Yang-Mills theory, lattice gauge theory and
simulations

David Miiller

Institute of Analysis
Johannes Kepler University Linz

dmueller@hep.itp.tuwien.ac.at

June 5, 2019



Overview

Introduction and physical context
Classical Yang-Mills theory
Lattice gauge theory

Simulating the Glasma in 241D
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Motivation

Recap: Yang-Mills equations in temporal gauge (Ag = 0)
Equations of motion
dor’ = O;F7 + ig [A;, F
DoA; = 7!
Gauss constraint ' '
o' + ig [A,',ﬂ'l} =0

Assuming we have consistent initial conditions A;(to, X), 7'(to, X),
which satisfy the constraint, can we perform the “time evolution”
from tg to t > ty numerically without violating the constraint?



Motivation
Standard method: finite differences

Discretize Minkowski space M as a hypercubic lattice A with
spacings a*.

3
AN={xeM|x= Z n,a", n,eZ}, &' =a"é, € M (nosum),
©n=0
and unit vectors &, e.g. & = (1,0,0,0)T, & = (0, 1,0,0)T, etc.
Use finite difference approximations for derivatives, e.g. the forward
difference

P(x +3") — ¢(x)

at

05 o(x)

~ 0u9(x) + O(a"),

and the backward difference

P(x) — p(x — &)

at

98 p(x) = ~ 9,(x) + O(a"),



Yang-Mills theory on a lattice: first attempt

Naive approach: put Yang-Mills fields on the hypercubic lattice A

“Recipe” for the finite difference method:
» At each point x € A define a field value A,(x) € su(Nc)

» Derivatives of A, are approximated using finite differences o
88
or 0,

P Integrals over M are approximated as sums over A

In principle, this recipe yields a finite difference approximation of
the Yang-Mills equations

Problem: what about gauge symmetry?



Yang-Mills theory on a lattice: first try

Naive approach: put Yang-Mills fields on the hypercubic lattice A
Gauge field in the continuum:
Ayt M = su(Ne)
Gauge field on the lattice:
At N — su(Ne)
Discretized version of gauge transformation?

Consider a “lattice gauge transformation” Q(x) : A — SU(N,)
acting on the gauge field A,:

A (x) = Qx) (AM(X) + ;a[> Qt(x)



Yang-Mills theory on a lattice: first attempt

Naive lattice gauge transformation:
/ — 1 F t
AL(x) = Q(x) | Aulx) + %8# Q'(x)
= A}, is not traceless or hermitian, i.e. not an element of su(N.)!

First term Q(x)A,(x)Qf(x) is traceless and hermitian.

However, the second term is neither:

;Q(x)a;f Qf(x) = I_;WQ(X) (Qf(x + &) - Q7(x)
- ig; (29! (x + 5 — 1)

The finite difference approximation of the derivative 9, in the
gauge transformation is a problem.



Yang-Mills theory on a lattice: first attempt

As we saw previously, gauge symmetry guarantees us that the
equations of motion (here in temporal gauge Ay = 0)

dor’ = O;F7 + ig [A;, F
DA =7
conserve the Gauss constraint
o' + ig [A,',ﬂ'i} =0

If we cannot properly formulate gauge symmetry in the discretized
version, then there is no guarantee that the discretized Gauss
constraint will not be violated.



Yang-Mills theory on a lattice: first attempt

Second problem with this approach: how exactly should one
approximate a term like

Fuo = 0uA, — 0,A + ig[AL A 7

Should we use forward differences 65, backward differences 85 or
some other higher order finite difference scheme?

= A lot of freedom in choosing the specific discretization. Should
we just guess?

Can we construct a “consistent” discretization of Yang-Mills theory
that has a conserved Gauss constraint without much guesswork?



Yang-Mills theory on a lattice: first attempt

The naive finite difference approach to solving the Yang-Mills
equations on a lattice fails when considering gauge symmetry.

We need two “ingredients” to come up with a numerical method
that retains some notion of gauge symmetry:

» Different degrees of freedom (other than A,), whose gauge
transformation law does not involve derivatives of the gauge
transformation matrices Q(x): gauge links

> A method for deriving “consistent” discretized equations of
motion with a conserved Gauss constraint: method of
variational integrators
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Variational integrators: basic idea

Variational integrators are a specific numerical integrators that
follow from a variational principle.

Usual finite difference approach:
» Vary action S to obtain equations of motion (EOM)

» Replace derivatives in EOM with finite difference
approximations to obtain discrete EOM

» Solve discrete EOM on a computer
Variational integrator approach:

» Discretize action S first (replace derivatives with finite
differences, integrals with sums, etc) to obtain discretized
action S’

» Vary discrete action S’ to obtain discrete EOM

» Solve discrete EOM on a computer



Variational integrators: basic idea

Variational integrators: “discretize first, then vary”

Advantage of a variational integrator: if the discretized action S’
has some of the symmetry properties of the continuum action S,
then the discrete EOM will also respect these symmetries.

Example: if some symmetry of the action S leads to some
conservation law (Noethers theorem), then the discrete analogue of
that symmetry for S’ leads to a discretized version of that
conservation law

In the context of Yang-Mills theory: a discretized version of the
Yang-Mills action with gauge symmetry leads to discrete equations
of motion that conserve a discrete version of the Gauss constraint



Example: planetary motion

Consider a simple mechanical (i.e. not field theoretical) model:
the motion of planets around the sun

Trajectory of a planet (mass)

Action (mass m = 1)

st — | e (2 - i)

— 00

with potential (all constants set to one)



Example: planetary motion

Vary the action to derive the equations of motion
5S[7(t), 67] = / ot (~a37 — VV(#(1))) - o7

Introduce momentum
p(t) = dor(t)
Equations of motion
d0B(t) = ~VV(H(t))
dor(t) = p(t)



Example: planetary motion

Action is invariant under rotations

. cosw —sinw
7 = RV, R=1".
sinw  cosw

Action

SN = [ e (5 (@07) = V(P ) = ST

— 00

Consequence: angular momentum is conserved



Example: planetary motion

Action is invariant under infinitesimal rotations

5 cosw —sinw
7 = RF, R=1".
sinw  cosw

Expand for small angles w
o o - 2 0 —w
r=r+Qr+ O(w?), Q=

Write 67 = QF and vary action

5S[F, 7] — / dt [(—0op — VV(F)) - 67+ 8o (B - 67)] = 0

Note: §7(t) does not have compact support



Example: planetary motion

Action is invariant under infinitesimal rotations
5S[F, 6] = / dt [(—0op — VV(F)) - 67+ 8o (B - 67)] = 0

Left term vanishes: equations of motion
Right term: yields conservation law (Noether's first theorem)

do(p-06r)=0
Use 6r = QF = (—wy(t),wx(t))" and find
doL = 30 (—p<(t)y(£) + py (D)x(£)) = 0.

Angular momentum L = —p,y + p,x is conserved.



Example: planetary motion

Let's simulate this system numerically!
Naive approach using forward differences: Forward Euler scheme

BoB(t) = —V V(7) = 9§ B(t) = =V V(F(1))
doF(t) = B(t) = 95d(t) = B(t)

Discrete “time evolution”: time step a® = At

Conserved angular momentum?

L(t) = —px(t)y(t) + py (t)x(t)



Example: planetary motion

Animation of simulation data: trajectory r(t) and angular
momentum L(t) as a function of time t from Forward Euler scheme
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Trajectory unstable, no conserved angular momentum



Example: planetary motion

Variational integrator approach: formulate discretized action with
rotational symmetry built in

i) = ae Y (5 (9670)" = Vi)
Invariance:

V([F (1)) = V(IRF(t)]) = V(I7(1)])

okP(t) = Ro{r(r). = (o07(1) = (afF()



Example: planetary motion

Discrete action to be “varied™:
o 1 2 )2 o
[ = e Y (5 (370) - Vi)
t
The action is now a function of the positions 7(t) at the discrete
times tg, t1, to, . ..
The "variation” 0S[r,dr] is now just the total differential dS.

| will keep using the dS[7, dr] notation anyways, even though I'm
not using functional derivatives.



Example: planetary motion

Useful formulae for finite differences

The product rule(s)

05 (F(1)g(t)) = (f(t)g(t) — f(t — At)g(t — At)) /At
+ f(t — At)g(t)/At — f(t — At)g(t)/At

= 5 f(t)g(t) + f(t — At)d5g(t)
and
96 (f(t)g(t)) = 85 F(t)g(t) + f(t + At)af g(t)
Switching between forward/backward differences

oL f(t) = 0B f(t + At)



Example: planetary motion

Variation of the discrete action

5S[F,67] = AtZ(@f ) - 0§ 67(t) — VV(|7(t)]) - 97(t) )
_Atz[( BogH(t) — VV(A(2))) - 67(1)
+ 85 (857(15).5?@))] =0

Second term vanishes, because dr(t) has "“compact support”.
Introduce p(t) = 9§ F(t). The discrete EOM then read

95 B(t) = —VV([F(t)])

Note: use of backward difference in first EOM



Example: planetary motion
Infinitesimal rotation with angle w
o o = 2 = = 2 0 —w
r=r+Qr+0(w) =r+4ér+ O(w?), Qz( >
Variation of action due to rotation
381707 = ALY [( OB F(t) — VV(F(1)))) - 7(2)

+of (9 7o) 5F(t))} ~0

» First term vanishes (EOM)

» Second term under the sum must vanish, but dr(t) does not
have compact support



Example: planetary motion

In order to get 0S[F,6r] = 0, the discrete conservation law must
hold:
0§ (95 7(t) - 67(1)) =0

= discrete angular momentum
L(t) = =35 x(t)y(t) + g y (£)x(t) = —px(t)y(t) + py (£)x(2)

is conserved
oL(t)=0

Everything completely analogous to the continuous model!



Example: planetary motion

Animation of simulation data: trajectory r(t) and angular
momentum L(t) as a function of time t from variational integrator
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Trajectory stable, conserved angular momentum
(up to numerical precision)



Example: planetary motion

Not all symmetries of the original (continuous) problem can be
easily built into a discretized model.

Example: energy conservation

Energy conservation follows from the invariance under time
translations t’' = t + €.

90E = a0 (5 (@0r(1))* + V([7(2)))) =0

Discretizing the time coordinate breaks this symmetry and energy
is not exactly conserved in the simulation.



Example: two-body problem

One more example: the two body problem (m; = my = 1)

517 (0). (0] = [ de (5 @)+ 5 (@0)? - V([7(e) -~ (o))
Equations of motion from 6S = 0:

p1 = dona

P2 = 0ol
dop1 = —VyV(In — r2|)
dop2 = —V)V(|A — 1)



Example: two-body problem

5[ (). (0] = [ de (5 (@) + 5 (@) - V() - (o))

Symmetries and conservation laws:
> Invariance under rotations: 7/ = RF;
= angular momentum conservation

80L(t') =0

~!
+
™y

» Invariance under spatial translations 7/ =
= linear momentum conservation

(P11 +P2)=0
P Invariance under time translations t' =t + ¢

= energy conservation

1. 1. S o
OE = 0p (2[3% + §p§ + V(|r1 — I’QD) =0



Example: two-body problem

Discretized action for the two-body problem
. . B 1 /.02 1 \2 .
S[A(t), B(t)] = Atzt: (2 (967) +5 (967)" — V(A(®)

Symmetries and conservation laws:

» Invariance under rotations: 7/ = RT;
= angular momentum conservation

o L(t)=0

» Invariance under spatial translations ¥/ = 7 + €
= linear momentum conservation

5 (P1(t) + pa(t)) = 0

» |nvariance-under-time translations - =+t+—+¢
=—energy-conservation



Example: two-body problem

Motion of two bodies using variational integrator

t=99.5 Angular momentum Linear momentum
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Discrete angular momentum and linear momentum exactly
conserved.



Example: two-body problem

Comparison: simple forward Euler scheme

t=995 s Angular momentum Lo Linear momentum
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Discrete angular momentum not conserved. Linear momentum
happens to be conserved.



Variational integrators: summary

> The method of variational integrators removes a lot of
guesswork when deriving numerical schemes to solve initial
value problems.

» Discretized actions can “keep” symmetries of their respective
continuum analogues

» Symmetries of discretized actions lead to discretized
conservation laws (Noether's theorem - discrete version)

Yang-Mills on the lattice and gauge symmetries

We will construct a discretized action for Yang-Mills theory, which
“keeps” gauge symmetry.

= Conserved Gauss constraint when solving Yang-Mills equations
numerically



Variational integrators: summary
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Cham



