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Simulating the Glasma in 2+1D



3

Simulating the Glasma in 2+1D
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Relativistic heavy-ion collisions
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Relativistic heavy-ion collisions

Heavy-ion collision experiments as a means to study the properties
of nuclear matter at extremely high energies

Examples:
I Au+Au at RHIC, BNL with √sNN up tp 200 GeV.
I Pb+Pb at LHC, CERN with √sNN up tp 5 TeV.
√sNN is the collision energy per nucleon pair (protons, neutrons),
mostly measured in electron volts eV.

Each nucleon of a gold nucleus (A = 197) at RHIC carries
E = 100 GeV of energy (kinetic + rest mass).

Comparison: The energy E0 = m0c2 due to the rest mass m0 of a
proton is 1 GeV.

E 2 = (m0c2)2 + (pc)2 = E 2
0 + (pc)2
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Relativistic heavy-ion collisions: elliptic flow
Important experimental signature: elliptic flow

[arXiv:nucl-ex/0611012]

I Typically, collisions are off-central
I Directly after the collision:

produced matter is “almond”
shaped

I Geometric anisotropy of the initial
shape of produced matter turns
into a momentum anisotropy
through collective effects
(rescattering)

I Momentum anisotropy measured as the second Fourier
coefficient v2 of the number of particles n(~p) as a function of
the azimuthal angle φ

I Experimental signature for a strongly-coupled quark gluon
plasma (RHIC, 2005)



7

Relativistic heavy-ion collisions: elliptic flow

Important experimental signature: elliptic flow

Npart number of participants
∼ measure of how central a
collision is

Extract information about
system (viscosity η)

Figure from [arXiv:0804.4015]
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Relativistic heavy-ion collisions: theory overview

Theoretical model of heavy-ion collisions:
a chain of models and simulations (“stages”)

Figure from [arXiv:1110.1544]

Three/four main stages: a) classical Yang-Mills theory,
b) kinetic theory (Boltzmann eqs.) [arXiv:1805.01604]
c) relativistic hydrodynamics, d) kinetic theory
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Relativistic heavy-ion collisions: theory overview

I Appropriate length scale:
1 fm = 10−15 m (femtometer)

I Nuclear radius RAu ≈ 7 fm
I Time scale 1 fm/c ≈ 3 · 10−24 s
I Proper time τ2 = t2 − z2

Rough timeline of a collision:
I Classical Yang-Mills: from τ = 0 fm/c to 0.1 – 1 fm/c
I Hydrodynamics: up to τ = 10 fm/c
I Kinetic theory: up to τ = 15 fm/c

Afterwards, particles stream freely towards the detector

Each stage is based on theoretical calculations, but there is no full
description in terms of quantum chromodynamics (QCD)
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Nuclei at high energies

Before the collision: single nuclei

A gold nucleus at rest:
I Spherical, 14 fm diameter
I 197 nucleons (protons and neutrons) + quantum fluctuations
I Very complicated, quantum field theoretical object

A very fast nucleus (RHIC energies):
I “pancake shaped” due to special relativity
I 14 fm diameter in the transverse plane (orthogonal to velocity)
I 0.1 fm longitudinal width, along axis of velocity
I Theoretical description becomes much simpler
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Nuclei at high energies

Before the collision: single nuclei

A very fast nucleus (RHIC energies):
I “pancake shaped” due to special relativity
I 14 fm diameter in the transverse plane (orthogonal to velocity)
I 0.1 fm longitudinal width, along axis of velocity
I Theoretical description becomes much simpler

Occupation number of gluons becomes very large
⇒ gluons form a coherent state ∼ classical color field

Quarks:
carry most of the total momentum of the nucleus
interactions are “frozen” due to time dilation
⇒ effectively classical color charges
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Color glass condensate (CGC)

Classical effective theory for high energy quantum chromodynamics

Nuclei are split into two types of degrees of freedom:
I quarks, high momentum gluons: classical color charges
I low momentum gluons: classical color fields

This split uses an arbitrary longitudinal momentum cutoff Λc

Requiring that physical observables do not depend on Λc yields a
set of group renormalization equations called JIMWLK equations.

⇒ If we are only interested in observables evaluated near/at the
cutoff Λc , an effectively classical treatment is possible
I F. Gelis, “Color Glass Condensate and Glasma”, Int. J. Mod.

Phys. A 28, 1330001 (2013) [arXiv:1211.3327]
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Classical solutions for single nuclei
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Yang-Mills with external sources

Yang-Mills eqs. can be extended with an external color current:

DµFµν = Jν , Jµ : M→ su(Nc),

which is gauge-covariantly conserved

DµJµ = ∂µJµ + ig [Aµ, Jµ] = 0.

Gauge transformation of the color current:

A′µ = Ω
(

Aµ + 1
ig ∂µ

)
Ω†

F ′µν = ΩFµνΩ†

⇒ J ′µ = ΩJµΩ†

J0 color charge density, J i (spatial) color current density
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Yang-Mills with external sources

Yang-Mills action can be extended with an external color current:

S[Aµ, Jµ] =
∫

d4x
(
−1

2 tr [FµνFµν ] + 2 tr [AµJµ]
)

The coupling term “JµAµ” breaks gauge symmetry in the case of a
non-Abelian gauge group, but the extrema of S are still gauge
invariant.

Note: this problem only arises if Jµ is considered an external
source. In the standard model (QCD, electroweak force), the
current Jµ is generated by fermionic fields (quarks). The action of
QCD is gauge invariant.
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Single nucleus solution

Boost invariant (shockwave) approximation:

Speed of nuclei at particle accelerators
I Nuclei at RHIC: v/c ≈ 0.99995
I Nuclei at LHC: v/c ≈ 0.99999992

Assume nuclei move at the speed of light.

Longitudinal length contraction:
I Nuclei at RHIC: contracted by γ = 100
I Nuclei at LHC: contracted by γ = 2500

Assume nuclei are infinitesimally thin.

Time dilation: interactions in nucleus are frozen
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Single nucleus solution

Boost invariant (shockwave) approximation: nuclei move at the
speed of light, infinitesimally thin

More appropriate coordinates: light cone coordinates

x+ = x0 + x3
√

2
, x− = x0 − x3

√
2

,

corresponding to 45◦ axes in the Minkowski diagram.

Assume nucleus is moving along positive x3 axis.
Color current has only one non-vanishing component:

J+(x−, xT ) = δ(x−)ρ(xT ).

where ρ(xT ) describes the distribution of color charges in the
transverse plane (xT = (x , y)T transverse coordinates)
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Single nucleus solution

x− x+

x0 = t

x3 = z

J+(x−, xT )
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Single nucleus solution

Color current given by

J+(x−, xT ) = δ(x−)ρ(xT ).

Solve Yang-Mills eqs.
DµFµν = Jν

in Lorenz gauge
∂µAµ = 0.

One finds:
A+(x−, xT ) = −δ(x−)∆−1

T ρ(xT ),

where ∆T is the 2D Laplace operator in the transverse plane and
∆−1

T is the Greens function.

All other components of the gauge field vanish.
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Single nucleus solution

Analogous solution for nucleus moving in opposite direction.

Color current
J−(x+, xT ) = δ(x+)ρ(xT ),

Gauge field
A−(x+, xT ) = −δ(x+)∆−1

T ρ(xT ),

Remarkably, the solution A± of the Yang-Mills eqs. only depends
linearly on ρ because J± only depends on x∓ and xT .

⇒ Interactions stop due to time dilation.
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Single nucleus solution

Single nucleus solutions in Lorenz gauge ∂µAµ:

J±(x∓, xT ) = δ(x∓)ρ(xT ), A±(x∓, xT ) = −δ(x∓)∆−1
T ρ(xT )

Solution in light cone gauge (A± = 0 for nucleus moving along
x∓): similar to temporal gauge, but along lightlike axes

Ai (x∓, xT ) = 1
ig V (x∓, xT )∂ iV †(x∓, xT ),

with the light like Wilson line V given by

V †(x∓, xT ) = P exp

−ig
x∓∫
−∞

dx ′∓A±(x ′∓, xT )


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Single nucleus solution

Light cone gauge solution:

The lightlike Wilson line is given by

V †(x∓, xT ) =
{

V †(xT ) x∓ > 0
1 x∓ < 0

with V †(xT ) = exp(−ig∆−1
T ρ(xT )). The transverse gauge field

Ai (x∓, xT ) has the form of a step function:

Ai (x∓, xT ) = 1
ig θ(x∓)V (xT )∂iV †(xT ),

where θ is the Heaviside step “function”

θ(x) =
{

1 x > 0
0 x < 0
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Nucleus models
Color current of a nucleus:

J+(x−, xT ) = δ(x−)ρ(xT ).
How to choose the charge density ρ(xT )?

There is no experimental control over how exactly quarks are
distributed in a nucleus when the two nuclei collide.

In the color glass condensate framework, ρ(xT ) is considered a
random variable. The distribution of ρ(xT ) is determined by a
probability functional W [ρ].

Expectation values of observables are computed using functional
integrals. If Aµ[ρ] is the solution of the Yang-Mills eqs. and O[Aµ]
is a gauge-invariant observable, then the expectation value 〈O〉 is
given by

〈O〉 =
∫
DρO[Aµ[ρ]]W [ρ].

Example: McLerran-Venugopalan model
Charge density correlator
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Nucleus models

The color glass condensate framework does not predict W [ρ].

The CGC provides a calculation framework in terms of classical
Yang-Mills theory and group renormalization eqs. to describe how
W [ρ] changes as a function of the cutoff Λc (JIMWLK), but no
prediction for the form of W [ρ].

⇒ We need models for W [ρ]

Earliest, most simple one: McLerran-Venugopalan model (1994)
I L. McLerran, R. Venugopalan, “Computing Quark and Gluon

Distribution Functions for Very Large Nuclei”, PRD 49
(1994), ∼ 1800 citations, [arXiv:hep-ph/9309289]
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Nucleus models

Earliest, most simple one: McLerran-Venugopalan model (1994)
I Assume W [ρ] is Gaussian.
I W [ρ] is determined by specifying mean and covariance:

〈ρa(xT )〉 = 0〈
ρa(xT )ρb(yT )

〉
= g2µ2δabδ(2)(xT − yT )

I Only one model parameter: µ usually given in GeV
Example: for gold/lead nuclei µ ≈ 0.5 GeV

I Nuclei assumed to be infinitely large in the transverse plane.
I No finite radius, no inhomogeneous structure, because µ is a

constant.
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Nucleus models

Earliest, most simple one: McLerran-Venugopalan model (1994)

xx

yy

zz
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Collisions in the CGC framework
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Collisions in the CGC framework
Idea: superimpose the solutions of two single nuclei at some initial
time t0 before the collision. Solve the classical Yang-Mills eqs. up
until some later time t > t0 to model a collision.

x−x− x+x+

x0 = tx0 = t

x3 = zx3 = z

(I)(I)

(II)(II) (III)(III)

(IV)(IV)
ρA(xT )δ(x

−)ρA(xT )δ(x
−)ρB(xT )δ(x

+)ρB(xT )δ(x
+)

Aµ = 0Aµ = 0

αiA = 1
igVA∂

iV †AαiA = 1
igVA∂

iV †A αiB = 1
igVB∂

iV †BαiB = 1
igVB∂

iV †B

Aµ(τ, xT )Aµ(τ, xT )

Generally, there are no analytical solutions for arbitrary color
charge densities ρ.
Symmetry under longitudinal boosts: rapidity independence
Comoving coordinates in forward light cone
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Collisions in the CGC framework

x−x− x+x+

x0 = tx0 = t

x3 = zx3 = z

(I)(I)

(II)(II) (III)(III)

(IV)(IV)
ρA(xT )δ(x

−)ρA(xT )δ(x
−)ρB(xT )δ(x

+)ρB(xT )δ(x
+)

Aµ = 0Aµ = 0

αiA = 1
igVA∂

iV †AαiA = 1
igVA∂

iV †A αiB = 1
igVB∂

iV †BαiB = 1
igVB∂

iV †B

Aµ(τ, xT )Aµ(τ, xT )

I Nuclei “A” and “B” specified by
charge density ρA and ρB

I Analytic solutions in regions (I),
(II) and (III)

I Generally no analytical solutions
for arbitrary ρ in region (IV)
(forward light cone)

I The field in region (IV) is the
“Glasma”

I Analytic solution can be found
for the boundary of region (IV)
using a matching ansatz
(Glasma initial conditions)
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Collisions in the CGC framework

x−x− x+x+

x0 = tx0 = t

x3 = zx3 = z

(I)(I)

(II)(II) (III)(III)

(IV)(IV)
ρA(xT )δ(x

−)ρA(xT )δ(x
−)ρB(xT )δ(x

+)ρB(xT )δ(x
+)

Aµ = 0Aµ = 0

αiA = 1
igVA∂

iV †AαiA = 1
igVA∂

iV †A αiB = 1
igVB∂

iV †BαiB = 1
igVB∂

iV †B

Aµ(τ, xT )Aµ(τ, xT )

I Use appropriate coordinates in
region (IV): proper time τ ,
rapidity η

τ =
√

t2 − z2 =
√

2x+x−

η = 1
2 ln

(
x+

x−

)

I τ → 0+ defines the boundary of
region (IV)

I Due to the boost-invariant
approximation, the solution in
(IV) does not depend on η
⇒ Glasma is effectively 2+1D
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Glasma initial conditions
Matching ansatz for all regions:

Ai (x) = θ(x+)θ(x−)αi (τ, xT )
+ θ(−x+)θ(x−)αi

A(xT ) + θ(x+)θ(−x−)αi
B(xT ),

Aη(x) = θ(x+)θ(x−)αη(τ, xT ),

with αi
A/B = 1

ig VA/B∂
iV †A/B. We use light cone gauge in (II) and

(III), Fock-Schwinger gauge in (IV):

x+A− + x−A+ = 0,

which is equivalent to a temporal gauge along proper time τ .

Plug into Yang-Mills equations. Require that coefficients in front
of problematic terms (δ(x)δ(x), etc.) vanish.

This yields a set of matching conditions at τ → 0+ known as the
Glasma initial conditions.
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Glasma initial conditions

The matching conditions are given by

αi (τ → 0+, xT ) = αi
A(xT ) + αi

B(xT ),

αη(τ → 0+, xT ) = ig
2
[
αi

A(xT ), αi
B(xT )

]
,

and

∂τα
i (τ → 0+, xT ) = 0,

∂τα
η(τ → 0+, xT ) = 0.

With the gauge fixing condition Aτ = 0 in the forward light cone
(IV), we have a fully specified initial value problem.
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Glasma initial conditions
Field strengths of nuclei:
purely transverse chromo-electric and -magnetic fields

Field strengths in the Glasma:
(initially) purely longitudinal chromo-electric and -magnetic fields

Equal magnetic and electric contributions to energy (on average)

Fig. from [arXiv:1011.3204]
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Boost invariant Yang-Mills theory

Next step: formulate numerical scheme for Yang-Mills eqs. in
forward light cone in terms of τ and η coordinates.

Boost invariance: fields in forward light cone do not depend on
rapidity η
⇒ Drop all terms like ∂ηAi etc.

Boost invariant action

S =
∫

dτd2xT dη tr
[
τFτ iFτ i + 1

τ
F 2
τη −

τ

2 FijFij −
1
τ

FηiFηi

]
Notes:
I Explicit dependence on τ due to use of curvilinear coordinates
I No dependence on η: effectively 2+1D description
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Boost invariant Yang-Mills on the lattice

Boost invariant action

S =
∫

dτd2xT dη tr
[
τFτ iFτ i + 1

τ
F 2
τη −

τ

2 FijFij −
1
τ

FηiFηi

]

We use the same procedure as in the 3+1D case with Cartesian
coordinates:

Perform discretization of the action:
I Replace integral with sum over lattice sites
I Replace tr

[
F 2

ij

]
terms with corresponding plaquette terms

⇒ Variation yields discrete equations of motion and constraint

Also necessary: discretized Glasma initial conditions
[arXiv:hep-ph/9809433]
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Boost invariant Yang-Mills on the lattice

Main observable of interest: energy momentum tensor Tµν

Tµν = F a,µρF a,ν
ρ −

1
4gµνF a,ρσF a

ρσ

Need to discretize Tµν in terms of gauge links and plaquettes

I T ττ : energy density
I T iτ : energy flux along transverse axes
I T ητ : energy flux along longitudinal axis
I T ii (no sum): transverse pressure densities
I T ηη: longitudinal pressure density
I T ij for i 6= j , T ηi : shear stress
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Boost invariant Yang-Mills on the lattice

Summary of a typical Glasma simulation:
I Generate initial conditions

I Pick random samples for charge densities ρA and ρB for both
nuclei using their respective probability functionals WA[ρ] and
WB[ρ]

I Compute Glasma initial conditions on the lattice
I Solve discretized equations of motion on the lattice starting at
τ = 0 up to some final time τf = 0.1− 1.0 fm/c

I Compute Tµν as a function of τ and xT

Perform multiple simulations using random initial condition to
approximate the expectation value 〈Tµν〉 (Monte Carlo sampling)
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Simulating the Glasma in 2+1D

Random collision event 1: energy density ε(τ, xT ) = Tττ (τ, xT )
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Simulating the Glasma in 2+1D

Random collision event 2: energy density ε(τ, xT ) = Tττ (τ, xT )
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Simulating the Glasma in 2+1D

Random collision event 3: energy density ε(τ, xT ) = Tττ (τ, xT )
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Simulating the Glasma in 2+1D

Random collision event 4: energy density ε(τ, xT ) = Tττ (τ, xT )
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Simulating the Glasma in 2+1D

Computing 〈Tµν〉 at some final time τf = 0.1− 1.0 fm/c provides
initial conditions for the next link in the chain of simulations (e.g.
hydrodynamical or kinetic theory simulations).
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Simulating the Glasma in 2+1D
When does the classical Yang-Mills description become invalid?

As the Glasma expands, the gluon occupation number decreases
rapidly. If too low, the coherent state (“effectively classical”)
approximation stops being applicable.

Figure from [arXiv:1805.01604]
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Improved nucleus models
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Improved nucleus models: transverse details

McLerran-Venugopalan model is too simple:
I No finite radius ⇒ cannot model off central collisions
I Variance of random charge densities ρ is the same everywhere
⇒ No nucleonic or sub-nucleonic structure

Simple generalization:〈
ρa(xT )ρb(yT )

〉
= g2µ2(xT )δabδ(2)(xT − yT ),

where µ2(xT ) is now a function of xT .
I Let µ2(xT )→ 0 outside the nucleus
I Add local variation inside the nucleus (protons, neutrons)
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Improved nucleus models: transverse details

Simple generalization:〈
ρa(xT )ρb(yT )

〉
= g2µ2(xT )δabδ(2)(xT − yT ).

Current state-of-the-art: IP-Glasma model

Fig. from [arXiv:1605.07158]

I Sample nucleon positions xT
from a probability density
function

I Each nucleon adds an individual
contribution to µ2(xT )

I Exact form of each contribution
is extracted from experimentally
measured cross sections of deep
inelastic scattering experiments
(e.g. proton probed by an
electron)
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Improved nucleus models: transverse details
Current state of the art: IP-Glasma model

IP-Glasma initial conditions not only describe v2 (elliptic flow), but
also higher coefficients vn

Fig. from [arXiv:1209.6330]
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Improved nucleus models: finite width
McLerran-Venugopalan is too simple:
I Width is not actually infinitesimal (only finite collision energy)
I Complicated structure also along longitudinal coordinate z
I Boost invariance is only a rough approximation

x− x+

x0 = t

x3 = z

∝ R/γ∝ R/γ

J+J−
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Improved nucleus models: finite width

McLerran-Venugopalan is too simple:
I Width is not actually infinitesimal (only finite collision energy)
I Complicated structure also along longitudinal coordinate z
I Boost invariance is only a rough approximation

xx

yy

zz xx

yy

zz



50

Improved nucleus models: finite width

Finite width along z : breaks boost invariance

⇒ Fields in forward light cone depend on rapidity η

Reduction from 3+1D system to 2+1D does not work anymore.

3+1D simulations required:
I Explicitly include and simulate color currents Jµ

I Have to simulate whole collision, not just forward light cone
I Simulate in laboratory frame (ordinary Cartesian coordinates),

instead of τ and η
I Much more computationally demanding:

I 2+1D simulations: a few minutes per initial condition
I 3+1D simulations: 1-2 days per initial condition
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Improved nucleus models: finite width

3D density plot of energy density ε(x)

Fig. from [arXiv:1703.00017]
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Improved nucleus models: finite width
Comparison of rapidity dependence of ε(τ, xT , η) to experimental
data from BRAHMS experiment at RHIC using only a very simple
modification of the MV model
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Fig. from [arXiv:1703.00017]
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Summary

Simulating the Glasma in 2+1D
I Theoretical description of heavy ion collisions is divided into

different stages
I Earliest stages are described by the color glass condensate,

which allows for an effective description of the system using
classical Yang-Mills theory

I Assuming nuclei to be infinitesimally thin, the collision can be
described in 2+1D (boost invariance)

I Yang-Mills eqs. for the Glasma are solved using methods from
lattice gauge theory

I Experimental data can only be correctly described using
accurate models of nuclei
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