Yang-Mills theory, lattice gauge theory and simulations

David Müller

Institute of Analysis
Johannes Kepler University Linz
dmueller@hep.itp.tuwien.ac.at

June 5, 2019

Overview

Introduction and physical context
Classical Yang-Mills theory
Lattice gauge theory
Simulating the Glasma in $2+1$ D

Lattice gauge theory

Motivation

Motivation

Recap: Yang-Mills equations in temporal gauge ($A_{0}=0$)
Equations of motion

$$
\begin{aligned}
& \partial_{0} \pi^{i}=\partial_{j} F^{j i}+i g\left[A_{j}, F^{j i}\right] \\
& \partial_{0} A_{i}=\pi^{i}
\end{aligned}
$$

Gauss constraint

$$
\partial_{i} \pi^{i}+i g\left[A_{i}, \pi^{i}\right]=0
$$

Assuming we have consistent initial conditions $A_{i}\left(t_{0}, \vec{x}\right), \pi^{i}\left(t_{0}, \vec{x}\right)$, which satisfy the constraint, can we perform the "time evolution" from t_{0} to $t>t_{0}$ numerically without violating the constraint?

Motivation

Standard method: finite differences

Discretize Minkowski space \mathbf{M} as a hypercubic lattice Λ with spacings a^{μ}.

$$
\Lambda=\left\{x \in \mathbf{M} \mid x=\sum_{\mu=0}^{3} n_{\mu} \hat{a}^{\mu}, \quad n_{\mu} \in \mathbb{Z}\right\}, \quad \hat{a}^{\mu}=a^{\mu} \hat{e}_{\mu} \in \mathbf{M}(\text { no sum }),
$$

and unit vectors \hat{e}_{μ}, e.g. $\hat{e}_{0}=(1,0,0,0)^{T}$, $\hat{e}_{1}=(0,1,0,0)^{T}$, etc. Use finite difference approximations for derivatives, e.g. the forward difference

$$
\partial_{\mu}^{F} \phi(x) \equiv \frac{\phi\left(x+\hat{a}^{\mu}\right)-\phi(x)}{a^{\mu}} \simeq \partial_{\mu} \phi(x)+\mathcal{O}\left(a^{\mu}\right)
$$

and the backward difference

$$
\partial_{\mu}^{B} \phi(x) \equiv \frac{\phi(x)-\phi\left(x-\hat{a}^{\mu}\right)}{a^{\mu}} \simeq \partial_{\mu} \phi(x)+\mathcal{O}\left(a^{\mu}\right)
$$

Yang-Mills theory on a lattice: first attempt

Naive approach: put Yang-Mills fields on the hypercubic lattice Λ
"Recipe" for the finite difference method:

- At each point $x \in \Lambda$ define a field value $A_{\mu}(x) \in \mathfrak{s u}\left(N_{c}\right)$
- Derivatives of A_{μ} are approximated using finite differences ∂_{ν}^{F} or ∂_{ν}^{B}
- Integrals over \mathbf{M} are approximated as sums over Λ

In principle, this recipe yields a finite difference approximation of the Yang-Mills equations

Problem: what about gauge symmetry?

Yang-Mills theory on a lattice: first try

Naive approach: put Yang-Mills fields on the hypercubic lattice Λ
Gauge field in the continuum:

$$
A_{\mu}: \mathbf{M} \rightarrow \mathfrak{s u}\left(N_{c}\right)
$$

Gauge field on the lattice:

$$
A_{\mu}: \Lambda \rightarrow \mathfrak{s u}\left(N_{c}\right)
$$

Discretized version of gauge transformation?
Consider a "lattice gauge transformation" $\Omega(x): \Lambda \rightarrow \mathrm{SU}\left(N_{c}\right)$ acting on the gauge field A_{μ} :

$$
A_{\mu}^{\prime}(x) \equiv \Omega(x)\left(A_{\mu}(x)+\frac{1}{i g} \partial_{\mu}^{F}\right) \Omega^{\dagger}(x)
$$

Yang-Mills theory on a lattice: first attempt

Naive lattice gauge transformation:

$$
A_{\mu}^{\prime}(x) \equiv \Omega(x)\left(A_{\mu}(x)+\frac{1}{i g} \partial_{\mu}^{F}\right) \Omega^{\dagger}(x)
$$

$\Rightarrow A_{\mu}^{\prime}$ is not traceless or hermitian, i.e. not an element of $\mathfrak{s u}\left(N_{c}\right)$!
First term $\Omega(x) A_{\mu}(x) \Omega^{\dagger}(x)$ is traceless and hermitian.
However, the second term is neither:

$$
\begin{aligned}
\frac{1}{i g} \Omega(x) \partial_{\mu}^{F} \Omega^{\dagger}(x) & =\frac{1}{i g a^{\mu}} \Omega(x)\left(\Omega^{\dagger}\left(x+\hat{a}^{\mu}\right)-\Omega^{\dagger}(x)\right) \\
& =\frac{1}{i g a^{\mu}}\left(\Omega(x) \Omega^{\dagger}\left(x+\hat{a}^{\mu}\right)-\mathbf{1}\right)
\end{aligned}
$$

The finite difference approximation of the derivative ∂_{μ} in the gauge transformation is a problem.

Yang-Mills theory on a lattice: first attempt

As we saw previously, gauge symmetry guarantees us that the equations of motion (here in temporal gauge $A_{0}=0$)

$$
\begin{aligned}
& \partial_{0} \pi^{i}=\partial_{j} F^{j i}+i g\left[A_{j}, F^{j i}\right] \\
& \partial_{0} A_{i}=\pi^{i}
\end{aligned}
$$

conserve the Gauss constraint

$$
\partial_{i} \pi^{i}+i g\left[A_{i}, \pi^{i}\right]=0
$$

If we cannot properly formulate gauge symmetry in the discretized version, then there is no guarantee that the discretized Gauss constraint will not be violated.

Yang-Mills theory on a lattice: first attempt

Second problem with this approach: how exactly should one approximate a term like

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right] \quad ?
$$

Should we use forward differences ∂_{μ}^{F}, backward differences ∂_{μ}^{B} or some other higher order finite difference scheme?
\Rightarrow A lot of freedom in choosing the specific discretization. Should we just guess?

Can we construct a "consistent" discretization of Yang-Mills theory that has a conserved Gauss constraint without much guesswork?

Yang-Mills theory on a lattice: first attempt

The naive finite difference approach to solving the Yang-Mills equations on a lattice fails when considering gauge symmetry.

We need two "ingredients" to come up with a numerical method that retains some notion of gauge symmetry:

- Different degrees of freedom (other than A_{μ}), whose gauge transformation law does not involve derivatives of the gauge transformation matrices $\Omega(x)$: gauge links
- A method for deriving "consistent" discretized equations of motion with a conserved Gauss constraint: method of variational integrators

Variational integrators

Variational integrators: basic idea

Variational integrators are a specific numerical integrators that follow from a variational principle.

Usual finite difference approach:

- Vary action S to obtain equations of motion (EOM)
- Replace derivatives in EOM with finite difference approximations to obtain discrete EOM
- Solve discrete EOM on a computer

Variational integrator approach:

- Discretize action S first (replace derivatives with finite differences, integrals with sums, etc) to obtain discretized action S^{\prime}
- Vary discrete action S^{\prime} to obtain discrete EOM
- Solve discrete EOM on a computer

Variational integrators: basic idea

Variational integrators: "discretize first, then vary"

Advantage of a variational integrator: if the discretized action S^{\prime} has some of the symmetry properties of the continuum action S, then the discrete EOM will also respect these symmetries.

Example: if some symmetry of the action S leads to some conservation law (Noethers theorem), then the discrete analogue of that symmetry for S^{\prime} leads to a discretized version of that conservation law

In the context of Yang-Mills theory: a discretized version of the Yang-Mills action with gauge symmetry leads to discrete equations of motion that conserve a discrete version of the Gauss constraint

Example: planetary motion

Consider a simple mechanical (i.e. not field theoretical) model: the motion of planets around the sun

Trajectory of a planet (mass)

$$
\vec{r}(t)=(x(t), y(t))^{T}
$$

Action (mass $m=1$)

$$
S[\vec{r}(t)]=\int_{-\infty}^{\infty} d t\left(\frac{1}{2}\left(\partial_{0} \vec{r}\right)^{2}-V(|\vec{r}(t)|)\right)
$$

with potential (all constants set to one)

$$
V(r)=-\frac{1}{r}
$$

Example: planetary motion

Vary the action to derive the equations of motion

$$
\delta S[\vec{r}(t), \delta \vec{r}]=\int_{-\infty}^{\infty} d t\left(-\partial_{0}^{2} \vec{r}-\nabla V(\vec{r}(t))\right) \cdot \delta \vec{r}
$$

Introduce momentum

$$
\vec{p}(t) \equiv \partial_{0} \vec{r}(t)
$$

Equations of motion

$$
\begin{aligned}
\partial_{0} \vec{p}(t) & =-\nabla V(\vec{r}(t)) \\
\partial_{0} \vec{r}(t) & =\vec{p}(t)
\end{aligned}
$$

Example: planetary motion

Action is invariant under rotations

$$
\vec{r}^{\prime}=R \vec{r}, \quad R=\left(\begin{array}{cc}
\cos \omega & -\sin \omega \\
\sin \omega & \cos \omega
\end{array}\right)
$$

Action

$$
S\left[\vec{r}^{\prime}(t)\right]=\int_{-\infty}^{\infty} d t\left(\frac{1}{2}\left(\partial_{0} \vec{r}^{\prime}\right)^{2}-V\left(\left|\vec{r}^{\prime}(t)\right|\right)\right)=S[\vec{r}(t)]
$$

Consequence: angular momentum is conserved

Example: planetary motion

Action is invariant under infinitesimal rotations

$$
\vec{r}^{\prime}=R \vec{r}, \quad R=\left(\begin{array}{cc}
\cos \omega & -\sin \omega \\
\sin \omega & \cos \omega
\end{array}\right)
$$

Expand for small angles ω

$$
\vec{r}^{\prime}=\vec{r}+\Omega \vec{r}+\mathcal{O}\left(\omega^{2}\right), \quad \Omega=\left(\begin{array}{cc}
0 & -\omega \\
\omega & 0
\end{array}\right)
$$

Write $\delta \vec{r}=\Omega \vec{r}$ and vary action

$$
\delta S[\vec{r}, \delta \vec{r}]=\int_{-\infty}^{\infty} d t\left[\left(-\partial_{0} \vec{p}-\nabla V(\vec{r})\right) \cdot \delta \vec{r}+\partial_{0}(\vec{p} \cdot \delta \vec{r})\right]=0
$$

Note: $\delta \vec{r}(t)$ does not have compact support

Example: planetary motion

Action is invariant under infinitesimal rotations

$$
\delta S[\vec{r}, \delta \vec{r}]=\int_{-\infty}^{\infty} d t\left[\left(-\partial_{0} \vec{p}-\nabla V(\vec{r})\right) \cdot \delta \vec{r}+\partial_{0}(\vec{p} \cdot \delta \vec{r})\right]=0
$$

Left term vanishes: equations of motion
Right term: yields conservation law (Noether's first theorem)

$$
\partial_{0}(\vec{p} \cdot \delta \vec{r})=0
$$

Use $\delta r=\Omega \vec{r}=(-\omega y(t), \omega x(t))^{T}$ and find

$$
\partial_{0} L=\partial_{0}\left(-p_{x}(t) y(t)+p_{y}(t) x(t)\right)=0 .
$$

Angular momentum $L=-p_{x} y+p_{y} x$ is conserved.

Example: planetary motion

Let's simulate this system numerically!
Naive approach using forward differences: Forward Euler scheme

$$
\begin{array}{ll}
\partial_{0} \vec{p}(t)=-\nabla V(\vec{r}) & \Rightarrow \partial_{0}^{F} \vec{p}(t)=-\nabla V(\vec{r}(t)) \\
\partial_{0} \vec{r}(t)=\vec{p}(t) & \Rightarrow \partial_{0}^{F} \vec{q}(t)=\vec{p}(t)
\end{array}
$$

Discrete "time evolution": time step $a^{0}=\Delta t$

$$
\begin{aligned}
& \vec{p}(t+\Delta t)=\vec{p}(t)-\Delta t \nabla V(\vec{r}(t)) \\
& \vec{q}(t+\Delta t)=\vec{q}(t)+\Delta t \vec{p}(t)
\end{aligned}
$$

Conserved angular momentum?

$$
L(t)=-p_{x}(t) y(t)+p_{y}(t) x(t)
$$

Example: planetary motion

Animation of simulation data: trajectory $\vec{r}(t)$ and angular momentum $L(t)$ as a function of time t from Forward Euler scheme

Trajectory unstable, no conserved angular momentum

Example: planetary motion

Variational integrator approach: formulate discretized action with rotational symmetry built in

$$
S[\vec{r}(t)]=\Delta t \sum_{t}\left(\frac{1}{2}\left(\partial_{0}^{F} \vec{r}(t)\right)^{2}-V(|\vec{r}(t)|)\right)
$$

Invariance:

$$
\begin{gathered}
V\left(\left|\vec{r}^{\prime}(t)\right|\right)=V(|R \vec{r}(t)|)=V(|\vec{r}(t)|) \\
\partial_{0}^{F} \vec{r}^{\prime}(t)=R \partial_{0}^{F} \vec{r}(t), \quad \Rightarrow \quad\left(\partial_{0}^{F} \vec{r}^{\prime}(t)\right)^{2}=\left(\partial_{0}^{F} \vec{r}(t)\right)^{2}
\end{gathered}
$$

Example: planetary motion

Discrete action to be "varied":

$$
S[\vec{r}(t)]=\Delta t \sum_{t}\left(\frac{1}{2}\left(\partial_{0}^{F} \vec{r}(t)\right)^{2}-V(|\vec{r}(t)|)\right)
$$

The action is now a function of the positions $\vec{r}(t)$ at the discrete times $t_{0}, t_{1}, t_{2}, \ldots$

The "variation" $\delta S[\vec{r}, \delta r]$ is now just the total differential $d S$.
I will keep using the $\delta S[\vec{r}, \delta r]$ notation anyways, even though I'm not using functional derivatives.

Example: planetary motion

Useful formulae for finite differences

The product rule(s)

$$
\begin{aligned}
\partial_{0}^{B}(f(t) g(t)) & =(f(t) g(t)-f(t-\Delta t) g(t-\Delta t)) / \Delta t \\
& +f(t-\Delta t) g(t) / \Delta t-f(t-\Delta t) g(t) / \Delta t \\
& =\partial_{0}^{B} f(t) g(t)+f(t-\Delta t) \partial_{0}^{B} g(t)
\end{aligned}
$$

and

$$
\partial_{0}^{F}(f(t) g(t))=\partial_{0}^{F} f(t) g(t)+f(t+\Delta t) \partial_{0}^{F} g(t)
$$

Switching between forward/backward differences

$$
\partial_{0}^{F} f(t)=\partial_{0}^{B} f(t+\Delta t)
$$

Example: planetary motion

Variation of the discrete action

$$
\begin{aligned}
\delta S[\vec{r}, \delta \vec{r}] & =\Delta t \sum_{t}\left(\partial_{0}^{F} \vec{r}(t) \cdot \partial_{0}^{F} \delta \vec{r}(t)-\nabla V(|\vec{r}(t)|) \cdot \delta \vec{r}(t)\right) \\
& =\Delta t \sum_{t}\left[\left(-\partial_{0}^{B} \partial_{0}^{F} \vec{r}(t)-\nabla V(|\vec{r}(t)|)\right) \cdot \delta \vec{r}(t)\right. \\
& \left.+\partial_{0}^{F}\left(\partial_{0}^{F} \vec{r}(t) \cdot \delta \vec{r}(t)\right)\right]=0
\end{aligned}
$$

Second term vanishes, because $\delta r(t)$ has "compact support". Introduce $\vec{p}(t)=\partial_{0}^{F} \vec{r}(t)$. The discrete EOM then read

$$
\begin{aligned}
\partial_{0}^{B} \vec{p}(t) & =-\nabla V(|\vec{r}(t)|) \\
\partial_{0}^{F} \vec{r}(t) & =\vec{p}(t)
\end{aligned}
$$

Note: use of backward difference in first EOM

Example: planetary motion

Infinitesimal rotation with angle ω

$$
\vec{r}^{\prime}=\vec{r}+\Omega \vec{r}+\mathcal{O}\left(\omega^{2}\right)=\vec{r}+\delta \vec{r}+\mathcal{O}\left(\omega^{2}\right), \quad \Omega=\left(\begin{array}{cc}
0 & -\omega \\
\omega & 0
\end{array}\right)
$$

Variation of action due to rotation

$$
\begin{aligned}
\delta S[\vec{r}, \delta \vec{r}] & =\Delta t \sum_{t}\left[\left(-\partial_{0}^{B} \partial_{0}^{F} \vec{r}(t)-\nabla V(|\vec{r}(t)|)\right) \cdot \delta \vec{r}(t)\right. \\
& \left.+\partial_{0}^{F}\left(\partial_{0}^{F} \vec{r}(t) \cdot \delta \vec{r}(t)\right)\right]=0
\end{aligned}
$$

- First term vanishes (EOM)
- Second term under the sum must vanish, but $\delta r(t)$ does not have compact support

Example: planetary motion

In order to get $\delta S[\vec{r}, \delta \vec{r}]=0$, the discrete conservation law must hold:

$$
\partial_{0}^{F}\left(\partial_{0}^{F} \vec{r}(t) \cdot \delta \vec{r}(t)\right)=0
$$

\Rightarrow discrete angular momentum

$$
L(t)=-\partial_{0}^{F} x(t) y(t)+\partial_{0}^{F} y(t) x(t)=-p_{x}(t) y(t)+p_{y}(t) x(t)
$$

is conserved

$$
\partial_{0}^{F} L(t)=0
$$

Everything completely analogous to the continuous model!

Example: planetary motion

Animation of simulation data: trajectory $\vec{r}(t)$ and angular momentum $L(t)$ as a function of time t from variational integrator

Trajectory stable, conserved angular momentum (up to numerical precision)

Example: planetary motion

Not all symmetries of the original (continuous) problem can be easily built into a discretized model.

Example: energy conservation

Energy conservation follows from the invariance under time translations $t^{\prime}=t+\epsilon$.

$$
\partial_{0} E=\partial_{0}\left(\frac{1}{2}\left(\partial_{0} \vec{r}(t)\right)^{2}+V(|\vec{r}(t)|)\right)=0
$$

Discretizing the time coordinate breaks this symmetry and energy is not exactly conserved in the simulation.

Example: two-body problem

One more example: the two body problem ($m_{1}=m_{2}=1$)

$$
S\left[\vec{r}_{1}(t), \vec{r}_{2}(t)\right]=\int d t\left(\frac{1}{2}\left(\partial_{0} \vec{r}_{1}\right)^{2}+\frac{1}{2}\left(\partial_{0} \vec{r}_{2}\right)^{2}-V\left(\left|\vec{r}_{1}(t)-\vec{r}_{2}(t)\right|\right)\right)
$$

Equations of motion from $\delta S=0$:

$$
\begin{aligned}
\vec{p}_{1} & \equiv \partial_{0} \vec{r}_{1} \\
\vec{p}_{2} & \equiv \partial_{0} \vec{r}_{2} \\
\partial_{0} \vec{p}_{1} & =-\nabla_{(1)} V\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right) \\
\partial_{0} \vec{p}_{2} & =-\nabla_{(2)} V\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)
\end{aligned}
$$

Example: two-body problem

$$
S\left[\vec{r}_{1}(t), \vec{r}_{2}(t)\right]=\int d t\left(\frac{1}{2}\left(\partial_{0} \vec{r}_{1}\right)^{2}+\frac{1}{2}\left(\partial_{0} \vec{r}_{2}\right)^{2}-V\left(\left|\vec{r}_{1}(t)-\vec{r}_{2}(t)\right|\right)\right)
$$

Symmetries and conservation laws:

- Invariance under rotations: $\vec{r}_{i}^{\prime}=R \vec{r}_{i}$
\Rightarrow angular momentum conservation

$$
\partial_{0} L(t)=0
$$

- Invariance under spatial translations $\vec{r}_{i}^{\prime}=\vec{r}+\vec{\epsilon}$
\Rightarrow linear momentum conservation

$$
\partial_{0}\left(\vec{p}_{1}+\vec{p}_{2}\right)=0
$$

- Invariance under time translations $t^{\prime}=t+\epsilon$
\Rightarrow energy conservation

$$
\partial_{0} E=\partial_{0}\left(\frac{1}{2} \vec{p}_{1}^{2}+\frac{1}{2} \vec{p}_{2}^{2}+V\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)\right)=0
$$

Example: two-body problem

Discretized action for the two-body problem

$$
S\left[\vec{r}_{1}(t), \vec{r}_{2}(t)\right]=\Delta t \sum_{t}\left(\frac{1}{2}\left(\partial_{0}^{F} \vec{r}_{1}\right)^{2}+\frac{1}{2}\left(\partial_{0}^{F} \vec{r}_{2}\right)^{2}-V\left(\left|\vec{r}_{1}(t)-\vec{r}_{2}(t)\right|\right)\right)
$$

Symmetries and conservation laws:

- Invariance under rotations: $\vec{r}_{i}^{\prime}=R \vec{r}_{i}$
\Rightarrow angular momentum conservation

$$
\partial_{0}^{F} L(t)=0
$$

- Invariance under spatial translations $\vec{r}_{i}^{\prime}=\vec{r}+\vec{\epsilon}$
\Rightarrow linear momentum conservation

$$
\partial_{0}^{F}\left(\vec{p}_{1}(t)+\vec{p}_{2}(t)\right)=0
$$

- Invariance under time translations $t^{\prime}=t \mid \epsilon$

Example: two-body problem

Motion of two bodies using variational integrator

Discrete angular momentum and linear momentum exactly conserved.

Example: two-body problem

Comparison: simple forward Euler scheme

Discrete angular momentum not conserved. Linear momentum happens to be conserved.

Variational integrators: summary

- The method of variational integrators removes a lot of guesswork when deriving numerical schemes to solve initial value problems.
- Discretized actions can "keep" symmetries of their respective continuum analogues
- Symmetries of discretized actions lead to discretized conservation laws (Noether's theorem - discrete version)

Yang-Mills on the lattice and gauge symmetries
We will construct a discretized action for Yang-Mills theory, which
"keeps" gauge symmetry.
\Rightarrow Conserved Gauss constraint when solving Yang-Mills equations numerically

Variational integrators: summary

Literature:

- J. E. Marsden and M. West, "Discrete mechanics and variational integrators", Acta Numerica, 2001
- Adrián J. Lew, Pablo Mata A, "A Brief Introduction to Variational Integrators", chapter 5 of Peter Betsch (editor), "Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics", CISM International Centre for Mechanical Sciences 2016, Springer, Cham

