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Introduction and physical context
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Yang-Mills theory

I Formulated in 1954 by Chen Ning Yang and Robert Mills
I A non-Abelian gauge theory with gauge group SU(Nc)
I A non-linear generalization of electromagnetism, which is a

gauge theory based on U(1)
I Gauge theories are a widely used concept in physics: the

standard model of particle physics is based on a gauge theory
with gauge group U(1)× SU(2)× SU(3)

I All fundamental forces (electromagnetism, weak and strong
nuclear force, even gravity) are/can be formulated as gauge
theories
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Classical Yang-Mills theory

Classical Yang-Mills theory refers to the study of the classical
equations of motion (Euler-Lagrange equations) obtained from the
Yang-Mills action

Main topic of this seminar: solving the classical equations of
motion of Yang-Mills theory numerically

Not topic of this seminar: quantum field theory, path integrals,
lattice quantum chromodynamics (except certain methods), the
Millenium problem related to Yang-Mills . . .
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Classical Yang-Mills in the early universe
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Classical Yang-Mills in the early universe

Electroweak phase transition: the electro-weak force splits into
the weak nuclear force and the electromagnetic force

This phase transition can be studied using (extensions of) classical
Yang-Mills theory

Literature:
I G. D. Moore and N. Turok, “Classical field dynamics of the

electroweak phase transition”, PRD 55, 6538 (1997),
[arXiv:hep-ph/9608350]

I Y. Akamatsu, A. Rothkopf and N. Yamamoto, “Non-Abelian
chiral instabilities at high temperature on the lattice”, JHEP
1603, 210 (2016), [arXiv:1512.02374]

I . . .
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Classical Yang-Mills in heavy-ion collisions

My main application for Yang-Mills theory:

The earliest stages of relativistic heavy-ion collisions

Heavy-ion collisions
I Heavy-ion collision experiments (e.g. LHC at CERN or RHIC

at BNL) to investigate the properties of nuclear matter under
extreme conditions (high energy)

I Accelerate e.g. gold or lead nuclei to relativistic speeds,
perform collisions, detect matter that is created (particle
detectors)
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Classical Yang-Mills in heavy-ion collisions

Image from ATLAS @ CERN (2005),
https://home.cern/resources/image/experiments/atlas-images-gallery
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Classical Yang-Mills in heavy-ion collisions

Image from ATLAS @ CERN (2015)
https://atlas.cern/resources/multimedia/physics
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Classical Yang-Mills in heavy-ion collisions

I Heavy-ion collision experiments (e.g. LHC at CERN or RHIC
at BNL) to investigate the properties of nuclear matter under
extreme conditions (high energy)

I Fundamental theory: quantum chromodynamics (gauge group
SU(3)) which governs the interactions of quarks and gluons

I At very high energies: nuclei appear as “frozen” thin disks,
can be described using classical Yang-Mills theory (color glass
condensate)

I Matter created immediately after the collision: “Glasma”
I Dynamics of the Glasma are described by classical Yang-Mills

equations

Review:
I F. Gelis, “Color Glass Condensate and Glasma”, Int. J. Mod.

Phys. A 28, 1330001 (2013) [arXiv:1211.3327]
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Classical Yang-Mills in heavy-ion collisions

Image from my thesis [arXiv:1904.04267]
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Literature

Lattice gauge theory and its application to heavy-ion collisions:

PhD thesis [arXiv:1904.04267] based on:
I D. Gelfand, A. Ipp, DM, “Simulating collisions of thick nuclei

in the color glass condensate framework”, PRD94, 1, 014020
[arXiv:1605.07184]

I A. Ipp, DM, “Broken boost invariance in the Glasma via finite
nuclei thickness”, PLB 771, 74 [arXiv:1703.00017]

I A. Ipp, DM, “Implicit schemes for real-time lattice gauge
theory”, EPJC 78, no. 11, 884 [arXiv:1804.01995]
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Literature

General (quantum) field theory, Yang-Mills theory:
I M. E. Peskin, D. V. Schroeder, “An Introduction To Quantum

Field Theory” (1995)
I M. Srednicki, “Quantum Field Theory” (2007)
I D. Tong, “Lectures on Quantum Field Theory”, lecture notes

http://www.damtp.cam.ac.uk/user/tong/qft.html

Lattice gauge theory:
I C. Gattringer, C. B. Lang, “Quantum Chromodynamics on the

Lattice: An Introductory Presentation” (2009)
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Classical Yang-Mills theory
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Classical Yang-Mills theory: overview

I Preliminaries
I Special relativity
I Relativistic field theory

I Yang-Mills theory
I Gauge fields and field strength tensor
I Yang-Mills action
I Variation of the action

I Gauge symmetry
I Gauge fixing
I Gauss constraint

I Energy-momentum tensor
I Electromagnetism
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Preliminaries
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Minkowski space

Minkowski space M is a four-dimensional real vector space
equipped with a metric gµν with signature (+1,−1,−1,−1)
(“mostly minus” convention, particle physics).
I Greek indices µ ∈ {0, 1, 2, 3} to indicate that a vector vµ is an

element of M (a “4-vector”) or its tangent space
I Naming convention vµ = (v0, v1, v2, v3)T

I temporal component v0

I spatial components v i , i ∈ {1, 2, 3}
I Latin indices for spatial components v i

I Euclidean coordinate vector

xµ = (x0, x1, x2, x3)T = (ct, x , y , z)T

Speed of light c usually set to c = 1 (“natural” or particle physics
units)
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Minkowski metric

I Covariant metric in Euclidean coordinates

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


I Einstein summation: repeated indices are summed over
I Lowering indices

vµ ≡ gµνvν = (v0,−v i )T

I Contravariant metric gµν is inverse of gµν

gµνgνρ = δµρ

I Raising indices
vµ = gµνvν
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Inner product and norm

Inner product of vµ and wµ

v · w ≡ vµwµ

= gµνvµwν

= vT g w
= v0w0 − v iw i

Norm of vµ

v2 ≡ vµvµ = gµνvµvν = (v0)2 − v iv i

Note: Minkowski norm is not positive-definite
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Inner product and norm

Norm of vµ using Minkowski metric gµν

v2 ≡ vµvµ = gµνvµvν = (v0)2 − v iv i

Nomenclature
I spacelike vector v2 < 0
I timelike vector v2 > 0
I lightlike vector v2 = 0

Nomenclature depends on signature: different signs in general
relativity, string theory
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Lorentz group

The inner product of two 4-vectors vµwµ is invariant under
transformations of the Lorentz group O(1, 3).

vνwν = gµνvµwν = v0w0 − v iw i

1. SO(3): rotations in R3 subspace
2. Lorentz boosts (change of inertial frame)
3. Time reversal T : v0 → −v0

4. Space inversion P : v i → −v i

I O(1, 3) consists of four connected components
I SO+(1, 3): proper orthochronous Lorentz transformations,

component connected to identity (leave out T and P)
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Lorentz boosts

I Lorentz boosts correspond to a change of the inertial frame
(“Bezugssystem”)

I Relativistic generalization of Galilean transformations
x ′ = x − v t with velocity v

Example: boost along x3 = z direction with “rapidity” η ∈ R.

v ′µ = Λµνvν

= (v0 cosh η + v3 sinh η, v1, v2, v0 sinh η + v3 cosh η)T ,

where

Λµν =


cosh η 0 0 − sinh η

0 1 0 0
0 0 1 0

− sinh η 0 0 cosh η

 .
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Lorentz boosts

Inner product is invariant under Lorentz boosts

v ′µ = (v0 cosh η − v3 sinh η, v1, v2, v0 sinh η − v3 cosh η)T ,

w ′µ = (w0 cosh η − w3 sinh η, w1, w2, w0 sinh η − w3 cosh η)T ,

v ′µw ′µ = gµνv ′µw ′ν

= v ′0w ′0 − w ′iv ′i

= v0w0 − w iv i

= vµwµ.
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Lorentz boosts

I Velocity vz from rapidity η

v = tanh η

cosh η = 1√
1− v2

z

= γ

sinh η = vz√
1− v2

z

= vzγ

I More familiar form of Lorentz boost

Λµν =


γ 0 0 −vzγ
0 1 0 0
0 0 1 0
−γvz 0 0 γ


I Lorentz factor γ = 1/

√
1− v2

z
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Lorentz boosts

Apply boost to coordinate vector xµ

x ′µ = Λµνxν ,
t ′ = γ(t − vz z),
z ′ = γ(z − vz t).

All standard results of special relativity follow from these
transformations, e.g.
I Time dilation (fast moving clocks appear to run slower)
I Length contraction (fast moving objects appear length

contracted)
Nuclei at relativistic speeds: “frozen”, thin disks of nuclear matter
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Partial derivatives and integrals
Shorthand notation for partial derivatives with respect to
coordinates

∂µ ≡
∂

∂xµ
Partial derivative with raised index

∂µ ≡ gµν∂ν = ∂

∂xµ

Example: d’Alembert operator acting on function φ : M→ R

∂µ∂
µφ(x) = ∂2φ(x)

∂t2 −∆φ(x)

with x0 = t as the time coordinate
Integrals over M denoted as∫

x

φ(x) =
∫

d4x φ(x) =
∫

dt dx dy dz φ(t, x , y , z)
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Free scalar field

Action functional of a free scalar field φ(x) : M→ R, which maps
φ(x) to a real number

S[φ] =
∫

d4x
(1

2∂µφ∂
µφ− 1

2m2φ2
)

=
∫

d4x L(∂µφ(x), φ(x), x)

with mass parameter m > 0 and Lagrange density

L(∂µφ(x), φ(x), x) = 1
2∂µφ∂

µφ− 1
2m2φ2
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Free scalar field

Action functional of a free scalar field

S[φ] =
∫

d4x
(1

2∂µφ∂
µφ− 1

2m2φ2
)

I Invariant under Lorentz group (rotations, boosts, time
reversal, space inversion) and translations

x ′µ = xµ + wµ

(Lorentz group + translations: Poincaré group)
I Relativistic field theory:

consistent use of contracted 4-vector index pairs
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Free scalar field

Principle of stationary action: a field φ which is an extremum of
S[φ] satisfies the equations of motion (EOM) or Euler-Lagrange
equations.

Directional functional derivative of S[φ] in “direction” α(x)

δS[φ, α] ≡ lim
ε→0

S[φ+ εα]− S[φ]
ε

=
∫

d4x δS[φ]
δφ(x)α(x)

Expression on the right requires integration by parts, α(x) has
compact support on M
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Principle of stationary action

Different way of writing the same thing:
Variation of the action

δS[φ, δφ] =
∫

d4x δS[φ]
δφ(x)δφ(x)

Compare to total differential of F (x1, x2, . . . , xn) : Rn → R

dF =
n∑

i=1

∂F
∂xi

dxi

Equations of motion (Euler-Lagrange eqs.) follow from

δS[φ, δφ] = 0 ⇔ δS[φ]
δφ(x) = 0
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Free scalar field

Action of a free scalar field

S[φ] =
∫

d4x
(1

2∂µφ∂
µφ− 1

2m2φ2
)

Variation of the action

δS[φ, δφ] =
∫

d4x
(
∂µφ(x)∂µδφ(x)−m2φ(x)δφ(x)

)
=
∫

d4x
(
−∂µ∂µφ(x)−m2φ(x)

)
δφ(x)

Note: integration by parts, no boundary terms

Functional derivative

δS[φ]
δφ(x) = −∂µ∂µφ(x)−m2φ(x)
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Free scalar field

Action of a free scalar field

S[φ] =
∫

d4x
(1

2∂µφ∂
µφ− 1

2m2φ2
)

Principle of stationary action

δS[φ]
δφ(x) = −∂µ∂µφ(x)−m2φ(x) = 0

Klein-Gordon equation (second order in time derivatives)

∂2φ(x)
∂t2 −∆φ(x) + m2φ(x) = 0
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Free scalar field

Lagrangian density for free scalar field

L(∂µφ(x), φ(x), x) = 1
2∂µφ∂

µφ− 1
2m2φ2

Introduce conjugate momentum to φ(x)

π(x) ≡ ∂L
∂ (∂0φ) = ∂0φ(x)

Rewrite Klein-Gordon equation(s) (first order in time derivatives)

∂0π(x) = ∆φ(x)−m2φ(x)
∂0φ(x) = π(x)

Initial value problem: specify initial values φ(t0, ~x) and π(t0, ~x) at
some time t0 and solve the equations of motion
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Yang-Mills theory
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Yang-Mills gauge fields

Degrees of freedom (DOF) in Yang-Mills theory are
gauge fields Aµ(x) : M→ su(Nc)
I Number of colors Nc

Quantum chromodynamics Nc = 3 (strong nuclear force)
Weak nuclear force Nc = 2

I Lie algebra su(Nc)
Traceless hermitian matrices in CNc×Nc

t ∈ CNc×Nc , t = t†, tr [t] = 0

For t, t ′ ∈ su(Nc) we have

Scalar multiplication: αt ∈ su(Nc), α ∈ R
Addition: t + t ′ ∈ su(Nc),
Commutator:

[
t, t ′

]
/i ∈ su(Nc), i2 = −1
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Yang-Mills gauge fields

Degrees of freedom (DOF) in Yang-Mills theory are
gauge fields Aµ(x) : M→ su(Nc)

Aµ(x) = Aa
µ(x)ta

I Color indices a ∈ {1, 2, . . . ,N2
c − 1} (Einstein summation)

I Color components Aa
µ(x) of gauge field

(4(N2
c − 1) functions M→ R)

Generators ta ∈ su(Nc)
I Nc = 2: Pauli matrices ta = 1

2σ
a

I Nc = 3: Gell-Mann matrices ta = 1
2λ

a

Gauge fields are traceless and hermitian
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Pauli-Matrices

Generators of su(2):
ta = 1

2σ
a
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Gell-Mann matrices

Generators of su(3):
ta = 1

2λ
a
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Properties of generators

I Traceless
tr [ta] = 0

I Hermitian
ta† = ta

I Normalization
tr
[
tatb

]
= 1

2δ
ab

I Antisymmetric structure constants f abc (commutator)[
ta, tb

]
= tatb − tbta = if abctc , f abc ∈ R

I Symmetric structure constants dabc (anti-commutator){
ta, tb

}
= tatb + tbta = 1

Nc
δab1 + dabctc , dabc ∈ R
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Yang-Mills field strength tensor

Definition: field strength tensor

Fµν(x) ≡ ∂µAν(x)− ∂νAµ(x) + ig [Aµ(x),Aν(x)]

with Yang-Mills coupling constant g > 0

Fµν is antisymmetric in index pair µ, ν

Fµν is traceless and hermitian

Fµν(x) = F a
µν(x)ta

Using
[
ta, tb

]
= if abctc we can write

F a
µν(x) = ∂µAa

ν(x)− ∂νAa
µ(x)− gf abcAb

µ(x)Ac
ν(x)
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Yang-Mills field strength tensor
Physical interpretation: field strength tensor contains the
chromo-electric and -magnetic fields

Fµν =


0 Ex Ey Ez
−Ex 0 −Bz By
−Ey Bz 0 −Bx
−Ez −By Bx 0


Electric fields

F0i = Ei ∈ su(Nc).

Magnetic fields

Fij = εijkBk , Bi = −1
2εijkFjk ∈ su(Nc),

where εijk is the Levi-Civita symbol

ε123 = 1, εijk = −εjik = −εikj .
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Yang-Mills action

Using Fµν we can define the Yang-Mills action S[Aµ]

S[Aµ] =
∫

d4x tr
(
−1

2Fµν(x)Fµν(x)
)

=
∫

d4x tr
(
−1

2gµρgνσFµν(x)Fρσ(x)
)

Consistent use of contracted index pairs: invariant under Lorentz
transformations (rotations, boosts, time reversal, spatial inversion)
and translations

⇒ Varying this action yields the Yang-Mills equations for Aµ(x)
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Varying the Yang-Mills action

Using integration by parts, properties of the commutator and the
trace, we find

δS[Aµ, δAµ] =
∫

d4x tr
[
− FµνδFµν

]
=
∫

d4x tr
[
− Fµν

(
∂µδAν − ∂νδAµ

+ ig [δAµ,Aν ] + ig [Aµ, δAν ]
)]

= −2
∫

d4x tr
[ (
∂νFµν + ig

[
Aν ,Fµν

])
δAµ

]
Vanishing variation δS[Aµ, δAµ] = 0:

Yang-Mills equations

∂νFµν + ig [Aν ,Fµν ] = 0
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Yang-Mills equations

Yang-Mills equations

∂νFµν + ig [Aν ,Fµν ] = 0

with field strength

Fµν ≡ ∂µAν − ∂νAµ + ig [Aµ,Aν ]

Shorthand: (gauge) covariant derivative Dµ

For an algebra-valued field B(x) we define

DµB(x) ≡ ∂µB(x) + ig [Aµ(x),B(x)]

Write Yang-Mills equations as

DνFµν = 0
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Yang-Mills equations

Yang-Mills equations in terms of color components Aa
µ

Aµ = Aa
µta

∂ν∂
µAa,ν − ∂ν∂νAa,µ

− g f abc
(
∂νAb,µAc,ν + Ab,µ∂νAc,ν

)
− g f abcAb

ν (∂µAc,ν − ∂νAc,µ)

+ g2f abc f cdeAb
νAd ,µAe,ν = 0

For Nc = 3: system of 32 coupled, second order hyperbolic,
non-linear PDEs
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Yang-Mills equations

Reformulate the second order system into a first order system
Introduce conjugate momenta

πa,µ = ∂L
∂
(
∂0Aa

µ

) = −F a,0µ

π0 = 0, πi = F0i = Ei

The momentum π0 conjugate to A0 vanishes.

Degrees of freedom
I Aa

0,Aa
i : 4(N2

c − 1) gauge fields
I πi : 3(N2

c − 1) momenta
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Yang-Mills equations

Rewrite Yang-Mills equations using canonical momenta πi

Equations of motion

∂µFµi + ig
[
Aµ,Fµi

]
= 0

πi = F0i = ∂0Ai − ∂iA0 + ig [A0,Ai ]

⇒ ∂0π
i = −ig

[
A0, π

i
]

+ ∂jF ji + ig
[
Aj ,F ji

]
⇒ ∂0Ai = πi + ∂iA0 − ig [A0,Ai ]

Gauss constraint (contains no time derivatives of πi or Aµ)

∂µFµ0 + ig
[
Aµ,Fµ0

]
= 0

⇒ ∂iπ
i + ig

[
Ai , π

i
]

= 0
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Yang-Mills equations

Reformulated system

∂0π
i = −ig

[
A0, π

i
]

+ ∂jF ji + ig
[
Aj ,F ji

]
∂0Ai = πi + ∂iA0 − ig [A0,Ai ]

∂iπ
i + ig

[
Ai , π

i
]

= 0

There is no term ∂0A0. This system is not solvable as a standard
initial value problem. Specifying A0(t0, ~x), Ai (t0, ~x) and πi (t0, ~x)
at some initial time t0 is not enough information to determine the
fields at some later time t1 > t0.

The Yang-Mills equations (as stated above) are under-determined:
gauge symmetry
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Yang-Mills in 1+1D, single color component

Reduce dimensions to 1 + 1 (t and x) ⇒ A0(t, x) and A1(t, x)

Yang-Mills equations:

∂0π
1 = −ig

[
A0, π

1
]

∂0A1 = π1 + ∂1A0 − ig [A0,A1]

∂1π
1 + ig

[
A1, π

1
]

= 0

Reduce to a single color component:
A0 = A1

0t1, A1 = A1
1t1 ⇒ drop all commutator terms
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Yang-Mills in 1+1D, single color component

Remove commutator terms:

∂0π
1 = 0

∂0A1 = π1 + ∂1A0

∂1π
1 = 0

From first and third equation: π1 must be constant w.r.t t and x

π1 = C

Solution of second equation with initial data at t0:

A1(t, x) = A1(t0, x) + (t − t0)C +
t∫

t0

dt ′∂1A0(t ′, x)

Cannot compute A1(t, x) without specifying A0(t, x).
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Gauge symmetry



53

Gauge symmetry

Special unitary group SU(Nc)

Special unitary matrices acting on CNc

U ∈ CNc×Nc , UU† = U†U = 1, det U = 1

For U,U ′,U ′′ ∈ SU(Nc) we have

Multiplication: UU ′ ∈ SU(Nc)
Associativity:

(
UU ′

)
U ′′ = U

(
U ′U ′′

)
Identity: 1U = U1
Inverse: U†U = 1

SU(Nc) is a finite-dimensional real smooth manifold. Inverse and
multiplication are smooth maps. SU(Nc) is a Lie group.
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Gauge symmetry

Connection between Lie algebra su(Nc) and Lie group SU(Nc):
the exponential map exp : su(Nc)→ SU(Nc)

Elements of the Lie algebra “generate” elements of the Lie group
via

U = exp (it) , t ∈ su(Nc), i2 = −1

Definition as a series:

U = exp (it) =
∞∑

n=0

1
n! (it)n

Some useful properties:

exp(it) exp(it ′) = exp(i(t + t ′)), [t, t ′] = 0, t, t ′ ∈ su(Nc)

(exp(it))−1 = exp(−it), t ∈ su(Nc)
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Gauge symmetry

The Yang-Mills action for Nc colors exhibits a particular local
symmetry: SU(Nc) gauge symmetry

Consider a “local gauge transformation”, a smooth function
Ω(x) : M→ SU(Nc) acting on a gauge field Aµ(x)

A′µ(x) = Ω(x)
(

Aµ(x) + 1
ig ∂µ

)
Ω†(x)

= Ω(x)Aµ(x)Ω†(x) + 1
ig Ω(x)∂µΩ†(x)

⇒ Gauge transformation of the field strength tensor

F ′µν(x) = Ω(x)Fµν(x)Ω†(x)

How does S[Aµ] change under this transformation?



56

Gauge symmetry

Gauge transformation of the field strength tensor

F ′µν(x) = Ω(x)Fµν(x)Ω†(x)

Transformation of S[Aµ]

S[A′µ] =
∫

d4x tr
(
−1

2F ′µν(x)F ′µν(x)
)

=
∫

d4x tr
(
−1

2Ω(x)Fµν(x)Ω†(x)Ω(x)Fµν(x)Ω†(x)
)

= S[Aµ]

The Yang-Mills action is invariant under local gauge
transformations Ω(x).
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Gauge symmetry: implications

I If Aµ solves the Yang-Mills (YM) equations, then A′µ does too
I Gauge symmetry reflects the degree of redundancy in the

gauge field description of gauge field theories
I Physical observables must be gauge invariant

I Gauge field Aµ is not an observable

A′
µ = Ω

(
Aµ + 1

ig ∂µ

)
Ω†

I Field strength tensor Fµν is not an observable

F ′
µν = ΩFµνΩ†

I Physical observables like the energy-momentum tensor Tµν are
gauge invariant

T ′
µν = Tµν
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Gauge symmetry

Proof: if Aµ solves the YM equations, then A′µ does too.

1) Assume that Aµ solves the YM equations

∂νFµν + ig [Aν ,Fµν ] = 0

2) Check if A′µ solves them too:

A′µ = Ω
(

Aµ + 1
ig ∂µ

)
Ω†, F ′µν = ΩFµνΩ†

∂νF ′µν = Ω
(
∂νFµν −

[
∂νΩ†Ω,Fµν

])
Ω†

ig
[
A′ν ,F ′µν

]
= Ω

(
ig [Aν ,Fµν ] +

[
∂νΩ†Ω,Fµν

])
Ω†

⇒ ∂νF ′µν + ig
[
A′ν ,F ′µν

]
= Ω (∂νFµν + ig [Aν ,Fµν ]) Ω† = 0
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Gauge symmetry

Proof: if Aµ solves the YM equations, then A′µ does too.

Short version: if Aµ is an extremum of the action (δS = 0), then
A′µ also satisfies δS = 0 due to gauge symmetry S[Aµ] = S[A′µ].

A′µ + δA′µ = Ω
(

Aµ + δAµ + 1
ig ∂µ

)
Ω†

⇒ δA′µ = ΩδAµΩ†

Variation is invariant:

δS[A′µ, δA′µ] = −2
∫

d4x tr
[(
∂νF ′µν + ig

[
A′ν ,F ′µν

])
δA′µ

]
= −2

∫
d4x tr

[
Ω (∂νFµν + ig [Aν ,Fµν ]) Ω†ΩδAµΩ†

]
= δS[Aµ, δAµ] = 0.
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Gauge fixing

Aµ and A′µ are said to be gauge equivalent (belong to the same
equivalence class) if there exists a gauge transformation Ω which
satisfies

A′µ = Ω(Aµ + 1
ig ∂µ)Ω†

Equivalence classes are also known as “gauge orbits”.

Lots of freedom to choose how a particular solution to the YM
equations looks. Is there a solution within an equivalence class
that is particularly simple? Is there a way to make the YM
equations easier to solve by restricting the “gauge freedom”?

Idea: reduce the gauge freedom by “fixing” the gauge symmetry.
Supplement YM equations with a gauge fixing condition
G [Aµ] = 0.
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Gauge fixing

Supplement YM equations with a gauge fixing condition

G [Aµ] = 0

What can G [Aµ] be? Gauge fixing condition must be realizable:

Suppose Aµ does not satisfy the gauge condition G [Aµ] 6= 0. If G
is realizable, then there must exist a gauge transformation Ω such
that A′µ = Ω(Aµ + 1

ig ∂µ)Ω† satisfies G [A′µ] = 0.
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Gauge fixing

Some popular, commonly used gauge fixing conditions:
I Temporal (axial) gauge

A0(x) = A0(x) = 0, ∀x ∈M

Similar: spatial axial gauges Ai (x) = 0
I Coulomb gauge

∂iAi (x) = 0, ∀x ∈M

Note: sum only over spatial indices i ∈ {1, 2, 3}
I Covariant (Lorenz) gauge

∂µAµ(x) = 0, ∀x ∈M

Note: use of contracted 4-vector indices, invariant under
Lorentz group
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Temporal gauge

Temporal gauge A0(x) = 0 is very useful for numerical simulations

Is temporal gauge realizable?
Consider Aµ with A0 6= 0. Can we find a gauge transformation Ω
such that

A′0 = Ω
(

A0 + 1
ig ∂0

)
Ω† = 0

⇒ Ω†(t, ~x) must satisfy

∂0Ω†(t, ~x) = −igA0(t, ~x)Ω†(t, ~x)

where x0 = t and ~x = (x1, x2, x3)T
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Temporal gauge

The equation

∂tΩ†(t, ~x) = −igA0(t, ~x)Ω†(t, ~x)

is solved by the path-ordered exponential

Ω†(t, ~x) = P exp

−ig
t∫

−∞

dt ′A0(t ′, ~x)


with limt→−∞Ω(t, ~x) = 1 and P denotes path ordering.
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Path-ordering

Consider a smooth path x(s) : R→M parameterized by s ∈ [0, 1]
and the gauge field along the path A(s) = dxµ(s)

ds Aµ(x(s)). The
path ordering symbol P orders products according to the
parameter s

P
[
A(s)A(s ′)

]
=
{

A(s)A(s ′), for s ≥ s ′

A(s ′)A(s), for s < s ′

Convention: “left means later”

Alternative expression using the Heaviside step function θ

P
[
A(s)A(s ′)

]
= θ(s − s ′)A(s)A(s ′) + θ(s ′ − s)A(s ′)A(s)
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Path-ordered exponential

Definition as series

For tA < tB:

P exp

−ig
tB∫

tA

dt ′A0(t ′, ~x)

 = 1 +
∞∑

n=1

1
n!P

−ig
tB∫

tA

dt ′A0(t ′)

n

= 1+
∞∑

n=1

1
n! (−ig)n

tB∫
tA

dt ′1

tB∫
tA

dt ′2 · · ·
tB∫

tA

dt ′nP
[
A0(t ′1)A0(t ′2) . . .A0(t ′n)

]

= 1 +
∞∑

n=1
(−ig)n

tB∫
tA

dt ′1

t′1∫
tA

dt ′2 · · ·
t′n−1∫
tA

dt ′nA0(t ′1)A0(t ′2) . . .A0(t ′n)
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Path-ordered exponential

Definition using products

Discretize interval t ∈ [tA, tB] as set: t ∈ {t0, t1, · · · , tn} with
t0 = tA, tn = tB and ∆t = (tB − tA)/n.

P exp

−ig
tB∫

tA

dt ′A0(t ′, ~x)

 = lim
n→∞

P
n∏

i=0
(1− ig∆tA0(ti ))

= lim
n→∞

(1− ig∆tA0(tn)) (1− ig∆tA0(tn−1)) · · · (1− ig∆tA0(t0))
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Path-ordered exponential

Derivative of path ordered exponential

What is ∂tΩ†(t)?

∂tΩ†(t, ~x) = lim
ε→0

Ω†(t + ε)− Ω†(t)
ε

From product definition of the path ordered exponential we know

Ω†(t + ε) ≈ (1− igεA0(t)) Ω†(t) +O(ε2)

Inserting this into the differential quotient yields

∂tΩ†(t) = −igA0(t)Ω†(t)
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Temporal gauge: summary

Temporal gauge is defined as the condition

A0 = 0

Temporal gauge is realizable: for any A0 6= 0 we can find a gauge
transformation such that A′0 = 0.

The gauge transformed fields are given by

A′i = Ω(Ai + 1
ig ∂i )Ω†, A′0 = 0

with the path-ordered exponential

Ω†(t, ~x) = P exp

−ig
t∫

−∞

dt ′A0(t ′, ~x)


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Yang-Mills equations in temporal gauge

Back to the Yang-Mills equations ...

Recall conjugate momentum πi

πi = ∂L
∂ (∂0Ai )

= F0i

= ∂0Ai − ∂iA0 + ig [A0,Ai ]
= ∂0Ai

Much simpler expression in temporal gauge.
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Yang-Mills equations in temporal gauge

By eliminating A0, the Yang-Mills equations can be solved as an
initial value problem.

∂0π
i = ∂jF ji + ig

[
Aj ,F ji

]
∂0Ai = πi

∂iπ
i + ig

[
Ai , π

i
]

= 0

It is sufficient to specify Ai (t0, ~x), πi (t0, ~x) (assuming they satisfy
the Gauss constraint) to find Ai and πi at some later time t1 > t0.
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Gauss constraint

The Yang-Mills equations (in temporal gauge) are

1) the equations of motion which follow from δS[Aµ]
δAi

= 0 for
i ∈ {1, 2, 3}

∂0π
i = ∂jF ji + ig

[
Aj ,F ji

]
∂0Ai = πi

2) and the Gauss constraint which follows from δS[Aµ]
δA0

= 0

∂iπ
i + ig

[
Ai , π

i
]

= 0

The Gauss constraint does not tell us about the “dynamics” of the
fields (no time derivatives), but constrains the possible solutions
for πi and Ai .
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Gauss constraint

If we choose initial values πi (t0, ~x) and Ai (t0, ~x) at some initial
time t0, which satisfy the Gauss constraint

∂iπ
i (t0, ~x) + ig

[
Ai (t0, ~x), πi (t0, ~x)

]
= 0,

the solutions of the equations of motion (EOM) πi (t, ~x) and
Ai (t, ~x) with t > t0 will also satisfy the constraint.
More generally: if πi (t0, ~x) and Ai (t0, ~x) satisfy

∂iπ
i (t0, ~x) + ig

[
Ai (t0, ~x), πi (t0, ~x)

]
= C(~x) ∈ su(Nc),

then the solutions of the EOM will conserve the quantity C , i.e.

∂iπ
i (t, ~x) + ig

[
Ai (t, ~x), πi (t, ~x)

]
= C(~x),

for t > t0. The EOM conserve the constraint.
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Gauss constraint

Gauss constraint with non-zero right hand side:

∂iπ
i (t, ~x) + ig

[
Ai (t, ~x), πi (t, ~x)

]
= C(~x),

Explicit proof: consider C(t, ~x) as a function of time t. Then
compute

dC
dt = ∂i∂0π

i (t, ~x)+ig
[
∂0Ai (t, ~x), πi (t, ~x)

]
+ig

[
Ai (t, ~x), ∂0π

i (t, ~x)
]

and insert EOM

∂0π
i = ∂jF ji + ig

[
Aj ,F ji

]
,

∂0Ai = πi ,

to find dC/dt = 0. Also works without gauge fixing.



75

Gauss constraint

More general: the conservation of the Gauss constraint is a
consequence of gauge symmetry.
The action S[Aµ] is invariant under gauge transformations

A′µ = Ω
(

Aµ + 1
ig ∂µ

)
Ω†

Consider a “small” gauge transformation

Ω = exp (igα) ' 1 + igα +O(α2)

We then have

A′µ ' Aµ + ∂µα + ig [Aµ, α] +O(α2)
' Aµ + Dµα +O(α2)



76

Gauss constraint

Gauge symmetry: S[A′µ] = S[Aµ]

Since S[Aµ + Dµα] = S[Aµ] (gauge invariance) we can expand
S[A′µ] up to linear order in α and set the coefficient to zero.

δS[Aµ,Dµα] =
∫

d4x δS
δAa

µ

(Dµα)a,

where
(Dµα)a = ∂µα

a − gf abcAb
µα

c

Use integration by parts and anti-symmetry of f abc

δS[Aµ,Dµα] = −
∫

d4x αa
((
δac∂µ − gf abcAb

µ

) δS
δAc

µ

)
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Gauss constraint

Since S is gauge invariant, this expression must be identically zero

δS[Aµ,Dµα] = −
∫

d4x αa
((
δac∂µ − gf abcAb

µ

) δS
δAc

µ

)
= 0,

which implies (
δac∂µ − gf abcAb

µ

) δS
δAc

µ

= 0

or simply
Dµ

δS
δAµ

= 0, δS
δAµ

= δS
δAa

µ

ta.
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Gauss constraint

In temporal gauge (A0 = 0) this leads to

∂0
δS
δA0

= Di
δS
δAi

= 0

if the EOM are satisfied δS
δAc

i
= 0. The constraint is conserved.

Without gauge fixing we find D0
δS
δA0

= 0. If the constraint is
satisfied at some time t0, then it will also be satisfied at t 6= t0.
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Gauss constraint

Write C(t, ~x) = δS
δA0

. The equation D0C(t, ~x) = 0 is solved by

C(t1, ~x) = Ω(t1, t0;~x)C(t0, ~x)Ω†(t1, t0;~x),

with

∂tΩ(t, t0;~x) = −igA0(t, ~x)Ω(t, t0;~x), Ω(t0, t0;~x) = 1.

This is solved by the path-ordered exponential

Ω(t1, t0;~x) = P exp

−ig
t1∫

t0

dt ′A0(t ′, ~x)

 .
If C(t0, ~x) = 0 then also C(t, ~x) = 0 for t 6= t0.
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Gauss constraint: summary

I The Gauss constraint follows from the variation of S[Aµ] with
respect to A0

I The equations of motion conserve the Gauss constraint
I The conservation of the Gauss constraint does not depend on

the exact form of the EOM or the constraint, but is a
consequence of gauge invariance

The more general theorem all this follows from is known as
Noether’s second theorem, which is valid for local (gauge),
continuous symmetries of the action. Noether’s first theorem
applies to global continuous symmetries. See e.g.
[arXiv:1601.03616] for a review on (gauge) symmetries and
Noether’s theorems.
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Energy-momentum tensor
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Energy-momentum tensor

Many quantities such as Aµ or Fµν change under gauge
transformations and can therefore not be physically observable.
Physical observables must be gauge invariant.

One particular example: the energy-momentum tensor

Tµν = F a,µρF a,ν
ρ −

1
4gµνF a,ρσF a

ρσ

Invariance is easy to show: rewrite

Tµν = 2 tr
(

FµρF νρ −
1
4gµνF ρσFρσ

)
and use F ′µν = ΩFµνΩ†.
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Energy-momentum tensor

Energy-momentum tensor (or stress-energy tensor)

Tµν = F a,µρF a,ν
ρ −

1
4gµνF a,ρσF a

ρσ

Tµν is a main object of interest in the earliest stages of heavy-ion
collisions. Many experimental observations (properties of particles
measured in detectors) depend on Tµν shortly after the collision.
I T 00: energy density
I T i0: energy flux in along x i axis
I T ij for i = j : pressure density components
I T ij for i 6= j : shear stress
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Energy-momentum tensor

Energy-momentum tensor (or stress-energy tensor)

Tµν = F a,µρF a,ν
ρ −

1
4gµνF a,ρσF a

ρσ

and its conservation law

∂µTµν = 0

can be derived from the invariance of S[Aµ] under space-time
translations

x ′µ = xµ + wµ

for arbitrary, constant translation vectors wµ.
This follows from Noether’s first theorem, which applies to global
(x independent) continuous symmetries.
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Electromagnetism
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Electromagnetism as a U(1) gauge theory

Electromagnetism is an Abelian gauge theory with a U(1) gauge
symmetry

The Lie group U(1)

U(1) consists of complex numbers u ∈ C with |u| = 1

u = exp (iθ) ∈ U(1), θ ∈ R
uu′ = exp (iθ) exp

(
iθ′
)

= exp
(
i(θ + θ′)

)
∈ U(1), θ, θ′ ∈ R

u−1 = exp(−iθ) = u∗ ∈ U(1)

The Lie algebra of U(1) is simply R
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Electromagnetism as a U(1) gauge theory

Degrees of freedom: Abelian gauge fields Aµ : M→ R

(Abelian) Field strength tensor

Fµν = ∂µAν − ∂νAµ

Note: U(1) is Abelian: no commutator term
Just a “single color component”: no need for an index

Action
S[Aµ] =

∫
d4x

(
−1

4FµνFµν
)

Note: no trace

Action is invariant under U(1) gauge symmetry
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Electromagnetism as a U(1) gauge theory

Gauge symmetry

Gauge transformations in (non-Abelian) Yang-Mills theory

A′µ(x) = Ω(x)
(

Aµ(x) + 1
ig ∂µ

)
Ω†(x)

with Ω : M→ SU(Nc), g > 0 Yang-Mills coupling constant

Gauge transformations in U(1) gauge theory

A′µ(x) = Ω(x)
(

Aµ(x) + 1
ie ∂µ

)
Ω∗(x)

with Ω(x) : M→ U(1), e > 0 elementary electric charge
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Electromagnetism as a U(1) gauge theory

Gauge symmetry

Gauge transformations in U(1) gauge theory

A′µ(x) = Ω(x)
(

Aµ(x) + 1
ie

)
Ω∗(x)

with Ω : M→ U(1), e > 0 elementary electric charge

Write Ω(x) = exp(ieα(x)) with α : M→ R.

A′µ(x) = Ω(x)
(

Aµ(x) + 1
ie ∂µ

)
Ω∗(x)

= Ω(x)Aµ(x)Ω∗(x) + 1
ie Ω(x)∂µΩ∗(x)

= Aµ(x)− ∂µα(x)

Adding a gradient term to Aµ leaves S[Aµ] invariant
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Electromagnetism as a U(1) gauge theory

Gauge symmetry

Field strength tensor

Fµν = ∂µAν − ∂νAµ

Gauge transformations:

F ′µν = ΩFµνΩ∗ = Fµν

In U(1) gauge theory, the field strength tensor is gauge invariant
and therefore a physical observable

⇒ Electric and magnetic fields are observables
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Electromagnetism as a U(1) gauge theory

Maxwell’s equations

Vary S[Aµ] to obtain the classical equations of motion

∂µFµν = 0

Use F0i = Ei and Fij = εijkBk to find

∇ · ~E = 0, ∂~E
∂t = ∇× ~B

The other two Maxwell equations

∇ · ~B = 0, ∂~B
∂t = −∇× ~E

follow from the definition of the magnetic field Bi = −1
2εijkFjk and

the other two equations.
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