies the following: If (gn) be
sequence in L1

X such that

(1) supn ‖gn‖L1
X
<∞,

(2) Pmgn = gm for all m ≤ n
and if λ(V c) = 0 then, without any condition on the Banach space X, gn converges
a.e. to ∑

j0

∑

j

T (N̄j0,j)N̄
∗
j0,j1Uj0

.

Remark 6.4. Based on the results of the present paper, an intrinsic spline charac-
terization of the Radon-Nikodým property in terms of splines was obtained by the
second named author in [8]. The result in [8] establishes the full analogy between
spline and martingale convergence.
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Abstract. We give necessary and sufficient conditions for a Banach space X
having the Radon-Nikodým property in terms of polynomial spline sequences.

1. Introduction and preliminaries

The aim of this paper is to prove new characterizations of the Radon-Nikodým
property for Banach spaces in terms of polynomial spline sequences in the spirit of
the corresponding martingale results (see Theorem 1.2). We thereby continue the
line of research about extending martingale results to also cover (general) spline
sequences that is carried out in [4–8,11]. We refer to the book [1] by J. Diestel and
J. J. Uhl for basic facts on martingales and vector measures; here, we only give the
necessary notions to define the Radon-Nikodým property below. Let (Ω, A) be a
measure space and let X be a Banach space. Every σ-additive map ν : A → X is
called a vector measure. The variation |ν| of ν is the set function

|ν|(E) = sup
π

∑

A∈π

‖ν(A)‖X ,

where the supremum is taken over all partitions π of E into a finite number of
pairwise disjoint members of A. If ν is of bounded variation, i.e., |ν|(Ω) < ∞, then
the variation |ν| is σ-additive. If μ : A → [0, ∞) is a measure and ν : A → X is
a vector measure, ν is called μ-continuous if limμ(E)→0 ν(E) = 0 for all E ∈ A.
In the following, Lp

X = Lp
X(Ω, A, μ) will denote the Bochner-Lebesgue space of

p-integrable Bochner measurable functions f : Ω → X, and if X = ℝ, we simply
write Lp instead of Lp

ℝ
.

Definition 1.1. A Banach space X has the Radon-Nikodým property (RNP) if
for every measure space (Ω, A), for every positive measure μ on (Ω, A), and for
every μ-continuous vector measure ν of bounded variation, there exists a function
f ∈ L1

X(Ω, A, μ) such that

ν(A) =

∫

A

f dμ, A ∈ A.
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2 M. PASSENBRUNNER

Additionally, recall that a sequence (fn) in L1
X is uniformly integrable if the

sequence (‖fn‖X) is bounded in L1 and, for any ε > 0, there exists δ > 0 such that

μ(A) < δ =⇒ sup
n

∫

A

‖fn‖X dμ < ε, A ∈ A.

We have the following characterization of the Radon-Nikodým property in terms
of martingales; see e.g. [9, p. 50].

Theorem 1.2. For any p ∈ (1, ∞), the following statements about a Banach space
X are equivalent:

(i) X has the Radon-Nikodým property (RNP),
(ii) every X-valued martingale bounded in L1

X converges almost surely,
(iii) every uniformly integrable X-valued martingale converges almost surely and

in L1
X ,

(iv) every X-valued martingale bounded in Lp
X converges almost surely and in

Lp
X .

Remark. For the above equivalences, it is enough to consider X-valued martin-
gales defined on the unit interval with respect to Lebesgue measure and the dyadic
filtration (cf. [9, p. 54]).

Now, we describe the general framework that allows us to replace properties
(ii)–(iv) with their spline versions.

Definition 1.3. A sequence of σ-algebras (Fn)n≥0 in [0, 1] is called an interval
filtration if (Fn) is increasing and each Fn is generated by a finite partition of [0, 1]
into intervals of positive Lebesgue measure.

For an interval filtration (Fn), we define Δn := {∂A : A is atom of Fn} to be
the set of all endpoints of atoms in Fn. For a fixed positive integer k, set

S(k)
n = {f ∈ Ck−2[0, 1] : f is a polynomial of order k on each atom of Fn},

where Cn[0, 1] denotes the space of real-valued functions on [0, 1] that, for n ≥ 0,
are additionally n times continuously differentiable and the order k of a polynomial
p is related to the degree d of p by the formula k = d + 1.

The finite dimensional space S
(k)
n admits a very special basis (Ni) of non-negative

and uniformly bounded functions, called B-spline basis, that forms a partition of
unity, i.e.,

∑
i Ni(t) = 1 for all t ∈ [0, 1], and the support of each Ni consists of the

union of k neighboring atoms of Fn. If n ≥ m and (Ni), (Ñi) are the B-spline bases

of S
(k)
n and S

(k)
m , respectively, we can write each f ∈ S

(k)
m as f =

∑
aiÑi =

∑
biNi

for some coefficients (ai), (bi) since S
(k)
m ⊂ S

(k)
n . Those coefficients are related to

each other in the way that each bi is a convex combination of the coefficients (ai).
For more information on spline functions, see [10].

Additionally, we let P
(k)
n be the orthogonal projection operator onto S

(k)
n with

respect to L2[0, 1] equipped with the Lebesgue measure | · |. Each space S
(k)
n is

finite dimensional and B-splines are uniformly bounded. Therefore, P
(k)
n can be

extended to L1 and L1
X satisfying P

(k)
n (f ⊗ x) = (P

(k)
n f) ⊗ x for all f ∈ L1 and

x ∈ X, where f ⊗ x denotes the function t 
→ f(t)x. Moreover, by S
(k)
n ⊗ X, we

denote the space span{f ⊗ x : f ∈ S
(k)
n , x ∈ X}.
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Definition 1.4. Let X be a Banach space and let (fn)n≥0 be a sequence of func-
tions in L1

X . Then, (fn) is an (X-valued) k-martingale spline sequence adapted to
(Fn) if (Fn) is an interval filtration and

P (k)
n fn+1 = fn, n ≥ 0.

This definition resembles the definition of martingales with the conditional ex-

pectation operator replaced by P
(k)
n . For splines of order k = 1, i.e., piecewise

constant functions, the operator P
(k)
n even is the conditional expectation operator

with respect to the σ-algebra Fn.
Many of the results that are true for martingales (such as Doob’s inequality, the

martingale convergence theorem, or Burkholder’s inequality) in fact carry over to
k-martingale spline sequences corresponding to an arbitrary interval filtration as
the following two theorems show:

Theorem 1.5. For any positive integer k, any interval filtration (Fn), and any
Banach space X, the following assertions are true:

(i) there exists a constant Ck depending only on k such that

sup
n

‖P (k)
n : L1

X → L1
X‖ ≤ Ck;

(ii) there exists a constant Ck depending only on k such that for any X-valued
k-martingale spline sequence (fn) and any λ > 0,

|{sup
n

‖fn‖X > λ}| ≤ Ck

supn ‖fn‖L1
X

λ
;

(iii) for all p ∈ (1, ∞] there exists a constant Cp,k depending only on p and k
such that for all X-valued k-martingale spline sequences (fn),

∥∥ sup
n

‖fn‖X

∥∥
Lp ≤ Cp,k sup

n
‖fn‖Lp

X
;

(iv) if X has the RNP and (fn) is an L1
X-bounded k-martingale spline sequence,

then (fn) converges a.s. to some L1
X -function.

Item (i) is proved in [11], and (ii)–(iv) are proved (effectively) in [5, 8].

Theorem 1.6 ([6]). For all p ∈ (1, ∞) and all positive integers k, scalar-valued
k-spline differences converge unconditionally in Lp; i.e., for all f ∈ Lp,

∥∥ ∑

n

±(P (k)
n − P

(k)
n−1)f

∥∥
Lp ≤ Cp,k‖f‖Lp

for some constant Cp,k depending only on p and k.

The martingale version of Theorem 1.6 is Burkholder’s inequality, which precisely
holds in the vector-valued setting for UMD-spaces X (by the definition of UMD-
spaces). It is an open problem whether Theorem 1.6 holds for UMD-valued k-
martingale spline sequences in this generality, but see [2] for a special case. For
more information on UMD-spaces, see e.g. [9].

Definition 1.7. Let X be a Banach space, let (Fn) be an interval filtration, and
let k be a positive integer. Then, X has the ((Fn), k)-martingale spline convergence
property (MSCP) if all L1

X -bounded k-martingale spline sequences adapted to (Fn)
admit a limit almost surely.
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4 M. PASSENBRUNNER

In this work, we prove the following characterization of the Radon-Nikodým
property in terms of k-martingale spline sequences.

Theorem 1.8. Let X be a Banach space, let (Fn) be an interval filtration, let k be
a positive integer, and let V be the set of all accumulation points of

⋃
n Δn. Then,

((Fn), k)-MSCP characterizes RNP if and only if |V | > 0; i.e., |V | > 0 precisely
when the following are equivalent:

(1) X has the RNP,
(2) X has the ((Fn), k)-MSCP.

Proof. If |V | > 0, it follows from Theorem 1.5(iv) that RNP implies ((Fn), k)-
MSCP for any positive integer k and any interval filtration (Fn). The reverse
implication for |V | > 0 is a consequence of Theorem 1.10. We even have that if X
does not have RNP, we can find an (Fn)-adapted k-martingale spline sequence that
does not converge at all points t ∈ E for a subset E ⊂ V with |E| = |V |. We simply
have to choose E := lim sup En with (En) being the sets from Theorem 1.10.

If |V | = 0, it is proved in [5] that any Banach space X has ((Fn), k)-MSCP. �

We also have the following spline analogue of Theorem 1.2:

Theorem 1.9. For any positive integer k and any p ∈ (1, ∞), the following state-
ments about a Banach space X are equivalent:

(i) X has the Radon-Nikodým property,
(ii) every X-valued k-martingale spline sequence bounded in L1

X converges al-
most surely,

(iii) every uniformly integrable X-valued k-martingale spline sequence converges
almost surely and in L1

X ,
(iv) every X-valued k-martingale spline sequence bounded in Lp

X converges al-
most surely and in Lp

X .

Proof. (i)⇒(ii): Theorem 1.5(iv).
(ii)⇒(iii): Clear.
(iii)⇒(iv): If (fn) is a k-martingale spline sequence bounded in Lp

X for p > 1,
then (fn) is uniformly integrable; therefore it has a limit f (a.s. and L1

X), which,
by Fatou’s lemma, is also contained in Lp

X . By Theorem 1.5(iii), supn ‖fn‖X ∈ Lp,
and we can apply dominated convergence to obtain ‖fn − f‖Lp

X
→ 0.

(iv)⇒(i): Follows from Theorem 1.10. �

The rest of the article is devoted to the construction of a suitable non-RNP-
valued k-martingale spline sequence, adapted to an arbitrary given filtration (Fn),
so that the associated martingale spline differences are separated away from zero
on a large set, which, more precisely, takes the following form:

Theorem 1.10. Let X be a Banach space without RNP, let (Fn) be an interval
filtration, let V be the set of all accumulation points of

⋃
n Δn, and let k be a

positive integer.
Then, there exists a positive number δ such that for all η ∈ (0, 1), there exists an

increasing sequence of positive integers (mj), an L∞
X -bounded k-martingale spline

sequence (fj)j≥0 adapted to (Fmj
) with fj ∈ S

(k)
mj ⊗ X, and a sequence (En) of

measurable sets En ⊂ V with |En| ≥ (1 − 2−nη)|V | so that for all n ≥ 1,

‖fn(t) − fn−1(t)‖X ≥ δ, t ∈ En.
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We will use the concept of dentable sets to prove Theorem 1.10 and recall its
definition:

Definition 1.11. Let X be a Banach space. A subset D ⊂ X is called dentable if
for any ε > 0 there is a point x ∈ D such that

x /∈ conv
(
D \ B(x, ε)

)
,

where conv denotes the closure of the convex hull and where B(x, ε) = {y ∈ X :
‖y − x‖ < ε}.

Remark (Cf. [1, p. 138, Theorem 10] and [9, p. 49, Lemma 2.7]). If D is a bounded
non-dentable set, then the closed convex hull conv(D) is also bounded and non-
dentable. Thus, we may assume that D is convex. Moreover, we can as well assume
that each x ∈ D can be expressed as a finite convex combination of elements
in D \ B(x, δ) for some δ > 0 since if D ⊂ X is a convex set such that x ∈
conv

(
D \ B(x, δ)

)
for all x ∈ D, then, the enlarged set D̃ = D + B(0, η) is also

convex and satisfies

x ∈ conv
(
D̃ \ B(x, δ − η)

)
, x ∈ D̃.

The reason why we are able to use the concept of dentability in the proof of The-
orem 1.10 is the following geometric characterization of the RNP (see for instance
[1, p. 136]).

Theorem 1.12. For any Banach space X we have that X has the RNP if and only
if every bounded subset of X is dentable.

We record the following (special case of the) basic composition formula for de-
terminants (see for instance [3, p. 17]):

Lemma 1.13. Let (fi)
n
i=1 and (gj)

n
j=1 be two sequences of functions in L2. Then,

det
(∫ 1

0

fi(t)gj(t) dt
)n

i,j=1

=

∫

0≤t1<···<tn≤1

det(fi(t�))
n
i,�=1 · det(gj(t�))

n
j,�=1 d(t1, . . . , tn).

We also note the following simple lemma:

Lemma 1.14. Let I ⊂ [0, 1] be an interval and let V be an arbitrary measurable
subset of [0, 1]. Then, for all ε1, ε2 > 0, there exists a positive integer n so that for
the decomposition of I into intervals (A�)

n
�=1 with sup A� ≤ inf A�+1 and n|A�∩V | =

|I ∩ V | for all 
, the index set Γ = {2 ≤ 
 ≤ n − 1 : max(|A�−1|, |A�|, |A�+1|) ≤ ε1}
satisfies ∑

�∈Γ

|A� ∩ V | ≥ (1 − ε2)|I ∩ V |.

2. Construction of non-convergent spline sequences

In this section, we prove Theorem 1.10. In order to do that, we begin by fixing
an interval filtration (Fn), the corresponding endpoints of atoms (Δn), and a pos-

itive integer k. For the space S
(k)
n , we will suppress the (fixed) index k and write

Sn instead. We will apply the same convention to the corresponding projection

operators Pn = P
(k)
n . We also let V ⊂ [0, 1] be the closed set of all accumulation

points of
⋃

n Δn.
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The main step in the proof of Theorem 1.10 consists of an inductive application
of the construction of a suitable martingale spline difference in the following lemma:

Lemma 2.1. Let (xj)
M
j=1 be in the Banach space X, let x̄ ∈ SN ⊗ X for some

non-negative integer N such that x̄ =
∑M

j=1 αj ⊗ xj with
∑M

j=1 αj ≡ 1, ‖xj‖ ≤ 1,

αj ∈ SN having non-negative B-spline coefficients for all j, and let I ⊂ [0, 1] be an
interval so that |I ∩ V | > 0.

Then, for all ε ∈ (0, 1), there exist a positive integer K and a function g ∈ SK⊗X
with the following properties:

(i)
∫

I
tjg(t) dt = 0 for all j = 0, . . . , k − 1.

(ii) supp g ⊂ int I.
(iii) We have a splitting of the collection A = {A ⊂ I : A is atom in FK} into

A1 ∪ A2 so that
(a) if the functions αj are all constant, then on each J ∈ A1, x̄ + g is

constant with a value in
⋃

i{xi}; otherwise we still have that on each
J ∈ A1, x̄ + g is constant with a value in conv{xi : 1 ≤ i ≤ M};

(b) | ⋃J∈A1
J ∩ V | ≥ (1 − ε)|I ∩ V |;

(c) on each J ∈ A2, x̄ + g =
∑

� λ� ⊗ y� for some functions λ� ∈ SK

having non-negative B-spline coefficients with
∑

� λ� ≡ 1 and y� ∈
conv{xj : 1 ≤ j ≤ M} + B(0, ε).

Proof. The first step of the construction gives a function g satisfying the desired
conditions but having only mean zero instead of vanishing moments in property (i).
In the second step, we use this result to construct a function g whose moments also
vanish.

Step 1. We start with the (simpler) construction of g when the functions αj are not
constant and condition (iii)(a) has the form that on each J ∈ A1, x̄ + g is constant
with a value in conv{xi : 1 ≤ i ≤ M}.

First, decompose I into intervals (A�)
n
�=1 satisfying n|A� ∩ V | = |I ∩ V | with

sup A� ≤ inf A�+1 and n ≥ 4/ε. Then, choose K ≥ N so large that A1, A2, An−1, An

each contains at least k + 1 atoms of FK . Denoting by (Nj) the B-spline basis of
SK , we can write

α� ≡
∑

j

α�,jNj , 
 = 1, . . . , M,

for some non-negative coefficients (α�,j). Define

h� ≡
∑

j:
⋃n−1

i=2 Ai∩supp Nj �=∅

α�,jNj .

Observe that supp h� ⊂ int I and h� ≡ α� on
⋃n−1

i=2 Ai. Letting x̃ =
∑

β�x� for

β� =
∫

h�/
( ∑

j

∫
hj

)
∈ [0, 1], we define

g := −
M∑

�=1

h� ⊗ x� +
( M∑

j=1

hj

)
⊗ x̃.

This is a function of the desired form when defining A1 := {A ⊂ ⋃n−1
i=2 Ai :

A is atom in FK} and A2 = A \ A1, as we will now show by proving
∫

g = 0
and properties (ii), (iii). The fact that

∫
g = 0 follows from a simple calculation.

Property (ii) is satisfied by the definition of the functions h�. Property (iii)(a)

Licensed to Johannes Kepler University. Prepared on Thu Sep  5 03:31:17 EDT 2019 for download from IP 140.78.125.112.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CHAPTER 9. SPLINE CHARACTERIZATIONS OF THE RADON-NIKODÝM PROPERTY 191
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follows from the fact that x̄(t) + g(t) = x̃ ∈ conv{xj : 1 ≤ j ≤ M} for t ∈ ⋃n−1
i=2 Ai

since h� ≡ α� on that set for any 
 = 1, . . . , M . Since |(A1 ∪A2 ∪An−1 ∪An)∩V | =
4|I ∩ V |/n ≤ ε|I ∩ V |, (iii)(b) also follows from the construction of A1. Since

x̄(t) + g(t) =
M∑

�=1

(
α�(t) − h�(t)

)
x� +

( M∑

j=1

hj(t)
)
x̃,

x̃ ∈ conv{xj : 1 ≤ j ≤ M}, h� ≤ α�, and
∑

� α� ≡ 1, (iii)(c) is also proved.
The next step is to construct the desired function g when αj are assumed to

be constant and (iii)(a) has the form that on each J ∈ A1, x̄ + g is constant
with a value in

⋃
i{xi}. Here, the idea is to construct a function of the form

g(t) =
∑

fj(t)(xj − x̄) with fj ∈ SK for some K and
∫

fj � Cαj for all j and some
constant C independent of j to employ the assumption

∑
αj(xj − x̄) = 0, implying∫

g = 0.
We begin this construction by successively choosing parameters ε3 � ε1 � ε̃ < ε

obeying certain given conditions depending on ε, x̄, (xj), (αj), |I ∩ V |, and |I|.
First, set
ε̃ = ε|I ∩ V |/(3|I|) > 0 and

(2.1) ε1 =
εε̃(1 − ε/3)|I ∩ V |

72M
.

Now, we apply Lemma 1.14 with the parameters ε1 and ε2 = ε/3 to get a positive
integer n and a partition (A�)

n
�=1 of I consisting of intervals with n|A�∩V | = |I∩V |

for all 
 = 1, . . . , n so that

Γ = {2 ≤ 
 ≤ n − 1 : max(|A�−1|, |A�|, |A�+1|) ≤ ε1}
satisfies

(2.2)
(
1 − ε

3

)
|I ∩ V | ≤

∑

�∈Γ

|A� ∩ V |.

Finally, we put ε3 = ε1/(2n).
Next, for each 
 = 1, . . . , n, we choose a point p� ∈ int A� and an integer K�

so that the intersection of int A� and the ε3-neighborhood B(p�, ε3) of p� contains
at least k + 1 atoms of FK�

to the left as well as to the right of p�. This is
possible since |A� ∩ V | = |I ∩ V |/n and V is the set of all accumulation points
of

⋃
j Δj . Then set K = max� K� and let u� ∈ A� be the leftmost point of ΔK

contained in B(p�, ε3) ∩ int A�. Similarly, let v� ∈ A� be the rightmost point of ΔK

contained in B(p�, ε3)∩ int A�. Next, for 2 ≤ 
 ≤ n−1, we put B� := (v�−1, u�+1) ⊂
A�−1∪A�∪A�+1. Observe that the construction of u� and v� implies that B�∩Bj = ∅
for all |
 − j| ≥ 2. Next, let (Ni) be the B-spline basis of the space SK and let
(
(i))L

i=1 be the increasing sequence of integers so that Γ = {
(i) : 1 ≤ i ≤ L} for
L = |Γ| ≤ n. We then define the set

Λ(r, s) :=
{

j : supp Nj ∩
( s⋃

i=r

B�(i)

)
�= ∅

}

to consist of those B-spline indices so that the support of the corresponding B-spline
function intersects the set

⋃s
i=r B�(i). Observe that by (2.2),

(2.3)
(
1 − ε

3

)
|I ∩ V | ≤

∑

�∈Γ

|A� ∩ V | =
∣∣∣
⋃

�∈Γ

A� ∩ V
∣∣∣ ≤

∣∣∣
⋃

i

B�(i) ∩ V
∣∣∣ ≤

∣∣∣
⋃

i

B�(i)

∣∣∣.
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Thus, the definition (2.1) of ε1 in particular implies that

(2.4) 72ε1M ≤ ε · ε̃ ·
∣∣∣
⋃

i

B�(i)

∣∣∣.

We continue defining the functions (fj) contained in SK using a stopping time
construction and first set j0 = −1 and C = (1−ε̃/3)

∣∣ ⋃
i B�(i)

∣∣ > 0. For 1 ≤ m ≤ M ,
if jm−1 is already chosen, we define jm to be the smallest integer ≤ L so that the
function

(2.5) fm :=
∑

j∈Λ(jm−1+2,jm)

Nj satisfies

∫
fm(t) dt > Cαm.

If no such integer exists, we set jm = L (however, we will see below that for the
current choice of parameters, such an integer always exists). Additionally, we define

fM+1 :=
∑

j∈Λ(jM+2,L)

Nj .

Observe that by the locality of the B-spline basis (Ni), supp f� ∩ supp fm = ∅ for

1 ≤ 
 < m ≤ M + 1. Based on the collection of functions (fm)M+1
m=1 , we will define

the desired function g. But before we do that, we make a few comments about
(fm)M+1

m=1 .
Note that for m = 1, . . . , M , by the minimality of jm,

∫ ∑

j∈Λ(jm−1+2,jm−1)

Nj(t) dt ≤ Cαm,

and therefore, again by the locality of the B-splines (Ni),

(2.6)

∫
fm(t) dt ≤ Cαm +

∫ ∑

j∈Λ(jm,jm)

Nj(t) dt ≤ Cαm + 3ε1.

Additionally, employing also the definition of u� and v� and the fact that the B-
splines (Ni) form a partition of unity, we obtain

(2.7)

∣∣∣
jm⋃

i=jm−1+2

B�(i)

∣∣∣ ≤
∫

fm(t) dt ≤
∣∣∣

jm⋃

i=jm−1+2

(p�(i)−1, p�(i)+1)
∣∣∣

≤
∣∣∣

jm⋃

i=jm−1+2

B�(i)

∣∣∣ + 2nε3.

Next, we will show that

(2.8) (1 − ε̃)
∣∣∣
⋃

i

B�(i)

∣∣∣ ≤
∣∣∣

⋃

i≤jM

B�(i)

∣∣∣ ≤ (1 − ε̃/6)
∣∣∣
⋃

i

B�(i)

∣∣∣.

Indeed, we calculate on the one hand by (2.7) and (2.6) that

∣∣∣
⋃

i≤jM

B�(i)

∣∣∣ ≤
M∑

m=1

∣∣∣
jm⋃

i=jm−1+2

B�(i)

∣∣∣ +

M∑

m=1

|Bjm+1| ≤
M∑

m=1

∫
fm(t) dt + 3ε1M

≤
M∑

m=1

(Cαm + 3ε1) + 3ε1M = C + 6ε1M.
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Recalling that C = (1 − ε̃/3)
∣∣ ⋃

i B�(i)

∣∣ and using (2.4) now yield the right hand
side of (2.8).

On the other hand, employing (2.7) and (2.5), we obtain

∣∣∣
⋃

i≤jM

B�(i)

∣∣∣ ≥
M∑

m=1

∣∣∣
jm⋃

i=jm−1+2

B�(i)

∣∣∣ ≥
M∑

m=1

( ∫
fm(t) dt − 2nε3

)

≥ C

M∑

m=1

αm − 2nMε3 = C − 2nMε3.

The definitions of C = (1 − ε̃/3)
∣∣⋃

i B�(i)

∣∣ and ε3 = ε1/(2n), combined with (2.4),
give the left hand inequality in (2.8).

The inequality on the right hand side of (2.8), combined with (2.4) again, allows
us to give the following lower estimate of

∫
fM+1:

(2.9)

∫
fM+1(t) dt ≥

∣∣∣
⋃

i≥jM+2

B�(i)

∣∣∣ ≥
∣∣∣

⋃

i>jM

B�(i)

∣∣∣ − 3ε1 ≥ ε̃

12

∣∣∣
⋃

i

B�(i)

∣∣∣.

We are now ready to define the function g ∈ SK ⊗ X as follows:

(2.10) g ≡
M∑

j=1

fj ⊗ (xj − x̄) + fM+1 ⊗
M∑

j=1

βj(xj − x̄),

where

(2.11) βj =
Cαj −

∫
fj(t) dt∫

fM+1(t) dt
, 1 ≤ j ≤ M.

We proceed by proving
∫

g = 0 and properties (ii)–(iii) for g.
The fact that

∫
g = 0 follows from a straightforward calculation using (2.11) and

the assumption
∑M

j=1 αj(xj − x̄) = 0. (ii) follows from supp g ⊂ [p1, pn] ⊂ int I.
Next, observe that by definition of g and f1, . . . , fM+1, on each FK-atom contained

in the set B :=
⋃M

m=1

⋃jm

i=jm−1+2 B�(i), the function x̄ + g is constant with a value

in
⋃

i{xi}. Setting A1 = {A ⊂ B : A is atom in FK} and A2 = A \ A1 now shows
(iii)(a). Moreover, by (2.1), (2.3), and (2.8),

∣∣∣
⋃

J∈A1

J ∩ V
∣∣∣ =

∣∣∣
M⋃

m=1

jm⋃

i=jm−1+2

B�(i) ∩ V
∣∣∣ ≥

∣∣∣
⋃

i≤jM

B�(i) ∩ V
∣∣∣ − 3Mε1

≥
∣∣∣
⋃

i

B�(i) ∩ V
∣∣∣ −

∣∣∣
⋃

i>jM

B�(i)

∣∣∣ − ε|I ∩ V |
24

≥
(
1 − ε

3

)
|I ∩ V | − ε̃

∣∣∣
⋃

i

B�(i)

∣∣∣ − ε|I ∩ V |
24

.

Since ε̃| ⋃i B�(i)| ≤ ε̃|I| ≤ ε|I∩V |/3 by definition of ε̃, we conclude that | ⋃J∈A1
J ∩

V | ≥ (1 − ε)|I ∩ V |, proving also (iii)(b). Next, we note that for t ∈ supp fj with
j ≤ M , we have

x̄ + g(t) = x̄ + fj(t)(xj − x̄) = fj(t)xj +
(
1 − fj(t)

)
x̄.
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Since fj(t) ∈ [0, 1] and x̄ is a convex combination of the elements (xj), we get
(iii)(c) in this case. If t ∈ supp fM+1, we calculate that

(2.12)

x̄ + g(t) = x̄ + fM+1(t)

M∑

j=1

βj(xj − x̄)

=
(
1 − fM+1(t)

)
x̄ + fM+1(t)

(
x̄ +

M∑

j=1

βj(xj − x̄)
)
.

We have by the lower estimate (2.9) for
∫

fM+1 and by (2.6)

M∑

j=1

|βj | ≤ 12

ε̃
∣∣ ⋃

i B�(i)

∣∣
∑

j≤M

( ∫
fj − Cαj

)
≤ 12

ε̃
∣∣ ⋃

i B�(i)

∣∣ (3ε1M),

which, by (2.4), is smaller than ε/2. Therefore, combining this with (2.12) yields
property (iii)(c) for t ∈ supp fM+1 by setting λ1 = 1 − fM+1, λ2 = fM+1, y1 = x̄,
y2 = x̄ +

∑
j βj(xj − x̄). Thus, we have finished Step 1 of constructing a function

g with mean zero and properties (ii), (iii). The next step is to construct a function
g so that additionally all of its moments up to order k vanish.

Step 2. Set ε̃ = 1 − (1 − ε)1/3 > 0. We write a = inf I, b = sup I, and choose c ∈ I
so that R := (c, b) satisfies 0 < |R ∩ V | = ε̃|I ∩ V |. Define L = I \ R. Let (Ni) be
the B-spline basis of SKR

, where we choose the integer KR so that we can select

B-spline functions (Nmi
)k−1
i=0 that supp Nmi

⊂ int R for any i = 0, . . . , k − 1 and
supp Nmi

∩ supp Nmj
= ∅ for i �= j. We then form the k × k-matrix

A =
( ∫

R

tiNmj
(t) dt

)k−1

i,j=0
.

The matrix (ti�)
k−1
i,�=0 is a Vandermonde matrix having positive determinant for

t0 < · · · < tk−1. Moreover, the matrix (Nmj
(t�))

k−1
j,�=0 is a diagonal matrix hav-

ing positive entries if t� ∈ int supp Nm�
for 
 = 0, . . . , k − 1. For other choices of

(t�), the determinant of (Nmj
(t�))

k−1
j,�=0 vanishes. Therefore, Lemma 1.13 implies

that det A �= 0 and A is invertible.
Next, we choose ε1 = ε̃/

(
k(1 + ε̃)‖A−1‖∞|L|

)
and apply Lemma 1.14 with the

parameters ε1, ε2 = ε̃, and the interval L to obtain a positive integer n so that for
the partition (A�)

n
�=1 of L with n|A� ∩ V | = |L ∩ V | and sup A�−1 = inf A�, the set

Γ = {2 ≤ 
 ≤ n − 1 : max(|A�−1|, |A�|, |A�+1|) ≤ ε1} satisfies

∑

�∈Γ

|A� ∩ V | ≥ (1 − ε̃)|L ∩ V |.

We now apply the construction of Step 1 on every set A�, 
 ∈ Γ, with the parameters
x̄, (xj)

M
j=1, (αj)

M
j=1, ε̃ to get functions (g�) with zero mean having properties (ii),

(iii) with I replaced by A�. On L, we define the function

g(t) :=
∑

�∈Γ

g�(t), t ∈ L.

Licensed to Johannes Kepler University. Prepared on Thu Sep  5 03:31:17 EDT 2019 for download from IP 140.78.125.112.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CHAPTER 9. SPLINE CHARACTERIZATIONS OF THE RADON-NIKODÝM PROPERTY 195
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Let zj :=
∫

L
tjg(t) dt for j = 0, . . . , k − 1. Observe that since

∫
A�

g�(t) dt = 0 and

‖g�‖L∞
X

≤ 1 + ε̃ by (iii) and |A�| ≤ ε1, we get for all j = 0, . . . , k − 1,

‖zj‖ =
∥∥∥

∑

�∈Γ

∫

A�

tjg�(t) dt
∥∥∥ =

∥∥∥
∑

�∈Γ

∫

A�

(
tj − (inf A�)

j
)

· g�(t) dt
∥∥∥

≤ j
∑

�∈Γ

|A�|
∫

A�

‖g�(t)‖ dt

≤ jε1(1 + ε̃)|L| ≤ ε̃ · ‖A−1‖−1
∞ .

In order to have
∫

I
tjg(t) dt = 0 for all j = 0, . . . , k − 1, we want to define g on

R = I \ L so that

(2.13)

∫

R

tjg(t) dt = −zj , j = 0, . . . , k − 1.

Assume that g on R is of the form

g(t) =
k−1∑

i=0

Nmi
(t)wi, t ∈ R,

for some (wi)
k−1
i=0 contained in X. Then, (2.13) is equivalent to

Aw = −z

by writing w = (w0, . . . , wk−1)
T and z = (z0, . . . , zk−1)

T . Defining w := −A−1z
and employing the estimate for ‖z‖∞ above, we obtain

(2.14) ‖w‖∞ ≤ ‖A−1‖∞‖z‖∞ ≤ ε̃.

The definition of g immediately yields properties (i), (ii). From the application of
the construction in Step 1 to each A�, 
 ∈ Γ, we obtained collections A1(
) of disjoint
subintervals of A� that are atoms in FK�

for some positive integer K� ≥ N satisfying
that x̄ + g� is constant on each J ∈ A1(
) taking values in conv{xi : 1 ≤ i ≤ M}
and | ⋃J∈A1(�)

J ∩ V | ≥ (1 − ε̃)|A� ∩ V |. Let B :=
⋃

�

⋃
J∈A1(�)

J and define A1 to

be the collection {J ⊂ B : J is atom in FK}, where K := max(max� K�, KR), and
define A := {J ⊂ I : J is atom in FK}, A2 := A \ A1.

Then, (iii)(a) is satisfied by the corresponding property of each g�. Property
(iii)(b) follows from the calculation

∣∣∣
⋃

J∈A1

J ∩ V
∣∣∣ ≥ (1 − ε̃)

∑

�∈Γ

|A� ∩ V | ≥ (1 − ε̃)2|L ∩ V |

≥ (1 − ε̃)3|I ∩ V | = (1 − ε)|I ∩ V |.
Property (iii)(c) on L is a consequence of property (iii)(c) for the functions g�. We
can write αj ≡ ∑

� αj,�N� for some non-negative coefficients (αj,�) that have the

property
∑M

j=1 αj,� = 1 for each 
. Therefore, on R we have

x̄(t) + g(t) =

M∑

j=1

αj(t)xj +

k−1∑

i=0

Nmi
(t)wi =

∑

�

N�(t)
( M∑

j=1

αj,�xj +

k−1∑

i=0

δ�,mi
wi

)
,

which, since ‖w‖∞ ≤ ε̃ ≤ ε and
∑M

j=1 αj,� = 1 for each 
, implies (iii)(c) on R. �

We now use Lemma 2.1 inductively to prove Theorem 1.10.
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Proof of Theorem 1.10. We assume that X does not have the RNP. Then, by The-
orem 1.12, the ball B(0, 1/2) ⊂ X contains a non-dentable convex set D satisfying

x ∈ conv
(
D \ B(x, 2δ)

)
, x ∈ D,

for some parameter 2δ. Defining D0 = D + B(0, δ/2) and, for j ≥ 1, Dj =
Dj−1 + B(0, 2−j−1δ), we use the remark after Definition 1.11 to get that all the
sets (Dj) are contained in B(0, 1), are convex, and

x ∈ conv
(
Dj \ B(x, δ)

)
, x ∈ Dj , j ≥ 0.

We will assume without restriction that η ≤ δ.
Let x0,1 ∈ D0 be arbitrary and set f0 ≡ 𝟙[0,1] ⊗ x0,1 ∈ Sm0

⊗ X on I0,1 := [0, 1]

for m0 = 0. By Pj , we will denote the L1
X -extension of the orthogonal projection

operator onto Smj
, where we assume that (mj)

n
j=1 and (fj)

n
j=1 with fj ∈ Smj

⊗ X
for each j = 1, . . . , n are constructed in such a way that for all j = 0, . . . , n,

(1) Pj−1fj = fj−1 if j ≥ 1;
(2) on all atoms I in Fmj

, fj has the form

fj ≡
∑

�

λ� ⊗ y�, finite sum,

for functions λ� ∈ Smj
with non-negative B-spline coefficients,

∑
� λ� ≡ 1,

and some y� ∈ Dj ;
(3) there exists a finite collection of disjoint intervals (Ij,i)i that are atoms in

Fmj
so that (setting Cj =

⋃
i Ij,i)

(a) for all i, fj ≡ xj,i ∈ Dj on Ij,i,
(b) ‖fj − fj−1‖X ≥ δ on Cj ∩ Cj−1 if j ≥ 1,
(c) |Cj ∩ Cj−1 ∩ V | ≥ (1 − 2−jη)|V | if j ≥ 1,
(d) |Cj ∩ V | ≥ (1 − 2−j−2η)|V |,
(e) |Ij,i ∩ V | > 0 for every i.

We will then perform the construction of mn+1, fn+1, and the collection (In+1,i)
of atoms in Fmn+1

having properties (1)–(3) for j = n + 1. Define the collection
C = {A is atom of Fmn

: |A ∩ V | > 0}. We will distinguish the two cases B ∈
C1 := {A ∈ C : A = In,i for some i} and B ∈ C2 := C \ C1.

Case 1 (B ∈ C1). Here, B = In,i for some i, and we use the fact that on B,
fn = xB := xn,i ∈ Dn and write

xB =

MB∑

�=1

αB,�xB,�

with some positive numbers (αB,�) satisfying
∑

� αB,� = 1, some xB,� ∈ Dn, and
‖xB − xB,�‖ ≥ δ for any 
 = 1, . . . , MB. We apply Lemma 2.1 to the interval B
with this decomposition and with the parameter ε = ηn := 2−n−3η. This yields
a function gB ∈ SKB

⊗ X for some positive integer KB that has the following
properties:

(i)
∫

t�gB(t) dt = 0, 0 ≤ 
 ≤ k − 1.
(ii) supp gB ⊂ int B.
(iii) We have a splitting of the collection AB = {A ⊂ B : A is atom in FKB

}
into AB,1 ∪ AB,2 so that
(a) on each J ∈ AB,1, fn + gB = xB + gB is constant on J taking values

in
⋃

�{xB,�};
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(b) | ⋃J∈AB,1
J ∩ V | ≥ (1 − ηn)|B ∩ V |;

(c) on each J ∈ AB,2, the function fn + gB can be written as

fn(t) + gB(t) = xB + gB(t) =
∑

�

λB,�(t)yB,�

for some functions λB,� ∈ SKB
having non-negative B-spline coeffi-

cients with
∑

� λB,� ≡ 1 and yB,� ∈ conv{xB,� : 1 ≤ j ≤ MB} +
B(0, ηn).

Case 2 (B ∈ C2). On B, fn is of the form

fn(t) =

MB∑

�=1

λ�(t)y�

for some functions λ� ∈ Smn
having non-negative B-spline coefficients with

∑
� λ� ≡

1 and some y� ∈ Dn. Applying Lemma 2.1 with the parameter ηn = 2−n−3η, we
obtain a function gB ∈ SKB

⊗ X (for some positive integer KB) that has the
following properties:

(i)
∫

t�gB(t) dt = 0, 0 ≤ 
 ≤ k − 1.
(ii) supp gB ⊂ int B.
(iii) We have a splitting of the collection AB = {A ⊂ B : A is atom in FKB

}
into AB,1 ∪ AB,2 so that
(a) for each J ∈ AB,1, fn + gB is constant on J taking values in

conv{y� : 1 ≤ 
 ≤ MB},
(b) | ⋃J∈AB,1

J ∩ V | ≥ (1 − ηn)|B ∩ V |,
(c) for each J ∈ AB,2, the function fn + gB can be written as

fn(t) + gB(t) =
∑

�

λB,�(t)yB,�

for some functions λB,� ∈ SKB
having non-negative B-spline coeffi-

cients with
∑

� λB,� ≡ 1 and yB,� ∈ conv{yj : 1 ≤ j ≤ MB}+B(0, ηn).

Having treated those two cases, we define the index mn+1 := max{KB : B ∈ C }
and

fn+1 = fn +
∑

B∈C

gB.

The new collection (In+1,i) is defined to be the decomposition of the set⋃
B∈C

⋃
J∈AB,1

J (from the above construction) into Fmn+1
-atoms after deleting

those Fmn+1
-atoms I with |I ∩ V | = 0. Since Dn is convex and η ≤ δ, the corre-

sponding function values of fn+1 are contained in Dn+B(0, ηn) ⊂ Dn+1, and we will
enumerate them as (xn+1,i)i accordingly. We additionally set Cn+1 :=

⋃
i In+1,i.

With these definitions, we will successively show properties (1)–(3) for j = n+1.
Since the function g = Pnfn+1 ∈ Smn

⊗ X is characterized by the condition
∫

g(t)s(t) dt =

∫
fn+1(t)s(t) dt, s ∈ Smn

,

property (1) for j = n+1 follows if we show that
∫

gB(t)s(t) dt = 0 for any s ∈ Smn

and any B ∈ C . But this is a consequence of (i) for gB (in both Cases 1 and 2),
since s ∈ Smn

is a polynomial of order k on B.
Property (2) now is a consequence of (iii) (again for both Cases 1 and 2). We

just remark once again that Dn + B(0, ηn) ⊂ Dn+1 due to η ≤ δ. Properties (3a),
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(3b), and (3e) are direct consequences of the construction. Property (3d) follows
from (iii)(b) in Cases 1 and 2 since

|Cn+1 ∩ V | =
∣∣∣

⋃

B∈C

⋃

J∈AB,1

J ∩ V
∣∣∣ =

∑

B∈C

∣∣∣
⋃

J∈AB,1

J ∩ V
∣∣∣

≥ (1 − ηn)
∑

B∈C

|B ∩ V | = (1 − ηn)|V |

and ηn = 2−n−3η. For property (3c), we calculate that

|Cn+1 ∩ Cn ∩ V | ≥ (1 − ηn)|Cn ∩ V | ≥ (1 − ηn)(1 − 2−n−2η)|V |
by (iii)(b) in Case 1 and by the induction hypothesis. Since ηn = 2−n−3η, we get
(1 − ηn)(1 − 2−n−2η) ≥ 1 − 2−(n+1)η, and this proves (3c) for j = n + 1.

Finally, we note that due to (2) and (3)(c), the sequence (mn), the k-martingale
spline sequence (fn), and the sets En := Cn ∩ Cn−1 ∩ V have the properties that
are desired in the theorem. �
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Abstract
We show that D. Lépingle’s L1(�2)-inequality

∥
∥
∥
∥
∥
∥

(
∑

n

E[ fn|Fn−1]2
)1/2

∥
∥
∥
∥
∥
∥
1

≤ 2 ·
∥
∥
∥
∥
∥
∥

(
∑

n

f 2n

)1/2
∥
∥
∥
∥
∥
∥
1

, fn ∈ Fn,

extends to the case where we substitute the conditional expectation operators with
orthogonal projection operators onto spline spaces and where we can allow that fn is
contained in a suitable spline space S (Fn). This is done provided the filtration (Fn)

satisfies a certain regularity condition depending on the degree of smoothness of the
functions contained in S (Fn). As a by-product, we also obtain a spline version of
H1-BMO duality under this assumption.

Keywords Martingale inequalities · Polynomial spline spaces · Orthogonal
projection operators

Mathematics Subject Classification 65D07 · 60G42 · 42C10

1 Introduction

This article is part of a series of papers that extend martingale results to polynomial
spline sequences of arbitrary order (see e.g. [11,14,16–19,22]). In order to explain
those martingale type results, we have to introduce a little bit of terminology: Let k be
a positive integer, (Fn) an increasing sequence of σ -algebras of sets in [0, 1] where
each Fn is generated by a finite partition of [0, 1] into intervals of positive length.
Moreover, define the spline space

Sk(Fn) = { f ∈ Ck−2[0, 1] : f is a polynomial of order k on each atom of Fn}

B Markus Passenbrunner
markus.passenbrunner@jku.at

1 Institute of Analysis, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
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and let P(k)
n be the orthogonal projection operator ontoSk(Fn)with respect to the L2

inner product on [0, 1] with the Lebesgue measure | · |. The space S1(Fn) consists
of piecewise constant functions and P(1)

n is the conditional expectation operator with
respect to the σ -algebra Fn . Similarly to the definition of martingales, we introduce
the following notion: let ( fn)n≥0 be a sequence of integrable functions. We call this
sequence a k-martingale spline sequence (adapted to (Fn)) if, for all n,

P(k)
n fn+1 = fn .

For basic facts about martingales and conditional expectations, we refer to [15].
Classical martingale theorems such as Doob’s inequality or the martingale conver-

gence theorem in fact carry over to k-martingale spline sequences corresponding to
arbitrary filtrations (Fn) of the above type, just by replacing conditional expectation
operators by the projection operators P(k)

n . Indeed, we have

(i) (Shadrin’s theorem) there exists a constant Ck depending only on k such that

sup
n

‖P(k)
n : L1 → L1‖ ≤ Ck,

(ii) (Doob’s weak type inequality for splines)
there exists a constant Ck depending only on k such that for any k-martingale
spline sequence ( fn) and any λ > 0,

|{sup
n

| fn| > λ}| ≤ Ck
supn ‖ fn‖1

λ
,

(iii) (Doob’s L p inequality for splines)
for all p ∈ (1,∞] there exists a constant Cp,k depending only on p and k such
that for all k-martingale spline sequences ( fn),

∥
∥ sup

n
| fn|
∥
∥
p ≤ Cp,k sup

n
‖ fn‖p,

(iv) (Spline convergence theorem)
if ( fn) is an L1-bounded k-martingale spline sequence, then ( fn) converges
almost surely to some L1-function,

(v) (Spline convergence theorem, L p-version)
for 1 < p < ∞, if ( fn) is an L p-bounded k-martingale spline sequence, then
( fn) converges almost surely and in L p.

Property (i) was proved by Shadrin in the groundbreaking paper [22]. We also refer
to the paper [25] by von Golitschek, who gives a substantially shorter proof of (i).
Properties (ii) and (iii) are proved in [19] and properties (iv) and (v) in [14], but see
also [18], where it is shown that, in analogy to the martingale case, the validity of
(iv) and (v) for all k-martingale spline sequences with values in a Banach space X
characterize the Radon–Nikodým property of X (for background information on that
material, we refer to the monographs [6,20]).
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Here, we continue this line of transferring martingale results to k-martingale spline
sequences and extend Lépingle’s L1(�2)-inequality [12], which reads

∥
∥
∥

(∑

n

E[ fn|Fn−1]2
)1/2
∥
∥
∥
1

≤ 2 ·
∥
∥
∥

(∑

n

f 2n
)1/2
∥
∥
∥
1
, (1.1)

provided the sequence of (real-valued) random variables fn is adapted to the filtration
(Fn), i.e. each fn is Fn-measurable. Different proofs of (1.1) were given by Bour-
gain [3, Proposition 5], Delbaen and Schachermayer [4, Lemma 1] and Müller [13,
Proposition 4.1]. The spline version of inequality (1.1) is contained in Theorem 4.1.

This inequality is an L1 extension of the following result for 1 < p < ∞, proved
by Stein [24], that holds for arbitrary integrable functions fn :

∥
∥
∥

(∑

n

E[ fn|Fn−1]2
)1/2
∥
∥
∥
p

≤ ap
∥
∥
∥

(∑

n

f 2n
)1/2
∥
∥
∥
p
, (1.2)

for some constant ap depending only on p. This can be seen as a dual version of
Doob’s inequality ‖ sup� |E[ f |F�]|‖p ≤ cp‖ f ‖p for p > 1, see [1]. Once we know
Doob’s inequality for spline projections, which is point (iii) above, the same proof as
in [1] works for spline projections if we use suitable positive operators Tn instead of
P(k)
n that also satisfy Doob’s inequality and dominate the operators P(k)

n pointwise (cf.
Sects. 3.1, 3.2).

The usage of those operators Tn is also necessary in the extension of inequality
(1.1) to splines. Lépingle’s proof of (1.1) rests on an idea by Herz [10] of splitting
E[ fn · hn] (for fn being Fn-measurable) by Cauchy–Schwarz after introducing the
square function S2n =∑�≤n f 2� :

(E[ fn · hn])2 ≤ E[ f 2n /Sn] · E[Snh2n] (1.3)

and estimating both factors on the right hand side separately. A key point in estimating
the second factor is that Sn is Fn-measurable, and therefore, E[Sn|Fn] = Sn . If we
want to allow fn ∈ Sk(Fn), Sn will not be contained in Sk(Fn) in general. Under
certain conditions on the filtration (Fn), we will show in this article how to substitute
Sn in estimate (1.3) by a function gn ∈ Sk(Fn) that enjoys similar properties to Sn
and allows us to proceed (cf. Sect. 3.4, in particular Proposition 3.4 and Theorem 3.6).
As a by-product, we obtain a spline version (Theorem 4.2) of C. Fefferman’s theorem
[7] on H1-BMO duality. For its martingale version, we refer to A. M. Garsia’s book
[8] on Martingale Inequalities.

2 Preliminaries

In this section, we collect all tools that are needed subsequently.
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2.1 Properties of polynomials

We will need Remez’ inequality for polynomials:

Theorem 2.1 Let V ⊂ R be a compact interval in R and E ⊂ V a measurable subset.
Then, for all polynomials p of order k (i.e. degree k − 1) on V ,

‖p‖L∞(V ) ≤
(

4
|V |
|E |
)k−1

‖p‖L∞(E).

Applying this theorem with the set E = {x ∈ V : |p(x)| ≤ 8−k+1‖p‖L∞(V )}
immediately yields the following corollary:

Corollary 2.2 Let p be a polynomial of order k on a compact interval V ⊂ R. Then

∣
∣
{

x ∈ V : |p(x)| ≥ 8−k+1‖p‖L∞(V )

}∣
∣ ≥ |V |/2.

2.2 Properties of spline functions

For an interval σ -algebra F (i.e. F is generated by a finite collection of intervals
having positive length), the space Sk(F ) is spanned by a very special local basis
(Ni ), the so called B-spline basis. It has the properties that each Ni is non-negative
and each support of Ni consists of at most k neighboring atoms of F . Moreover, (Ni )

is a partition of unity, i.e. for all x ∈ [0, 1], there exist at most k functions Ni so that
Ni (x) 	= 0 and

∑

i Ni (x) = 1. In the following, we denote by Ei the support of the
B-spline function Ni . The usual ordering of the B-splines (Ni )–which we also employ
here–is such that for all i , inf Ei ≤ inf Ei+1 and sup Ei ≤ sup Ei+1.

We write A(t) � B(t) to denote the existence of a constant C such that for all t ,
A(t) ≤ CB(t), where t denote all implicit and explicit dependencies the expression
A and B might have. If the constant C additionally depends on some parameter, we
will indicate this in the text. Similarly, the symbols � and 
 are used.

Another important property of B-splines is the following relation between B-spline
coefficients and the L p-norm of the corresponding B-spline expansions.

Theorem 2.3 (B-spline stability, local and global) Let 1 ≤ p ≤ ∞ and g =∑ j a j N j .
Then, for all j ,

|a j | � |J j |−1/p‖g‖L p(J j ), (2.1)

where J j is an atom of F contained in E j having maximal length. Additionally,

‖g‖p 
 ‖(a j |E j |1/p)‖�p , (2.2)

where in both (2.1) and (2.2), the implied constants depend only on the spline
order k.
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Observe that (2.1) implies for g ∈ Sk(F ) and any measurable set A ⊂ [0, 1]

‖g‖L∞(A) � max
j :|E j∩A|>0

‖g‖L∞(J j ). (2.3)

We will also need the following relation between the B-spline expansion of a func-
tion and its expansion using B-splines of a finer grid.

Theorem 2.4 Let G ⊂ F be two interval σ -algebras and denote by (NG ,i )i the B-
spline basis of the coarser space Sk(G ) and by (NF ,i )i the B-spline basis of the finer
space Sk(F ). Then, given f =∑ j a j NG , j , we can expand f in the basis (NF ,i )i

∑

j

a j NG , j =
∑

i

bi NF ,i ,

where for each i , bi is a convex combination of the coefficients a j with supp NG , j ⊇
supp NF ,i .

For those results and more information on spline functions, in particular B-splines,
we refer to [21] or [5].

2.3 Spline orthoprojectors

We now use the B-spline basis of Sk(F ) and expand the orthogonal projection oper-
ator P onto Sk(F ) in the form

P f =
∑

i, j

ai j
( ∫ 1

0
f (x)Ni (x) dx

)

· N j (2.4)

for some coefficients (ai j ). Denoting by Ei j the smallest interval containing both
supports Ei and E j of the B-spline functions Ni and N j respectively, we have the
following estimate for ai j [19]: there exist constantsC and 0 < q < 1 depending only
on k so that for each interval σ -algebra F and each i, j ,

|ai j | ≤ C
q |i− j |

|Ei j | . (2.5)

2.4 Spline square functions

Let (Fn) be a sequence of increasing interval σ -algebras in [0, 1] and we assume that
each Fn+1 is generated from Fn by the subdivision of exactly one atom of Fn into
two atoms of Fn+1. Let Pn be the orthogonal projection operator onto Sk(Fn). We
denote �n f = Pn f − Pn−1 f and define the spline square function

S f =
(∑

n

|�n f |2
)1/2

.
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We have Burkholder’s inequality for the spline square function, i.e. for all 1 < p < ∞
[16], the L p-norm of the square function S f is comparable to the L p-norm of f :

‖S f ‖p 
 ‖ f ‖p, f ∈ L p (2.6)

with constants depending only on p and k. Moreover, for p = 1, it is shown in [9]
that

‖S f ‖1 
 sup
ε∈{−1,1}Z

‖
∑

n

εn�n f ‖1, S f ∈ L1, (2.7)

with constants depending only on k and where the proof of the �-part only uses
Khintchine’s inequality whereas the proof of the �-part uses fine properties of the
functions �n f .

2.5 Lp(�q)-spaces

For 1 ≤ p, q ≤ ∞, we denote by L p(�q) the space of sequences of measurable
functions ( fn) on [0, 1] so that the norm

‖( fn)‖L p(�q ) =
( ∫ 1

0

(∑

n

| fn(t)|q
)p/q

dt
)1/p

is finite (with the obvious modifications if p = ∞ or q = ∞). For 1 ≤ p, q < ∞,
the dual space (see [2]) of L p(�q) is L p′(�q ′) with p′ = p/(p − 1), q ′ = q/(q − 1)
and the duality pairing

〈( fn), (gn)〉 =
∫ 1

0

∑

n

fn(t)gn(t) dt .

Hölder’s inequality takes the form |〈( fn), (gn)〉| ≤ ‖( fn)‖L p(�q )‖(gn)‖L p′ (�q′ ).

3 Main results

In this section, we prove our main results. Section 3.1 defines and gives properties
of suitable positive operators that dominate our (non-positive) operators Pn = P(k)

n
pointwise. In Sect. 3.2, we use those operators to give a spline version of Stein’s
inequality (1.2). A useful property of conditional expectations is the tower property
EG EF f = EG f for G ⊂ F . In this form, it extends to the operators (Pn), but not to
the operators T from Sect. 3.1. In Sect. 3.3 we prove a version of the tower property for
those operators. Section 3.4 is devoted to establishing a duality estimate using a spline
square function, which is the crucial ingredient in the proofs of the spline versions of
both Lépingle’s inequality (1.1) and H1-BMO duality in Sect. 4.
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3.1 The positive operators T

As above, let F be an interval σ -algebra on [0, 1], (Ni ) the B-spline basis of Sk(F ),
Ei the support of Ni and Ei j the smallest interval containing both Ei and E j .Moreover,
let q be a positive number smaller than 1. Then, we define the linear operator T =
TF ,q,k by

T f (x) :=
∑

i, j

q |i− j |

|Ei j | 〈 f ,1Ei 〉1E j (x) =
∫ 1

0
K (x, t) f (t) dt,

where the kernel K = KT is given by

K (x, t) =
∑

i, j

q |i− j |

|Ei j | 1Ei (t) · 1E j (x).

We observe that the operator T is selfadjoint (w.r.t the standard inner product on
L2) and

k ≤ Kx :=
∫ 1

0
K (x, t) dt ≤ 2(k + 1)

1 − q
, x ∈ [0, 1], (3.1)

which, in particular, implies the boundedness of the operator T on L1 and L∞:

‖T f ‖1 ≤ 2(k + 1)

1 − q
‖ f ‖1, ‖T f ‖∞ ≤ 2(k + 1)

1 − q
‖ f ‖∞.

Another very important property of T is that it is a positive operator, i.e. it maps non-
negative functions to non-negative functions and that T satisfies Jensen’s inequality
in the form

ϕ(T f (x)) ≤ K−1
x T

(

ϕ(Kx · f )
)

(x), f ∈ L1, x ∈ [0, 1], (3.2)

for convex functions ϕ. This is seen by applying the classical Jensen inequality to the
probability measure K (t, x) dt/Kx .

Let M f denote the Hardy–Littlewood maximal function of f ∈ L1, i.e.

M f (x) = sup
I�x

1

|I |
∫

I
| f (y)| dy,

where the supremum is taken over all subintervals of [0, 1] that contain the point x .
This operator is of weak type (1, 1), i.e.

|{M f > λ}| ≤ Cλ−1‖ f ‖1, f ∈ L1, λ > 0
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for some constant C . Since trivially we have the estimate ‖M f ‖∞ ≤ ‖ f ‖∞, by
Marcinkiewicz interpolation, for any p > 1, there exists a constant Cp depending
only on p so that

‖M f ‖p ≤ Cp‖ f ‖p.

For those assertions about M , we refer to (for instance) [23].
The significance of T and M at this point is that we can use formula (2.4) and

estimate (2.5) to obtain the pointwise bound

|P f (x)| ≤ C1(T | f |)(x) ≤ C2M (x), f ∈ L1, x ∈ [0, 1], (3.3)

where T = TF ,q,k with q given by (2.5), C1 is a constant that depends only on k and
C2 is a constant that depends only on k and the geometric progression q. But as the
parameter q < 1 in (2.5) depends only on k, the constant C2 will also only depend
on k.

In other words, (3.3) tells us that the positive operator T dominates the non-positive
operator P pointwise, but at the same time, T is dominated by the Hardy–Littlewood
maximal function M pointwise and independently of F .

3.2 Stein’s inequality for splines

We now use this pointwise dominating, positive operator T to prove Stein’s inequality
for spline projections. For this, let (Fn) be an interval filtration on [0, 1] and Pn
be the orthogonal projection operator onto the space Sk(Fn) of splines of order k
corresponding to Fn . Working with the positive operators TFn ,q,k instead of the non-
positive operators Pn , the proof of Stein’s inequality (1.2) for spline projections can
be carried over from the martingale case (cf. [1,24]). For completeness, we include it
here.

Theorem 3.1 Suppose that ( fn) is a sequence of arbitrary integrable functions on
[0, 1]. Then, for 1 ≤ r ≤ p < ∞ or 1 < p ≤ r ≤ ∞,

‖(Pn fn)‖L p(�r ) � ‖( fn)‖L p(�r ) (3.4)

where the implied constant depends only on p, r and k.

Proof By (3.3), it suffices to prove this inequality for the operators Tn = TFn ,q,k
with q given by (2.5) instead of the operators Pn . First observe that for r = p = 1,
the assertion follows from Shadrin’s theorem ((i) on page 1). Inequality (3.3) and the
L p′ -boundedness of M for 1 < p′ ≤ ∞ imply that

∥
∥ sup
1≤n≤N

|Tn f |
∥
∥
p′ ≤ Cp′,k‖ f ‖p′ , f ∈ L p′ (3.5)

with a constantCp′,k depending on p′ and k. Let 1 ≤ p < ∞ andUN : L p(�
N
1 ) → L p

be given by (g1, . . . , gN ) �→∑N
j=1 Tj g j . Inequality (3.5) implies the boundedness of
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the adjoint U∗
N : L p′ → L p′(�N∞), f �→ (Tj f )Nj=1 for p

′ = p/(p − 1) by a constant
independent of N and therefore also the boundedness of UN . Since |Tj f | ≤ Tj | f |
by the positivity of Tj , letting N → ∞ implies (3.4) for Tn instead of Pn in the case
r = 1 and outer parameter 1 ≤ p < ∞.

If 1 < r ≤ p, we use Jensen’s inequality (3.2) and estimate (3.1) to obtain

N
∑

j=1

|Tj g j |r �
N
∑

j=1

Tj (|g j |r )

and apply the result for r = 1 and the outer parameter p/r to get the result for
1 ≤ r ≤ p < ∞. The cases 1 < p ≤ r ≤ ∞ now just follow from this result using
duality and the self-adjointness of Tj . ��

3.3 Tower property of T

Next, we will prove a substitute of the tower property EG EF f = EG f (G ⊂ F ) for
conditional expectations that applies to the operators T .

To formulate this result, we need a suitable notion of regularity for σ -algebraswhich
we now describe. Let F be an interval σ -algebra, let (N j ) be the B-spline basis of
Sk(F ) and denote by E j the support of the function N j . The k-regularity parameter
γk(F ) is defined as

γk(F ) := max
i

max(|Ei |/|Ei+1|, |Ei+1|/|Ei |),

where the first maximum is taken over all i so that Ei and Ei+1 are defined. The name
k-regularity is motivated by the fact that each B-spline support Ei of order k consists
of at most k (neighboring) atoms of the σ -algebra F .

Proposition 3.2 (Tower property of T ) Let G ⊂ F be two interval σ -algebras on
[0, 1]. Let S = TG ,σ,k and T = TF ,τ,k′ for some σ, τ ∈ (0, 1) and some positive
integers k, k′. Then, for all q > max(τ, σ ), there exists a constant C depending on
q, k, k′ so that

|ST f (x)| ≤ C · γ k · (TG ,q,k | f |)(x), f ∈ L1, x ∈ [0, 1], (3.6)

where γ = γk(G ) denotes the k-regularity parameter of G .

Proof Let (Fi )be the collection ofB-spline supports inSk′(F ) and (Gi ) the collection
of B-spline supports in Sk(G ). Moreover, we denote by Fi j the smallest interval
containing Fi and Fj and by Gi j the smallest interval containing Gi and G j .

We show (3.6) by showing the following inequality for the kernels KS of S and KT

of T (cf. 3.1)

∫ 1

0
KS(x, t)KT (t, s) dt ≤ Cγ k

∑

i, j

q |i− j |

|Gi j | 1Gi (x)1G j (s), x, s ∈ [0, 1]

(3.7)
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for all q > max(τ, σ ) and some constant C depending on q, k, k′. In order to prove
this inequality, we first fix x, s ∈ [0, 1] and choose i such that x ∈ Gi and � such that
s ∈ F�. Moreover, based on �, we choose j so that s ∈ G j and G j ⊃ F�. There are
at most max(k, k′) choices for each of the indices i, �, j and without restriction, we
treat those choices separately, i.e. we only have to estimate the expression

∑

m,r

σ |m−i |τ |r−�||Gm ∩ Fr |
|Gim ||F�r | .

Since, for each r , there are also at most k + k′ − 1 indices m so that |Gm ∩ Fr | > 0
(recall that G ⊂ F ), we choose one such index m = m(r) and estimate


 =
∑

r

σ |m(r)−i |τ |r−�||Gm(r) ∩ Fr |
|Gi,m(r)||F�r | .

Now, observe that for any parameter choice of r in the above sum,

Gi,m(r) ∪ F�r ⊇ (Gi j\G j ) ∪ Gi

and therefore, since also Gm(r) ∩ Fr ⊂ Gi,m(r) ∩ F�r ,


 ≤ 2

|(Gi j\G j ) ∪ Gi |
∑

r

σ |m(r)−i |τ |r−�|,

which, using the k-regularity parameter γ = γk(G ) of the σ -algebra G and denoting
λ = max(τ, σ ), we estimate by


 ≤ 2γ k

|Gi j |
∑

m

λ|m−i | ∑

r :m(r)=m

λ|r−�| � γ k

|Gi j |
∑

m

λ|i−m|+|m− j |

� γ k

|Gi j |
(|i − j | + 1

)

λ|i− j |,

where the implied constants depend on λ, k, k′ and the estimate
∑

r :m(r)=m λ|r−�| �
λ|m− j | used the fact that, essentially, there are more atoms of F between Fr and F�

(for r as in the sum) than atoms of G between Gm and G j . Finally, we see that for any
q > λ,


 � Cγ k q
|i− j |

|Gi j |

for some constant C depending on q, k, k′, and, as x ∈ Gi and s ∈ G j , this shows
inequality (3.7). ��

As a corollary of Proposition 3.2, we have
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Corollary 3.3 Let ( fn) be functions in L1. We denote by Pn the orthogonal projection
onto Sk(Fn) and by P ′

n the orthogonal projection onto Sk′(Fn) for some positive
integers k, k′. Moreover, let Tn be the operator TFn ,q,k from (3.3) dominating Pn
pointwise.

Then, for any integer n and for any 1 ≤ p ≤ ∞,

∥
∥
∥

∑

�≥n

Pn
(

(P ′
�−1 f�)

2)
∥
∥
∥
p

�
∥
∥
∥

∑

�≥n

Tn
(

(P ′
�−1 f�)

2)
∥
∥
∥
p

� γk(Fn)
k ·
∥
∥
∥

∑

�≥n

f 2�

∥
∥
∥
p
,

where the implied constants only depend on k and k′.

We remark that by Jensen’s inequality and the tower property, this is trivial for
conditional expectations E(·|Fn) instead of the operators Pn, Tn, P ′

�−1 even with an
absolute constant on the right hand side.

Proof Wedenote by Tn the operator TFn ,q,k and by T ′
n the operator TFn ,q ′,k′ , where the

parameters q, q ′ < 1 are given by inequality (3.3) depending on k and k′ respectively.
SettingUn := TFn ,max(q,q ′)1/2,k , we perform the following chain of inequalities, where
we use the positivity of Tn and (3.3), Jensen’s inequality for T ′

�−1, the tower property
for TnT ′

�−1 and the L p-boundedness of Un , respectively:

∥
∥
∥

∑

�≥n

Tn
(

(P ′
�−1 f�)

2)
∥
∥
∥
p

�
∥
∥
∥

∑

�≥n

Tn
(

(T ′
�−1| f�|)2

)
∥
∥
∥
p

�
∥
∥
∥

∑

�≥n

Tn
(

T ′
�−1 f

2
�

)
∥
∥
∥
p

≤ ‖Tn(T ′
n−1 f

2
n )‖p +

∥
∥
∥

∑

�>n

Tn
(

T ′
�−1 f

2
�

)
∥
∥
∥
p

� ‖ f 2n ‖p + γk(Fn)
k ·
∥
∥
∥

∑

�>n

Un( f
2
� )

∥
∥
∥
p

� γk(Fn)
k ·
∥
∥
∥

∑

�≥n

f 2�

∥
∥
∥
p
,

where the implied constants only depend on k and k′. ��

3.4 A duality estimate using a spline square function

In order to give the desired duality estimate contained in Theorem 3.6, we need the
following construction of a function gn ∈ Sk(Fn) based on a spline square function.

Proposition 3.4 Let ( fn) be a sequence of functions with fn ∈ Sk(Fn) for all n and
set

Xn :=
∑

�≤n

f 2� .
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Then, there exists a sequence of non-negative functions gn ∈ Sk(Fn) so that for
each n,

(1) gn ≤ gn+1,
(2) X1/2

n ≤ gn
(3) Egn � EX1/2

n , where the implied constant depends on k and on supm≤n γk(Fm).

For the proof of this result, we need the following simple lemma.

Lemma 3.5 Let c1 be a positive constant and let (A j )
N
j=1 be a sequence of atoms in

Fn. Moreover, let � : {1, . . . , N } → {1, . . . , n} and, for each j ∈ {1, . . . , N }, let B j

be a subset of an atom Dj of F�( j) with

|Bj | ≥ c1
∑

i :�(i)≥�( j),
Di⊆Dj

|Ai |. (3.8)

Then, there exists a map ϕ on {1, . . . , N } so that
(1) |ϕ( j)| = c1|A j | for all j ,
(2) ϕ( j) ⊆ Bj for all j ,
(3) ϕ(i) ∩ ϕ( j) = ∅ for all i 	= j .

Proof Without restriction, we assume that the sequence (A j ) is enumerated such that
�( j+1) ≤ �( j) for all 1 ≤ j ≤ N−1.Wefirst chooseϕ(1) as an arbitrary (measurable)
subset of B1 with measure c1|A1|, which is possible by assumption (3.8). Next, we
assume that for 1 ≤ j ≤ j0, we have constructed ϕ( j) with the properties

(1) |ϕ( j)| = c1|A j |,
(2) ϕ( j) ⊆ Bj ,
(3) ϕ( j) ∩ ∪i< jϕ(i) = ∅.
Based on that, we now construct ϕ( j0 + 1). Define the index sets � = {i : �(i) ≥
�( j0 + 1), Di ⊆ Dj0+1} and � = {i : i ≤ j0 + 1, Di ⊆ Dj0+1}. Since we assumed
that � is decreasing, we have � ⊆ � and by the nestedness of the σ -algebras Fn , we
have for i ≤ j0 + 1 that either Di ⊂ Dj0+1 or |Di ∩ Dj0+1| = 0. This implies

∣
∣
∣Bj0+1\

⋃

i≤ j0

ϕ(i)
∣
∣
∣ = |Bj0+1| −

∣
∣
∣Bj0+1 ∩

⋃

i≤ j0

ϕ(i)
∣
∣
∣

≥ c1
∑

i∈�

|Ai | −
∣
∣
∣Dj0+1 ∩

⋃

i≤ j0

ϕ(i)
∣
∣
∣

≥ c1
∑

i∈�

|Ai | −
∣
∣
∣

⋃

i∈�\{ j0+1}
ϕ(i)

∣
∣
∣

≥ c1
∑

i∈�

|Ai | −
∑

i∈�\{ j0+1}
c1|Ai | = c1|A j0+1|.

Therefore, we can choose ϕ( j0 + 1) ⊆ Bj0+1 that is disjoint to ϕ(i) for any i ≤ j0
and |ϕ( j0 + 1)| = c1|A j0+1| which completes the proof. ��
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Proof of Proposition 3.4 Fix n and let (Nn, j ) be the B-spline basis of Sk(Fn). More-

over, for any j , set En, j = supp Nn, j and an, j := max�≤n maxr :E�,r⊃En, j ‖X�‖1/2L∞(E�,r )

and we define �( j) ≤ n and r( j) so that E�( j),r( j) ⊇ En, j and an, j =
‖X�( j)‖1/2L∞(E�( j),r( j))

. Set

gn :=
∑

j

an, j Nn, j ∈ Sk(Fn)

and it will be proved subsequently that this gn has the desired properties.
Property (1): In order to show gn ≤ gn+1, we use Theorem 2.4 to write

gn =
∑

j

an, j Nn, j =
∑

j

βn, j Nn+1, j ,

where βn, j is a convex combination of those an,r with En+1, j ⊆ En,r , and thus

gn ≤
∑

j

(

max
r :En+1, j⊆En,r

an,r
)

Nn+1, j .

By the very definition of an+1, j , we have

max
r :En+1, j⊆En,r

an,r ≤ an+1, j ,

and therefore, gn ≤ gn+1 pointwise, since the B-splines (Nn+1, j ) j are nonnegative
functions.

Property (2): Now we show that X1/2
n ≤ gn . Indeed, for any x ∈ [0, 1],

gn(x) =
∑

j

an, j Nn, j (x) ≥ min
j :En, j�x

an, j ≥ min
j :En, j�x

‖Xn‖1/2L∞(En, j )
≥ Xn(x)

1/2,

since the collection of B-splines (Nn, j ) j forms a partition of unity.

Property (3): Finally, we show Egn � EX1/2
n , where the implied constant

depends only on k and on supm≤n γk(Fm). By B-spline stability (Theorem 2.3), we
estimate the integral of gn by

Egn �
∑

j

|En, j | · ‖X�( j)‖1/2L∞(E�( j),r( j))
, (3.9)

where the implied constant only depends on k. In order to continue the estimate, we
next show the inequality

‖X�‖L∞(E�,r ) � max
s:|E�,r∩E�,s |>0

‖X�‖L∞(J�,s ), (3.10)
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where by J�,s we denote an atom of F� with J�,s ⊂ E�,s of maximal length and the
implied constant depends only on k. Indeed, we use Theorem 2.3 in the form of (2.3)
to get ( fm ∈ Sk(F�) for m ≤ �)

‖X�‖L∞(E�,r ) ≤
∑

m≤�

‖ fm‖2L∞(E�,r )

�
∑

m≤�

∑

s:|E�,s∩E�,r |>0

‖ fm‖2L∞(J�,s ) =
∑

s:|E�,s∩E�,r |>0

∑

m≤�

‖ fm‖2L∞(J�,s ).

(3.11)

Now observe that for atoms I ofF�, due to the equivalence of p-norms of polynomials
(cf. Corollary 2.2),

∑

m≤�

‖ fm‖2L∞(I ) �
∑

m≤�

1

|I |
∫

I
f 2m = 1

|I |
∫

I
X� ≤ ‖X�‖L∞(I ),

which means that, inserting this in estimate (3.11),

‖X�‖L∞(E�,r ) �
∑

s:|E�,s∩E�,r |>0

‖X�‖L∞(J�,s ),

and, since there are at most k indices s so that |E�,s ∩ E�,r | > 0, we have established
(3.10).

We define K�,r to be an interval J�,s with |E�,r ∩ E�,s | > 0 so that

max
s:|E�,r∩E�,s |>0

‖X�‖L∞(J�,s ) = ‖X�‖L∞(K�,r ).

This means, after combining (3.9) with (3.10), we have

Egn �
∑

j

|Jn, j | · ‖X�( j)‖1/2L∞(K�( j),r( j))
. (3.12)

We now apply Lemma 3.5 with the function � and the choices

A j = Jn, j , Dj = K�( j),r( j),

Bj =
{

t ∈ Dj : X�( j)(t) ≥ 8−2(k−1)‖X�( j)‖L∞(Dj )

}

.

In order to see Assumption (3.8) of Lemma 3.5, fix the index j and let i be such that
�(i) ≥ �( j). By definition of Di = K�(i),r(i), the smallest interval containing Jn,i and
Di contains at most 2k − 1 atoms of F�(i) and, if Di ⊂ Dj , the smallest interval
containing Jn,i and Dj contains at most 2k − 1 atoms of F�( j). This means that, in
particular, Jn,i is a subset of the union V of 4k atoms of F�( j) with Dj ⊂ V . Since
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each atom of Fn occurs at most k times in the sequence (A j ), there exists a constant
c1 depending on k and supu≤�( j) γk(Fu) ≤ supu≤n γk(Fu) so that

|Dj | ≥ c1
∑

i :�(i)≥�( j)
Di⊂Dj

|Ai |,

which, since |Bj | ≥ |Dj |/2 by Corollary 2.2, shows that the assumption of Lemma
3.5 holds true and we get a function ϕ so that |ϕ( j)| = c1|Jn, j |/2, ϕ( j) ⊂ Bj ,
ϕ(i) ∩ ϕ( j) = ∅ for all i, j . Using these properties of ϕ, we continue the estimate in
(3.12) and write

Egn �
∑

j

|Jn, j | · ‖X�( j)‖1/2L∞(Dj )
≤ 8k−1 ·

∑

j

|Jn, j |
|ϕ( j)|

∫

ϕ( j)
X1/2

�( j)

= 2

c1
· 8k−1 ·

∑

j

∫

ϕ( j)
X1/2

�( j)

�
∑

j

∫

ϕ( j)
X1/2
n ≤ EX1/2

n ,

with constants depending only on k and supu≤n γk(Fu). ��

Employing this construction of gn , we now give the following duality estimate
for spline projections (for the martingale case, see for instance [8]). The martingale
version of this result is the essential estimate in the proof of both Lépingle’s inequality
(1.1) and the H1-BMO duality.

Theorem 3.6 Let (Fn) be such that γ := supn γk(Fn) < ∞ and ( fn)n≥1 a sequence
of functions with fn ∈ Sk(Fn) for each n. Additionally, let hn ∈ L1 be arbitrary.
Then, for any N,

∑

n≤N

E[| fn · hn|] �
√
2 · E

[(∑

�≤N

f 2�

)1/2] · sup
n≤N

‖Pn
(

N
∑

�=n

h2�
)‖1/2∞ ,

where the implied constant is the same constant that appears in (3) of Proposition 3.4
and therefore only depends on k and γ .

Proof Let Xn := ∑�≤n f 2� and f� ≡ 0 for � > N and � ≤ 0. By Proposition 3.4, we
choose an increasing sequence (gn) of functions with g0 = 0, gn ∈ Sk(Fn) and the
properties X1/2

n ≤ gn and Egn � EX1/2
n where the implied constant depends only on

k and γ . Then, apply Cauchy–Schwarz inequality by introducing the factor g1/2n to get
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∑

n

E[| fn · hn|] =
∑

n

E

[∣
∣
∣
∣
∣

fn

g1/2n

· g1/2n hn

∣
∣
∣
∣
∣

]

≤
[
∑

n

E[ f 2n /gn]
]1/2

·
[
∑

n

E[gnh2n]
]1/2

.

We estimate each of the factors on the right hand side separately and set


1 :=
∑

n

E[ f 2n /gn], 
2 :=
∑

n

E[gnh2n].

The first factor is estimated by the pointwise inequality X1/2
n ≤ gn:


1 = E

[
∑

n

f 2n
gn

]

≤ E

[
∑

n

f 2n
X1/2
n

]

= E

[
∑

n

Xn − Xn−1

X1/2
n

]

≤ 2E
∑

n

(X1/2
n − X1/2

n−1) = 2EX1/2
N .

We continue with 
2:


2 = E

[
N
∑

�=1

g�h
2
�

]

= E

[
N
∑

�=1

�
∑

n=1

(gn − gn−1)h
2
�

]

= E

[
N
∑

n=1

(gn − gn−1) ·
N
∑

�=n

h2�

]

= E

[
N
∑

n=1

Pn(gn − gn−1) ·
N
∑

�=n

h2�

]

= E

[
N
∑

n=1

(gn − gn−1) · Pn
(

N
∑

�=n

h2�

)]

≤ E

[
N
∑

n=1

(gn − gn−1)

]

· sup
1≤n≤N

∥
∥
∥
∥
∥
Pn

(
N
∑

�=n

h2�

)∥
∥
∥
∥
∥

∞
,

where the last inequality follows from gn ≥ gn−1. Noting that by the properties of gn ,
E
[∑N

n=1(gn − gn−1)
] = EgN � EX1/2

N and combining the two parts 
1 and 
2, we
obtain the conclusion. ��

4 Applications

We give two applications of Theorem 3.6, (i) D. Lépingle’s inequality and (ii) an
analogue of C. Fefferman’s H1-BMO duality in the setting of splines. Once the results
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from Sect. 3 are known, the proofs of the subsequent results proceed similarly to their
martingale counterparts in [8,12] by using spline properties instead of martingale
properties.

4.1 Lépingle’s inequality for splines

Theorem 4.1 Let k, k′ be positive integers. Let (Fn) be an interval filtration with
supn γk(Fn) < ∞ and, for any n, fn ∈ Sk(Fn) and P ′

n be the orthogonal projection
operator on Sk′(Fn). Then,

‖(P ′
n−1 fn)‖L1(�2) =

∥
∥
∥
∥
∥
∥

(
∑

n

(P ′
n−1 fn)

2

)1/2
∥
∥
∥
∥
∥
∥
1

�

∥
∥
∥
∥
∥
∥

(
∑

n

f 2n

)1/2
∥
∥
∥
∥
∥
∥
1

= ‖( fn)‖L1(�2),

where the implied constant depends only on k, k′ and supn γk(Fn).

We emphasize that the parameters k and k′ can be different here, k being the spline
order of the sequence ( fn) and k′ being the spline order of the projection operators
P ′
n−1. In particular, the constant on the right hand side does not depend on the k′-

regularity parameter supn γk′(Fn).

Proof We first assume that fn = 0 for n > N and begin by using duality

E

⎡

⎣

(
∑

n

(P ′
n−1 fn)

2

)1/2
⎤

⎦ = sup
(Hn)

E

[
∑

n

(P ′
n−1 fn) · Hn

]

,

where sup is taken over all (Hn) ∈ L∞(�2) with ‖(Hn)‖L∞(�2) = 1. By the self-
adjointness of P ′

n−1,

E
[

(P ′
n−1 fn) · Hn

] = E
[

fn · (P ′
n−1Hn)

]

.

Then we apply Theorem 3.6 for fn and hn = P ′
n−1Hn to obtain (denoting by Pn the

orthogonal projection operator onto Sk(Fn))

∑

n≤N

|E[ fn · hn]| � E

⎡

⎢
⎣

⎛

⎝
∑

�≤N

f 2�

⎞

⎠

1/2
⎤

⎥
⎦ · sup

n≤N

∥
∥
∥
∥
∥
Pn

(
N
∑

�=n

(P ′
�−1H�)

2

)∥
∥
∥
∥
∥

1/2

∞
. (4.1)

To estimate the right hand side, we note that for any n, by Corollary 3.3,

∥
∥
∥
∥
∥
Pn

(
N
∑

�=n

(P ′
�−1H�)

2

)∥
∥
∥
∥
∥

∞
�
∥
∥
∥
∥
∥

N
∑

�=n

H2
�

∥
∥
∥
∥
∥

∞
.
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Therefore, (4.1) implies

E

⎡

⎣

(
∑

n

(P ′
n−1 fn)

2

)1/2
⎤

⎦ = sup
(Hn)

E

[
∑

n

fn · (P ′
n−1Hn)

]

� E

⎡

⎢
⎣

⎛

⎝
∑

�≤N

f 2�

⎞

⎠

1/2
⎤

⎥
⎦ ,

with a constant depending only on k,k′ and supn≤N γk(Fn). Letting N tend to infinity,
we obtain the conclusion. ��

4.2 H1-BMO duality for splines

We fix an interval filtration (Fn)
∞
n=1, a spline order k and the orthogonal projection

operators Pn ontoSk(Fn) and additionally, we set P0 = 0. For f ∈ L1, we introduce
the notation

�n f := Pn f − Pn−1 f , Sn( f ) :=
(

n
∑

�=1

(�� f )
2

)1/2

, S( f ) = sup
n

Sn( f ).

Observe that for � < n and f , g ∈ L1,

E[�� f · �ng] = E[P�(�� f ) · �ng] = E[�� f · P�(�ng)] = 0. (4.2)

Let V be the L1-closure of ∪nSk(Fn). Then, the uniform boundedness of Pn on
L1 implies that Pn f → f in L1 for f ∈ V . Next, set

H1,k = H1,k((Fn)) = { f ∈ V : E(S( f )) < ∞}

and equip H1,k with the norm ‖ f ‖H1,k = ES( f ). Define

BMOk = BMOk((Fn)) =
⎧

⎨

⎩
f ∈ V : sup

n
‖
∑

�≥n

Tn
(

(�� f )
2)‖∞ < ∞

⎫

⎬

⎭

and the corresponding quasinorm

‖ f ‖BMOk = sup
n

∥
∥
∑

�≥n

Tn
(

(�� f )
2)
∥
∥
1/2
∞ ,

where Tn is the operator from (3.3) that dominates Pn pointwise.
Let us now assume supn γk(Fn) < ∞. In this case we identify, similarly to H1-

BMO-duality (cf. [7,8,10]), BMOk as the dual space of H1,k .
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First, we use the duality estimate Theorem 3.6 and (4.2) to prove, for f ∈ H1,k and
h ∈ BMOk ,

∣
∣E
[

(Pn f ) · (Pnh)
]∣
∣ ≤

∑

�≤n

E
[|�� f | · |��h|] � ‖Sn( f )‖1 · ‖h‖BMOk .

This estimate also implies that the limit limn E
[

(Pn f ) · (Pnh)
]

exists and satisfies

∣
∣ lim

n
E
[

(Pn f ) · (Pnh)
]∣
∣ � ‖ f ‖H1,k · ‖h‖BMOk .

On the other hand, similarly to the martingale case (see [8]), given a continuous
linear functional L on H1,k , we extend L norm-preservingly to a continuous linear
functional � on L1(�2), which, by Sect. 2.5, has the form

�(η) = E

[
∑

�

σ�η�

]

, η ∈ L1(�2)

for someσ ∈ L∞(�2). The k-martingale spline sequence hn =∑�≤n ��σ� is bounded
in L2 and therefore, by the spline convergence theorem ((v) on page 2), has a limit
h ∈ L2 with Pnh = hn and which is also contained in BMOk . Indeed, by using
Corollary 3.3, we obtain ‖h‖BMOk � ‖σ‖L∞(�2) = ‖�‖ = ‖L‖ with a constant
depending only on k and supn γk(Fn). Moreover, for f ∈ H1,k , since L is continuous
on H1,k ,

L( f ) = lim
n

L(Pn f ) = lim
n

�
(

(�1 f , . . . , �n f , 0, 0, . . .)
)

= lim
n

n
∑

�=1

E[σ� · �� f ] = lim
n

E
[

(Pn f ) · (Pnh)
]

.

This yields the following

Theorem 4.2 If supn γk(Fn) < ∞, the linear mapping

u : BMOk → H∗
1,k, h �→ (

f �→ lim
n

E
[

(Pn f ) · (Pnh)
])

is bijective and satisfies

‖u(h)‖H∗
1,k


 ‖h‖BMOk ,

where the implied constants depend only on k and supn γk(Fn).

Remark 4.3 We close with a few remarks concerning the above result and we assume
that (Fn) is a sequence of increasing interval σ -algebras with supn γk(Fn) < ∞.
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(1) By Khintchine’s inequality, ‖S f ‖1 � supε∈{−1,1}Z ‖∑n εn�n f ‖1. Based on the
interval filtration (Fn), we can generate an interval filtration (Gn) that contains
(Fn) as a subsequence and each Gn+1 is generated from Gn by dividing exactly
one atom ofGn into two atoms ofGn+1. Denoting by PG

n the orthogonal projection
operator onto Sk(Gn) and �G

j = PG
j − PG

j−1, we can write

∑

n

εn�n f =
∑

n

εn

an+1−1
∑

j=an

�G
j f

for some sequence (an). By using inequalities (2.7) and (2.6) and writing
(SG f )2 =∑ j |�G

j f |2, we obtain for p > 1

‖S f ‖1 � ‖SG f ‖1 ≤ ‖SG f ‖p � ‖ f ‖p.

This implies L p ⊂ H1,k for all p > 1 and, by duality, BMOk ⊂ L p for all
p < ∞.

(2) If (Fn) is of the form that eachFn+1 is generated fromFn by splitting exactly one
atom ofFn into two atoms ofFn+1 and under the condition supn γk−1(Fn) < ∞
(which is stronger than supn γk(Fn) < ∞), it is shown in [9] that

‖S f ‖1 
 ‖ f ‖H1 ,

where H1 denotes the atomicHardy space on [0, 1], i.e. in this case, H1,k coincides
with H1.
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