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Overview

Introduction and physical context

Classical Yang-Mills theory

Lattice gauge theory

Simulating the Glasma in 2+1D
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Lattice gauge theory
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Motivation
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Motivation

Recap: Yang-Mills equations in temporal gauge (A0 = 0)
Equations of motion

∂0π
i = ∂jF ji + ig

[
Aj ,F ji

]
∂0Ai = πi

Gauss constraint
∂iπ

i + ig
[
Ai , π

i
]

= 0

Assuming we have consistent initial conditions Ai (t0, ~x), πi (t0, ~x),
which satisfy the constraint, can we perform the “time evolution”
from t0 to t > t0 numerically without violating the constraint?
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Motivation
Standard method: finite differences

Discretize Minkowski space M as a hypercubic lattice Λ with
spacings aµ.

Λ = {x ∈M | x =
3∑

µ=0
nµâµ, nµ ∈ Z}, âµ = aµêµ ∈M (no sum),

and unit vectors êµ, e.g. ê0 = (1, 0, 0, 0)T , ê1 = (0, 1, 0, 0)T , etc.
Use finite difference approximations for derivatives, e.g. the forward
difference

∂F
µφ(x) ≡ φ(x + âµ)− φ(x)

aµ
' ∂µφ(x) +O(aµ),

and the backward difference

∂B
µ φ(x) ≡ φ(x)− φ(x − âµ)

aµ
' ∂µφ(x) +O(aµ),
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Yang-Mills theory on a lattice: first attempt

Naive approach: put Yang-Mills fields on the hypercubic lattice Λ

“Recipe” for the finite difference method:
I At each point x ∈ Λ define a field value Aµ(x) ∈ su(Nc)
I Derivatives of Aµ are approximated using finite differences ∂F

ν

or ∂B
ν

I Integrals over M are approximated as sums over Λ
In principle, this recipe yields a finite difference approximation of
the Yang-Mills equations

Problem: what about gauge symmetry?
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Yang-Mills theory on a lattice: first try

Naive approach: put Yang-Mills fields on the hypercubic lattice Λ

Gauge field in the continuum:

Aµ : M→ su(Nc)

Gauge field on the lattice:

Aµ : Λ→ su(Nc)

Discretized version of gauge transformation?

Consider a “lattice gauge transformation” Ω(x) : Λ→ SU(Nc)
acting on the gauge field Aµ:

A′µ(x) ≡ Ω(x)
(

Aµ(x) + 1
ig ∂

F
µ

)
Ω†(x)
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Yang-Mills theory on a lattice: first attempt

Naive lattice gauge transformation:

A′µ(x) ≡ Ω(x)
(

Aµ(x) + 1
ig ∂

F
µ

)
Ω†(x)

⇒ A′µ is not traceless or hermitian, i.e. not an element of su(Nc)!

First term Ω(x)Aµ(x)Ω†(x) is traceless and hermitian.

However, the second term is neither:

1
ig Ω(x)∂F

µ Ω†(x) = 1
igaµ

Ω(x)
(

Ω†(x + âµ)− Ω†(x)
)

= 1
igaµ

(
Ω(x)Ω†(x + âµ)− 1

)
The finite difference approximation of the derivative ∂µ in the
gauge transformation is a problem.
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Yang-Mills theory on a lattice: first attempt

As we saw previously, gauge symmetry guarantees us that the
equations of motion (here in temporal gauge A0 = 0)

∂0π
i = ∂jF ji + ig

[
Aj ,F ji

]
∂0Ai = πi

conserve the Gauss constraint

∂iπ
i + ig

[
Ai , π

i
]

= 0

If we cannot properly formulate gauge symmetry in the discretized
version, then there is no guarantee that the discretized Gauss
constraint will not be violated.
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Yang-Mills theory on a lattice: first attempt

Second problem with this approach: how exactly should one
approximate a term like

Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ] ?

Should we use forward differences ∂F
µ , backward differences ∂B

µ or
some other higher order finite difference scheme?

⇒ A lot of freedom in choosing the specific discretization. Should
we just guess?

Can we construct a “consistent” discretization of Yang-Mills theory
that has a conserved Gauss constraint without much guesswork?



12

Yang-Mills theory on a lattice: first attempt

The naive finite difference approach to solving the Yang-Mills
equations on a lattice fails when considering gauge symmetry.

We need two “ingredients” to come up with a numerical method
that retains some notion of gauge symmetry:
I Different degrees of freedom (other than Aµ), whose gauge

transformation law does not involve derivatives of the gauge
transformation matrices Ω(x): gauge links

I A method for deriving “consistent” discretized equations of
motion with a conserved Gauss constraint: method of
variational integrators
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Variational integrators
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Variational integrators: basic idea

Variational integrators are a specific numerical integrators that
follow from a variational principle.

Usual finite difference approach:
I Vary action S to obtain equations of motion (EOM)
I Replace derivatives in EOM with finite difference

approximations to obtain discrete EOM
I Solve discrete EOM on a computer

Variational integrator approach:
I Discretize action S first (replace derivatives with finite

differences, integrals with sums, etc) to obtain discretized
action S ′

I Vary discrete action S ′ to obtain discrete EOM
I Solve discrete EOM on a computer
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Variational integrators: basic idea

Variational integrators: “discretize first, then vary”

Advantage of a variational integrator: if the discretized action S ′
has some of the symmetry properties of the continuum action S,
then the discrete EOM will also respect these symmetries.

Example: if some symmetry of the action S leads to some
conservation law (Noethers theorem), then the discrete analogue of
that symmetry for S ′ leads to a discretized version of that
conservation law

In the context of Yang-Mills theory: a discretized version of the
Yang-Mills action with gauge symmetry leads to discrete equations
of motion that conserve a discrete version of the Gauss constraint
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Example: planetary motion

Consider a simple mechanical (i.e. not field theoretical) model:
the motion of planets around the sun

Trajectory of a planet (mass)

~r(t) = (x(t), y(t))T

Action (mass m = 1)

S[~r(t)] =
∞∫
−∞

dt
(1

2 (∂0~r)2 − V (|~r(t)|)
)

with potential (all constants set to one)

V (r) = −1
r
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Example: planetary motion

Vary the action to derive the equations of motion

δS[~r(t), δ~r ] =
∞∫
−∞

dt
(
−∂2

0~r −∇V (~r(t))
)
· δ~r

Introduce momentum
~p(t) ≡ ∂0~r(t)

Equations of motion

∂0~p(t) = −∇V (~r(t))
∂0~r(t) = ~p(t)
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Example: planetary motion

Action is invariant under rotations

~r ′ = R~r , R =
(

cosω − sinω
sinω cosω

)

Action

S[~r ′(t)] =
∞∫
−∞

dt
(1

2
(
∂0~r ′

)2 − V (
∣∣~r ′(t)

∣∣)) = S[~r(t)]

Consequence: angular momentum is conserved
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Example: planetary motion

Action is invariant under infinitesimal rotations

~r ′ = R~r , R =
(

cosω − sinω
sinω cosω

)

Expand for small angles ω

~r ′ = ~r + Ω~r +O(ω2), Ω =
(

0 −ω
ω 0

)

Write δ~r = Ω~r and vary action

δS[~r , δ~r ] =
∞∫
−∞

dt [(−∂0~p −∇V (~r)) · δ~r + ∂0 (~p · δ~r)] = 0

Note: δ~r(t) does not have compact support
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Example: planetary motion

Action is invariant under infinitesimal rotations

δS[~r , δ~r ] =
∞∫
−∞

dt [(−∂0~p −∇V (~r)) · δ~r + ∂0 (~p · δ~r)] = 0

Left term vanishes: equations of motion
Right term: yields conservation law (Noether’s first theorem)

∂0 (~p · δ~r) = 0

Use δr = Ω~r = (−ωy(t), ωx(t))T and find

∂0L = ∂0 (−px (t)y(t) + py (t)x(t)) = 0.

Angular momentum L = −pxy + py x is conserved.
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Example: planetary motion

Let’s simulate this system numerically!
Naive approach using forward differences: Forward Euler scheme

∂0~p(t) = −∇V (~r) ⇒ ∂F
0 ~p(t) = −∇V (~r(t))

∂0~r(t) = ~p(t) ⇒ ∂F
0 ~q(t) = ~p(t)

Discrete “time evolution”: time step a0 = ∆t

~p(t + ∆t) = ~p(t)−∆t∇V (~r(t))
~q(t + ∆t) = ~q(t) + ∆t~p(t)

Conserved angular momentum?

L(t) = −px (t)y(t) + py (t)x(t)
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Example: planetary motion

Animation of simulation data: trajectory ~r(t) and angular
momentum L(t) as a function of time t from Forward Euler scheme

Trajectory unstable, no conserved angular momentum
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Example: planetary motion

Variational integrator approach: formulate discretized action with
rotational symmetry built in

S[~r(t)] = ∆t
∑

t

(1
2
(
∂F

0 ~r(t)
)2
− V (|~r(t)|)

)
Invariance:

V (
∣∣~r ′(t)

∣∣) = V (|R~r(t)|) = V (|~r(t)|)

∂F
0 ~r ′(t) = R∂F

0 ~r(t), ⇒
(
∂F

0 ~r ′(t)
)2

=
(
∂F

0 ~r(t)
)2
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Example: planetary motion

Discrete action to be “varied”:

S[~r(t)] = ∆t
∑

t

(1
2
(
∂F

0 ~r(t)
)2
− V (|~r(t)|)

)

The action is now a function of the positions ~r(t) at the discrete
times t0, t1, t2, . . .

The “variation” δS[~r , δr ] is now just the total differential dS.

I will keep using the δS[~r , δr ] notation anyways, even though I’m
not using functional derivatives.
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Example: planetary motion

Useful formulae for finite differences

The product rule(s)

∂B
0 (f (t)g(t)) = (f (t)g(t)− f (t −∆t)g(t −∆t)) /∆t

+ f (t −∆t)g(t)/∆t − f (t −∆t)g(t)/∆t
= ∂B

0 f (t)g(t) + f (t −∆t)∂B
0 g(t)

and

∂F
0 (f (t)g(t)) = ∂F

0 f (t)g(t) + f (t + ∆t)∂F
0 g(t)

Switching between forward/backward differences

∂F
0 f (t) = ∂B

0 f (t + ∆t)



26

Example: planetary motion

Variation of the discrete action

δS[~r , δ~r ] = ∆t
∑

t

(
∂F

0 ~r(t) · ∂F
0 δ~r(t)−∇V (|~r(t)|) · δ~r(t)

)
= ∆t

∑
t

[ (
−∂B

0 ∂
F
0 ~r(t)−∇V (|~r(t)|)

)
· δ~r(t)

+ ∂F
0

(
∂F

0 ~r(t) · δ~r(t)
) ]

= 0

Second term vanishes, because δr(t) has “compact support”.
Introduce ~p(t) = ∂F

0 ~r(t). The discrete EOM then read

∂B
0 ~p(t) = −∇V (|~r(t)|)
∂F

0 ~r(t) = ~p(t)

Note: use of backward difference in first EOM



27

Example: planetary motion

Infinitesimal rotation with angle ω

~r ′ = ~r + Ω~r +O(ω2) = ~r + δ~r +O(ω2), Ω =
(

0 −ω
ω 0

)

Variation of action due to rotation

δS[~r , δ~r ] = ∆t
∑

t

[ (
−∂B

0 ∂
F
0 ~r(t)−∇V (|~r(t)|)

)
· δ~r(t)

+ ∂F
0

(
∂F

0 ~r(t) · δ~r(t)
) ]

= 0

I First term vanishes (EOM)
I Second term under the sum must vanish, but δr(t) does not

have compact support
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Example: planetary motion

In order to get δS[~r , δ~r ] = 0, the discrete conservation law must
hold:

∂F
0

(
∂F

0 ~r(t) · δ~r(t)
)

= 0

⇒ discrete angular momentum

L(t) = −∂F
0 x(t)y(t) + ∂F

0 y(t)x(t) = −px (t)y(t) + py (t)x(t)

is conserved
∂F

0 L(t) = 0

Everything completely analogous to the continuous model!
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Example: planetary motion

Animation of simulation data: trajectory ~r(t) and angular
momentum L(t) as a function of time t from variational integrator

Trajectory stable, conserved angular momentum
(up to numerical precision)
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Example: planetary motion

Not all symmetries of the original (continuous) problem can be
easily built into a discretized model.

Example: energy conservation

Energy conservation follows from the invariance under time
translations t ′ = t + ε.

∂0E = ∂0

(1
2 (∂0~r(t))2 + V (|~r(t)|)

)
= 0

Discretizing the time coordinate breaks this symmetry and energy
is not exactly conserved in the simulation.
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Example: two-body problem

One more example: the two body problem (m1 = m2 = 1)

S [~r1(t),~r2(t)] =
∫

dt
(1

2 (∂0~r1)2 + 1
2 (∂0~r2)2 − V (|~r1(t)−~r2(t)|)

)
Equations of motion from δS = 0:

~p1 ≡ ∂0~r1

~p2 ≡ ∂0~r2

∂0~p1 = −∇(1)V (|~r1 −~r2|)
∂0~p2 = −∇(2)V (|~r1 −~r2|)
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Example: two-body problem

S [~r1(t),~r2(t)] =
∫

dt
(1

2 (∂0~r1)2 + 1
2 (∂0~r2)2 − V (|~r1(t)−~r2(t)|)

)
Symmetries and conservation laws:
I Invariance under rotations: ~r ′i = R~ri
⇒ angular momentum conservation

∂0L(t) = 0

I Invariance under spatial translations ~r ′i = ~r + ~ε
⇒ linear momentum conservation

∂0(~p1 + ~p2) = 0

I Invariance under time translations t ′ = t + ε
⇒ energy conservation

∂0E = ∂0

(1
2
~p2

1 + 1
2
~p2

2 + V (|~r1 −~r2|)
)

= 0
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Example: two-body problem

Discretized action for the two-body problem

S [~r1(t),~r2(t)] = ∆t
∑

t

(1
2
(
∂F

0 ~r1
)2

+ 1
2
(
∂F

0 ~r2
)2
− V (|~r1(t)−~r2(t)|)

)
Symmetries and conservation laws:
I Invariance under rotations: ~r ′i = R~ri
⇒ angular momentum conservation

∂F
0 L(t) = 0

I Invariance under spatial translations ~r ′i = ~r + ~ε
⇒ linear momentum conservation

∂F
0 (~p1(t) + ~p2(t)) = 0

I Invariance under time translations t ′ = t + ε
⇒ energy conservation
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Example: two-body problem

Motion of two bodies using variational integrator

Discrete angular momentum and linear momentum exactly
conserved.
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Example: two-body problem

Comparison: simple forward Euler scheme

Discrete angular momentum not conserved. Linear momentum
happens to be conserved.
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Variational integrators: summary

I The method of variational integrators removes a lot of
guesswork when deriving numerical schemes to solve initial
value problems.

I Discretized actions can “keep” symmetries of their respective
continuum analogues

I Symmetries of discretized actions lead to discretized
conservation laws (Noether’s theorem - discrete version)

Yang-Mills on the lattice and gauge symmetries
We will construct a discretized action for Yang-Mills theory, which
“keeps” gauge symmetry.
⇒ Conserved Gauss constraint when solving Yang-Mills equations
numerically
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Variational integrators: summary

Literature:
I J. E. Marsden and M. West, “Discrete mechanics and

variational integrators”, Acta Numerica, 2001
I Adrián J. Lew, Pablo Mata A, “A Brief Introduction to

Variational Integrators”, chapter 5 of Peter Betsch (editor),
“Structure-preserving Integrators in Nonlinear Structural
Dynamics and Flexible Multibody Dynamics”, CISM
International Centre for Mechanical Sciences 2016, Springer,
Cham


