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CHAPTER 1

Introduction

The theory of Sobolev spaces give the basis for studying the existence of solutions (in
the weak sense) of partial differential equations (PDEs). As motivation for this theory we
give a short introduction on second order elliptic partial differential equations, but without
going deeper into the PDE-theory. For more information about the analytic and numerical
theory see [1], [4], [6] and [9].

Boundary value problems for second-order ordinary differential equations.
Classical formulation: Find a function u : [0, 1]→ R such that

−u′′(x) + b(x)u′(x) + c(x)u(x) = f(x), x ∈ Ω := (0, 1),

u(0) = u(1) = 0,
(1.1)

with given continuous coefficient functions b, c and given continuous right-hand side f . A
function u ∈ C2(Ω) ∩ C(Ω) that satisfies (1.1) is called classical solution.

Variational formulation Let v : [0, 1]→ R a so-called test function. We can multiply
(1.1) with a test function v and integrate over the interval∫

Ω

(
− u′′(x) + b(x)u′(x) + c(x)u(x)

)
v(x)dx =

∫
Ω

f(x)v(x)dx. (1.2)

Every solution of (1.1) is a solution of (1.2) (for every test function v). On the other hand if
a function u ∈ C2(Ω)∩C(Ω) satisfies equation (1.2) for every test function v then u satisfies
the differential equation (1.1).

With integration by parts we can rewrite (1.2) as

−u′(x)v(x)

∣∣∣∣ 1

0

+

∫
Ω

u′(x)v′(x)dx+

∫
Ω

(
b(x)u′(x) + c(x)u(x)

)
v(x)dx =

∫
Ω

f(x)v(x)dx . (1.3)

Using the boundary conditions v(0) = v(1) = 0, equation (1.3) yields∫
Ω

u′(x)v′(x)dx+

∫
Ω

(
b(x)u′(x) + c(x)u(x)

)
v(x)dx =

∫
Ω

f(x)v(x)dx . (1.4)

Derivatives occur in equation (1.4) only in terms of the form∫ 1

0

w′(x)ϕ(x)dx, (1.5)

where ϕ : Ω→ R is sufficiently smooth and ϕ|∂Ω = 0. Equation (1.5) is for w ∈ C1 equal to

−
∫ 1

0

w(x)ϕ′(x)dx. (1.6)
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The existence of the integral in (1.6) is given for w ∈ L1
loc(Ω). The problem is, that if

w /∈ C1, then w′ in equation (1.5) has no meaning. This leads us to the definition of the
weak derivative of w.

Definition 1.1. Suppose w, w̃ ∈ L1
loc(Ω). We say w̃ is the weak derivative of w, written

w′ = w̃ provided∫
Ω

w(x)ϕ′(x) dx = −
∫

Ω

w̃(x)ϕ(x) dx for all test functions ϕ ∈ C∞c (Ω). (1.7)

Therefore, the existence of the integral expressions in equation (1.4) (for b, c ∈ L∞(Ω)
and f ∈ L2(Ω)) is guaranteed for u, u′, v, v′ ∈ L2(Ω). This suggests the Sobolev space

H1(Ω) = {w ∈ L1
loc(Ω) : w,w′ ∈ L2(Ω)}.

To incorporate the boundary values of u, v ∈ H1 we need the Sobolev space H1
0 . Note that

as in L2 pointwise evaluation in H1 does not make sense. Hence, we need the trace theorem
(Theorem 5.1) in order to be able to assign ”boundary values” along ∂Ω to a function in the
Sobolev space.

Definition 1.2. We say u ∈ H1
0 (Ω) is a weak solution of (1.2) if

B(u, v) = 〈f, v〉 ∀v ∈ H1
0 (Ω), (1.8)

where 〈·, ·〉 denotes the inner product in L2(Ω) and

B(u, v) :=

∫
Ω

u′(x)v′(x)dx+

∫
Ω

(
b(x)u′(x) + c(x)u(x)

)
v(x)dx, u, v ∈ H1

0 (U).

The identity (1.8) is called variational formulation of (1.2).

Second order elliptic partial differential equations. The 1-dimensional example
brings us to the theory of weak solutions for a greater class of differential equations - second
order elliptic partial differential equations. Let U ⊆ Rn be open and bounded. We consider
the following boundary value problem on U .

Lu = f in U,
u = 0 on ∂U,

}
(1.9)

where f : U → R is given and u : U → R is the unknown function. L denotes a second-order
elliptic partial differential operator having either the form

Lu = −
n∑

i,j=1

ai,j(x)uxixj +
n∑
i=1

bi(x)uxi + c(x)u (1.10)

or else

Lu = −
n∑

i,j=1

(ai,j(x)uxi)xj +
n∑
i=1

bi(x)uxi + c(x)u, (1.11)

for given coefficient functions (ai,j)ni,j=1, (b
i)ni=1, c. We assume the symmetry condition

ai,j = aj,i for all i, j = 1, . . . , n. (1.12)

The differential operator L is in divergence form if it is given by equation (1.11).
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Example 1.3. Let ai,j = δi,j, b
i = 0 and c = 0. Then Lu = −∆u.

We consider the problem (1.9) for L given by

Lu = − div(a(x)∇u(x)), (1.13)

where a ∈ L∞(U) and a > 0. Note that if a ∈ C1(U), then Lu = −a∆u−∇u∇a. Since a is
positive, we have that L is elliptic partial differential operator.

We assume for the moment that u is a classical solution of (1.9). We multiply (1.9) by
a smooth test function v ∈ C∞c (U), integrate over U and apply integration by parts to the
left-hand side to get ∫

U

a(x)∇u(x)∇v(x) dx =

∫
U

f(x)v(x) dx. (1.14)

Note that there are no boundary terms since v = 0 on ∂U . By approximation we obtain that
the same identity holds when we replace v ∈ C∞c (U) by any v ∈ H1

0 (U). The left hand-side of
(1.14) makes sense if u ∈ H1(U). We choose the Sobolev space to incorporate the boundary
condition from (1.9), hence we consider u ∈ H1

0 (U). This leads to the definition of a weak
solution u of (1.9).

Definition 1.4. We say u ∈ H1
0 (U) is a weak solution of problem (1.9) with L given by

(1.13) if
B(u, v) = 〈f, v〉 ∀v ∈ H1

0 (U), (1.15)

where 〈·, ·〉 denotes the inner product in L2(U) and

B(u, v) :=

∫
U

a(x)∇u(x)∇v(x) dx, u, v ∈ H1
0 (U).

More generally,

Definition 1.5. We say u ∈ H1
0 (U) is a weak solution of problem (1.9) with L given by

(1.11) if
B(u, v) = 〈f, v〉 ∀v ∈ H1

0 (U), (1.16)

where 〈·, ·〉 denotes the inner product in L2(U) and

B(u, v) :=

∫
U

n∑
i,j=1

ai,juxivxi +
n∑
i=1

biuxiv + cuv dx, u, v ∈ H1
0 (U).

Remark 1.6. The identity (1.16) is called variational formulation of (1.9).

Theorem 1.7. (1) Let u be a classical solution of (1.9). Let B and 〈f, ·〉 in Defini-
tion 1.5 be bounded on H1

0 (U). Then u is a weak solution of (1.9).
(2) Let f be continuous, u a weak solution of (1.9) and u ∈ C2(U) ∩ C(U). Then u is

a classical solution of (1.9).

Existence of weak solutions The central theorem in the theory of existence and
uniqueness of weak solutions is the following.

Theorem 1.8 (Lax-Milgram). Let H be a Hilbert space and B : H ×H → R a bilinear
form satisfying the conditions

(1) there exists a constant c1 > 0 such that for all u, v ∈ H
|B(u, v)| ≤ c1‖u‖H‖v‖H
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(2) there exists a constant c2 > 0 such that for all u ∈ H
‖u‖2

H ≤ c2B(u, u).

Let f : H → R be linear and bounded. Then there exists a unique u ∈ H such that

B(u, v) = f(v), for all v ∈ H. (1.17)

The following existence theorem for weak solutions of our boundary value problem is
based on the Lax-Milgram Theorem applied to the Hilbert space H1

0 (U).

Theorem 1.9 (Existence Theorem for a weak solution). There is a number γ ≥ 0 such
that for each µ ≥ γ and each function f ∈ L2(U), there exists a unique weak solution
u ∈ H1

0 (U) of the boundary value problem

Lu+ µu = f in U

u = 0 on ∂U.

Example 1.10. In the case Lu = −∆u we have B(u, v) =
∫
U
∇u(x)∇v(x) dx. One can

check that γ = 0 is possible. In the case Lu = − div(a(x)∇u(x)), with a ∈ L∞(U), a ≥ c > 0
the same holds true.
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CHAPTER 2

Weak derivatives and Sobolev spaces

2.1. Preliminaries

Notation for derivatives. Let U ⊆ Rn be open. Assume u : U → R, x ∈ U . Let

∂u

∂xi
(x) = lim

h→0

u(x+ hei)− u(x)

h
,

provided the limit exists. We write

uxi =
∂u

∂xi
,

∂2u

∂xi∂xj
= uxixj , etc.

A vector of the form α = (α1, . . . , αn) ∈ Nn
0 is called a multiindex of order

|α| = α1 + · · ·+ αn.

Each multiindex α defines a partial differential operator of order |α|, given by

Dαu =
∂|α|u

∂x1
α1 · · · ∂xnαn

= ∂α1
x1
· · · ∂αnxn u.

If k ∈ N0, then

Dku = {Dαu : |α| = k}

is the set of all partial derivatives of order k. If k = 1, then

Du = ∇u = (ux1 , . . . , uxn).

Locally integrable functions. The space of locally integrable functions on U , denoted
by L1

loc(U), is defined as the set of measurable functions f : U → R such that for all compact
subsets K ⊆ U the following holds ∫

K

|f(x)|dx <∞. (2.1)

Remark 2.1. Constant functions, piecewise continuous functions and continuous func-
tions are locally integrable. Every function f ∈ Lp(U), 1 ≤ p ≤ ∞ is locally integrable.

Test functions. The space of test functions, denoted by C∞c (U), is the space of infinitely
differentiable functions φ : U → R with compact support. Note that the support of φ is
defined by suppφ = {x ∈ U : φ(x) 6= 0}.
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Example 2.2. The following functions are elements in C∞c (R).

φ(x) =

{
e−

1
1−|x| , falls |x| < 1

0, falls |x| ≥ 1.

h(x) =

{
e
− 1

1−x2 , falls |x| < 1

0, falls |x| ≥ 1.

-2 -1 0 1 2

Figure 2.1. h(x)

2.2. Weak derivative

Every locally integrable function u ∈ L1
loc(U) determines a regular distribution, i.e. a

linear and continuous function

Tu : C∞c (U)→ R, Tu(φ) =

∫
U

u(x)φ(x)dx. (2.2)

We also use the notation 〈Tu, φ〉 resp. 〈u, φ〉 instead of Tu(φ).
If we assume that u ∈ C1(U) then its partial derivatives uxi , 1 ≤ i ≤ n, are continuous

and hence, uxi ∈ L1
loc(U). Therefore, uxi determines a regular distribution given by

Tuxi : C∞c (U)→ R, Tuxi (φ) =

∫
U

uxi(x)φ(x)dx. (2.3)

Obviously, we have by integration by parts (cf. Theorem 11.15)

Tuxi (φ) =

∫
U

uxi(x)φ(x)dx = −
∫
U

u(x)φxi(x)dx, φ ∈ C∞c (U). (2.4)

The left-hand side integral in (2.4) is defined only when uxi exists a.e. and is in L1
loc(U),

whereas the right-hand side integral is well defined for every u ∈ L1
loc(U).
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Definition 2.3 (Distributional derivative).

(1) The distributional derivative w.r.t. the ith variable, 1 ≤ i ≤ n, of Tu is the distribu-
tion (linear and continuous functional on C∞c (U)) ∂xiTu given by

〈∂xiTu, φ〉 = −〈u, ∂xiφ〉 = −
∫
U

u(x)∂xiφ(x)dx, φ ∈ C∞c (U). (2.5)

(2) Let α be a multiindex of order |α|. Then the αth distributional derivative is the
distribution DαTu given by

〈DαTu, φ〉 = (−1)|α|
∫
U

u(x)Dαφ(x)dx, φ ∈ C∞c (U). (2.6)

If u ∈ Ck(U) and α a multiindex of order k, then Dαu exists in the classical sense and
we have by the integration by parts formula∫

U

Dαu(x)φ(x)dx = (−1)|α|
∫
U

u(x)Dαφ(x)dx.

Dαu ∈ C(U) ⊆ L1
loc(U) defines again a regular distribution given by

TDαu(φ) =

∫
U

Dαu(x)φ(x)dx

and obviously,

〈DαTu, φ〉 = TDαu(φ), for all φ ∈ C∞c (U).

We say that the classical and the distributional derivative of u ∈ L1
loc(U) coincide. What

happens if u ∈ L1
loc(U), but u /∈ Ck(U)? This leads us to the definition of the weak derivative

of u.

Definition 2.4 (Weak derivative). Let u ∈ L1
loc(U) and α ∈ Nn

0 a multiindex. If there
exists a v ∈ L1

loc(U) such that∫
U

v(x)φ(x)dx = (−1)|α|
∫
U

u(x)Dαφ(x)dx ∀φ ∈ C∞c (Rn) (2.7)

then v is called the weak αth- partial derivative of u, denoted by

Dαu = v.

In other words, if we are given u ∈ L1
loc(U) and if there happens to exist a function

v ∈ L1
loc(U) satisfying (2.7) for all φ ∈ C∞c (U) we say that Dαu = v in the weak sense. If

there does not exist such a function v, then u does not possess a weak αth- partial derivative.

Remark 2.5. Classical derivatives are defined pointwise as limit of difference quotients.
Weak derivatives, on the other hand, are defined in an integral sense. By changing a function
on a set of measure zero we do not affect its weak derivatives.

Lemma 2.6 (Uniqueness). A weak αth-partial derivative of u, if it exists, is uniquely
defined up to a set of measure zero.
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Proof. Assume that v, ṽ ∈ L1
loc(U) satisfy∫

U

u(x)Dαφ(x)dx = (−1)|α|
∫
U

v(x)φ(x)dx = (−1)|α|
∫
U

ṽ(x)φ(x)dx

for all φ ∈ C∞c (U). This implies∫
U

(v − ṽ)φdx = 0 ∀φ ∈ C∞c (U).

Hence, v − ṽ = 0 almost everywhere. �

Lemma 2.7. Assume that u ∈ L1
loc(U) has weak derivatives Dαu for |α| ≤ k. Then for

multiindices α, β with |α|+ |β| ≤ k one has

Dα(Dβu) = Dβ(Dαu) = Dα+βu.

Proof. Let φ ∈ C∞c (U), then also Dαφ ∈ C∞c (U). Using the definition of weak
derivatives twice we obtain:∫

U

Dα(Dβu)(x)φ(x) = (−1)|α|
∫
U

Dβu(x)Dαφ(x) dx

= (−1)|α|+|β|
∫
U

u(x)Dα(Dβφ(x)) dx

=

∫
U

Dα+βu(x)φ(x) dx.

If we change the roles of α and β we obtain∫
U

Dβ(Dαu)(x)φ(x) =

∫
U

Dα+βu(x)φ(x) dx.

�

2.3. The Sobolev spaces W k,p(U)

Let U ⊆ Rn open. Let 1 ≤ p ≤ ∞ and k be a non-negative integer.

Definition 2.8. The Sobolev space

W k,p(U)

is the space of all locally integrable functions u : U → R such that for every multiindex α
with |α| ≤ k the weak derivative Dαu exists and Dαu ∈ Lp(U).

Definition 2.9. We define the norm of u ∈ W k,p(U) to be

‖u‖Wk,p(U) =
( ∑
|α|≤k

∫
U

|Dαu(x)|pdx
) 1
p
, if 1 ≤ p <∞,

‖u‖Wk,∞(U) =
∑
|α|≤k

ess supx∈U |Dαu(x)|.

Theorem 2.10 (Completeness). For each k ∈ N0 and 1 ≤ p ≤ ∞ the Sobolev space
W k,p(U) is a Banach space.

Proof. We have to show the following.

10



(1) W k,p is a normed vector space (exercise).
(2) W k,p is complete.

We show (2). Assume (um)∞m=1 is a Cauchy sequence in W k,p(U). It follows from the
definition of the norm on W k,p(U) that (Dαum)∞m=1 is a Cauchy sequence in Lp(U) for each
|α| ≤ k, cf. Remark 2.11. Since Lp(U) is complete, there exist functions u, uα ∈ Lp(U) such
that

‖um − u‖Lp → 0, ‖Dαum − uα‖Lp → 0, for all 0 < |α| ≤ k.

We show that

u ∈ W k,p(U) and Dαu = uα, for all 0 < |α| ≤ k. (2.8)

We fix φ ∈ C∞c (U). Then∫
U

uDαφdx = lim
m→∞

∫
U

umD
αφdx = (−1)|α| lim

m→∞

∫
U

Dαumφdx = (−1)|α|
∫
U

uαφdx.

Thus, (2.8) holds and for all |α| ≤ k

Dαum
m→∞−→ Dαu in Lp(U).

Hence,

um
m→∞−→ u in W k,p(U) .

�

Remark 2.11. (um)∞m=1 is a Cauchy sequence in W k,p(U)

DEF⇐⇒ ∀ε > 0∃N ∀m,n > N : ‖um − un‖Wk,p(U) < ε

⇐⇒ ∀ε > 0∃N ∀m,n > N :
( ∑
|α|≤k

‖Dα(um − un)‖pLp(U)

) 1
p
< ε

⇐⇒ ∀ε > 0∃N ∀m,n > N :
∑
|α|≤k

‖Dαum −Dαun‖pLp(U) < εp

=⇒ ∀ε > 0 ∃N ∀m,n > N ∀α, |α| ≤ k : ‖Dαum −Dαun‖Lp(U) < ε

=⇒ ∀α, |α| ≤ k ∀ε > 0∃N ∀m,n > N : ‖Dαum −Dαun‖Lp(U) < ε

⇐⇒ ∀α, |α| ≤ k is (Dαum)∞m=1 a Cauchy sequence in Lp(U).

Remark 2.12. Note that W 0,p(U) = Lp(U). For p = 2, the norm in Definition 2.9 is
induced by the inner product

〈u, v〉 =
∑
|α|≤k

∫
U

Dαu(x)Dαv(x)dx. (2.9)

Hence, W k,2(U) is a Hilbert space and we write

Hk(U) = W k,2(U).

Definition 2.13. The subspace W k,p
0 (U) ⊆ W k,p(U) is defined by

W k,p
0 (U) = C∞c (U)

Wk,p(U)
.
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More precisely, u ∈ W k,p
0 (U) if and only if there exists a sequence (un)n∈N in C∞c (U) such

that

‖un − u‖Wk,p(U) → 0.

Definition 2.14. Let U, V be open subsets of Rn. We say V is compactly contained
in U , written

V ⊂⊂ U

if V ⊂ K ⊂ U and K is compact.

Definition 2.15. We define the space W k,p
loc (U) to be the space of functions u : U → R

satisfying the following property. Let V ⊂⊂ U , then u
∣∣
V
∈ W k,p(V ).

Notation. Let (um)∞m=1, u ∈ W k,p(U)

• We say (um) converges to u in W k,p(U), written

um −→ u in W k,p(U), (2.10)

provided

lim
m→∞

‖um − u‖Wk,p(U) = 0. (2.11)

• We write

um −→ u in W k,p
loc (U) (2.12)

to mean

um −→ u in W k,p(V ) (2.13)

for each V ⊂⊂ U .

Lemma 2.16. Let u ∈ W k,p(U), ζ ∈ C∞c (U) and α a multiindex with |α| ≤ k. Then

(1) Dαu ∈ W k−|α|,p(U),
(2) ζu ∈ W k,p(U) and

Dα(ζu) =
∑
β≤α

(
α

β

)
DβζDα−βu (Leibniz formula). (2.14)

Proof. (1) follows from the definition of the Sobolev space. We show (2). We know
that u ∈ Lp and Dαu ∈ Lp for all |α| ≤ k. Hence, ζu ∈ Lp and Dα(ζu) given by (2.14) is in
Lp. Therefore, ζu ∈ W k,p. We prove the Leibniz formula by induction. Let ζ, φ ∈ C∞c (U)
and |α| = 1. let 1 ≤ i ≤ n. Then, by the definition of the weak derivative∫

U

(ζu)xiφdx = −
∫
U

ζuφxidx. (2.15)

By the chain rule (classical Leibniz formula for the first derivative) we have

(ζφ)xi = ζxiφ+ ζφxi . (2.16)

Combining (2.15) and (2.16) yields∫
U

(ζu)xiφ dx =

∫
U

ζxiuφ dx−
∫
U

(ζφ)xiu dx.
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Note that ζφ ∈ C∞c . Again by the definition of the weak derivative we have∫
U

(ζu)xiφ dx =

∫
U

ζxiuφ dx+

∫
U

ζφ uxi dx

=

∫
U

(ζxiu+ uxiζ)φ dx.

Therefore, (ζu)xi = ζxiu+uxiζ. Now let |α| = l+ 1, then α = β+γ with |β| = l and |γ| = 1.
By the definition of the weak derivative we have∫

U

ζuDαφ dx =

∫
U

ζuD
β

(Dγφ)dx = (−1)|β|
∫
U

Dβ(ζu)Dγφ dx. (2.17)

Using the induction hypothesis and again the definition of the weak derivative we obtain

(−1)|β|
∫
U

Dβ(ζu)Dγφ dx. = (−1)|β|
∫
U

[∑
σ≤β

(
β

σ

)
DσζDβ−σu

]
Dγφ dx

= (−1)|β|+|γ|
∫
U

Dγ

[∑
σ≤β

(
β

σ

)
DσζDβ−σu

]
φ dx

= (−1)|α|
∫
U

[∑
σ≤β

(
β

σ

)
Dγ
(
DσζDβ−σu

)]
φ dx

= (−1)|α|
∫
U

[∑
σ≤β

(
β

σ

)
(Dσ+γζDβ−σu+DσζDβ−σ+γu)

]
φ dx.

(2.18)

Note that the last equality in (2.18) is due to the induction basis (|γ| = 1). Let ρ = σ + γ.
Then we can rewrite the sum in the right hand side of (2.18) as∑
σ≤β

(
β

σ

)
(Dσ+γζDβ−σu+DσζDβ−σ+γu) =

∑
ρ≤β+γ

(
β

ρ− γ

)
DρζDα−ρu+

∑
σ≤β

(
β

σ

)
DσζDα−σu

=
∑
σ≤α

(
β

σ − γ

)
DσζDα−σu+

∑
σ≤β

(
β

σ

)
DσζDα−σu

=
∑
σ≤β

[(
β

σ − γ

)
+

(
β

σ

)]
DσζDα−σu+Dαζ u

(2.19)

Note that by the definition of the binomial coefficients for multiindices we have(
α

σ

)
=

(
β

σ − γ

)
+

(
β

σ

)
. (2.20)

Combining the equations (2.17), (2.18), (2.19) and (2.20) yields∫
U

ζuDαφ dx = (−1)|α|
∫
U

[∑
σ≤α

(
α

σ

)
DσζDα−σu

]
φ dx.
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Lemma 2.17. Let u ∈ W k,p(U) and V ⊆ U open, then u ∈ W k,p(V ).

Proof. Obvious consequence of the definition. �

2.4. Examples

Weak derivatives.

Example 2.18. Let n = 1, U = (0, 2) and

u(x) =

{
x, if 0 < x ≤ 1,

1, if 1 < x < 2.

We define

v(x) =

{
1, if 0 < x ≤ 1,

0, if 1 < x < 2.

and show that for all φ ∈ C∞c (U)

∫ 2

0

u(x)φ′(x)dx = −
∫ 2

0

v(x)φ(x)dx

holds.

1 2

1

1 2

1

u(x) v(x)

Figure 2.2. u(x) and v(x)
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∫ 2

0

u(x)φ′(x)dx =

∫ 1

0

u(x)φ′(x)dx+

∫ 2

1

u(x)φ′(x)dx

=

∫ 1

0

xφ′(x)dx+

∫ 2

1

1φ′(x)dx

= xφ(x)
∣∣∣1
0
−
∫ 1

0

φ(x)dx+

∫ 2

1

φ′(x)dx

= φ(1)−
∫ 1

0

φ(x)dx+ φ(2)︸︷︷︸
0

−φ(1)

= −
∫ 1

0

φ(x)dx = −
∫ 2

0

v(x)φ(x) dx.

Example 2.19. Let n = 1 , U = (0, 2) and

u(x) =

{
x, if 0 < x ≤ 1,

2, if 1 < x < 2.

In order to check, that u does not have a weak derivative we have to show that there does
not exist any function v ∈ L1

loc(U) satisfying∫ 2

0

u(x)φ′(x)dx = −
∫ 2

0

v(x)φ(x)dx, (2.21)

for all φ ∈ C∞c (U). Assume there exists a v ∈ L1
loc(U) satisfying (2.21). Then

−
∫ 2

0

v(x)φ(x)dx =

∫ 2

0

u(x)φ′(x)dx =

∫ 1

0

xφ′(x) + 2

∫ 2

1

φ′(x)dx

= xφ(x)
∣∣∣1
0
−
∫ 1

0

φ(x)dx+ 2
(
φ(2)− φ(1)

)
= −φ(1)−

∫ 1

0

φ(x)dx

(2.22)

is valid for all φ ∈ C∞c (U). We choose a sequence (φm)∞m=1 of smooth functions satisfying

1 2

1

2

1 2

1
u(x)

(φm)m

Figure 2.3. u(x) and some elements of the sequence φm(x)
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0 ≤ φm ≤ 1, φm(1) = 1 and φm(x)
m→∞−→ 0 ∀x 6= 1.

Replacing φ by φm in (2.22) yields

1 = φm(1) =

∫ 2

0

v(x)φm(x)dx−
∫ 1

0

φm(x)dx.

We take the limit for m→∞:

1 = lim
m→∞

φm(1) = lim
m→∞

[∫ 2

0

v(x)φm(x)dx−
∫ 1

0

φm(x)dx

]
= 0.

Elements in Sobolev spaces. Note that if n = 1 and U is an open interval in R,
then u ∈ W 1,p(U) if and only if u equals a.e. an absolutely continuous function whose
derivative (which exists a.e.) and the function itself belong to Lp(U) (Exercise). Such a
simple characterization is however only available for n = 1.

In general a discontinuous and/or unbounded function can belong to a Sobolev space.

Example 2.20. Let U = {x ∈ Rn : |x| < 1} =: B(0, 1). We fix γ > 0 and consider the
function

u(x) = |x|−γ =

(
n∑
i=1

x2
i

)−γ
2

, x ∈ U, x 6= 0.

-1 1

20

40

60

Figure 2.4. |x|−γ

Statement: u ∈ W 1,p(U)⇔ γ < n−p
p

Proof. Note that u ∈ C1(U \ {0}). For x ∈ U \ {0} we have

uxi(x) =
−γxi
|x|γ+2 , 1 ≤ i ≤ n. (2.23)
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Therefore,

|Du(x)| = |∇u(x)| =

(
n∑
i=1

|uxi |
2

) 1
2

=
γ

|x|γ+1

and by Corollary (11.17),∫
U

|Du(x)|dx = γ

∫
U

|x|−γ−1dx = C(n)γ

∫ 1

0

r−γ−1rn−1dr = C(n)γ

∫ 1

0

r−γ−2+ndr

=

{
C(n)γ
−γ−1+n

, if − γ − 1 + n > 0

∞, otherwise.

(2.24)

Hence, if γ + 1 < n, then |Du| ∈ L1(U). Analogously we have u ∈ L1(U), if γ + 1 < n.

On the open set U \ {0} the function u has weak derivatives Du = (ux1 , . . . , uxn) and
they coincide with the classical derivatives. We show that under certain circumstances uxi
define weak derivatives on the entire domain U .

Let φ ∈ C∞c (U) and Bε = {x ∈ Rn : |x| < ε} for a fixed ε > 0 then (by the integration-
by-parts formula (Theorem 11.15))∫

U\Bε
uφxi dx = −

∫
U\Bε

uxiφ dx+

∫
∂Bε

uφνidS

with νi(x) = −xi
|x| so that ν = (ν1 . . . νn) is the inward pointing normal on ∂Bε and dS is the

spherical measure on the surface of the ball Bε. The following holds.∣∣∣∣∣
∫
∂Bε

uφνidS
∣∣∣ ≤ ‖φ‖∞ ∫

∂Bε

ε−γdS ≤ Cε−γ−1+n ε→0−→ 0, if γ + 1 < n (2.25)

lim
ε→0

∫
U\Bε

uφxidx =

∫
U

lim
ε→0

χU\Bεuφxidx =

∫
U

uφxidx (2.26)

lim
ε→0

∫
U\Bε

uxiφdx =

∫
U

uxiφdx. (2.27)

With (2.25),(2.26) and (2.27) it follows that∫
U

uφxidx = −
∫
U

uxiφdx ∀φ ∈ C∞c (U),

and the locally integrable function uxi defined in (2.23) is in fact the weak derivative of u on
the entire domain U .

By an analogous calculation as in (2.24) we have that

u, |Du| ∈ Lp(U)⇔ (γ + 1)p < n.

Consequently, u ∈ W 1,p(U) if and only if γ < n−p
p

. In particular u /∈ W 1,p(U) for each
p ≥ n. �

Example 2.21. Let U = {x ∈ Rn : |x| < 1} and {rk : k ∈ N} = U ∩ Qn. This forms
a dense subset in U . ({rk}∞k=1 is dense in U ⇔ for each u ∈ U there exist a subsequence
{rkl}∞l=1 such that lim rkl → u in U .)

17



For (γ + 1)p < n we define

uk(x) = 2−k|x− rk|−γ ∈ W 1,p(U)

and set

u(x) =
∞∑
k=1

2−k|x− rk|−γ.

Then u ∈ W 1,p(U) and is unbounded on each open subset of U .

18



CHAPTER 3

Approximation in Sobolev spaces

In order to study the deeper properties of Sobolev spaces, without returning continually
to the definition of weak derivatives, we need procedures for approximating a function in a
Sobolev space by smooth functions. These approximation procedures allow us to consider
smooth functions and then extend the statements to functions in the Sobolev space by density
arguments.

We have to prove that smooth functions are in fact dense in W k,p(U). The method of
mollifiers provides the tool.

3.1. Smoothing by convolution

Definition 3.1.

(1) Let η ∈ C∞(Rn) be given by

η(x) =

{
C e1/(|x|2−1), if |x| < 1,

0, if |x| ≥ 1,

with constant C > 0 chosen such that
∫
Rn η(x)dx = 1.

(2) For each ε > 0 we define

ηε(x) =
1

εn
η
(x
ε

)
.

We call η the standard mollifier.

Remark 3.2.

(1) η ≥ 0 and η ∈ C∞c (Rn).
(2) The functions ηε are C∞ and satisfy∫

Rn
ηε(x)dx = 1 and supp ηε ⊆ B(0, ε).

Remark 3.3. There are other examples of mollifiers, e.g.

ν(t) =

{
cos(π|t|2) + 1, if |t| < 1,

0, if |t| ≥ 1.

Definition 3.4. Let U ⊆ Rn be open and ε > 0. Let

Uε = {x ∈ U : d(x, ∂U) > ε} = {x ∈ U : B(x, ε) ⊆ U},

where B(x, ε) = {y ∈ Rn : |x− y| < ε}.
19



-1 0.5-0.5 1
-1 0.5-0.5 1

η(x) ν(t)

Figure 3.1. Standard mollifier and cos-mollifier

Let f ∈ L1
loc(U). Then we define for all x ∈ Uε

f ε(x) := f ∗ ηε(x) =

∫
U

f(y)ηε(x− y)dy =

∫
B(0,ε)

f(x− y)ηε(y)dy (3.1)

f ε is the mollification of f in Uε. The mollification of a function f ∈ L1
loc(U) results from

the concept of convolution.

Convolution. Let f, g be measurable functions on Rn. The convolution f ∗ g is defined
by

f ∗ g (x) =

∫
Rn
f(x− y)g(y)dy

for all x ∈ Rn such that the integral exists.

Proposition 3.5. Assume that all considered integrals exist. Then

(1) f ∗ g = g ∗ f ,
(2) f ∗ g ∗ h = f ∗ (g ∗ h),
(3) supp (f ∗ g) ⊆ supp f + supp g.

Theorem 3.6.

(1) If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, g ∈ L1(Rn) then f ∗ g exists a.e. and f ∗ g ∈ Lp(Rn).
In fact ‖f ∗ g‖p ≤ ‖f‖p · ‖g‖1.

(2) Let 1 ≤ p ≤ ∞ and 1 = 1
p

+ 1
q
. If f ∈ Lp(Rn) and g ∈ Lq(Rn) then f ∗ g exists on

Rn and |f ∗ g (x)| ≤ ‖f‖p‖g‖q for every x ∈ Rn.

(3) Let 1 ≤ p, q, r ≤ ∞ such that 1+ 1
r

= 1
p

+ 1
q
. If f ∈ Lp(Rn) and g ∈ Lq(Rn) then f ∗g

exists a.e. and lies in Lr(Rn). In fact ‖f ∗ g‖r ≤ ‖f‖p · ‖g‖q. (Young’s inequality)
(4) Let f, g ∈ Cc(Rn). Then f ∗ g exists for every x ∈ R and f ∗ g ∈ Cc(Rn).
(5) If f ∈ L1, g ∈ Ck and Dαg is bounded for all multiindices α with |α| ≤ k. Then

f ∗ g ∈ Ck and Dα(f ∗ g) = f ∗Dαg for |α| ≤ k.

Mollification Properties.

Lemma 3.7. Let Uε ⊆ U and f ε be as in Definition 3.4. Then f ε ∈ C∞(Uε) and for
every multiindex α and x ∈ Uε we have

Dαf ε(x) =

∫
U

Dα
xη

ε(x− y)f(y)dy,

20



where Dα
x denotes the partial derivatives with respect to the variable x = (x1, . . . , xn).

Proof. Exercise. �

Proof. Fix x ∈ Uε and h so small, that x+ eih ∈ Uε. Then

f ε(x+ eih)− f ε(x)

h
=

∫
U

(
ηε(x+ eih− y)− ηε(x− y)

h

)
f(y)dy.

U

U

2

X+he IX

Support       (x-y) Support      (x+he -y)I

Figure 3.2. Supports of ηε

The support of

y −→

(
ηε(x+ eih− y)− ηε(x− y)

h

)
is compact in U (cf. figure 3.2). Therefore,∫

U

(
ηε(x+ eih− y)− ηε(x− y)

h

)
f(y)dy =

∫
V

(
ηε(x+ eih− y)− ηε(x− y)

h

)
f(y)dy

for some V ⊂⊂ U . By the Heine-Cantor theorem and the mean value theorem we have that

lim
h→0

sup
y∈V

∣∣∣∣ηε(x+ eih− y)− ηε(x− y)

h
− ∂ηε

∂xi
(x− y)

∣∣∣∣ = 0.

Therefore, ∣∣∣∣1h
∫
V

(ηε(x+ eih− y)− ηε(x− y)) f(y) dy −
∫
U

∂ηε

∂xi
(x− y)f(y)dy

∣∣∣∣
≤ sup

y∈V

∣∣∣∣ηε(x+ eih− y)− ηε(x− y)

h
− ∂ηε

∂xi
(x− y)

∣∣∣∣ ∫
U

|f(y)|dy

h→0−→ 0.
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Hence,

∂

∂xi
f ε(x) = lim

h→0

f ε(x+ eih)− f ε(x)

h
=

∫
U

∂xiη
ε(x− y)f(y)dy .

By the same argument one obtains that for every multiindex α, Dαf ε exists and

Dαf ε(x) =

∫
U

Dαηε(x− y)f(y)dy (x ∈ Uε) .

�

Corollary 3.8. Let Uε ⊆ U be as in Definition 3.4. Assume that f ∈ L1
loc(U) admits a

weak derivative Dαf for some multiindex α. Then

Dα(f ∗ ηε)(x) = ηε ∗Dαf (x), for all x ∈ Uε.

Note that the derivative of the mollification Dα(f ∗ ηε) exists in the classical sense.

Proof. We have by Lemma 3.7 and by the definition of the weak derivative

Dα(f ∗ ηε)(x) =

∫
U

Dα
xη

ε(x− y)f(y)dy

= (−1)|α|
∫
U

Dα
y η

ε(x− y)f(y)dy

= (−1)|α|+|α|
∫
U

ηε(x− y)Dαf(y)dy

=

∫
U

ηε(x− y)Dαf(y)dy

= ηε ∗Dαf (x).

�

Theorem 3.9 (Convergence of the mollification).

(1) f ∈ L1
loc(U) =⇒ f ε(x)

ε→0−→ f(x) for almost every x ∈ U , i.e.∣∣∣{x ∈ U : lim
ε→0

f ε(x) 6= f(x)}
∣∣∣ = 0.

(2) f ∈ C(U) and K ⊂ U compact. Then

sup
z∈K
|f(z)− f ε(z)| ε→0−→ 0.

(3) f ∈ Lploc(U), 1 ≤ p <∞, and K ⊂ U compact. Then

‖f − f ε‖Lp(K)

ε→0−→ 0.

Proof. (1) We use Lebesgue’s differentiation theorem (Theorem 11.20), which as-
serts that

lim
r→0
−
∫
B(x,r)

|f(y)− f(x)|dy = lim
r→0

1

|B(x, r)|

∫
B(x,r)

|f(y)− f(x)|dy = 0
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for a.e. x ∈ U . We fix such an point x (Lebesgue point). Then

|f ε(x)− f(x)| (∗)
=

∣∣∣∣∫
B(x,ε)

ηε(x− y)f(y)dy − f(x)

∣∣∣∣ (∗∗)
=

∣∣∣∣∫
B(x,ε)

ηε(x− y) (f(y)− f(x)) dy

∣∣∣∣
≤ 1

εn

∫
B(x,ε)

η
(x− y

ε

)
|f(y)− f(x)| dy

(∗∗∗)
≤ 1

εn

∫
B(x,ε)

|f(y)− f(x)| dy

(∗∗∗∗)
= C−

∫
B(x,ε)

|f(y)− f(x)|dy ε→0−→ 0, for a.e. x ∈ U.

(∗) supp ηε(x− ·) ⊆ B(x, ε).
(∗∗)

∫
Rn η

ε(x− y)dy = 1.
(∗ ∗ ∗) 0 ≤ η ≤ 1
(∗ ∗ ∗∗) |B(x, ε)| = εn|B(0, 1)|.

Hence, ∣∣∣{x ∈ Rn : lim
ε→0

f ε(x) 6= f(x)}
∣∣∣ = 0.

(2) Let K ⊂ U compact. Then there exists ε0 > 0 such that for all ε < ε0 we have
K ⊂ Uε. Hence, f ε(x) is well defined for all x ∈ K. By the same argument as before
we have

|f(x)− f ε(x)| ≤ C−
∫
B(x,ε)

|f(x)− f(y)| dy ≤ C sup
y∈B(x,ε)

|f(x)− f(y)|.

We have that f ∈ C(U) andK ⊆ U is compact. Hence, f is uniformly continuous
on K, i.e.

∀η > 0 ∃ ε > 0∀x, y ∈ K : |x− y| < ε =⇒ |f(x)− f(y)| < η.

Summarizing we have

∀η > 0∃ ε0 > 0 ∀ε < ε0 ∀x ∈ K : |f(x)− f ε(x)| ≤ C η.

(3) Let K ⊂ U compact. Then there exists an open subset W of U with W ⊂⊂ U and
an ε0 > 0 such that for all ε < ε0 and for all x ∈ K we have that B(x, ε) ⊆ Uε ⊆ W .
Let 0 < ε < ε0. Then

‖f ε‖Lp(K) ≤ ‖f‖Lp(W ).

Indeed by Hölder’s inequality with 1
q

+ 1
p

= 1 we have

| f ε(x) | =
∣∣∣∣∫
B(x,ε)

ηε(x− y)f(y)dy

∣∣∣∣
≤
∫
B(x,ε)

|f(y)| ηε(x− y)
1
pηε(x− y)

1
q dy

≤
(∫

B(x,ε)

ηε(x− y)|f(y)|pdy
) 1

p
(∫

B(x,ε)

ηε(x− y)dy

) 1
q

︸ ︷︷ ︸
=1

.
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Therefore,

‖f ε‖pLp(K) =

∫
K

| f ε(x) |p dx ≤
∫
K

(∫
B(x,ε)

ηε(x− y) | f(y) |p dy
)
dx

=

∫
K

∫
W

ηε(x− y) | f(y) |p dy dx

=

∫
W

| f(y) |p
∫
K

ηε(x− y)dxdy

≤ ‖f‖pLp(W ).

W is compactly contained in U . Hence, C(W ) is dense in Lp, i.e.

∀ f ∈ Lp(W )∀ δ > 0 ∃ g ∈ C(W ) : ‖f − g‖Lp(W ) ≤ δ.

Fix δ > 0 and choose g ∈ C(W ) such that ‖f − g‖Lp < δ. Then

‖f ε − f‖Lp(K) ≤ ‖f ε − gε‖Lp(K) + ‖gε − g‖Lp(K) + ‖g − f‖Lp(K)

≤ ‖f − g‖Lp(W ) + ‖gε − g‖Lp(K) + ‖f − g‖Lp(W )

≤ 2δ + ‖gε − g‖Lp(K).

By (2) we have that

‖gε − g‖Lp(K) ≤| K |
1
p sup
x∈K
|gε(x)− g(x)| ε→0−→ 0.

Summarizing we have

∀ K ⊂ U compact ∀η > 0 ∃ ε0 > 0 ∀ ε < ε0 : ‖f ε − f‖Lp(K) ≤ η.

�

3.2. Partition of unity

In the following section we use the method of mollification to construct partitions of
unity. We will use these results in the following proofs to obtain global properties from local
ones.

Lemma 3.10. Let K be a compact subset of Rn and U ⊆ Rn open such that K ⊂ U . Then
there exists a function ψ ∈ C∞c (Rn) such that 0 ≤ ψ ≤ 1, ψ ≡ 1 on K and suppψ ⊂ U .

Proof. Let

Kε = {x ∈ Rn : d(x,K) ≤ ε}, ε > 0.

Let ε > 0 small enough that K3ε ⊂ U .
We set

ψ(x) = ηε ∗ 1K2ε (x) =

∫
Rn
ηε(x− y)1K2ε(y)dy, x ∈ Rn.

By the above properties of mollification we know that ψ ∈ C∞, ψ ≡ 1 on K and

suppψ ⊆ supp ηε +K2ε ⊆ K3ε ⊂ U.

�
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Figure 3.3. Partition of unity

Lemma 3.11. Let K ⊂ Rn be compact with K ⊂
⋃k
j=1 Vj, where (Vi)

k
i=1 is a sequence

of open sets in Rn. Then there exists a sequence (Ki)
k
i=1 of compact sets in Rn such that

Kj ⊂ Vj and K ⊆
⋃k
j=1Kj.

Proof. Since K is bounded we can assume that Vj is bounded. Let

Vj,n = {x ∈ Vj : d(x, ∂Vj) >
1

n
}.

Then Vj,n ⊂ Vj, for all n ∈ N and each sequence (Vj,n)n∈N is increasing. The sets (Vj,n)kj=1,n∈N
form an open cover of K. K is compact. Hence, there exists an N ∈ N such that

K ⊆
k⋃
j=1

Vj,N ⊆
k⋃
j=1

Vj,N =:
k⋃
j=1

Kj.

�

Theorem 3.12. Let U ⊆ Rn be bounded and U ⊂⊂
⋃k
i=1 Vi, where (Vi)

k
i=1 is a sequence

of open sets in Rn. There exists a sequence of smooth functions ξi, 1 ≤ i ≤ k, such that
0 ≤ ξi ≤ 1, supp ξi ⊂ Vi and

∑
ξi ≡ 1 on U.

We call the sequence (ξi)
k
i=1 a smooth partition of unity subordinate to the open

sets (Vi)
k
i=1.

Proof. Let K ⊆ Rn be compact such that U ⊂ K ⊂
⋃k
j=1 Vj. According to Lemma 3.11

there exist compact subsets Kj ⊂ Vj such that U ⊂ K ⊂
⋃k
j=1 Kj. According to Lemma

3.10 for each j ∈ {1, . . . , k} there exists a function ψj ∈ C∞c (Rn) satisfying 0 ≤ ψj ≤ 1,
ψj ≡ 1 on Kj and supp ξj ⊂ Vj. Let

ξ1 = ψ1, ξ2 = ψ2(1− ψ1), . . . , ξk = ψk(1− ψ1) . . . (1− ψk−1).

Then we have that 0 ≤ ξj ≤ 1 and ξj ∈ C∞c (Vj) for all 1 ≤ j ≤ k. Furthermore,

1−
k∑
j=1

ξj = 1− [ψ1 + ψ2(1− ψ1) + . . .+ (1− ψk−1)] (3.2)

= (1− ψ1)(1− ψ2) . . . (1− ψk). (3.3)
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For each point x ∈ U there is at least one factor (1− ψj) that vanishes. Hence, the product
equals zero on U and thus,

k∑
j=1

ξj ≡ 1 on U.

�

Theorem 3.13. Let U ⊆ Rn be open with locally finite open cover (Vi)
∞
i=1, i.e. U ⊆⋃∞

i=1 Vi and for every x ∈ U there exist only finitely many Vi such that x ∈ Vi. Then there
exists a sequence of smooth functions (ξi)i∈N such that 0 ≤ ξi ≤ 1, supp ξi ⊂ Vi and

∑
ξi = 1

on U.

We call the sequence (ξi)
∞
i=1 a smooth partition of unity subordinate to the locally

finite cover (Vi)
∞
i=1.

Proof. According to Lemma 3.14 we can choose an open cover (Wi)
∞
i=1 of U such that

Wi ⊆ Vi. Then, analogously to Theorem 3.12 the statement holds. Note that by the local
finiteness of the cover we have that for every x ∈ U there are only finitely many ξi such that
x ∈ supp ξi. Hence,

∑
ξi(x) is finite for every x ∈ U . �

Lemma 3.14. Let U ⊆ Rn be open with open cover (Vi)
∞
i=1. Then there exists an open

cover (Wi)
∞
i=1 of U such that Wi ⊆ Vi for all i ∈ N.

Proof. Let A = U \
⋃∞
i=2 Vi. Then A ⊂ V1 and A is closed in U . There exists an

open set W1 such that A ⊂ W1 ⊂ W1 ⊂ V1. The collection (W1, V2, . . . ) forms a cover
of U . Let W1,...,Wk1 be open sets such that {W1, ...,Wk1, Vk, Vk+1, ...} covers U . Let A =

U \
(⋃k−1

i=1 Wi ∪
⋃∞
i=1 Vk+i

)
. A is closed in U . There exists an open set Wk such that

A ⊂ Wk ⊂ Wk ⊂ Vk. Then {W1, . . . ,Wk, Vk+1, . . . } is an open cover of U . �

Using the method of mollification and the partition of unity we will show in the following
that functions in a Sobolev space can be approximated by smooth functions. We start
with local approximation (convergence on W k,p

loc (U)), then we extend this idea to global
approximation (convergence on W k,p(U)) and finally, requiring restrictions on the boundary
∂U , we will obtain approximation by functions belonging to C∞(U), and not just C∞(U).

3.3. Local approximation by smooth functions

Let U ⊆ Rn open. Remember that for ε > 0

Uε = {x ∈ U : d(x, ∂U) > ε}.

Theorem 3.15. Let u ∈ W k,p(U), 1 ≤ p <∞. Let ε > 0 and set

uε(x) = (ηε ∗ u)(x), x ∈ Uε,

where ηε is the mollifier defined in Definition 3.1. Then

(1) uε ∈ C∞(Uε) for all ε > 0,

(2) uε
ε→0−→ u in W k,p

loc (U).
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Proof. u ∈ W k,p(U), therefore u ∈ L1
loc(U). Hence, (1) has already be shown in Lemma

3.7. Corollary 3.8 yields that for all |α| ≤ k

Dαuε(x) = ηε ∗Dαu (x), for all x ∈ Uε. (3.4)

we have to show that for all V ⊂⊂ U

lim
ε→0
‖uε − u‖Wk,p(V ) = 0⇐⇒ ∀ |α| ≤ k : lim

ε→0
‖Dαuε −Dαu‖Lp(V ) = 0.

Using (3.4) and Theorem 3.9 we obtain

lim
ε→0
‖Dαuε −Dαu‖Lp(V ) = lim

ε→0
‖ηε ∗Dαu−Dαu‖Lp(V )

= lim
ε→0
‖(Dαu)ε −Dαu‖pLp(V ) = 0.

�

3.4. Global approximation by smooth functions

Theorem 3.16. Let U ⊆ Rn be open and bounded. Let u ∈ W k,p(U), 1 ≤ p <∞. Then
there exists a sequence (um)m∈N in C∞(U) ∩W k,p(U) such that

lim
m→∞

‖um − u‖Wk,p(U) = 0. (3.5)

Proof. Let

Ui = {x ∈ U : d(x, ∂U) >
1

i
}, i ∈ N.

Then Ui ⊆ Ui+1 and

U =
∞⋃
i=1

{x ∈ U : d(x, ∂U) >
1

i
}.

Let Vi = Ui+3 \ U i. Then #{j ∈ N : Vi ∩ Vj 6= ∅} ≤ 3. Therefore, each x ∈ U is element of
at least one and at most three sets of the family (Vi)i∈N. We choose V0 ⊂⊂ U such that

U =
⋃
i∈N0

Vi.

V

V

V

V

V

V

k k

k+1 k+1

k+2 k+2

U

U

U

U

k

k+1

k+2

k+3

V V Vk k+1 k+2
' '

Figure 3.4. The families Uk, Vk
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Let (ξi)
∞
i=0 be a smooth partition of unity subordinate to the family of open sets (Vi)

∞
i=0,

i.e.

0 ≤ ξi ≤ 1, ξi ∈ C∞c (Vi), for all i ∈ N0,
∞∑
i=0

ξi = 1 on U . (3.6)

Let u ∈ W k,p(U). Then by Lemma 2.16 we have that ξiu ∈ W k,p(U) and supp ξiu ⊂⊂ Vi.
Let δ > 0 be fixed. By Theorem 3.15 we can choose εi > 0 such that ui = ηεi ∗ (ξi u)

satisfies

‖ui − ξi u‖Wk,p(U) ≤
δ

2i+1
(3.7)

suppui ⊂ Wi = Ui+4 \ Ui ⊃ Vi. (3.8)

We define

v(x) :=
∞∑
i=0

ui(x), x ∈ U.

v ∈ C∞(U), since for every x ∈ U we have that #{i ∈ N0 : ui(x) 6= 0} ≤ 3. We have

u = u · 1 =
∞∑
i=0

ξiu.

Therefore,

‖u− v‖Wk,p(U) =
∥∥∥ ∞∑
i=0

ξiu−
∞∑
i=0

ui
∥∥∥
Wk,p(U)

≤
∞∑
i=0

‖ξi u− ui‖Wk,p(U) ≤
∞∑
i=0

δ 2−i−1 = δ.

Note that ‖v‖Wk,p(U) ≤ ‖v − u‖Wk,p(U) + ‖u‖Wk,p(u) <∞. Summarizing we have that

∀δ > 0 ∃v ∈ W k,p(U) ∩ C∞(U) : ‖u− v‖Wk,p(U) < δ.

�

Remark.

(1) The assumption of U to be bounded is not absolutely necessary. The same proof
holds for example if U = {x ∈ Rn : xn > 0}. U is unbounded but has boundary
∂U = {xn = 0}.

(2) Note that Theorem 3.16 is also true for U = Rn, see [1, Theorem 3.16].

3.5. Global approximation by functions smooth up to the boundary

Theorem 3.17. Let U ⊆ Rn be open and bounded and ∂U is C1. Let u ∈ W k,p(U),
1 ≤ p <∞. Then there exists a sequence (um)∞m=1 in C∞(U) such that

lim
m→∞

‖um − u‖Wk,p(U) = 0. (3.9)
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Proof. Step 1: Let x0 ∈ ∂U . ∂U is C1, i.e. (cf. Definition 11.12) there exists r > 0
and γ : Rn−1 −→ R ∈ C1 such that - upon relabeling and reorienting the coordinate axes if
necessary - we have

B(x0, r) ∩ U = {x ∈ B(x0, r) : xn > γ(x1, . . . , xn−1)}.

x

x

x

0

e

e
u

'Ñ
n-1

en

B(x,r)

V

Step 2: Let V = B(x0,
r
2
) ∩ U . Let 0 < ε << 1 and λ >> 1 such that for the shifted

point

xε = x+ λ ε en, x ∈ V ,
where en is the nth standard unit vector, the following holds

B(xε, ε) ⊆ U ∩B(x0, r).

Now we define uε(x) = u(xε), x ∈ V . This is the function u translated a distance ελ in
en direction. The idea is that we have ”moved up enough” so that ”there is room to mollify
within U”. We can mollify the function uε within the ε - ball (i.e. we can mollify it within
U). Let

vε(x) := ηε ∗ uε(x).

Clearly, vε ∈ C∞(V ). The mollification vε converges towards u in W k,p(V ). This is true if
and only if for all |α| ≤ k we have

lim
ε→0
‖Dαvε −Dαu‖Lp(V ) = 0.

Indeed,

‖Dαvε −Dαu‖Lp(V ) ≤ ‖Dαvε −Dαuε‖Lp(V ) + ‖Dαuε −Dαu‖Lp(V ) −→ 0, when ε→ 0.

The first term on the right-hand side vanishes for ε → 0 by the argument of Theorem
3.15. The second term vanishes for ε → 0 by the fact that translation is continuous in Lp

(Exercise).
Step 3: ∂U is C1. Hence, by definition, for every x ∈ ∂U there exists rx > 0 and a

continuous function γx : Rn−1 −→ R such that

B(x, rx) ∩ U = {ω ∈ B(x, rx) : ωn > γx(ω1, . . . , ωn−1)}.
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Therefore, {B(x, rx) : x ∈ ∂U} forms an open covering of ∂U . ∂U is compact (bounded and
closed). Hence, there exists N ∈ N and x1, . . . , xN ∈ ∂U such that

∂U ⊆
N⋃
i=1

B(xi,
ri
2

). (3.10)

Let Vi = B(xi,
ri
2

) ∩ U . Choose δ > 0. Steps 1-2 show that for every 1 ≤ i ≤ N there exists

a function vi ∈ C∞(V i) with
‖vi − u‖Wk,p(Vi) ≤ δ.

We choose V0 ⊂⊂ U such that U ⊆
⋃N
i=0 Vi. By Theorem 3.15 we get that there exists a

function v0 ∈ C∞(V0) such that

‖v0 − u‖Wk,p(V0) ≤ δ. (3.11)

Vi

V
0 ¶U

Let (ξi)
N
i=0 be a smooth partition of unity subordinate to the open cover

{V0, B(x1,
r1

2
), . . . , B(xN ,

rN
2

)}

of U , i.e. 0 ≤ ξi ≤ 1, ξ0 ∈ C∞c (V0), ξi ∈ C∞c (B(xi,
ri
2

)), 1 ≤ i ≤ N and
∑N

i=0 ξi = 1 on U .
We define

v :=
N∑
i=0

ξivi ∈ C∞(U).

Then we have for all | α |≤ k:

‖v − u‖Wk,p(U) =

∥∥∥∥∥
N∑
i=0

ξi(vi − u)

∥∥∥∥∥
Wk,p(U)

≤
N∑
i=0

‖ξi(vi − u)‖Wk,p(U)

≤ C(N, k, p)
N∑
i=0

‖vi − u‖Wk,p(Vi)
≤ C N δ =: δ0.

Note that ‖v‖Wk,p(U) <∞. Summarizing we have that

∀δ0 > 0 ∃v ∈ C∞(U) ∩W k,p(U) : ‖v − u‖Wk,p(U) < δ0.
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Remark 3.18.

‖ξi(vi − u)‖Wk,p(Vi)
=

( ∑
|α|≤k

‖Dα(ξi(vi − u))‖pLp(Vi)

) 1
p

and by Leibniz’s formula

|Dα(ξi(vi − u))(x)| =

∣∣∣∣∣∑
β≤α

(
α

β

)
Dα−βξi(x)Dβ(vi − u)(x)

∣∣∣∣∣
≤
∑
β≤α

(
α

β

)∣∣Dα−βξi(x)
∣∣∣∣Dβ(vi − u)(x)

∣∣
≤ sup

β≤α

∣∣Dα−βξi(x)
∣∣ ∑
β≤α

(
α

β

)∣∣Dβ(vi − u)(x)
∣∣.

Hence,

‖Dα(ξi(vi − u))‖pLp(Vi)
≤ sup

x∈Vi
sup
β≤α

∣∣Dα−βξi(x)
∣∣p ∥∥∥∥∥∑

β≤α

(
α

β

)∣∣Dβ(u− vi)
∣∣∥∥∥∥∥
p

Lp(Vi)

≤ Ci(p, α)p sup
x∈Vi

sup
β≤α

∣∣Dα−βξi(x)
∣∣p ∑

β≤α

(
α

β

)p∥∥Dβ(u− vi)
∥∥p
Lp(Vi)

.

Summarizing we have∑
|α|≤k

‖Dα(ξi(vi − u))‖pLp(Vi)

 1
p

≤ Ci(p, k) sup
|α|≤k

sup
x∈Vi
|Dαξi(x)|

∑
|α|≤k

∑
β≤α

(
α

β

)p∥∥Dβ(u− vi)
∥∥p
Lp(Vi)

 1
p

≤ Ci(p, k) sup
|α|≤k

sup
x∈Vi
|Dαξi(x)|

∑
|α|≤k

‖Dα(u− vi)‖pLp(Vi)

 1
p

= Ci(p, k, Vi, ξi)

∑
|α|≤k

‖Dα(u− vi)‖pLp(Vi)

 1
p

.

Actually an analogous proof (see [1, Theorem 3.18]) gives the following statement

Theorem 3.19. Let U ⊆ Rn be open and let it have the segment property (see [1, p.54]).
Then the set of restrictions to U in C∞c (Rn) is dense in W k,p(U), 1 ≤ p <∞.

and the following corollary

Corollary 3.20. Let 1 ≤ p <∞. Then

W k,p
0 (Rn) = W k,p(Rn). (3.12)
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CHAPTER 4

Extensions

In general, many properties of W k,p(U) can be inherited from W k,p(Rn) provided U is
”nice”. The goal of this section is to extend functions in the Sobolev spaceW k,p(U) to become
functions in the Sobolev space W k,p(Rn). Indeed, we need a strong theorem. Observe for
instance that extending u ∈ W 1,p(U) by setting it zero in Rn \U will not in general work, as
we thereby create such a strong discontinuity along ∂U that the extended function no longer
has a weak partial derivative. We must invent a way to extend u that preserves the weak
derivatives across ∂U .

Theorem 4.1 (Extension Theorem). Let k ∈ N0. Let 1 ≤ p ≤ ∞. Let U ⊂ Rn open and
bounded and assume ∂U is Ck. Let V ⊂ Rn be open such that U ⊂⊂ V . Then there exists
a linear and bounded operator

E : W k,p(U) −→ W k,p(Rn)

such that for all u ∈ W k,p(U):

(1) Eu = u a.e. on U,
(2) suppEu ⊂ V ,
(3) ‖E(u)‖Wk,p(Rn) ≤ C(p, k, U, V ) ‖u‖Wk,p(U).

Definition 4.2. We call Eu an extension of u to Rn.

Definition 4.3 (essential support). Let u ∈ W k,p(U). Then the support of u is given
by

supp(u) = U \
⋃
{V ⊆ U open : u = 0 a.e. on V }.

If necessary we write ess supp(u) (essential support) for the support of u ∈ W k,p(U)
to avoid confusion with the classical support of a continuous function. Note that for a
continuous function the essential support and the classical support coincide (Exercise).

Proof. Let k = 1 and 1 ≤ p <∞.
Step 1: Let x0 ∈ ∂U . Suppose that ∂U is flat near x0 and lies in the plane {xn = 0},

see figure 4.1.
Then we may assume there exists δ > 0 such that

B+ : = U ∩B(x0, δ) = B ∩ {xn > 0}
B− : = (Rn \ U) ∩B(x0, δ) = B ∩ {xn ≤ 0},

where B = B(x0, δ).
Assume that u ∈ C1(U). We define

u(x) =

{
u(x), if x ∈ B+,

u(x1, . . . , xn−1,−xn) + 4 · u(x1, . . . , xn−1,−xn
2

), if x ∈ B−.
(4.1)
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B

BX

X

X0

U

Figure 4.1. half-ball at the boundary

This is called a higher-order reflection of u from B+ to B−.
Step 2: We show that u ∈ C1(B).
We use the notation u− := u

∣∣
B−

and u+ := u
∣∣
B+ . Then we have

lim
xn→0−

u−(x1, . . . , xn−1, xn) = lim
xn→0+

u+(x1, . . . , xn−1, xn).

Obviously, for 1 ≤ i ≤ n− 1,

∂u−(x)

∂xi
= −3∂xiu(x1, . . . ,−xn) + 4∂xiu(x1, . . . ,−

xn
2

)

Hence, by the above

lim
xn→0−

∂u−

∂xi
(x1, . . . , xn) =

∂u

∂xi
(x1, . . . , xn−1, 0) = lim

xn→0+

∂u+

∂xi
(x1, . . . , xn)

For i = n we have
∂

∂xn
u−(x) = 3∂xnu(x1, . . . ,−xn)− 2∂xnu(x1, . . . ,−

xn
2

)

and therefore,

lim
xn→0−

∂u−

∂xn
(x1, . . . , xn) = ∂xnu(x1, . . . , xn−1, 0) = lim

xn→0+

∂u+

∂xn
(x1, . . . , xn)

Summarizing we have for all multiindices |α| ≤ 1

Dαu+|{xn=0} = Dαu−|{xn=0}.

Step 3 Using these calculations we have

‖u‖W 1,p(B) ≤ Cp ‖u‖W 1,p(B+), (4.2)

where Cp is some constant that does not depend on u. (Exercise).
Step 4 What happens if ∂U is not flat near x0? We reduce the general case to the case

where ∂U is flat near x0. We need the assumption that ∂U is C1. Then for every x0 ∈ ∂U
there exists an r > 0 and a C1-function γ : Rn−1 → R such that we have

U ∩B(x0, r) = {x ∈ B(x0, r) : xn > γ(x1, ..., xn−1)}
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and
∂U ∩B(x0, r) = {x ∈ B(x0, r) : xn = γ(x1, ..., xn−1)}.

There exists a bijective C1-function φ and its inverse ψ such that φ straightens out ∂U
near x0”. Explicitly φ resp. ψ are given by

φ : B = B(x0, r) −→ W ⊆ Rn, (x1, . . . , xn) 7→ (x1, . . . , xn−1, xn − γ(x1, . . . , xn−1)).

ψ : W −→ B, (y1, . . . , yn) 7→ (y1, . . . , yn−1, yn − γ(y1, . . . , yn−1)).

These two maps have the following properties:

(1) φ(∂U ∩B) −→ {xn = 0} ∩W ,
(2) φ ◦ ψ = IdB and ψ ◦ φ = IdW

U
SB

B

B

Q

Q

W

W

Q

Figure 4.2. Straightening out the boundary

Let y = φ(x), x = ψ(y) and u′(y) = u(ψ(y)) for y ∈ W+. Then choose a small ball Q
around y0 = φ(x0) and use the steps 1-3 to obtain a function u′ ∈ C1(Q) as extension of u′

from Q+ to Q satisfying
‖u′‖W 1,p(Q) ≤ C · ‖u′‖W 1,p(Q+).

Let R := ψ(Q). We transform back to x-variables, and obtain an extension

u : R→ R, x 7→ u′(φ(x))

satisfying
‖u‖W 1,p(R) ≤ C · ‖u‖W 1,p(U), (4.3)

where C is independent of u.
Step 5: ∂U is compact and C1. Therefore, there exist finitely many open sets Ui such

that

∂U ⊆
N⋃
i=1

Ui.

U ⊂⊂ V . Hence, we can arrange that Ui ⊆ V for all i. We choose U0 ⊂⊂ U such that

U ⊂
N⋃
i=0

Ui ⊆ V.

35



Subordinate to the cover (Ui)
N
i=0 of U there exists a smooth partition of unity, i.e. a sequence

of smooth functions (ξi)
N
i=0 such that 0 ≤ ξi ≤ 1, supp ξi ⊆ Ui and

∑
ξi = 1 on U .

Note that since u ∈ C1(U) we have that ξiu ∈ C1(U). According to Steps 1-4 there exists
an extension

ξiu : Ui −→ R,
such that

‖ξiu‖W 1,p(Ui) ≤ Ci‖ξiu‖W 1,p(U). (4.4)

Note that ξ0u = u, since supp ξ0 ⊂ U0 ⊂⊂ U. We define

u(x) =
N∑
i=0

ξiu(x), x ∈
N⋃
i=0

Ui ⊂ V

and u ≡ 0 for x ∈ Rn \ (
⋃N
i=0 Ui). Then suppu ⊂ V and

‖u‖W 1,p(Rn) ≤ C‖u‖W 1,p(U) (4.5)

for some constant C, independent of u.
Step 6: For u ∈ C1(U) and we can define our extension operator E as follows

Eu = u. (4.6)

The operator is linear and satisfies: Eu = u on U , suppEu ⊂ V and

‖u‖W 1,p(Rn) ≤ C‖u‖W 1,p(U).

Step 7: Let u ∈ W 1,p(U) and 1 ≤ p < ∞. We define the extension operator using a
density argument. By Theorem 3.17 we can choose a sequence (um)∞m=1 ∈ C1(U) such that

‖um − u‖W 1,p(U)
m→∞−→ 0. (4.7)

By the linearity of E and equation (4.5) we have

‖E(um)− E(uk)‖W 1,p(Rn) ≤ C · ‖um − uk‖W 1,p(U).

(um)∞m=1 is Cauchy-sequence inW 1,p(U). Hence, (E(um))∞m=1 is Cauchy sequence inW 1,p(Rn).
Since W 1,p(Rn) is complete there exists a limit limm→∞ Tum in W 1,p(Rn) and we can define

Eu = lim
m→∞

Eum. (4.8)

The operator E : W 1,p(U)→ W 1,p(Rn) defined in (4.8) is well-defined (i.e. does not depend
on the choice of the sequence (um)) and satisfies the properties of the theorem.

Step 8: The case p =∞ is left to the reader. �

Remark 4.4.

(1) Theorem 4.1 is also true for the half-space Rn
+ = Rn−1 × R+. This is obtained by

Step 1-3 of the proof.
(2) Assume that ∂U is C2. Then the extension operator E constructed above is also a

bounded linear operator from W 2,p(U) to W 2,p(Rn).
(3) The above construction does not provide an extension for the Sobolev spaces

W k,p(U), k > 2. This requires a more complicated higher-order reflection tech-
nique, see e.g. [1, Chapter 4].
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CHAPTER 5

Traces

In the following chapter we discuss the possibility of assigning ”boundary values” along
∂U to a function u ∈ W 1,p(U), assuming that ∂U is C1. If u ∈ C(U), then u clearly has values
on ∂U in the usual sense, but a typical function u ∈ W 1,p(U) is in general not continuous and
only defined almost everywhere in U . Since ∂U has n-dimensional Lebesgue-measure zero,
there is no direct meaning we can give to the expression ”u restricted to the boundary”. To
resolve this problems we need the trace operator.

Theorem 5.1 (Trace Theorem). Let U ⊆ Rn be open, bounded and ∂U is C1. Let
1 ≤ p <∞. Then there exists a linear bounded operator

T : W 1,p(U) −→ Lp(∂U)

such that

(1) Tu = u
∣∣
∂U

for all u ∈ W 1,p(U) ∩ C(U)
(2)

‖Tu‖Lp(∂U) ≤ C‖u‖W 1,p(U)

for each u ∈ W 1,p(U), with the constant depending only on p and U .

Definition 5.2. We call Tu the trace of u on ∂U .

Remark 5.3.

(1) There is a version of Theorem 5.1 for the Sobolev spaces W k,p(U) for 1 < k < n
p
,

see e.g. [1, Theorem 5.22].
(2) There does not exist a bounded linear operator

T : Lp(U) −→ Lp(∂U)

such that Tu = u
∣∣
∂U

whenever u ∈ C(U) ∩ Lp(U).

Proof. Let u ∈ C1(U).
Step 1: Let x0 ∈ ∂U . As in the proof of Theorem 4.1 we assume that ∂U is flat near

x0 lying in the plane {xn = 0}. Choose an open ball B = B(x0, r) such that

B+ := U ∩B = B ∩ {xn > 0},
B− := (Rn \ U) ∩B = B ∩ {xn ≤ 0}.

Let B̂ = B(x0,
r
2
) and Γ = B̂ ∩ ∂U , see figure 5.1. We show that

‖u‖Lp(Γ) ≤ C(p,B+)‖u‖W 1,p(B+). (5.1)

We choose ξ ∈ C∞c (B) such that ξ ≥ 0 on B and ξ = 1 on B̂. Then supp ξu ⊆ B+

and ξu = u on Γ. Let x′ = (x1, . . . , xn−1) ∈ Rn−1. Then, by the fundamental theorem and
Hölder’s inequality, we have
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|ξu (x′, 0)|p ≤
(∫ ∞

0

|(ξu)xn(x′, t)|dt
)p

≤ rp−1

∫ ∞
0

|(ξu)xn(x′, t)|pdt

≤ rp−12p−1

∫ ∞
0

|ξxnu(x′, t)|p + |ξuxn(x′, t)|pdt.

We integrate over Γ and obtain∫
Γ

|ξu (x′, 0)|pdx′ ≤ (2r)p−1

∫
Rn−1

∫ ∞
0

|ξxnu(x′, t)|p + |ξuxn(x′, t)|pdtdx′

≤ C(p,B+)

∫
B+

|u(x)|p + |uxn(x)|pdx

≤ C(p,B+)‖u‖W 1,p(B+).

This yields equation (5.1).
Step 2: Analogously to the proof of Theorem 4.1 we can straighten out the boundary

near x0 if necessary to obtain the setting in Step 1 (cf. figure 4.2). After transforming back
to the original setting we obtain the estimate∫

Γ

|u|p dS ≤ C‖u‖pW 1,p(U), (5.2)

where Γ is some open subset of ∂U containing x0.
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Step 3: ∂U is compact. Therefore, there exist finitely many open subsets Γi of ∂U such
that

∂U =
N⋃
i=1

Γi

and by Step 1 and Step 2 we obtain

‖u‖Lp(Γi)
≤ Ci‖u‖W 1,p(U). (5.3)

Therefore,

‖u‖Lp(∂U) =

∫
∂U

|u|pdx ≤
N∑
i=1

∫
Γi

|u|pdx =
N∑
i=1

‖u‖Lp(Γi)
≤ C(N, p)‖u‖W 1,p(U). (5.4)

We define

Tu = u
∣∣
∂U

(5.5)

then our previous estimate implies

‖Tu‖Lp(∂U) ≤ C ‖u‖W 1,p(U) . (5.6)

Hence, Theorem 5.1 is proven for u ∈ C1(U).
Step 4: Assume now u ∈ W 1,p(U). Choose (um)∞m=1 ∈ C∞(U) ∩W 1,p(U) such that

‖um − u‖W 1,p(U)
m→∞−→ 0 .

By the equations (5.5) and (5.6) we have

‖T (um − ul)‖Lp(∂U) ≤ C ‖um − ul‖W 1,p(U).

Hence, (Tum)∞m=1 is a Cauchy sequence in Lp with limit limm→∞ Tum ∈ Lp. We define

Tu = lim
m→∞

(Tum).

The operator Tu is well defined (does not depend on the choice of the sequence (um)∞m=1),
bounded and linear.

The sequence (um)∞m=1 is constructed from u by smoothing by convolution (Theorem
3.17). If u ∈ C(U) ∩W 1,p(U) we have by Theorem 3.9 that (um) converges uniformly to
u on compact subsets of U , especially on ∂U . Therefore, (Tum)∞m=1 converges uniformly to
u
∣∣
∂U

on ∂U . �

Of special interest are functions which have trace zero. In the following theorem we
examine more closely what it means for a Sobolev function to have zero trace.

Theorem 5.4 (Trace Zero Theorem). Let U ⊆ Rn be open. Assume U is bounded and
∂U is C1. Let 1 ≤ p <∞ and u ∈ W 1,p(U). Then

Tu ≡ 0⇔ u ∈ W 1,p
0 (U)

Recall that

u ∈ W 1,p
0 (U)⇐⇒ ∃ sequence (um)∞m=1 in C∞c such that ‖um − u‖W 1,p(U)

m→∞−→ 0.
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Proof. 1. ”⇐”: By the definition of the trace operator we have for u ∈ W 1,p
0 (U) with

(um)∞m=1 as above that

‖Tu‖Lp(∂U) = ‖Tu− Tum + Tum‖Lp(∂U)

≤ ‖Tu− Tum‖Lp(∂U) + ‖Tum‖Lp(∂U)

= ‖Tu− Tum‖Lp(∂U) → 0.

Therefore, Tu ≡ 0 with equality in Lp. We have that

W 1,p
0 (U) ⊆ {u ∈ W 1,p(U) : Tu ≡ 0}.

2. ”⇒”: We show Tu ≡ 0 ⇒ u ∈ W 1,p(U). By definition Tu ≡ 0 if and only if there
exists a sequence (um) in C1(U) such that

um → u in W 1,p(U) and ‖Tum‖Lp(∂U) → 0, if m→∞. (5.7)

Using partition of unity and flattening out ∂U as before, we may assume that

U = Rn
+ = Rn−1 × R+ = Rn−1 × {x ∈ R, x > 0},

u ∈ W 1,p(U) with compact support in Rn
+.

(5.8)

Recall that
supp(u) = U \

⋃
{V ⊆ U open : u = 0 a.e. on V }.

Step 1: Let x′ ∈ Rn−1, xn ∈ R+. Let (um) in C1(U) be as in equation (5.7). Then

um(x′, xn) = um(x′, 0) +

∫ xn

0

(um)xn(x′, t)dt

and by the triangle inequality and inequality (11.2)

|um(x′, xn)|p ≤ Cp

(
|um(x′, 0)|p +

(∫ xn

0

|(um)xn(x′, t)| dt
)p)

.

By Hölder’s inequality we have

|um(x′, xn)|p ≤ Cp

(
|um(x′, 0)|p + xp−1

n

∫ xn

0

|(um)xn(x′, t)|pdt
)

We fix xn and integrate over Rn−1:∫
Rn−1

|um(x′, xn)|pdx′ ≤ Cp

(∫
Rn−1

|um(x′, 0)|pdx′ + xp−1
n

∫ xn

0

∫
Rn−1

|(um)xn(x′, t)|pdx′dt
)
.

Let m→∞. Then by equation (5.7) we have∫
Rn−1

|u(x′, xn)|pdx′ ≤ Cp x
p−1
n

∫ xn

0

∫
Rn−1

|uxn(x′, t)|pdx′dt. (5.9)

Note that ∫
Rn−1

|um(x′, 0)|pdx′ = ‖Tum‖Lp(Rn−1) → 0, if m→∞.

Step 2: Let ζ ∈ C∞(R+) satisfying 0 ≤ ζ ≤ 1 and

ζ
∣∣
[0,1]

= 1, ζ
∣∣
R+\[0,2]

= 0.

Let x = (x′, xn) ∈ Rn
+ and define the function ζm(x) = ζ(mxn).
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Figure 5.2. ζm(x)

The function

wm(x) = (1− ζm(x))u(x)

is in W 1,p(Rn
+) and

suppwm ⊆ {(x′, t) ∈ suppu : t >
1

m
}.

We show that

‖wm − u‖W 1,p(Rn+) → 0, m→∞. (5.10)

The weak partial derivatives of wm are given by

(wm)xn(x′, xn) = uxn(x′, xn)(1− ζm(x′, xn))−mζ ′(mxn)u(x′, xn)

and for 1 ≤ i < n

(wm)xi(x) = (1− ζm(x))uxi(x).

Hence, for 1 ≤ i < n∫
Rn+
|(wm)xi − uxi |

pdx =

∫
|(1− ζm(x))uxi(x)− uxi(x)|pdx

=

∫
|ζm(x)uxi(x)|pdx m→∞−→ 0.

and
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∫
Rn+
|(wm)xn − uxn|

pdx =

∫
Rn−1

∫ ∞
0

|ζm(x′, t)uxn(x′, t) +mu(x′, t)ζ ′(mt)|pdtdx′

≤ Cp

(∫
Rn+
|ζmuxn|

pdx+mp

∫
Rn−1

∫ ∞
0

|ζ ′(mt)u(x′, t)|pdtdx′
)

=: Cp (Am +Bm) .

Since u ∈ W 1,p(Rn
+) we have that uxn ∈ Lp(Rn

+). By definition ζm ≤ 1 and ζm → 0 for all
x ∈ Rn

+. Therefore, by Lebesgue domination theorem

Am → 0, if m→∞.
We use Step 1 in order to get an estimate for Bm. By equation (5.9) we have

Bm = mp

∫
Rn−1

∫ 2
m

0

|ζ ′(mt)u(x′, t)|pdtdx′

≤ Cpm
p

∫ 2
m

0

∫
Rn−1

|u(x′, t)|pdx′dt

≤ Cpm
p

∫ 2
m

0

sp−1

(∫ s

0

∫
Rn−1

|uxn(x′, t)|pdx′dt
)
ds

≤ Cpm
p

(∫ 2
m

0

sp−1ds

)∫ 2
m

0

∫
Rn−1

|uxn(x′, t)|pdx′dt

= Cp

∫ 2
m

0

∫
Rn−1

|uxn(x′, t)|pdx′dt m→∞−→ 0.

Hence, ∫
Rn+
|(wm)xn − uxn|

pdx→ 0, ifm→∞.

Summarizing we have equation (5.10).
Step 4: We use smoothing by convolution to construct a sequence (ũm) in C∞c (Rn

+).
Let εm = 1

m
. We know that wm = 0 for all (x′, xn) ∈ Rn−1 × (0, 1

m
) and wm has compact

support in Rn
+. Hence, ωm ∗ ηεm is well defined on Rn

+ and has compact support. Therefore,
ω ∗ ηεm ∈ C∞c (Rn

+) and by Theorem 3.9

‖wm ∗ ηεm − wm‖W 1,p → 0.

Let ũm = wm ∗ ηεm . Then

‖ũm − u‖W 1,p ≤ ‖ũm − wm‖W 1,p + ‖wm − u‖W 1,p → 0, m→∞.
�
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CHAPTER 6

Sobolev inequalities

In this chapter we prove a class of inequalities of the form

‖u‖X ≤ C‖u‖Wk,p(U), (6.1)

where X is a Banach space, i.e. we consider the question: ”If u ∈ W k,p(U), does u belong
automatically to a certain other Banach space X?” Inequalities of the form (6.1) are called
Sobolev type inequalities. This kind of estimates give us information on the embeddings
of Sobolev spaces into other spaces.

Recall that we say that a Banach space E is continuously embedded into another Banach
space F , written E ↪→ F if there exists a constant C such that for all x ∈ E

‖x‖F ≤ C‖x‖E. (6.2)

This means that the natural inclusion map i : E → F, x 7→ x is continuous.

We start the investigations with the Sobolev spaces W 1,p(U) and will observe that these
Sobolev spaces indeed embed into certain other spaces, but which other spaces depends upon
whether

1 ≤ p < n, (6.3)

p = n, (6.4)

n < p ≤ ∞. (6.5)

The case (6.3) is covered by the Gagliardo-Nirenberg-Sobolev inequality, see Section 6.1
and the case (6.5) is covered by the so called Morrey’s inequality, see Section (6.5).

6.1. Gagliardo-Nirenberg-Sobolev inequality

Definition 6.1. If 1 ≤ p < n, the Sobolev conjugate of p is

p∗ =
np

n− p
.

Note that
1

p∗
=

1

p
− 1

n
and p∗ > p. (6.6)

Theorem 6.2 (Gagliardo-Nirenberg-Sobolev Inequality). Let 1 ≤ p < n. There exists a
constant C, depending only on n and p such that

‖u‖Lp∗ (Rn) ≤ C‖Du‖Lp(Rn) (6.7)

for all u ∈ C1
c (Rn).
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Motivation. We first demonstrate that if any inequality of the form

‖u‖Lq(Rn) ≤ C‖Du‖Lp(Rn), (6.8)

for certain constants C > 0, 1 ≤ q <∞ and functions u ∈ C∞c (Rn) holds, then the number
q cannot be arbitrary. Let u ∈ C∞c (Rn), u 6≡ 0 and define for λ > 0

uλ(x) := u(λx) (x ∈ Rn) .

We assume that (6.8) holds and apply it to uλ, i.e. there exists a constant C such that
for all λ > 0

‖uλ‖Lq(Rn) ≤ C‖Duλ‖Lp(Rn). (6.9)

Now ∫
Rn
|uλ(x)|qdx =

∫
Rn
|u(λx)|qdx =

1

λn

∫
Rn
|u(y)|qdy

and ∫
Rn
|Duλ(x)|pdx = λp

∫
Rn
|Du(λx)|pdx =

λp

λn

∫
Rn
|Du(y)|pdy.

Hence, by (6.9) we get ( 1

λn

) 1
q ‖u‖Lq(Rn) ≤ C

(λp
λn

) 1
p‖Du‖Lp(Rn)

and therefore,

‖u‖Lq(Rn) ≤ Cλ1−n
p

+n
q ‖Du‖Lp(Rn).

If 1 − n
p

+ n
q
6= 0 we can obtain a contradiction by sending λ to 0 or ∞, depending on

whether 1− n
p

+ n
q
> 0 or 1− n

p
+ n

q
< 0. Thus, if in fact the desired inequality (6.1) holds,

we must necessarily have 1− n
p

+ n
q

= 0. This implies that 1
q

= 1
p
− 1

n
and therefore, q = np

n−p .

Proof. Assume p = 1. Note that u has compact support. Therefore, we have for each
i = 1, . . . , n and x ∈ Rn

u(x) =

∫ xi

−∞
uxi(x1, . . . , xi−1, yi, xi+1, . . . , xn)dyi

and

|u(x)| ≤
∫ ∞
−∞
|Du(x1, . . . , xi−1, yi, xi+1, . . . , xn)|dyi .

Then

|u(x)|
n
n−1 ≤

n∏
i=1

(∫ ∞
−∞
|Du(x1, . . . , xi−1, yi, xi+1, . . . , xn)| dyi

) 1
n−1

.

We integrate the above inequality with respect to x1 and obtain:∫ ∞
−∞
|u(x)|

n
n−1dx1 ≤

∫ ∞
−∞

n∏
i=1

(∫ ∞
−∞
|Du(x1, . . . , xi−1, yi, xi+1, . . . , xn)| dyi

) 1
n−1

dx1

=

(∫ ∞
−∞
|Du| dy1

) 1
n−1 ∫ ∞

−∞

n∏
i=2

(∫ ∞
−∞
|Du| dyi

) 1
n−1

dx1.
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Applying the general Hölder inequality (Theorem 11.6) with pi = 1
n−1

, i = 1, . . . , n − 1 we
obtain ∫ ∞

−∞
|u(x)|

n
n−1dx1 ≤

(∫ ∞
−∞
|Du| dy1

) 1
n−1
(

n∏
i=2

∫ ∞
−∞

∫ ∞
−∞
|Du| dx1 dyi

) 1
n−1

.

Now we integrate with respect to x2 and obtain∫ ∞
−∞

∫ ∞
−∞
|u(x)|

n
n−1dx1dx2 ≤

∫ ∞
−∞

(∫ ∞
−∞
|Du| dy1

) 1
n−1

dx2

∫ ∞
−∞

(
n∏
i=2

∫ ∞
−∞

∫ ∞
−∞
|Du| dx1 dyi

) 1
n−1

dx2

=

(∫ ∞
−∞

∫ ∞
−∞
|Du| dx1 dy2

) 1
n−1 ∫ ∞

−∞

n∏
i=1,i 6=2

I
1

n−1

i dx2,

where

I1 =

∫ ∞
−∞
|Du|dy1 and Ii =

∫ ∞
−∞

∫ ∞
−∞
|Du|dx1dyi for i = 3, . . . , n.

Applying the general Hölder inequality once more we obtain∫ ∞
−∞

∫ ∞
−∞
|u(x)|

n
n−1dx1dx2 ≤

(∫ ∞
−∞

∫ ∞
−∞
|Du| dx1 dy2

) 1
n−1
(∫ ∞

−∞

∫ ∞
−∞
|Du| dy1 dx2

) 1
n−1

n∏
i=3

(∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|Du| dx1 dx2 dyi

) 1
n−1

.

We continue by integrating with respect to x3, . . . , xn and and using Hölder’s general in-
equality to obtain finally∫

Rn
|u|

n
n−1dx ≤

n∏
i=1

(∫ ∞
−∞
· · ·
∫ ∞
−∞
|Du| dx1 . . . dyi . . . dxn

) 1
n−1

=

(∫
Rn
|Du|dx

) n
n−1

. (6.10)

This is the Gagliardo-Nirenberg-Sobolev inequality for p=1.
We consider now the case 1 < p < n. Let v := |u|γ for some γ > 1. We apply (6.10) to

v. Then, by Hölder’s inequality (Theorem 11.5)(∫
Rn
|u|

γn
n−1dx

)n−1
n

≤
∫
Rn
|D|u|γ| dx = γ

∫
Rn
|u|γ−1|Du| dx

≤ γ

(∫
Rn
|u|(γ−1) p

p−1dx

) p−1
p
(∫

Rn
|Du|pdx

) 1
p

.

(6.11)

We choose γ so that γn
n−1

= (γ − 1) p
p−1

. That is, we set

γ =
p(n− 1)

n− p
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in which case γn
n−1

= (γ − 1) p
p−1

= np
n−p = p∗. Therefore, (6.11) becomes(∫

Rn
|u|p∗dx

)n−1
n

≤ γ

(∫
Rn
|u|p∗dx

) p−1
p
(∫

Rn
|Du|pdx

) 1
p

what is equal to (∫
Rn
|u|p∗dx

)n−1
n
− p−1

p

≤ γ

(∫
Rn
|Du|pdx

) 1
p

.

Note that
n− 1

n
− p− 1

p
=

1

p∗
and γ = C(n, p).

�

6.2. Estimates for W 1,p and W 1,p
0 , 1 ≤ p < n

The Gagliardo-Nirenberg-Sobolev inequality (Theorem 6.2) gives the continuous embed-
ding of W 1,p(U), 1 ≤ p < n, into the space Lp

∗
, where p∗ is the Sobolev conjugate of p.

Theorem 6.3. Let U ⊆ Rn open and bounded and suppose ∂U is C1. Assume 1 ≤ p < n
and u ∈ W 1,p(U). Then u ∈ Lp∗(U) with the estimate

‖u‖Lp∗ (U) ≤ C‖u‖W 1,p(U), (6.12)

where the constant C depends on n,p and U. In particular, we have for all 1 ≤ q ≤ p∗

‖u‖Lq(U) ≤ C‖u‖W 1,p(U). (6.13)

Proof. The Extension Theorem (Theorem 4.1) yields that there exists an extension
u = Eu ∈ W 1,p(Rn) such that u = u in U, u has compact support and

‖u‖W 1,p(Rn) ≤ C‖u‖W 1,p(U). (6.14)

Because u has compact support we know from Theorem 3.15 that there exists a sequence
(um)∞m=1 of functions in C∞c (Rn) such that

um → u in W 1,p(Rn). (6.15)

Now according to Theorem 6.2 we have that for all l,m ≥ 1

‖um − ul‖Lp∗ (Rn) ≤ C‖Dum −Dul‖Lp(Rn). (6.16)

Thus, by equation (6.15) and (6.16),

um → u in Lp
∗
. (6.17)

By the Gagliardo-Nirenberg-Sobolev inequality we have

‖um‖Lp∗ (Rn) ≤ C‖Dum‖Lp(Rn)

and hence,
‖u‖Lp∗ (Rn) ≤ C‖Du‖Lp(Rn) ≤ C‖u‖W 1,p(Rn). (6.18)

Therefore, by the properties of the extension u we have

‖u‖Lp∗ (U) = ‖u‖Lp∗ (U) ≤ ‖u‖Lp∗ (Rn) ≤ C‖u‖W 1,p(Rn) ≤ C‖u‖W 1,p(U).
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Since |U | <∞ we obtain by Hölder’s inequality equation (6.13). �

Remark 6.4. The boundedness of U is not essential. Remark 4.4 gives the statement
(6.12) for U = Rn

+ = Rn−1 × R+. Corollary 3.20 gives the statement (6.12) for U = Rn.

Theorem 6.5. Let U ⊆ Rn be open and bonded. Let u ∈ W 1,p
0 (U), 1 ≤ p < n. Then we

have the estimate
‖u‖Lq(U) ≤ C‖Du‖Lp(U)

for each q ∈ [1, p∗]. The constant depends only on p, q, n and U .
In particular , for all 1 ≤ p < n,

‖u‖Lp(U) ≤ C‖Du‖Lp(U).

Proof. Let u ∈ W 1,p
0 . Then there exists a sequence (um)∞m=1 in C∞c (U) such that

um → u in W 1,p(U). Now we extend each function um to be 0 on Rn \ U. Analogously to
the above proof we get from the Gagliardo-Nirenberg-Sobolev inequality (Theorem 6.2) the
following estimate

‖u‖Lp∗ (U) ≤ C‖Du‖Lp(U).

Since U is bounded we have |U | < ∞ and therefore, for every 1 ≤ q ≤ p∗ the following
estimate holds

‖u‖Lq(U) ≤ C‖u‖Lp∗ (U).

�

6.3. Alternative proof of the Gagliardo-Nirenberg-Sobolev inequality

Definition 6.6 (Maximal function). Let f ∈ L1
loc(Rn). Then

M(f)(x) := sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy

is the maximal function of f .

Theorem 6.7 (Hardy-Littlewood maximal inequality). If f ∈ L1(Rn), then for every
λ > 0

|{M(f) > λ}| ≤ C1
‖f‖1

λ
, (6.19)

where C1 is a constant which depends only on the dimension n. We say that M(f) is of
weak type (1, 1).

If f ∈ Lp(Rn), 1 < p ≤ ∞, then

‖M(f)‖p ≤ Cp ‖f‖p , (6.20)

where Cp depends only on n and p.

Proof. See [10]. �

Remark 6.8. The proof of inequality (6.20) is based on a typical interpolation argument:
If we have

‖M(f)‖1 ≤ C1 ‖f‖1 (6.21)

and
‖M(f)‖∞ ≤ Cp ‖f‖∞ (6.22)
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then it follows that
‖M(f)‖p ≤ Cp ‖f‖p 1 < p <∞.

Note that M(f) does not satisfy (6.21), but the weaker estimate (6.19). Hence, we need a
stronger interpolation argument: Estimate (6.19) and

‖M(f)‖∞ ≤ C ‖f‖∞
yield

‖M(f)‖p ≤ Cp ‖f‖p 1 < p <∞.

Definition 6.9 (Riesz potentials). Let f ∈ L1
loc(Rn) be a non-negative function. The

Riesz potential of f of order 1 is given by

I1(f)(x) = (| · |1−n ∗ f)(x) =

∫
Rn

f(y)

|x− y|n−1
dy.

(The Riesz potential of order α > 0 would be Iα(f)(x) = (| · |α−n ∗ f)(x).)

Proposition 6.10. If f ∈ L1(Rn), then for all λ > 0

|{I1(|f |) > λ}| ≤ C1(n)

(
‖f‖1

λ

) n
n−1

, (6.23)

where C1(n) is some positive constant that depends only on n.
If f ∈ Lp(Rn), 1 < p < n, then

‖I1(|f |)‖ np
n−p
≤ Cp(n) ‖f‖p , (6.24)

where Cp(n) is some positive constant that depends only on n and p.

Proof. We may assume that f ≥ 0. Given δ > 0 we divide the integral defining I1(f)
into a good part and a bad part.

I1(f)(x) =

∫
B(x,δ)

f(y)

|x− y|n−1
dy +

∫
Rn\B(x,δ)

f(y)

|x− y|n−1
dy = bδ(x) + gδ(x). (6.25)

We get an estimate for the ”good part” gδ(x) by Hölder’s inequality. For p > 1 we have

gδ(x) =

∫
Rn\B(x,δ)

f(y)

|x− y|n−1
dy ≤ ‖f‖p

(∫
Rn\B(x,δ)

|x− y|q(1−n)dy

) 1
q

,

where q = p
p−1

. Substituting z = y − x in the second term on the right-hand side and

applying integration in polar coordinates (Theorem 11.16) yields(∫
Rn\B(x,δ)

|x− y|q(1−n)dy

) 1
q

=

(∫
Rn\B(0,δ)

|z|q(1−n)dz

) 1
q

=

(∫ ∞
δ

∫
Sn−1

rq(1−n)+n−1dS(ω)dr

) 1
q

= |∂B(0, 1)|
p−1
p c(n, p)δ

p−n
p .

Summarizing we obtain for p > 1

gδ(x) ≤ C(n, p) ‖f‖p δ
p−n
p . (6.26)
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For p = 1 we obtain:

gδ(x) =

∫
Rn\B(x,δ)

f(y)

|x− y|n−1
dy ≤ ‖f‖1 sup

y∈Rn\B(x,δ)

|x− y|1−n ≤ ‖f‖1δ
1−n.

The ”bad part” bδ(x) can be dealt with by a maximal function argument. Let

Bj = B(x, 2−jδ) and Aj = Bj \Bj+1, j ≥ 0.

The sets Aj, j ≥ 0 form a partition of the ball B(x, δ). Since

Aj = {y ∈ Rn : 2−(j+1)δ < |x− y| ≤ 2−jδ},
we have

bδ(x) =

∫
B(x,δ)

f(y)

|x− y|n−1
dy

=
∑
j≥0

∫
Aj

f(y)

|x− y|n−1
dy

≤
∑
j≥0

2(j+1)(n−1)δ1−n
∫
Aj

f(y)dy

= 2n−1δ
∑
j≥0

2−j(2−jδ)−n
∫
Aj

f(y)dy.

(6.27)

Since f ≥ 0, |Aj| ≤ |Bj| and |Bj| = (2−jδ)n|B(0, 1)|, we get the following estimate∑
j≥0

2−j(2−jδ)−n
∫
Aj

f(y)dy ≤ c(n)
∑
j≥0

2−j
1

|Bj|

∫
Bj

f(y)dy, (6.28)

where c(n) = |B(0, 1)|. Using the definition of the maximal function (Definition 6.6) we
obtain ∑

j≥0

2−j
1

|Bj|

∫
Bj

f(y)dy ≤ 2M(f)(x). (6.29)

Summarizing the estimates (6.27), (6.28) and (6.29) we obtain

bδ(x) ≤ C(n)δM(f)(x). (6.30)

Putting the estimates (6.26) and (6.29) into (6.25) yields the upper bound

I1(f)(x) ≤ C(n, p)
(
δM(f)(x) + δ1−n

p ‖f‖p
)
. (6.31)

Observe that the minimum of the right-hand side is attained with δ = C(n, p)
(
‖f‖p

M(f)(x)

)p/n
.

We get, by putting the minimum into equation (6.31), the following

I1(f)(x) ≤ C(n, p) ‖f‖
p
n
p (M(f)(x))1− p

n . (6.32)

Hence, ∫
Rn
|I1(f)(x)|

np
n−pdx ≤ C(n, p) ‖f‖

p2

n−p
p

∫
Rn
|M(f)(x)|pdx.
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Applying Theorem 6.7 for p > 1 yields∫
Rn
|I1(f)(x)|

np
n−pdx ≤ C(n, p) ‖f‖

np
n−p
p .

This is what we wanted to prove.
The case p = 1 is similar. We use the weak conclusion of Theorem 6.7, which asserts

that

∀λ > 0 : |{M(f) > λ}| ≤ C1
‖f‖1

λ
.

Hence, by equation (6.32) we have

|{I1(f) > λ}| ≤ C(n)(λ−1 ‖f‖1)
n
n−1 .

�

Gagliardo-Nirenberg inequality - another proof. Proposition 6.10 gives an alter-
native proof for Theorem 6.2.

Proof II Theorem 6.2. Let u ∈ C1
c (Rn) and 1 < p < n. For every x ∈ Rn, s ∈ R and

ω ∈ ∂B(0, 1) we have

u(x+ sω)− u(x) =

∫ s

0

d

dr
u(x+ rω)dr

=

∫ s

0

Du(x+ rω) · ω dr.
(6.33)

Since u has compact support, we have

lim
s→∞

u(x+ sω) = 0

and therefore,

u(x) = −
∫ ∞

0

Du(x+ rω) · ω dr. (6.34)

Integration over ∂B(0, 1) yields∫
∂B(0,1)

u(x)dS(ω) = −
∫
∂B(0,1)

∫ ∞
0

Du(x+ rω) · ω drdS(ω). (6.35)

The left-hand side equals
c(n)u(x), (6.36)

where c(n) = |∂B(0, 1)|. Using Fubini’s theorem we get for the right-hand side of (6.35)∫
∂B(0,1)

∫ ∞
0

Du(x+ rω) · ω drdS =

∫ ∞
0

∫
∂B(0,1)

Du(x+ rω) · ω dSdr. (6.37)

Using the transformation formula in Theorem 11.16 yields∫ ∞
0

∫
∂B(0,1)

Du(x+ rω) · ω dS(ω)dr =

∫
Rn

Du(x+ z)z

|z|n
dz =

∫
Rn

Du(y)(y − x)

|x− y|n
dy. (6.38)

Summarizing the equations (6.35), (6.36), (6.37) and (6.38) we obtain

u(x) = C(n)

∫
Rn

Du(y)(x− y)

|x− y|n
dy (6.39)
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and therefore,

|u(x)| ≤ C(n)

∫
Rn

|Du(y)|
|x− y|n−1

dy. (6.40)

Hence, by Definition 6.9

|u(x)| ≤ C(n)I1(|Du|)(x). (6.41)

Proposition 6.10 yields

‖I1(|Du|)‖ np
n−p
≤ Cp(n) ‖Du‖p . (6.42)

Equations (6.41) and (6.42) give the statement

‖u‖ np
n−p
≤ C(n, p) ‖Du‖p .

It remains to show the statement for p = 1. We may assume that u is non-negative. The
support of u can be written as union of the sets

Aj :=
{
x ∈ Rn : 2j < u(x) ≤ 2j+1

}
, j ∈ Z.

We consider the function

vj(x) =


0, if u(x) ≤ 2j

u(x)− 2j, if 2j < u(x) ≤ 2j+1

2j, if 2j+1 < u(x).

(6.43)

Since vj(x) > 2j−1 if and only if u(x)− 2j > 2j−1, we obtain

|Aj+1| = |
{

2j+1 < u ≤ 2j+2
}
| ≤ |

{
u > 2j+1

}
| = |

{
u > 4 · 2j−1

}
|

≤ |
{
u > 3 · 2j−1

}
| = |

{
vj > 2j−1

}
|.

(6.44)

The function vj is continuous on Rn and compactly supported. Hence, by smoothing by con-
volution we can construct a sequence in C∞c (Rn), which converges by Theorem 3.9 uniformly
to vj. This approximation argument allows us to apply the potential estimate (6.41) to vj:

|vj(x)| ≤ C(n)I1(|Dvj|)(x). (6.45)

Equation (6.45) and (6.44) yield

|Aj+1| ≤ |
{
vj > 2j−1

}
|

≤ |
{
I1(|Dvj|) > C(n)−12j−1

}
|.

Using the weak estimate (6.23) in Proposition 6.10 for λ = C(n)−12j−1 we get

|Aj+1| ≤ C1(n)

(
C(n)2−j+1

∫
Rn
|Dvj|dx

) n
n−1

.

The definition of vj yields that the support of Dvj is contained in Aj and Dvj = Du on Aj.
Hence,

|Aj+1| ≤ C(n)

(
2−j
∫
Aj

|Du|dx

) n
n−1

. (6.46)
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By the definition of Aj we obtain∫
Rn
|u(x)|

n
n−1dx =

∑
j∈Z

∫
Aj

|u(x)|
n
n−1dx

≤
∑
j∈Z

(
2j+1

) n
n−1 |Aj|

= 2
n
n−1

∑
j∈Z

(
2j+1

) n
n−1 |Aj+1|.

(6.47)

Equation (6.46) yields

2
n
n−1

∑
j∈Z

(
2j+1

) n
n−1 |Aj+1| ≤ C(n)

∑
j∈Z

(∫
Aj

|Du(x)|dx

) n
n−1

≤ C(n)

(∑
j∈Z

∫
Aj

|Du(x)|dx

) n
n−1

= C(n)

(∫
Rn
|Du(x)|dx

) n
n−1

.

(6.48)

Summarizing equation (6.47) and (6.48) yields the statement:

‖u‖ n
n−1
≤ C(1, n) ‖Du‖1 .

�

6.4. Hölder spaces

Morrey’s inequality (Section 6.5) gives the continuous embedding of the Sobolev spaces
W 1,p(U), p > n into spaces of Hölder continuous functions, the so called Hölder spaces.

Throughout this chapter let U ⊆ Rn be open, 0 < γ ≤ 1.

Definition 6.11 (Hölder continuous). A function u : U → R is said to be Hölder
continuous with exponent γ, if there exists a constant C > 0 such that for all x, y ∈ U

|u(x)− u(y)| ≤ C|x− y|γ.

For γ = 1 the function is said to be Lipschitz continuous and C is called Lipschitz
constant.

Example 6.12. f(x) =
√
x, x ∈ [0, 1], is Hölder continuous with exponent γ = 1

2
, but it

is not Lipschitz continuous.
We show that

∀x, y ∈ [0, 1] : |f(x)− f(y)| ≤ |x− y|
1
2 ,

i.e.

|
√
x−√y| ≤ |x− y|

1
2 . (6.49)
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Since |x− y| = |
√
x+
√
y||
√
x−√y| we have

|
√
x−√y| =

∣∣∣∣ x− y√
x+
√
y

∣∣∣∣ ≤
√
|x|+ |y|√
x+
√
y
|x− y|

1
2 ≤
√
x+
√
y

√
x+
√
y
|x− y|

1
2 = |x− y|

1
2 .

Now assume f is Lipschitz continuous, i.e.

∃L > 0∀x, y ∈ [0, 1] : |
√
x−√y| ≤ L|x− y|.

Let x = 1
n2 , y = 1

n4 , then the following holds

∃L > 0∀n ∈ N : | 1
n
− 1

n2
| ≤ L| 1

n2
− 1

n4
|.

This is equivalent to

∃L > 0∀n ∈ N : |n− 1| ≤ L|1− 1

n2
| ≤ L.

Such constant L can not exist. Therefore, f is not Lipschitz continuous.

Definition 6.13.

(1) If u : U → R is bounded and continuous, we write

‖u‖∞ = sup
x∈U
|u(x)|.

(2) The γth- Hölder seminorm of u : U → R is

[u]0,γ := sup
x 6=y∈U

|u(x)− u(y)|
|x− y|γ

and the γth- Hölder norm is defined by

‖u‖0,γ := ‖u‖∞ + [u]0,γ.

Definition 6.14 (Hölder space). Let k ∈ N0 and 0 < γ ≤ 1. The Hölder space Ck,γ(U)
consists of all functions Ck(U) for which the norm

‖u‖k,γ :=
∑
|α|≤k

‖Dαu‖∞ +
∑
|α|=k

[Dαu]0,γ

is finite.

So the Hölder space consists of all the functions that are k-times continuously differen-
tiable and whose k-th partial derivatives are bounded and Hölder continuous.

Theorem 6.15. (Ck,γ(U), ‖ · ‖k,γ) is a Banach space.

Proof. First we need to verify that ‖ · ‖k,γ indeed is a norm, so one has to check the
norm properties:

(1) ‖u‖ = 0⇒ u = 0
(2) ‖λu‖ = |λ| · ‖u‖
(3) ‖u+ v‖ ≤ ‖u‖+ ‖v‖
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which follow directly from ‖u‖k :=
∑

α≤k ‖Dαu‖∞ being a norm and the seminorm properties
of [ · ]0,γ.
Now let (un)n∈N be a Cauchy sequence in Ck,γ(U), i.e.

∀ ε > 0 ∃n(ε) > 0∀m,n ≥ n(ε) : ‖um − un‖k,γ ≤ ε.

Then (un)n∈N also is a Cauchy sequence in (Ck(U), ‖ · ‖k), where

‖u‖k :=
∑
α≤k

‖Dαu‖∞.

This is a Banach space. Therefore, there exists a limit u ∈ Ck(U).

What is left to show is that for any multiindex α with |α| ≤ k:

lim
n→∞

[Dαun −Dαu]0,γ = 0.

We know that

∀x, y ∈ U, x 6= y ∀ε > 0 ∃N ∈ N ∀m,n ∈ N :

|Dαun(x)−Dαum(x)−Dαun(y) +Dαum(y)| < ε|x− y|γ

and

∀x ∈ U ∀ε > 0∃N ∈ N ∀n > N : |Dαun(x)−Dαu(x)| < ε.

We fix x, y ∈ U and ε > 0. Then

|Dαun(x)−Dαu(x)−Dαun(y) +Dαu(y)|
≤ |Dαun(x)−Dαum(x)−Dαun(y) +Dαum(y)|+ |Dαum(x)−Dαu(x)|

+ |Dαum(x)−Dαu(x)|
≤ ε|x− y|γ + |Dαum(x)−Dαu(x)|+ |Dαum(x)−Dαu(x)|

Let m→∞. Then for all x, y ∈ U and for all ε > 0 there exists an N ∈ N such that for all
n > N

|Dαun(x)−Dαu(x)−Dαun(y) +Dαu(y)| ≤ ε|x− y|γ.

Hence,

lim
n→∞

[Dαun −Dαu]0,γ = 0

and u ∈ Ck,γ(U). �

6.5. Morrey’s inequality

Theorem 6.16 (Morrey’s inequality). Let n < p ≤ ∞. Then there exists a constant C,
depending only on n and p such that

‖u‖C0,γ(Rn) ≤ C‖u‖W 1,p(Rn), (6.50)

for all u ∈ C1(Rn) ∩W 1,p(Rn), where γ = 1− n
p
.
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Proof. 1. We show that there exists a constant C(n) such that for any B(x, r) ⊆ Rn

1

|B(x, r)|

∫
B(x,r)

|u(y)− u(x)|dy ≤ C(n)

∫
B(x,r)

|Du(y)|
|x− y|n−1

dy. (6.51)

Let x ∈ Rn, r > 0 be fixed. Let w ∈ ∂B(0, 1) and s < r. Then

|u(x+ sw)− u(x)| ≤
∫ s

0

∣∣∣∣ ddtu(x+ tw)

∣∣∣∣dt =

∫ s

0

|Du(x+ tw) · w|dt =

∫ s

0

|Du(x+ tw)|dt.

Hence, ∫
∂B(0,1)

|u(x+ sw)− u(x)|dS(w) ≤
∫
∂B(0,1)

∫ s

0

|Du(x+ tw)|dt dS(w). (6.52)

We apply Fubini to the right hand side and apply integration in polar coordinates (Theorem
11.16) to obtain∫

∂B(0,1)

∫ s

0

|Du(x+ tw)|dt dS(w) =

∫ s

0

∫
∂B(0,1)

|Du(x+ tw)|dS(w)dt

=

∫
B(x,s)

|Du(y)|
|y − x|n−1

dy.

Now, multiplying equation (6.52) by sn−1 and integrating from 0 to r with respect to s,
yields the inequality:∫ r

0

∫
∂B(0,1)

|u(x+ sw)− u(x)|dS(w)sn−1ds ≤
∫ r

0

sn−1

∫
B(x,r)

|Du(y)|
|y − x|n−1

dy ds. (6.53)

On the left-hand side of (6.53) we apply integration in polar coordinates to obtain∫
B(x,r)

|u(v)− u(x)|dv ≤
∫ r

0

sn−1 ds

∫
B(x,r)

|Du(y)|
|y − x|n−1

dy =
rn

n

∫
B(x,r)

|Du(y)|
|y − x|n−1

dy.

Note that |B(x, r)| = rn|B(0, 1)| = rnC(n). Hence, we have∫
B(x,r)

|u(v)− u(x)|dv ≤ C(n)|B(x, r)|
∫
B(x,r)

|Du(y)|
|y − x|n−1

dy.

This is equation (6.51).
2. Now fix x ∈ Rn. We apply equation (6.51) as follows

|u(x)| ≤ 1

|B(x, 1)|

∫
B(x,1)

|u(x)− u(y)|dy +
1

|B(x, 1)|

∫
B(x,1)

|u(y)|dy

≤
∫
B(x,1)

|Du(y)|
|y − x|n−1

dy +
1

|B(x, 1)|

∫
B(x,1)

|u(y)|dy

=

∫
B(x,1)

|Du(y)|
|y − x|n−1

dy +

∫
B(x,1)

|u(y)| dy

|B(x, 1)|

≤
∫
B(x,1)

|Du(y)|
|y − x|n−1

dy +

(∫
B(x,1)

|u(y)|p dy

|B(x, 1)|

) 1
p

.
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The last inequality holds, since (B(x, 1), dy
|B(x,1)|) is a probability space. We apply Hölder’s

inequality to the first term on the right-hand side and obtain

|u(x)| ≤
(∫

B(x,1)

|Du(y)|pdy
) 1

p

(∫
B(x,1)

1

|y − x|n−1 p
p−1

dy

) p−1
p

+ C(n, p)‖u‖Lp(B(x,1)).

Hence, by integration in polar coordinates we have∫
B(x,1)

1

|y − x|n−1 p
p−1

dy = C(n)

∫ 1

0

rn−1

r(n−1) p
p−1

dr =

∫ 1

0

r(n−1)−(n−1) p
p−1dr =

∫ 1

0

r−
n−1
p−1 dr

Since p > n, we have n−1
p−1

< 1. Therefore,

∫ 1

0

r−
n−1
p−1 dr = C(n, p)r

p−n
p−1

∣∣∣∣1
0

= C(n, p).

Summarizing we have

|u(x)| ≤ C(n, p)‖u‖W 1,p(Rn).

Since x was arbitrary, we can conclude

sup
x∈Rn
|u(x)| ≤ C‖u‖W 1,p(Rn). (6.54)

3. Choose any two points x, y ∈ Rn and write r := |x− y|. Let W = B(x, r) ∩B(y, r).

x
y

W

z

Then

|u(x)− u(y)| ≤ 1

|W |

∫
W

|u(x)− u(z)|dz +
1

|W |

∫
W

|u(y)− u(z)|dz

≤ C

|B(x, r)|

∫
B(x,r)

|u(x)− u(z)|dz +
C

|B(y, r)|

∫
B(y,r)

|u(y)− u(z)|dz =: A+B
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By inequality 6.51 we obtain

A ≤ C

∫
B(x,r)

|Du(z)|
|x− z|n−1

dz

≤
(∫

Rn
|Du(z)|pdz

) 1
p

(∫
B(x,r)

1

|x− z|(n−1) p
p−1

dz

) p−1
p

≤ C(n, p)‖Du‖Lp(Rn)r
1−n

p

= C(n, p)‖Du‖Lp(Rn)|x− y|1−
n
p

The same estimate holds for B. Therefore, we have the following estimate

|u(x)− u(y)| ≤ C‖Du‖Lp(Rn)|x− y|1−
n
p

which implies
|u(x)− u(y)|
|x− y|γ

≤ C‖Du‖Lp(Rn), ∀x, y ∈ Rn.

Thus,

[u]0,γ = sup
x 6=y∈Rn

|u(x)− u(y)|
|x− y|γ

≤ C‖Du‖Lp ≤ C‖u‖W 1,p(Rn). (6.55)

The inequalities (6.54) and (6.55) yield the statement. �

Remark 6.17. A slight variant of the proof above provides

|u(x)− u(y)| ≤ Cr1−n
p

(∫
B(x,2r)

|Du(z)|pdz
) 1

p

.

for all u ∈ C1(B(x, 2r)), y ∈ B(x, r) ⊆ Rn, n < p < ∞. The estimate is indeed valid if
we integrate on the right hand side over B(x, r) instead of B(x, 2r), but the proof is a bit
trickier.

6.6. Estimates for W 1,p and W 1,p
0 , n < p ≤ ∞

Definition 6.18. We say u∗ is a version of a given function u provided

u = u∗ a.e.

Theorem 6.19. Assume u ∈ W 1,p(Rn), n < p ≤ ∞. Then u has a version u∗ ∈ C0,γ(Rn)
for γ = 1− n

p
, with the estimate

‖u∗‖C0,γ(Rn) ≤ C‖u‖W 1,p(Rn). (6.56)

Proof. Use Corollary 3.20 and follow the proof of Theorem 6.20. �

Theorem 6.20. Let U ⊆ Rn open, bounded and suppose ∂U is C1. Assume u ∈ W 1,p(U),
n < p ≤ ∞. Then u has a version u∗ ∈ C0,γ(U) for γ = 1− n

p
, with the estimate

‖u∗‖C0,γ(U) ≤ C‖u‖W 1,p(U). (6.57)
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Proof. According to Theorem 4.1 there exists a compactly supported function u =
Eu ∈ W 1,p(Rn) such that u = u on U and

‖u‖W 1,p(Rn) ≤ C‖u‖W 1,p(U). (6.58)

Since u has compact support, we obtain from Theorem 3.15 the existence of functions um ∈
C∞c (Rn) such that

‖um − u‖W 1,p(Rn) → 0. (6.59)

Now according to Theorem 6.16 we have for all m, l ∈ N

‖um − ul‖C0,γ(Rn) ≤ C‖um − ul‖W 1,p(Rn). (6.60)

(um)∞m=1 converges to u in W 1,p(Rn), therefore it is Cauchy sequence in C0,γ(Rn). Since this
is a complete Banach space, there exists a function u∗ ∈ C0,γ(Rn) such that

‖um − u∗‖C0,γ(Rn) → 0. (6.61)

Owing to the equations (6.60) and (6.61) we see that u = u∗ a.e. on Rn, i.e. u∗ is a version
of u. Note that u = u a.e. on U hence, u∗ is a version of u on U .

Theorem 6.16 can be applied to the functions um ∈ C∞c (Rn), i.e.

‖um‖C0,γ(Rn) ≤ C‖um‖W 1,p(Rn)

and therefore, by the equations (6.60),(6.61) and (6.58) we have

‖u∗‖C0,γ(Rn) ≤ C‖u‖W 1,p(Rn) ≤ C‖u‖W 1,p(U).

By the definition of the norm ‖·‖C0,γ we have

‖u∗‖C0,γ(U) ≤ ‖u
∗‖C0,γ(Rn).

�

Remark 6.21.

(1) Note that for p =∞ we have the following inequality

‖u∗‖C0,1(U) ≤ C‖u‖W 1,∞(U).

Hence, every u ∈ W 1,∞(U) has a Lipschitz continuous version u∗.
(2) Let n < p <∞. Inequality (6.57) does not hold for γ ∈ (1− n

p
, 1].

(3) If U ⊆ Rn is bounded then

‖u∗‖C0,β(U) ≤ C‖u‖W 1,p(U)

for all 0 < β ≤ γ.
(4) Let U ⊆ Rn open and bounded. Assume u ∈ W 1,p

0 (U), n < p ≤ ∞. Then u has a
version u∗ ∈ C0,γ(U) for γ = 1− n

p
, with the estimate

‖u∗‖C0,γ(U) ≤ C‖Du‖Lp .
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6.7. General Sobolev inequalities

Theorem 6.22. Let U ⊆ Rn be open and bounded with a C1 boundary. Assume u ∈
W k,p(U), 1 ≤ p <∞.

(1) If k < n
p
, then u ∈ Lq(U), where 1

q
= 1

p
− k

n
with

‖u‖Lq(U) ≤ C‖u‖Wk,p(U), (6.62)

where the constant C depends only on k, p, n and U .
(2) If k > n

p
, then u ∈ Cm,γ, where m = k − bn

p
c − 1 and

γ =

{
bn
p
c+ 1− n

p
, if n

p
is not an integer,

any positive number < 1, if n
p

is an integer.

We have the estimate

‖u‖Cm,γ(U) ≤ C‖u‖Wk,p(U). (6.63)

Proof. Case 1: Let k < n
p
. u ∈ W k,p(U), then Dβu ∈ W 1,p(U) for all |β| ≤ k − 1 and∥∥Dβu

∥∥
W 1,p(U)

≤ ‖u‖Wk,p(U). (6.64)

We apply Theorem 6.3 and obtain∥∥Dβu
∥∥
Lp∗ (U)

≤ C
∥∥Dβu

∥∥
W 1,p(U)

≤ ‖u‖Wk,p(U), for all |β| ≤ k − 2. (6.65)

Using this equation we obtain

‖u‖Wk−1,p∗ (U) ≤ C‖u‖Wk,p(U). (6.66)

Set p1 = p∗ and apply the same step again to u ∈ W k−1,p1(U). Then we obtain∥∥Dβu
∥∥
Lp
∗
1 (U)
≤ C‖u‖Wk,p(U), for all |β| ≤ k − 2. (6.67)

Applying the step k-times yields the estimate

‖u‖Lq(U) ≤ C‖u‖Wk,p(U), (6.68)

where 1
q

= 1
p
− k

n
.

Case 2: Let k > n
p

and n
p

is no integer. Choose ` such that ` < n
p
< ` + 1, i.e. ` = bn

p
c.

Then ` < k. Since u ∈ W k,p(U) we have Dβu ∈ W `,p(U) for all |β| ≤ k − ` and∥∥Dβu
∥∥
W `,p(U)

≤ ‖u‖Wk,p(U). (6.69)

Since ` < n
p

we can apply case 1 and obtain∥∥Dβu
∥∥
Lq(U)

≤ C
∥∥Dβu

∥∥
W `,p(U)

, for all |β| ≤ k − `,

where 1
q

= 1
p
− `

n
. Therefore,∥∥Dβu

∥∥
Lq(U)

≤ C‖u‖Wk,p(U), for all |β| ≤ k − `.

This equation yields
‖u‖Wk−`,q(U) ≤ C‖u‖Wk,p(U). (6.70)

Hence, u ∈ W k−`,q(U).
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Note that 1
q

= 1
p
− `

n
. Hence, q = np

n−`p . Since n
p
< ` + 1, we have q > n. We can apply

Theorem 6.20 to Dβu ∈ W 1,q, |α| ≤ k − `− 1 and obtain∥∥Dβu
∥∥
C0,γ(U)

≤ C
∥∥Dβu

∥∥
W 1,q(U)

≤ C‖u‖Wk−`,q(U), (6.71)

where γ = 1− n
q

= bn
p
c+ 1− n

p
.

Using the equations (6.70) and (6.71) yields

‖u‖
C
k−bnp c−1,γ =

∑
|α|≤k−bn

p
c−1

‖Dαu‖∞ +
∑

|α|=k−bn
p
c−1

[Dαu]0,γ

≤ C‖u‖Wk−`,q(U) ≤ C‖u‖Wk,p(U).

.
Case 3: Let k > n

p
and n

p
is an integer. Set ` = n

p
− 1. Then ` < n

p
< k. Analogously

to the case 2 we get that u ∈ W k−`,q, where 1
q

= 1
p
− `

n
. This implies q = n. Since |U | <∞

we have u ∈ W k−`,r for all r < n. Hence, Dαu ∈ W 1,r(U) for all |α| ≤ k − `− 1. We apply
Theorem 6.3 and obtain

‖Dαu‖Lr∗ ≤ C‖Dαu‖W 1,r(U)

≤ C‖u‖Wk−`,r(U) ≤ C‖u‖Wk−`,n .

Note that the last constant depends on |U |. Therefore, for all |α| ≤ k − ` − 1 = k − n
p

the

functions Dαu are in Ls, n ≤ s <∞.
Hence, u ∈ W k−n

p
,s(U) and Dαu ∈ W 1,s for all α ≤ k− n

p
− 1. Let n < s <∞ and apply

Theorem 6.20

‖Dαu‖C0,γ(U) ≤ C‖Dαu‖W 1,s(U), for all |α| ≤ k − n

p
− 1,

where γ = 1− n
s
. Analogously to the case 2 we obtain

u ∈ Ck−n
p
−1,γ(U), 0 < γ < 1

and

‖u‖
C
k−np−1,γ ≤ C‖u‖Wk−`,n(U) ≤ C‖u‖Wk,p(U).

�

Corollary 6.23. Let U ⊆ Rn be open and bounded with a C1 boundary. Let j, k ∈ N0

and 1 ≤ p <∞. Assume u ∈ W k+j,p(U). If k < n
p
, then u ∈ W j,q(U), where 1

q
= 1

p
− k

n
with

‖u‖W j,q(U) ≤ C‖u‖Wk+j,p(U), (6.72)

where the constant C depends only on k, p, n and U .

6.8. The borderline case

We established Sobolev inequalities for

(1) k < n
p

(Gagliardo-Nirenberg-Sobolev inequality)

(2) k > n
p

(Morrey’s inequality)
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What can we say about the case n = k
p
?

Considering the fact that the Sobolev conjugate index p∗ = np
n−p converges to∞ as p→ n,

we might expect by the Gagliardo-Nirenberg-Sobolev inequality that W 1,n(U) is continuously
embedded in L∞(U). This is however false for n > 1. Let U = B(0, 1) ⊆ Rn. The function

u(x) = log
(

log
(

1 + 1
|x|

))
belongs to W 1,n(U) but not to L∞(U).

Lemma 6.24. Let U ⊆ Rn be open and bounded. Let u ∈ W 1,n(U). Then there exists a
constant C such that

‖u‖Lp(U) ≤ C‖u‖W 1,n(U), (6.73)

where {
p =∞, if n = 1,

1 ≤ p <∞, if n > 1.

Remark 6.25.

(1) We will see in the proof that the boundedness of U is not necessary for the case
n = 1. The same argument holds for U = Rn with constant equal to 1.

(2) If U ⊆ Rn bounded, then the constant C depends on U and n and in the case of
n > 1 additionally on some arbitrarily chosen parameter q ∈ [max(n, p),∞).

Proof. 1. Let n = 1 and u ∈ C1
c (U). Let x ∈ U . Then

|u(x)| ≤
∫ ∞
−∞
|Du(y)|dy.

Therefore,
‖u‖∞ ≤ ‖Du‖L1 .

By the same argument as in the proof of Theorem 6.3 we obtain that for u ∈ W 1,n(U) the
following equation holds

‖u‖L∞(U) ≤ C‖u‖W 1,n(U), (6.74)

where C depends on n and U .
2. Let n ≥ 2 and choose n ≤ q <∞. Set 1

s
= 1

p
+ 1

q
. Then 1 ≤ s < n and q = ns

n−s . Note

that since |U | <∞ the following estimate holds

‖u‖W 1,s(U) ≤ n
1
s
− 1
n |U |1−

s
n‖u‖W 1,n(U),

Theorem 6.3 yields
‖u‖Ls∗ ≤ C(n, s, U)‖u‖W 1,s(U).

Note that s∗ = q. Therefore,

‖u‖Lq(U) ≤ C(n, q, U)‖u‖W 1,n(U).

Again, since |U | <∞ the following estimate holds

‖u‖Lp(U) ≤ C(n, q, U)‖u‖W 1,n(U).

for all 1 ≤ p ≤ q. Since q <∞ was arbitrarily chosen, we have that for all 1 ≤ p <∞ there
exists a q ∈ [n,∞) with p ≤ q such that

‖u‖Lp(U) ≤ C(n, q, U)‖u‖W 1,n(U).

Note that the constant does depend on the choice of q. �
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Remark 6.26.

(1) The space W 1,n(Rn) embeds into the space BMO (the space of bounded mean
oscillation), cf. Remark 8.4.

(2) Trudinger’s inequality (Theorem 6.28) gives the embedding of W 1,n
0 (U) in another

Sobolev space.

Theorem 6.27 (General case k = n
p
). Let U ⊆ Rn be open and bounded with a C1

boundary. Assume u ∈ W k,p(U), 1 ≤ p < ∞. If k = n
p
, then u ∈ Lq(U) for all p ≤ q < ∞

and
‖u‖Lq(U) ≤ C‖u‖Wk,p (6.75)

where the constant C depends on k, n, p, q.

6.9. Trudinger inequality

Theorem 6.28 (Trudinger Inequality). Let U ⊆ Rn be open and bounded. Let u ∈
W 1,n

0 (U). Then ∫
U

exp

{(
|u|

c ‖Du‖n

) n
n−1

}
≤ C|U |, (6.76)

where c > 0 and C ≥ 1 are constants which depend only on n.

Remark 6.29. This theorem yields that the Sobolev space W 1,n
0 (U), U bounded, is

embedded in the Orlicz space Lϕ(U) with ϕ(t) = exp
(
|t|

n
n−1

)
− 1. Lϕ(U) is the space of all

measurable functions u : U → R such that

‖u‖Lϕ(U) = inf{c > 0 :

∫
U

ϕ

(
|u(x)|
c

)
dx ≤ 1} <∞.

See [1, Theorem 8.25]

Proof of Trudinger’s inequality. Let U ⊆ Rn be open and bounded. Let f ∈ L1
loc(U).

Recall (Definition 6.9) that the Riesz potential of f of order 1 is given by

I1(f)(x) = (| · |1−n ∗ f)(x) =

∫
U

f(y)

|x− y|n−1
dy. (6.77)

Proposition 6.30. Let U ⊆ Rn be open and bounded, n ≤ q <∞ and f ∈ Ln(U). Then

‖I1(f)‖q ≤ q1− 1
n

+ 1
q |B(0, 1)|1−

1
n |U |

1
q ‖f‖n. (6.78)

Remark 6.31. Proposition 6.30 is the special case p = n of the following statement: Let
U ⊆ Rn be open and bounded, 1 ≤ p ≤ n and

p ≤ q <
np

n− p
.

Then, for f ∈ Lp(U) and δ = 1
p
− 1

q
≥ 0,

‖I1(f)‖q ≤
(

1− δ
1
n
− δ

)1−δ

|B(0, 1)|1−
1
n |U |

1
n
−δ‖f‖p. (6.79)
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Note that Proposition 6.10 states that for 1 ≤ p < n

‖I1(|f |)‖ np
n−p
≤ Cp(n) ‖f‖p .

and for p > n

‖I1(f)‖∞ ≤ C(n, p, |U |)‖f‖p.

Proof. Let

1

s
= 1 +

1

q
− 1

n
.

Since n ≤ q <∞ we have

1 ≤ s <
n

n− 1
.

We show that the function h(y) = |y|1−n is in Ls(U). Let R > 0, so that |U | = |B(0, R)| =
|B(0, 1)|Rn. Then ∫

U

1

|y|s(n−1)
dy ≤

∫
B(0,R)

1

|y|s(n−1)
dy. (6.80)

In order to prove equation (6.80) we have to consider two cases. Case 1: B(0, R)∩U 6= ∅.
Then ∫

U

|y|s(1−n)dy =

∫
U\B
|y|s(1−n)dy +

∫
U∩B
|y|s(1−n)dy

≤
∫
U\B

Rs(1−n)dy +

∫
U∩B
|y|s(1−n)dy

= |U \B|Rs(1−n) +

∫
U∩B
|y|s(1−n)dy

= |B \ U |Rs(1−n) +

∫
U∩B
|y|s(1−n)dy

≤
∫
B\U
|y|s(1−n)dy +

∫
U∩B
|y|s(1−n)dy

=

∫
B

|y|s(1−n)dy

Case 2: B(0, R) ∩ U = ∅. Then∫
U

|y|s(1−n)dy ≤
∫
U

Rs(1−n)dy = |U |Rs(1−n) = |B(0, R)|Rs(1−n) ≤
∫
B

|y|s(1−n)dy.
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Applying integration in polar coordinates (Theorem 11.16) to equation (6.80) yields∫
B(0,R)

|y|s(1−n)dy =

∫ R

0

∫
Sn−1

rs(1−n)+n−1dS(ω)dr

= |∂B(0, 1)| R
s(1−n)+n

s(1− n) + n

=
n

s(1− n) + n
|B(0, 1)|Rs(1−n)+n

=
1

s

1

1/n− 1 + 1/s
|B(0, 1)|Rsn(1/n−1+1/s)

=
q

s
|B(0, 1)|R

sn
q ,

where we used 1
s

= 1 + 1
q
− 1

n
. Since |U | = |B(0, 1)|Rn, s ≥ 1 and 1

s
= 1 + 1

q
− 1

n
the following

estimates hold

‖h‖s ≤
(q
s

) 1
s |B(0, 1)|

1
sR

n
q

≤ q
1
s |B(0, 1)|

1
s
− 1
q |U |

1
q

= q1+ 1
q
− 1
n |B(0, 1)|1−

1
n |U |

1
q .

We apply Young’s theorem (Theorem 11.11) with 1
s

+ 1
n

= 1 + 1
q

and obtain by the above
estimate

‖I1(f)‖q = ‖h ∗ f‖q ≤ ‖h‖s‖f‖n
≤ q1+ 1

q
− 1
n |B(0, 1)|1−

1
n |U |

1
q ‖f‖n.

�

Proof of Theorem 6.28. Let U ⊆ Rn and f ∈ Ln(U). Let q ≥ n, then qn
n−1
≥ n and

therefore, Proposition 6.30 asserts

‖I1(f)‖qn′ ≤ (qn′)
1− 1

n
+ 1
qn′ |B(0, 1)|1−

1
n |U |

1
qn′ ‖f‖n, (6.81)

where n′ = n
n−1

. Since qn′(1− 1
n
) = q, we get∫

U

|I1(f)(x)|qn
′
dx ≤ (qn′)qn

′− qn
′

n
+1|B(0, 1)|qn

′− qn
′

n |U |‖f‖qn
′

n

= (qn′)q+1|B(0, 1)|q|U |‖f‖qn
′

n .

(6.82)

Hence, ∫
U

(
|I1(f)(x)|
c1‖f‖n

)qn′
dx ≤ qn′

(
qn′|B(0, 1)|

cn
′

1

)q
|U |. (6.83)

We show the following estimate by applying the equation (6.83)∫
U

N∑
k=0

1

k!

(
|I1(f)(x)|
c1‖f‖n

)kn′
dx ≤ C2|U |. (6.84)
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We divide the sum on the left-hand side into two parts∫
U

N∑
k=0

1

k!

(
|I1(f)(x)|
c1‖f‖n

)kn′
dx =

N∑
k=0

1

k!

∫
U

(
|I1(f)(x)|
c1‖f‖n

)kn′
dx

=
n−1∑
k=0

1

k!

∫
U

(
|I1(f)(x)|
c1‖f‖n

)kn′
dx+

N∑
k=n

1

k!

∫
U

(
|I1(f)(x)|
c1‖f‖n

)kn′
dx

=: I + II.
(6.85)

Applying (6.83) yields

II =
N∑
k=n

1

k!

∫
U

(
|I1(f)(x)|
c1‖f‖n

)kn′
dx ≤ |U |n′

∞∑
k=1

kk+1

k!

(
n′|B(0, 1)|

cn
′

1

)k
= |U |n′

∞∑
k=1

kk

(k − 1)!

(
n′|B(0, 1)|

cn
′

1

)k
.

(6.86)

Stirling’s formula yields

kk

(k − 1)!
≤ k√

2πk
ek ≤ e2k, k ≥ 1.

Summarizing we obtain

II ≤ |U |n′
∞∑
k=1

(
e2n′|B(0, 1)|

cn
′

1

)k
. (6.87)

We choose c1(n) so that e2n′|B(0, 1)| < cn
′

1 . Then the sum on the right-hand side con-
verges and there exists a constant C(n) such that

II ≤ C(n)|U |. (6.88)

In order to get an estimate for I we set g(x) =
(
|I1(f)(x)|
c1‖f‖n

)n′
. Then, by Hölder’s inequality,

we obtain for 1 ≤ k < n:∫
U

(
|I1(f)(x)|
c1‖f‖n

)kn′
dx =

∫
U

|g(x)|kdx

≤
(∫

U

|g(x)|ndx
) k

n

|U |
1
k
− 1
n

= |U |
1
k
− 1
n

(∫
U

(
|I1(f)(x)|
c1‖f‖n

)nn′
dx

) k
n

.
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We apply equation (6.83) to the integral on the right-hand side and obtain∫
U

(
|I1(f)(x)|
c1‖f‖n

)kn′
dx ≤ |U |1−

k
n

(
nn′
(
nn′|B(0, 1)|

cn
′

1

)n
|U |
) k

n

= |U |(nn′)k+ k
n

(
|B(0, 1)|
cn
′

1

)k
≤ |U |(nn′)k+ k

n

(
|B(0, 1)|

e2n′|B(0, 1)|

)k
= c(n)ke−2k|U |.

Summarizing we obtain

I = |U |+
n−1∑
k=1

1

k!

∫
U

(
|I1(f)(x)|
c1‖f‖n

)kn′
dx

≤ |U |+ |U |
n−1∑
k=1

c(n)ke−2k

k!

= |U |C(n),

(6.89)

where C(n) ≥ 1. Collectin the equations (6.85), (6.88) and (6.89) we obtain that there exist
constants c1(n) and C2(n) such that∫

U

N∑
k=0

1

k!

(
|I1(f)(x)|
c1‖f‖n

)kn′
dx ≤ C2|U |. (6.90)

The monotone convergence theorem yields∫
U

exp

{(
|I1(f)(x)|
c1‖f‖n

) n
n−1

}
dx ≤ C2|U |. (6.91)

Let u ∈ C∞c (U). Then equation (6.41) yields

|u(x)| ≤ C(n)|I1(Du)(x)|
and by (6.91) we obtain∫

U

exp

{(
|u|

c1 ‖Du‖n

) n
n−1

}
≤
∫
U

exp

{(
I1(|Du|)
c2‖Du‖n

) n
n−1

}
dx ≤ C2(n)|U |, (6.92)

where C2(n) ≥ 1. �
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CHAPTER 7

Compact embeddings

The Gagliardo-Nirenberg-Sobolev inequality shows that W 1,p(U) is continuously embed-
ded into Lp

∗
(U), if 1 ≤ p < n. Now we show that W 1,p(U) is in fact compactly embedded

into some Lq(U) space.

Definition 7.1 (compactly embedded). Let X and Y be Banach spaces, X ⊂ Y .
We say X is compactly embedded in Y if and only if the operator

Id : X → Y, x 7→ x

is continuous and compact, i.e.

(1) ∃C ∀x ∈ X : ‖x‖Y ≤ C‖x‖X ,
(2) for all sequences (xn)∞n=1 in X with supn ‖xn‖X ≤ ∞ there exists a subsequence

(xni)
∞
i=1 and y ∈ Y such that ‖I(xni)− y‖Y

i→∞−→ 0.

Theorem 7.2 (Rellich-Kondrachov Compactness Theorem). Let U ⊆ Rn open and
bounded and let ∂U be C1. Let 1 ≤ p < n. Then

W 1,p(U) ⊂⊂ Lq(U),

for all 1 ≤ q < p∗.

Proof. We fix q ∈ [1, p∗). Let u ∈ W 1,p(U). Theorem 6.3 yields

‖u‖Lq ≤ C‖u‖W 1,p(U).

Hence, the operator Id : W 1,p → Lq is continuous.
We have to show compactness. Let (ûm)∞m=1 ∈ W 1,p(U) and supm ‖ûm‖W 1,p(U) ≤ A.

We show that there exists a subsequence (ûmk)
∞
k=1 of the bounded sequence (ûm)∞m=1 and a

u ∈ Lq(U) so that ‖ûmk − u‖Lq(U)
k→∞−→ 0. By the extension theorem we may assume that

(1) (um)∞m=1 is in W 1,p(Rn) with um
∣∣
U

= ûm,
(2) for all m ∈ N there exists V with U ⊂⊂ V such that suppum ⊂ V ,
(3) supm ‖um‖W 1,p(Rn) <∞.

We first consider the smooth functions

uεm = ηε ∗ um ∈ C∞c (Rn) (ε > 0, m ∈ N).

We may assume that for all m ∈ N the support of uεm is in V .
Statement 1:

lim
ε→0

sup
m∈N
‖uεm − um‖Lq(V )

ε→0−→ 0 .
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Verification: If um is smooth, then

uεm(x)− um(x) =

∫
B(0,1)

η(y)(um(x− εy)− um(x))dy

=

∫
B(0,1)

η(y)

∫ 1

0

d

dt
um(x− εty)dt dy

= −ε
∫
B(0,1)

η(y)

∫ 1

0

Dum(x− εt) · y dt dy.

Thus, ∫
V

|uεm(x)− um(x)|dx ≤ ε

∫
B(0,1)

η(y)

∫ 1

0

∫
V

|Dum(x− εty)| dx dt dy

≤ ε

∫
V

|Dum(z)|dz.

Summarizing we have for um ∈ C∞c (Rn) with suppuεm ∈ V the estimate

‖uεm − um‖L1(V ) ≤ ε‖Dum‖L1(V ). (7.1)

By approximation (Theorem 3.17) this estimate holds for um ∈ W 1,p(V ). Since V is open
and bounded, we obtain

‖uεm − um‖L1(V ) ≤ ε‖Dum‖L1(V ) ≤ εC‖Dum‖Lp(V ).

By assumption we have that supm ‖um‖W 1,p(V ) <∞. Therefore,

lim
ε→0

sup
m∈N
‖uεm − um‖L1(V ) = 0. (7.2)

Note that 1 ≤ q < p∗. Let 0 ≤ θ ≤ 1 such that

1

q
=

1− θ
1

+
θ

p∗
.

We apply the interpolation theorem for Lp-norms (Theorem 11.10) to obtain

‖uεm − um‖Lq(V ) ≤ ‖u
ε
m − um‖

1−θ
L1(V )‖u

ε
m − um‖

θ
Lp∗ (V ).

Theorem 6.3 yields

‖uεm − um‖Lq(V ) ≤ ‖u
ε
m − um‖

1−θ
L1(V )‖u

ε
m − um‖

θ
W 1,p(V )

and by equation (7.2)

lim
ε→0

sup
m∈N
‖uεm − um‖Lq(V ) = 0. (7.3)

Statement 2: Let ε > 0 be fixed. The sequence (uεm)∞m=1 in C∞c (Rn) is uniformly bounded
and uniformly equicontinuous, i.e.

(1) supm ‖uεm‖∞ <∞
(2) ∀η > 0 ∃δ > 0∀m ∈ N ∀x, y ∈ Rn : |x− y| < δ ⇒ |uεm(x)− uεm(y)| < η.
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Verification: Let x ∈ Rn.

|uεm(x)| ≤
∫
B(x,ε)

ηε(x− y)|um(y)|dy ≤ sup
x∈Rn
|ηε(x)|

∫
V

|um(y)|dy

≤ 1

εn
‖um‖L1(V ) ≤

1

εn
|V |

1
p ‖um‖Lp(V ) =

C

εn
.

Hence,

sup
m∈N
‖uεm‖∞ ≤

C

εn
. (7.4)

By Lemma 3.7 and the Minkowski inequality for integrals (Theorem 11.4) we have

|Duεm(x)| ≤
∫
B(x,ε)

|Dηε(x− y)| |um(y)|dy ≤ 1

εn+1
|V |

1
p ‖um‖Lp(V ) =

C

εn+1
. (7.5)

Hence,

sup
m∈N
‖Duεm‖∞ ≤

C

εn+1
. (7.6)

Equation (7.6) yields

∀η > 0∃δ > 0 ∀m ∈ N∀x, y ∈ Rn : |x− y| < δ ⇒ |uεm(x)− uεm(y)| < η.

The sequence (uεm)∞m=1 satisfies the requirements of the Arzela-Ascoli compactness crite-
rion (Theorem 11.18), which asserts that for the uniformly bounded and uniformly equicon-
tinuous family of functions (uεm) there exists a subsequence that converges uniformly to a
continuous function on compact subsets of Rn, i.e.

∀ε > 0 ∃Nε ⊆ N,#Nε =∞ : (uεj)j∈Nεconverges uniformly on V. (7.7)

This implies that (uεj)j∈Nε converges in Lq(V ) (1 ≤ q ≤ ∞). Summarizing we have

∀` ∈ N ∃ε` > 0 ∀ε < ε` ∀m ∈ N : ‖uεm − um‖Lq(V ) ≤
1

`
(7.8)

∀ε > 0 ∃Nε ⊆ N ∀` ∈ N∃N` ⊆ Nε ∀i, j ∈ N` :
∥∥uεj − uεi∥∥Lq(V )

≤ 1

`
. (7.9)

We combine equation (7.8) and (7.9) to obtain

∀` ∈ N ∃N` ⊆ N ∀i, j ∈ N` : ‖ui − uj‖Lq(V ) ≤
3

`
. (7.10)

We apply Cantor’s diagonal argument. Note that by definition

N1 ⊃ N2 ⊃ N3 ⊃ · · · ⊃ N` ⊃ . . . .

Let di = minNi. Then dj ∈ Ni for all j ≥ i and by equation (7.10) we have for all
i, j ∈ N: ∥∥udi − udj∥∥Lq(V )

≤ max{1

i
,
1

j
}.

Then we have

∀ε > 0 ∃N ∈ N ∀i, j ≥ N :
∥∥udi − udj∥∥Lq(V )

< ε.
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Hence, (udi)i∈N is Cauchy sequence in Lq(V ) with limit u ∈ Lq(V ), i.e. there exists u ∈ Lq(V )
such that

‖udi − u‖Lq(V ) → 0, if i→∞.
Since U ⊆ V we have

‖udi − u‖Lq(U) → 0, if i→∞. (7.11)

�

The Arzela-Ascoli theorem (Theorem 11.18) gives the compact embedding of W 1,p(U),
n < p ≤ ∞ in Lq, 1 ≤ q ≤ ∞.

Theorem 7.3. Let U ⊆ Rn open and bounded and let ∂U be C1. Let n < p ≤ ∞. Then

W 1,p(U) ⊂⊂ Lq(U),

for all 1 ≤ q ≤ ∞.

Sketch of the proof. By the Arzela-Ascoli theorem (Theorem 11.18) we obtain that

C0,γ(U) ⊂⊂ C(U)

for all 0 < γ ≤ 1. Then use Morrey’s inequality (Theorem 6.20) to obtain the statement. �

Lemma 6.24 and Theorem 7.2 give the statement for the borderline case p = n:

Theorem 7.4. Let U ⊆ Rn open and bounded and let ∂U be C1. Then

W 1,n(U) ⊂⊂ Lq(U),

for all 1 ≤ q ≤ n.

Proof. Lemma 6.24 yields the continuous embedding. Choose a bounded sequence
(um)∞m=1 in W 1,n(U). Then, since U is bounded, we have that for every p < n the sequence
(um)∞m=1 is bounded in W 1,p(U). Theorem 7.2 asserts that there exists a limit u ∈ Lp∗(U)
such that

‖um − u‖Lp∗ (U) → 0.

If we choose n
2
< p < n, then n < p∗ and we have

‖um − u‖Ln(U) → 0.

�

Remark 7.5. Summarizing we have by Theorem 7.2, Theorem 7.3 and Theorem 7.4 the
following statement:

W 1,p(U) ⊂⊂ Lp, (7.12)

for all 1 ≤ p ≤ ∞.
Note also that

W 1,p
0 (U) ⊂⊂ Lp, (7.13)

for all 1 ≤ p ≤ ∞, even if we do not assume ∂U to be C1.
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CHAPTER 8

Poincaré’s inequality

The inequality

‖u‖Lp∗ ≤ C‖Du‖Lp (8.1)

does not hold for every u ∈ W 1,p(U), where U ⊆ Rn is open and bounded. The Gagliardo-
Nirenberg inequality (Theorem 6.2) states that it holds for u ∈ C1

c (Rn) and hence for u ∈
W 1,p(Rn). Theorem 6.13 states that it holds for u ∈ W 1,p

0 (U), U ⊆ Rn open. If we consider
an arbitrary smooth function that is constant and nonzero on the unit ball B(0, 1) and zero
outside, we have

‖Du‖Lp = 0 and ‖u‖Lp∗ = |B(0, 1)|
1
p∗ .

However, if we replace the integrand on the left-hand side of (8.1) by ‖u− (u)U‖Lp , where

(u)U =

∫
U

u(x)
dx

|U |
(mean value of u in U)

we obtain an inequality that holds for all u ∈ W 1,p(U).

8.1. General formulation and proof by contradiction

Theorem 8.1 (Poincaré’s Inequality). Let U ⊆ Rn be open, bounded and connected with
a C1-boundary ∂U . Let 1 ≤ p ≤ ∞. Then there exists a constant C, depending only on n,
p and U , such that

‖u− (u)U‖Lp(U) ≤ C‖Du‖Lp(U) (8.2)

for all u ∈ W 1,p(U).

Proof. By contradiction. We assume that the statement is not true, i.e.

∀k ∈ N ∃uk ∈ W 1,p(U) : ‖uk − (uk)U‖Lp(U) > k‖Duk‖Lp(U). (8.3)

We define

vk :=
uk − (uk)U

‖uk − (uk)U‖Lp(U)

.

Then ‖vk‖Lp(U) = 1 and (vk)U = 0. The gradient of vk

Dvk =
Duk

‖uk − (uk)U‖Lp(U)

,

satisfies by assumption (8.3)

‖Dvk‖Lp(U) =
‖Duk‖Lp(U)

‖uk − (uk)U‖Lp(U)

<
1

k
. (8.4)
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Hence,

‖vk‖W 1,p(U) ≤ C(n, p)
(
‖Dvk‖Lp(U) + ‖vk‖Lp(U)

)
≤ C(n, p)

(
1 +

1

k

)
and

sup
k∈N
‖vk‖W 1,p(U) ≤ 2C(n, p).

By Remark 7.5 we have that

W 1,p(U) ⊂⊂ Lp(U), 1 ≤ p ≤ ∞.

By definition there exists a subsequence (vkj)
∞
j=1 and a v ∈ Lp(U) with ‖v‖Lp(U) = 1 and

(v)U = 0 such that

lim
j→∞

∥∥vkj − v∥∥Lp(U)
= 0.

Let φ ∈ C∞c (U). Then, using Lebesgue’s Theorem and the definition of the weak deriva-
tive, we have ∫

v φxidx = lim
j→∞

∫
vkj φxidx = − lim

j→∞

∫
(vkj)xi φ dx = 0,

where the last equality follows from limj→∞ ‖Dvkj‖Lp(U) = 0. Hence, Dv = 0. Since U is
connected, Proposition 8.2 implies that v is constant a.e on U . As (v)U = 0 we have v = 0
a.e. on U , which is a contradiction to ‖v‖Lp(U) = 1. �

Proposition 8.2. Let U ⊆ Rn open and bounded and connected. Let u ∈ W 1,p(U) and
Du = 0 a.e. in U . Then u is constant a.e. on U .

Proof. Step 1: Let ε > 0. We consider the smooth functions

uε = ηε ∗ u ∈ C∞(Uε),

where Uε = {x ∈ U : d(x, ∂U) > ε}. Corollary 3.8 yields

Dxi(uε) = ηε ∗Dxiu.

Hence, by assumption Dxiuε = 0 a.e. on Uε. Consequently, uε is constant on each connected
subset of Uε.

Step 2: Choose x, y ∈ U . Since U is connected there exists a polygonal path Γ ⊆ U
that connects x and y. Let δ = minz∈Γ d(z, ∂U) and ε < δ. Then Γ ⊆ Uε and x, y lie in the
same connected subset of Uε. Hence, uε(x) = uε(y) = const.

Step 3: u ∈ W 1,p(U). Theorem 3.9 yields that

uε
ε→0−→ u a.e. on U.

Hence, u is constant a.e. on U . �
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8.2. Poincaré’s inequality for a ball

Theorem 8.3 (Poincaré’s inequality for a ball). Let 1 ≤ p ≤ ∞. Then there exists a
constant C, that depends only on n and p, such that

‖u− (u)B(x,r)‖Lp(B(x,r)) ≤ C r ‖Du‖Lp(B(x,r)), (8.5)

for each ball B(x, r) ⊆ Rn and each function u ∈ W 1,p(B(x, r)).

Proof. Let U = B(0, 1) and u ∈ W 1,p(U). Theorem 8.1 yields the estimate

‖u− (u)B(0,1)‖Lp(B(0,1)) ≤ C‖Du‖Lp(B(0,1)). (8.6)

Let now u ∈ W 1,p(B(x, r)). We define

v(y) = u(x+ ry), y ∈ B(0, 1).

Then v ∈ W 1,p(B(0, 1)) and by equation (8.6) we have

‖v − (v)B(0,1)‖Lp(B(0,1)) ≤ C‖Dv‖Lp(B(0,1)). (8.7)

Changing variables, we recover equation (8.5). �

Remark 8.4. Let u ∈ W 1,n(Rn) and B(x, r) ⊆ Rn. Then Theorem 8.3 yields(∫
B(x,r)

∣∣u(y)− (u)B(x,r)

∣∣n dy

|B(x, r)|

) 1
n

≤ Cr

(∫
B(x,r)

|Du(y)|ndy
) 1

n

≤ Cr

|B(x, r)|
1
n

‖Du‖Ln(Rn)

=
C

|B(0, 1)|
1
n

‖Du‖Ln(Rn).

By Hölder’s inequality we obtain for the left-hand side∫
B(x,r)

∣∣u(y)− (u)B(x,r)

∣∣ dy

|B(x, r)|
≤
(∫

B(x,r)

∣∣u(y)− (u)B(x,r)

∣∣n dy

|B(x, r)|

) 1
n

.

Hence, ∫
B(x,r)

∣∣u(y)− (u)B(x,r)

∣∣ dy

|B(x, r)|
≤ C‖Du‖Ln(Rn), (8.8)

where C depends only on n.
Space of bounded mean oscillation. A function f ∈ L1

loc(Rn) is called of bounded
mean oscillation if

sup
B(x,r)⊆Rn

∫
B(x,r)

∣∣f(y)− (f)B(x,r)

∣∣ dy

|B(x, r)|
<∞. (8.9)

The space of all such functions is called the space of functions of bounded mean oscillation
(BMO(Rn)) and the left-hand side of equation (8.9) defines a norm ‖·‖BMO(Rn) on this space.

Therefore, we have that W 1,n(Rn) is continuously embedded into BMO(Rn) with

‖u‖BMO(Rn) ≤ C‖Du‖Ln(Rn) ≤ C‖u‖W 1,n(Rn). (8.10)
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8.3. Poincaré’s inequality - an alternative proof

Proof II of Theorem 8.3. Let B ⊆ Rn be a ball with radius R. We show that for
u ∈ C∞(B) the following estimate holds

|u(x)− (u)B| ≤ C(n)

∫
B

|Du(y)|
|x− y|n−1

dy, x ∈ B. (8.11)

Let x, y ∈ B and ω = y−x
|x−y| . Then

u(x)− u(y) = −
∫ |x−y|

0

d

dr
u(x+ rω)dr

= −
∫ |x−y|

0

Du(x+ rω) · ω dr.

We integrate over B with respect to y and obtain

|B|(u(x)− (u)B) = −
∫
B

∫ |x−y|
0

Du(x+ rω) · ω drdy.

By integration in polar coordinates (Theorem 11.16) on the right-hand side we obtain equa-
tion (8.11). Using Definition 6.9 we get the potential estimate

|u(x)− uB| ≤ C(n)I1(|∇u|)(x). (8.12)

Case: n = 1: Equation (8.11) yields

|u(x)− (u)B| ≤ C(n)

∫
B

|Du(y)|dy. (8.13)

Hence, (∫
B

|u(x)− (u)B|p
) 1

p

≤ C(n)|B|
1
p‖Du‖L1 .

We apply Hölder’s inequality to the right-hand side with exponents 1
p

+1− 1
p

= 1 and obtain(∫
B

|u(x)− (u)B|p
) 1

p

≤ C(n)|B|
1
p |B|1−

1
p‖Du‖Lp

= C(n)|B|‖Du‖Lp = 2C(n)R ‖Du‖Lp .

Case n > 1:
1. Let 1 < p < n. We apply Proposition 6.10 to the potential estimate (8.12) and obtain(∫

B

|u(x)− (u)B|p
∗
) 1

p∗

≤ C(n)‖I1(|Du|)‖Lp∗(B) ≤ C(n)‖Du‖Lp(B).

74



Hölder’s inequality applied to the left-hand side with exponents p
p∗

+ 1− p
p∗

= 1 yields(∫
B

|u(x)− (u)B|p
) 1

p

≤ |B|
1
p
− 1
p∗

(∫
B

|u(x)− (u)B|p
∗
) 1

p∗

≤ |B|
1
nC(n)‖Du‖Lp(B)

= C(n)R ‖Du‖Lp(B).

2. Let n ≤ p < ∞. Choose 1 < q < n so that q∗ ≥ p. (This is always possible!!) Then,
by the above computations(∫

B

|u(x)− (u)B|q
∗
) 1

p∗

≤ C(n)‖Du‖Lq(B).

Applying Hölder’s inequality to the left-hand side with exponents p
q∗

+ 1− p
q∗

= 1 yields(∫
B

|u(x)− (u)B|p
) 1

p

≤ |B|
1
p
− 1
q∗

(∫
B

|u(x)− (u)B|q
∗
) 1

q∗

≤ |B|
1
p
− 1
q∗C(n)‖Du‖Lq(B).

Now applying Hölder’s inequality to the right-hand side with exponents q
p

+ 1− q
p

= 1 yields(∫
B

|u(x)− (u)B|p
) 1

p

≤ |B|
1
p
− 1
q∗ |B|

1
q
− 1
pC(n)‖Du‖Lp(B)

= |B|
1
q
− 1
q∗C(n)‖Du‖Lp(B)

= |B|
1
nC(n)‖Du‖Lp(B)

= C(n)R ‖Du‖Lp(B).

3. Let p =∞. Then equation (8.11) yields

|u(x)− (u)B| ≤ C(n)‖Du‖∞
∫
B

1

|x− y|n−1dy

Integration in polar coordinates (Theorem 11.16) gives

|u(x)− (u)B| ≤ C(n)R‖Du‖∞.
Hence,

‖u− (u)B‖∞ ≤ C(n)R‖Du‖∞.
4. Let p = 1. We apply the same procedure as in the case p = 1 in the alternative proof

of the Gagliardo-Nirenberg inequality (Proof II of Theorem 6.2 in Section 6.3):

Let h(x) = u(x)− (u)B, x ∈ B. We set

h+(x) = max {h(x), 0} and h−(x) = max {−h(x), 0}.
In the following let h = h+ or h = h−. The support of h can be written as union of the

sets

Aj :=
{
x ∈ Rn : 2j < h(x) ≤ 2j+1

}
, j ∈ Z.
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We consider the function

vj(x) =


0, if h(x) ≤ 2j

h(x)− 2j, if 2j < h(x) ≤ 2j+1

2j, if 2j+1 < h(x).

(8.14)

Since vj(x) > 2j−1 if and only if h(x)− 2j > 2j−1, we obtain

|Aj+1| = |
{

2j+1 < h ≤ 2j+2
}
| ≤ |

{
h > 2j+1

}
| = |

{
h > 4 · 2j−1

}
|

≤ |
{
h > 3 · 2j−1

}
| = |

{
vj > 2j−1

}
|.

(8.15)

The function vj is continuous on B. Hence, by smoothing by convolution we can construct
a sequence of smooth functions which converges by Theorem 3.9 uniformly to vj on B. This
approximation argument allows us to apply the potential estimate (8.12) to vj and obtain

|vj(x)− (vj)B| ≤ C(n)I1(|Dvj|)(x). (8.16)

Equation (8.16) and (8.15) yield

|Aj+1| ≤ |
{
vj > 2j−1

}
|

≤ |
{
vj − (vj)B > 2j−1

}
|

≤ |
{
|vj − (vj)B| > 2j−1

}
|

≤ |
{
I1(|Dvj|) > C(n)−12j−1

}
|.

Using the weak estimate (6.23) in Proposition 6.10 for λ = C(n)−12j−1 we get

|Aj+1| ≤ C1(n)

(
C(n)2−j+1

∫
Rn
|Dvj|dx

) n
n−1

.

The definition of vj yields that the support of Dvj is contained in Aj and Dvj = Dh on Aj.
Hence,

|Aj+1| ≤ C(n)

(
2−j
∫
Aj

|Dh|dx

) n
n−1

. (8.17)

By the definition of Aj we obtain∫
Rn
|h(x)|

n
n−1dx =

∑
j∈Z

∫
Aj

|h(x)|
n
n−1dx

≤
∑
j∈Z

(
2j+1

) n
n−1 |Aj|

= 2
n
n−1

∑
j∈Z

(
2j+1

) n
n−1 |Aj+1|.

(8.18)
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Equation (8.17) yields

2
n
n−1

∑
j∈Z

(
2j+1

) n
n−1 |Aj+1| ≤ C(n)

∑
j∈Z

(∫
Aj

|Dh(x)|dx

) n
n−1

≤ C(n)

(∑
j∈Z

∫
Aj

|Dh(x)|dx

) n
n−1

= C(n)

(∫
Rn
|Dh(x)|dx

) n
n−1

.

(8.19)

Equation (8.18) and (8.19) give the estimate∥∥h+
∥∥
L

n
n−1
≤ C(n)

∥∥Dh+
∥∥
L1 .

The same argument holds for h−. Hence, we have

‖h‖
L

n
n−1

=
∥∥h+ − h−

∥∥
L

n
n−1
≤
∥∥h+

∥∥
L

n
n−1

+
∥∥h−∥∥

L
n
n−1

≤ C(n)

∫
B

∣∣Dh+(x)
∣∣+
∣∣Dh−(x)

∣∣dx
= C(n)

∫
B

|Dh(x)|dx

= C(n)‖Dh‖L1 .

Since h(x) = u(x)− (u)B, we have(∫
B

|u(x)− (u)B|
n
n−1

)n−1
n

≤ C(n)‖Du‖L1(B).

Applying Hölder’s inequality with n−1
n

+ 1− n−1
n

= 1 yields∫
B

|u(x)− (u)B| ≤ |B|1−
n−1
n

(∫
B

|u(x)− (u)B|
n
n−1

)n−1
n

≤ |B|
1
nC(n)‖Du‖L1(B)

= C(n)R ‖Du‖L1(B).

�
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CHAPTER 9

Fourier transform

Definition 9.1 (L1-Fourier transform). For f ∈ L1(Rn) we define its Fourier transform

f̂(ξ) =

∫
Rn
e−2πix·ξf(x)dx (9.1)

and its inverse Fourier transform

qf(ξ) =

∫
Rn
e2πix·ξf(x)dx. (9.2)

Remark 9.2. Since
∣∣e±2πixξ

∣∣ = 1 and u ∈ L1(Rn), these integrals converge absolutely
for all ξ ∈ Rn and define bounded functions:

|
∫
f(x)e±2πixξdx| ≤

∫
|e±2πixξ||f(x)|dx = ‖f‖1 .

Theorem 9.3 (Fourier Inversion). Let f, f̂ ∈ L1(Rn). Then

f(x) =

∫
f̂(ξ)e2πiξ·xdξ, for a.e. x ∈ Rn. (9.3)

Proof. See[5]. �

Remark 9.4. Let f, f̂ , qf ∈ L1(Rn). Then we have(
f̂
)

q

= f =
(

qf
)̂

a.e. in Rn. (9.4)

The Fourier transform on L2. We intend now to extend the definition of the Fourier
transform and its inverse to L2(Rn).

Theorem 9.5 (Plancherel). Let f ∈ L1(Rn) ∩ L2(Rn). Then f̂ , qf ∈ L2(Rn) and∥∥∥f̂∥∥∥
L2(Rn)

=
∥∥∥ qf
∥∥∥
L2(Rn)

= ‖f‖L2(Rn). (9.5)

Proof. See [4]. �

In view of the equality (9.5) we can define the Fourier transform of f ∈ L2(Rn) as follows.
Choose a sequence (fk) ∈ L1(Rn) ∩ L2(Rn) with fk → f in L2(Rn). Note that C∞c (Rn) is
dense in Lp(Rn), 1 ≤ p <∞. According to (9.5) we have∥∥∥f̂k − f̂j∥∥∥

L2
=
∥∥∥f̂k − fj∥∥∥

L2
= ‖fk − fj‖L2 .

Hence, (f̂k) is Cauchy sequence in L2(Rn) with limit in L2. We define

f̂ = lim
k→∞

f̂k.
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Note that the limit does not depend on the particular choice of the sequence (fk). We

similarly define qf . This gives the following theorem.

Theorem 9.6. There exists a unique linear and bounded operator F : L2 → L2, such
that

(1) ‖Ff‖2 = ‖f‖2 for f ∈ L2,

(2) Ff = f̂ for f ∈ L1 ∩ L2.

Theorem 9.7 (Properties). Let f ∈ L2(Rn) and τ ∈ Rn.

(1) Let fτ (x) = f(x− τ). Then

f̂τ (ξ) = e−2πiτ ξf̂(ξ). (9.6)

(2) Let eτ (x) = e2πix τ . Then

êτf(ξ) = f̂(ξ − τ). (9.7)

(3) Let f ε(x) = ε−nf(1
ε
x). Then

f̂ ε(ξ) = f̂(εξ) (9.8)

(4) Let Dαf ∈ L2(Rn) for some multiindex α. Then

D̂αf(ξ) = (2πi)|α|ξαf̂(ξ). (9.9)

(5) Let g ∈ L2(Rn). Then

f̂ ∗ g(ξ) = f̂(ξ) ĝ(ξ). (9.10)

(6) Let g ∈ L2(Rn). Then∫
Rn
f(x)g(x)dx =

∫
Rn
f̂(x)ĝ(x)dx.

Proof. We prove (4) and (6) only. Let f ∈ C∞c (Rn). Then

D̂αu(ξ) =

∫
Rn
e−2πix·ξDαf(x)dx

= (−1)|α|
∫
Rn
Dαe−2πix·ξf(x)dx

= (−1)|α|(−2πiξ)α
∫
Rn
e−2πix·ξf(x)dx

= (2πi)|α|ξαf̂(ξ).

Let now f ∈ L2(Rn). Since C∞c (Rn) is dense in L2(Rn), there exists a sequence (fk)
∞
k=1 ⊆

C∞c (Rn) that converges to f in L2. Let fα be the L2-limit of the sequence (Dαfk)
∞
k=1 ⊆ C∞c .
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Then, for every ϕ ∈ C∞c (Rn)∫
Rn
fα(x)ϕ(x)dx = lim

k→∞

∫
Rn
Dαfk(x)ϕ(x)dx

= (−1)|α| lim
k→∞

∫
Rn
fk(x)Dαϕ(x)dx

= (−1)|α|
∫
Rn
f(x)Dαϕ(x)dx

=

∫
Rn
Dαf(x)ϕ(x)dx.

Hence, Dαf = fα. Note that by Theorem 9.5 (Plancherel) we have that f̂k converges to f̂
in L2. By the above we obtain

D̂αf = lim
k→∞

D̂αfk = lim
k→∞

(2πi)|α|ξαf̂k = (2πi)|α|ξαf̂ .

This gives (4).
Let α ∈ C. Then, by Theorem 9.5

‖f + αg‖2
L2 =

∥∥∥f̂ + α̂g
∥∥∥2

L2
. (9.11)

Expanding we deduce∫
Rn
|f(x)|2 + αg(x)f(x) + αg(x)f(x) + |αg(x)|2dx

=

∫
Rn

∣∣∣f̂(x)
∣∣∣2 + α̂g(x)f̂(x) + α̂g(x)f̂(x) + |α̂g(x)|2dx.

Again, by Theorem 9.5 we obtain∫
Rn
αg(x)f(x) + αg(x)f(x)dx =

∫
Rn
α̂g(x)f̂(x) + α̂g(x)f̂(x)dx.

If we take α = 1 we obtain∫
Rn
g(x)f(x) + g(x)f(x)dx =

∫
Rn
ĝ(x)f̂(x) + ĝ(x)f̂(x)dx. (9.12)

If we take α = i we obtain∫
Rn
ig(x)f(x)− ig(x)f(x)dx =

∫
Rn
i ĝ(x)f̂(x)− i ĝ(x)f̂(x)dx. (9.13)

We multiply equation (9.13) with i and obtain∫
Rn
−g(x)f(x) + g(x)f(x)dx =

∫
Rn
− ĝ(x)f̂(x) + ĝ(x)f̂(x)dx. (9.14)

Combining equation (9.12) and (9.14) yields the statement.
�

Theorem 9.8 (Characterization of Hk by the Fourier Transform). Let k ∈ N. A function
u ∈ L2(Rn) belongs to Hk(Rn) if and only if

(1 + | · |k)û ∈ L2(Rn). (9.15)
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In addition, there exists a positive constant C such that

1

C
‖u‖Hk(Rn) ≤

∥∥∥1 + | · |kû
∥∥∥
L2(Rn)

≤ C‖u‖Hk(Rn). (9.16)

Proof. 1. Assume first that u ∈ Hk(Rn). Then for each multiindex |α| ≤ k, we have
Dαu ∈ L2(Rn). Theorem 9.7 (4) asserts that

D̂αu(ξ) = (2πi)|α|ξαû(ξ) for a.e. ξ ∈ Rn. (9.17)

Thus, by Theorem 9.5, we have that (2πiξ)|α|û(ξ) ∈ L2(Rn) for each |α| ≤ k.
Let 1 ≤ j ≤ n and αj = (0, . . . , k, . . . , 0), where k is at the jth position of the multiindex

αj. Then we have

D̂αju(ξ) = (2πi)kξkj û(ξ).

Hence, by Theorem 9.5,∑
1≤|α|≤k

‖Dαu‖2
L2 =

∑
1≤|α|≤k

∥∥∥D̂αu
∥∥∥2

L2

≥
n∑
j=1

∥∥∥D̂αju
∥∥∥2

L2

=
n∑
j=1

∫
Rn

∣∣(2πi)kykj û(y)
∣∣2dy

= (2π)2k

∫
Rn
|û(y)|2

n∑
j=1

|yj|2kdy

≥ c(n, k)(2π)2k

∫
Rn
|û(y)|2|y|2kdy.

Summarizing we have ∫
Rn
|û(y)|2|y|2kdy ≤ C(n, k)

∑
1≤|α|≤k

‖Dαu‖2
L2 . (9.18)

Since |y|k ≤ 1, if |y| ≤ 1 and |y|k ≤ |y|2k, if |y| ≥ 1, the following estimate holds:∫
Rn

∣∣∣û(y)(1 + |y|k)
∣∣∣2dy =

∫
Rn
|û(y)|2(1 + |y|k)2dy

=

∫
Rn
|û(y)|2dy +

∫
Rn
|û(y)|2|y|2kdy + 2

∫
Rn
|û(y)|2|y|kdy

≤ 3

(∫
Rn
|û(y)|2dy +

∫
Rn
|û(y)|2|y|2kdy

)
.

We apply Theorem 9.5 and equation (9.18) to the right-hand side and obtain∫
Rn

∣∣∣û(y)(1 + |y|k)
∣∣∣2dy ≤ C(n, k)

‖u‖2
L2 +

∑
1≤|α|≤k

‖Dαu‖2
L2

 = C(n, k)‖u‖2
Hk .
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2. Assume (1 + | · |k)û ∈ L2(Rn). We show that u ∈ Hk(Rn). Let |α| ≤ k. Then∫
Rn

∣∣(2πi)|α|yαû(y)
∣∣2dy = (2π)2|α|

∫
Rn
|yα|2|û(y)|2dy

≤ (2π)2k

∫
Rn
|y|2k|û(y)|2dy

≤ (2π)2k

∫
Rn

(1 + |y|k)2|û(y)|2dy

= (2π)2k
∥∥∥(1 + |·|k)û

∥∥∥2

L2(Rn)
.

(9.19)

Hence, (2πi)|α|yαû(y) ∈ L2(Rn). Let

uα =
(
(2πi)|α|yαû(y)

)
q

.

We show that uα is the weak derivative of u. Let ϕ ∈ C∞c (Rn). We use Theorem 9.7 to
obtain ∫

Rn
Dαϕ(x)u(x)dx =

∫
Rn
D̂αϕ(x)û(x)dx

=

∫
Rn

(2πi)|α|xαϕ̂(x)û(x)dx

= (−1)|α|
∫
Rn

(2πi)|α|xαû(x)ϕ̂(x)dx

= (−1)|α|
∫
Rn
uα(x)ϕ(x)dx,

where u denotes the complex conjugate of the function u : Rn → C. Hence,∫
Rn
Dαϕ(x)u(x)dx = (−1)|α|

∫
Rn
uα(x)ϕ(x)dx, for all ϕ ∈ C∞c .

If we take the complex conjugate on both sides of the equation we obtain∫
Rn
Dαϕ(x)u(x)dx = (−1)|α|

∫
Rn
uα(x)ϕ(x)dx, for all ϕ ∈ C∞c .

Hence, uα is the weak derivative of u and by equation (9.19) the weak derivative is in L2(Rn).
It remains to show the left-hand side inequality of (9.16). By Theorem 9.5 and equation
(9.19) we have that for every |α| ≤ k the following estimate holds

‖Dαu‖2
L2(Rn) ≤ (2π)2k

∫
Rn
|y|2k|û(y)|2dy.

Hence, ∑
1≤|α|≤k

‖Dαu‖2
L2(Rn) ≤ C(n, k)

∫
Rn
|y|2k|û(y)|2dy. (9.20)

Theorem 9.5 yields

‖u‖2
L2(Rn) =

∫
Rn
|û(y)|2dy. (9.21)
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By combining equation (9.20) and (9.21) we obtain

‖u‖2
Hk ≤ C(n, k)

∫
Rn

(1 + |y|2k)|û(y)|2dy

≤ C(n, k)

∫
Rn

(1 + |y|k)2|û(y)|2dy

= C(n, k)
∥∥∥(1 + | · |k)û

∥∥∥
L2(Rn)

.

�

We can define the fractional Sobolev spaces.

Definition 9.9. Let 0 < s < ∞ and u ∈ L2(Rn). We say u ∈ Hs(Rn) if (1 + |·|s)û ∈
L2(Rn) and define for s /∈ N the norm

‖u‖Hs(Rn) = ‖(1 + | · |s)û‖L2(Rn).

Remark 9.10. Note that

(1 + |y|k) ≈ (1 + |y|2)
k
2 , for all y ∈ Rn.

Hence, we have the following equivalent characterization: a function u ∈ L2(Rn) belongs to
Hk(Rn) if and only if

(1 + | · |2)
k
2 û ∈ L2(Rn). (9.22)

Alternatively, the following definition is common as well

Definition 9.11. Let 0 < s <∞ and u ∈ L2(Rn). We say u ∈ Hs(Rn) if (1 + | · |2)
s
2 û ∈

L2(Rn) and define for s /∈ N the norm

‖u‖Hs(Rn) =
∥∥(1 + | · |2)

s
2 û
∥∥
L2(Rn)

.
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CHAPTER 10

Exercises

Chapter 2

Exercise 1. Let u ∈ L1
loc(R) and

Tu : C∞c (R)→ R, Tu(φ) =

∫
R
u(x)φ(x)dx.

Show that the integral exists and that Tu is linear and continuous.

Remark: Note that a sequence ϕn ∈ C∞c (R) converges to ϕ in C∞c (R), if

(1) there exists a compact interval [a, b] such that suppϕn ⊆ [a, b] for all n ∈ N.

(2) ∀ε > 0 ∀l ∈ N0 ∃Nl ∀n ≥ Nl : supx

∣∣∣ϕ(l)
n (x)− ϕ(l)(x)

∣∣∣ < ε.

Exercise 2. Consider the function u : R→ R, given by

u(x) =

{
0, if x ≤ 0,

x, if x > 0.

Determine the distributional and the weak derivative (if it exists) of u.

Exercise 3. The Heaviside function H : R→ R is defined by

H(x) =

{
0, if x ≤ 0,

1, if x > 0.

Determine the distributional derivative of H. Prove or disprove that H does not have a weak
derivative.

Exercise 4. Prove Lemma 2.6.

Exercise 5. Prove Lemma 2.7.

Exercise 6. Show that W k,p(U) is a normed vector space.

Exercise 7. Show that

〈u, v〉 =
∑
|α|≤k

∫
U

Dαu(x)Dαv(x)dx

defines an inner product on Hk and
√
〈u, u〉 = ‖·‖Hk .

Exercise 8. Prove Lemma 2.16
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Chapter 3

Exercise 9. Let Uε and f ε be as in Definition 3.4. Show that for x ∈ Uε and 1 ≤ i ≤ n

∂

∂xi
f ε(x) := lim

h→0

f ε(x+ eih)− f ε(x)

h
=

∫
U

∂xiη
ε(x− y)f(y)dy .

Exercise 10. Let u be absolutely continuous (cf. Section 11.5) on an interval U =
(a, b) ⊆ R. Show that u admits a weak derivative v ∈ L1(U) and that the weak derivative
coincides with the classical derivative almost everywhere.

Exercise 11. Let U = (a, b) ⊆ R be an open interval. Assume that u ∈ L1
loc(U) admits

a weak derivative v ∈ L1(U). Show that there exists an absolutely continuous function ũ
such that

ũ(x) = u(x), for a.e. x ∈ U, (10.1)

v(x) = lim
h→0

ũ(x+ h)− ũ(x)

h
, for a.e. x ∈ U. (10.2)

Hint: Let x0 ∈ U be a Lebesgue point of u, i.e.

lim
r→0+

1

|B(x0, r)|

∫
B(x0,r)

|u(y)− u(x0)| dy = 0.

Define ũ(x) = u(x0) +
∫ x
x0
v(y)dy and use Theorem 3.9.

Exercise 12. Let U = (a, b) ⊆ R. Show that u ∈ W 1,p(U) if and only if u coincides
a.e. with an absolutely continuous function ũ : U → R with ũ ∈ Lp(U) and its derivative
ũ′ ∈ Lp(U).

Hint for exercises 10-12: The following facts for absolutely continuous functions follow
from the fundamental theorem (Theorem 11.23)

(1) u : I = (a, b) → R is absolutely continuous if and only if there exists a function
v ∈ L1(I) such that

u(x) = u(a) +

∫ x

a

v(t)dt, x ∈ I.

(2) u : I → R is absolutely continuous if and only if its classical derivative u′ exists
a.e. in I and belongs to L1(I).

Exercise 13. Let 1 ≤ p <∞ and f ∈ Lp(Rn). Let fh(t) = f(t− h), h ∈ Rn. Prove

‖fh − f‖Lp → 0.

Hint. Use that Cc(Rn) is dense in Lp, 1 ≤ p <∞.

Exercise 14. Give an example to show that the result in Exercise 13 is not true when
p =∞.

Exercise 15. Reconsider the estimate in Remark 3.18
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Chapter 4

Exercise 16. Show that

‖u‖W 1,p(B) ≤ Cp ‖u‖W 1,p(B+),

where B , B+, u and u are as in the proof of Theorem 4.1 (Extension Theorem).

Exercise 17. Let u ∈ W 2,p(U) ∩ C2(U). Show that u /∈ C2(B), but

‖u‖W 2,p(B) ≤ Cp ‖u‖W 2,p(B+),

where B , B+ and u are as in the proof of Theorem 4.1 (Extension Theorem).

Exercise 18. Let u ∈ W 1,∞(U). Let

u(x) =

{
u(x), if x ∈ B+

u(x1, . . . , xn−1,−xn), if x ∈ B−.

Show that the weak derivatives of u are given by

∂u

∂xi
=

{
uxi , on B+

uxi(x1, . . . , xn−1,−xn), on B−

if 1 ≤ i < n and

∂u

∂xn
=

{
uxn , on B+

−uxn(x1, . . . , xn−1,−xn), on B−.

Exercise 19. Show that the operator E : W 1,p(U)→ W 1,p(Rn) defined by

Eu = lim
m→∞

Eum

does not depend on the particular choice of the sequence (um)∞m=1 ⊆ C1(U) and satisfies the
properties of Theorem 4.1.

Chapter 5

Exercise 20. Verify Step 2 in the proof of Theorem 5.1 analogously to Step 4 in the
proof of Theorem 4.1.

Exercise 21. Let U = (a, b) ⊆ R and u ∈ W 1,p(U), 1 ≤ p <∞. Then

Tu ≡ 0⇔ ũ(a) = ũ(b) = 0,

where T : W 1,p(U) → Lp(∂U) is the trace operator and ũ is the absolutely continuous
representation of u, cf. Exercise 12.

Exercise 22. Let u ∈ W k,p(U) and x0 ∈ U . Show that

x0 ∈ suppu⇔ ∀V ⊆ U open with x0 ∈ V ∃ϕ ∈ C∞c (V ) :

∫
V

u(x)ϕ(x) 6= 0,

where suppu = U \
⋃
{V ⊆ U open : u = 0 a.e. on V }.
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Exercise 23. Let u ∈ C(U). Let

supp(u) = {x ∈ U : u(x) 6= 0}
and

ess supp(u) = U \
⋃
{V ⊆ U open : u = 0 a.e. on V }.

Show that
suppu = ess suppu.

Exercise 24. Let U = {(x, y) ∈ R2 : x2 + y2 < 1}. Construct a sequence (un)∞n=1 in
C(U) ∩W 1,1(U) such that

‖un‖L1(U) ≤
C

n
and ‖un‖L1(∂U) = C,

where C is some constant independent from n.

Exercise 25. Show that the sequence (un)∞n=1 constructed in Exercise 24 satisfies

‖un‖L1(∂U) ≤ C‖un‖W 1,1(U),

where C is some constant independent from n.

Chapter 6

Exercise 26. Prove the general Hölder inequality (Theorem 11.6): Let 1 ≤ p1, . . . , pm ≤
∞, with 1

p1
+ · · ·+ 1

pm
= 1. Assume uk ∈ Lpk for k = 1 . . . ,m. Then∫

U

|u1 · · ·um|dx ≤
m∏
k=1

‖ui‖Lpk (U) .

Exercise 27. Let η ∈ C∞c (Rn) such that η(0) = 1, 0 ≤ η(x) ≤ 1 for all x ∈ Rn, and
supp η ⊆ B(0, 1). Let f ∈ C∞(Rn) ∩W k,p(Rn). Show that fR(x) := f(x)η(x/R) converges

to f in W k,p(Rn) for R → ∞. As a consequence show that W k,p
0 (Rn) = W k,p(Rn) for all

1 ≤ p <∞.

Exercise 28. Show that the statement of Theorem 6.2 is true for p = n, if n = 1.

Exercise 29. Recalculate the proof of Theorem 6.2 for p = 1 and n = 2.

Exercise 30. Let U ⊆ Rn open and bounded. Let 1 ≤ p < n. Show that for u ∈ W 1,p
0

we have that ‖u‖W 1,p(U) is equivalent to ‖Du‖Lp(U).

Exercise 31. Let U ⊆ Rn be open and bounded and suppose ∂U is C1. Assume
1 ≤ p < n and u ∈ W 2,p(U). Show that

‖u‖W 1,q(U) ≤ C‖u‖W 2,p(U)

for all q ∈ [1, p∗].

Exercise 32. Show that f(x) = xα, x ∈ [0, 1], is Hölder continuous with exponent α′,
0 < α′ ≤ α < 1, but not for α′ > α.

Exercise 33. Show that (Ck,γ(U), ‖ · ‖k,γ) is a Banach space.

88



Exercise 34. Let U = {x ∈ Rn : |x| < 1}. Let u(x) = |x|α, α ∈ (0, 1). Show that
u ∈ W 1,p(U), p > n, if and only if α > 1− n

p
.

Exercise 35. Let U ⊆ Rn be open, bounded and suppose ∂U is C1. Assume u ∈
W 1,p(U), n < p ≤ ∞. Show that for all γ ∈ (0, 1− n

p
]

‖u∗‖C0,γ(U) ≤ C‖u‖W 1,p(U). (10.3)

where u∗ is a version of u. Use Exercise 34 to show that equation (10.3) does not hold for
γ ∈ (1− n

p
, 1]. Then show that

‖u∗‖C0,γ(Rn) ≤ C‖u‖W 1,p(Rn)

does not hold for γ ∈ (1− n
p
, 1].

Exercise 36. Prove Theorem 6.20.

Exercise 37. Let U ⊆ Rn open and bounded. Assume u ∈ W 1,p
0 (U), n < p ≤ ∞. Then

u has a version u∗ ∈ C0,γ(U) for γ = 1− n
p
, with the estimate

‖u∗‖C0,γ(U) ≤ C‖Du‖Lp .

Exercise 38. Present the proof of Proposition 6.10. Introduce first all definitions needed.

Exercise 39. Present the alternative proof of Theorem 6.2 (given in Section 6.3) in the
case 1 < p < n.

Exercise 40. Present the alternative proof of Theorem 6.2 (given in Section 6.3) in the
case p = 1.

Exercise 41. Let U = {x ∈ Rn : |x| < 1}, where |x| is the euclidean norm on Rn, i.e.

|x| =

(
n∑
i=1

x2
i

) 1
2

.

Let u(x) = ln
(

ln
(

1 + 1
|x|

))
on U \ {0}. Show that u ∈ Ln(U).

Hint:

(1) ln(1 + x) ≤ x for all x ≥ 0.
(2)

∫∞
0
tn−1e−tdt = Γ(n).

Exercise 42. Let U and u be as in Exercise 41. Show that the classical derivatives

∂u

∂xi
,

which exist on U \ {0}, are the weak derivatives of u on U and

∂u

∂xi
∈ Ln(U).
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Chapter 7

Exercise 43. Show that the estimate (7.1) in the proof of Theorem 7.2 is valid for
(um)∞m=1 in W 1,p(V ).

Exercise 44. Verify equation 7.6, by applying Lemma 3.7 and Minkowski’s inequality
for integrals (Theorem 11.4).

Exercise 45. Prove Theorem 7.3.

Exercise 46. What do we have to change in the proof of Theorem 7.2 to obtain a proof
for Theorem 7.4?

Chapter 8

Exercise 47. Let f ∈ L2([0, 2π], dt
2π

) be given by its Fourier series

f(t) =
∑
n∈Z

ane
int,

where

an =
〈
f, ein·

〉
=

1

2π

∫ 2π

0

f(t)e−intdt ∈ C.

Let
∑

n∈Z n
2|an|2 <∞. Show that the weak derivative of f is given by

g(t) =
∑
n∈Z

inane
int

and is in L2([0, 2π], dt
2π

).

Remark: The partial sums

SN =
N∑

n=−N

ane
int

converge to f in L2([0, 2π], dt
2π

).

Exercise 48. Let f ∈ L2([0, 2π], dt
2π

) be given by its Fourier series

f(t) =
∑
n∈Z

ane
int

with
∑

n∈Z n
2|an|2 <∞. Show that Poincaré’s inequality (Theorem 8.1) holds with constant

one.
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CHAPTER 11

Appendix

11.1. Notation

11.1.1. Geometric notation.

(1) Rn is the n-dimensional real euclidean space equipped with the euclidean norm

‖x‖Rn = |x| =

(
n∑
i=1

|xi|2
) 1

2

.

(2) Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xn > 0}.

11.1.2. Notation for functions. Let U ⊆ Rn.

(1) If u : U −→ R, we write

u(x) = u(x1, . . . xn), x ∈ U.
We say u is smooth if u is infinitely differentiable.

(2) If u : U −→ Rm, we write

u(x) = (u1(x), . . . , um(x)), x ∈ U.
The function uk is the kth component of u, k = 1, . . . ,m.

11.1.3. Function Spaces. Let U ⊆ Rn.

(1)

Ck(U) = {u : U → R | u is continuous},
C(U) = {u ∈ C(U) | u is uniformly continuous on bounded subsets of U},
Ck(U) = {u : U → R | u is k-times continuously differentiable},

Ck(U) =

{
u ∈ Ck(U)

∣∣∣∣Dαu is uniformly continuous on bounded subsets of U
for all multiindex α with |α| ≤ k

}
.

Thus, if u ∈ Ck(U), then Dαu continuously extends to U for each multiindex α,
|α| ≤ k. On the other hand, if V ⊂ U is compact, then every continuous function
on V is uniformly continuous (Heine-Cantor).

(2)

C∞(U) = {u : U → R | u is infinitely differentiable } =
∞⋂
k=0

Ck(U)

C∞(U) =
∞⋂
k=0

Ck(U)
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(3) Cc(U), Ck
c (U), etc. denote the functions in C(U), Ck(U), etc. with compact support.

C∞c (U), cf. page 7.
(4) Let 1 ≤ p < ∞. The space of p-times integrable functions, denoted by Lp(U),

consists of equivalence classes of measurable functions u : U → Rn such that

‖u‖Lp =

(∫
U

|u|p
) 1

p

<∞,

where two such functions are equivalent if they are equal a.e. (w.r.t. the Lebesgue
measure).

The space of essentially bounded functions, denoted by L∞(U), consists of equiv-
alence (a.e. equivalence) classes of measurable functions u : U → Rn such that

‖u‖∞ = ess supRn |u| <∞, (11.1)

where ess supRn u = inf{a ∈ R : |{x ∈ Rn : u(x) > a}| = 0}.
(5) Lploc(U) = {u : U → R | u ∈ Lp(V ) for each V ⊂⊂ U}, cf. page 7.

Note that V ⊂⊂ U means V ⊂ K ⊂ U , where K is compact (compactly
contained), cf. page 12.

(6) W k,p(U), cf. page 10,
Hk(U), cf. page 11,

W k,p
0 (U), cf. page 11.

11.1.4. Notation for derivatives. Assume u : U −→ R, x ∈ U .

(1) ∂u
∂xi

(x) = limh→∞
u(x+hei−u(x)

h
, provided the limit exists.

(2) We write uxi for ∂u
∂xi

, ∂2u
∂xi∂xj

for uxixj , etc.

(3) Multiindex Notation
(a) A vector of the form α = (α1, . . . , αn) ∈ Nn

0 is called a multiindex of order

|α| = α1 + · · ·+ αn.

(b) Let x ∈ Rn, then
xα = xα1

1 · · ·xαnn
(c) We define for a given multiindex α

Dαu(x) :=
∂|α|u(x)

∂α1
x1
· · · ∂αnxn

= ∂αnx1 · · · ∂
αn
xn u

(d) Let k ∈ N0. The set of all partial derivatives of order k is denoted by

Dku(x) := {Dαu(x)||α| = k}.
(e) Let α, β be multiindices, then

β ≤ α⇐⇒ β1 ≤ α1, . . . , βn ≤ αn.

(f) Let α, β be multiindices with β ≤ α. Then(
α

β

)
=

α!

β!(α− β)!
,

where α! = α1! · · ·αn!.
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(g) Leibniz formula. If u, v ∈ C∞c (U), then

Dα(uv) =
∑
β≤α

(
α

β

)
DαuDα−βu

11.2. Inequalities

Theorem 11.1. Let 1 ≤ p <∞. Then

(a+ b)p ≤ 2p−1(ap + bp), a, b > 0. (11.2)

Proof. The function t 7→ tp is convex for t ≥ 0. Therefore,(
a+ b

2

)p
≤ 1

2
(ap + bp).

�

Corollary 11.2. Let 1 ≤ p <∞. Then

‖f + g‖pLp(U) ≤ 2p−1
(
‖f‖pLp(U) + ‖g‖pLp(U)

)
.

Proof. Use the triangle inequality and apply Theorem 11.1 with a = |f | and b = |g|. �

Theorem 11.3 (Young’s inequality). Let 1 < p, q ≤ ∞ and 1
p

+ 1
q

= 1. Then

ab ≤ ap

p
+
bq

q
, a, b > 0.

Proof.

ab = elog (ab) = elog a+log b = e
1
p

log ap+ 1
q

log bq .

The function x 7→ ex is convex for all x ∈ R. Therefore,

e
1
p

log ap+ 1
q

log bq ≤ 1

p
elog ap +

1

q
elog bq =

ap

p
+
bq

q
.

�

Theorem 11.4 (Minkowski’s inequality for integrals). Let (Ω1, dx) and (Ω2, dy) be mea-
sure spaces and F : Ω1 × Ω2 → R be measurable. Let r ≥ 1. Then(∫

Ω1

(∫
Ω2

|F (x, y)|dy
)r

dx

) 1
r

≤
∫

Ω2

(∫
Ω1

|F (x, y)|rdx
) 1

r

dy.

Theorem 11.5 (Hölder’s inequality). Let 1 ≤ p, q ≤ ∞, 1
p

+ 1
q

= 1. Then, if u ∈
Lp(U), v ∈ Lq(U), we have ∫

U

|uv|dx ≤ ‖u‖Lp(U)‖v‖Lq(U) .
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Theorem 11.6 (General Hölder Inequality). Let 1 ≤ p1, . . . , pm ≤ ∞, with 1
p1

+· · ·+ 1
pm

=

1. Assume uk ∈ Lpk(U) for k = 1 . . . ,m. Then∫
U

|u1 · · ·um|dx ≤
m∏
k=1

‖ui‖Lpk (U) .

Proof. Induction, and using Hölders inequality.
Let m = 2. This is clear from Hölders inequality.

Induction step:
1

p1

+ · · ·+
( 1

pm
+

1

pm+1

)
= 1

1

pm
+

1

pm+1

=
pm + pm+1

pmpm+1

; α :=
pmpm+1

pm + pm+1
⇒ ∫

U

|u1(x) · · ·um(x)um+1(x)|dx ≤ ‖u1‖Lp1 · · · ‖um−1‖Lpm−1 .‖umum+1‖Lα

It remains to show that ‖umum+1‖Lα ≤ ‖um‖Lpm .‖um+1‖Lpm+1 .

Note that α
pm

+ α
pm+1

= 1. Hence,we can use Hölder’s inequality to obtain∫
U

|uαm|.|uαm+1| dx ≤

(∫
U

|uαm|
pm
α dx

) α
pm
(∫

U

|uαm+1|
pm+1
α dx

) α
pm+1

.

�

Corollary 11.7. Let 1 ≤ p ≤ q ≤ ∞. Let U ⊆ Rn be bounded. Then

‖f‖Lp(U) ≤ |U |
1
p
− 1
q ‖f‖Lq(U).

Proof. Apply Theorem 11.5 with u = |f |p, v = 1 and exponents p
q

+ 1− p
q

= 1. �

Similar proofs establish the following discrete versions of the above inequalities

Theorem 11.8. Let 1 ≤ p < ∞ and 1
p

+ 1
q

= 1. Let x = (x1, . . . , xn) ∈ Rn and

y = (y1, . . . , yn) ∈ Rn. Then

n∑
i=1

|xiyi| ≤

(
n∑
i=1

|xi|p
) 1

p
(

n∑
i=1

|yi|q
) 1

q

.

Corollary 11.9. Let 1 ≤ p ≤ q ≤ ∞. Let x = (x1, . . . , xn) ∈ Rn. Then(
n∑
i=1

|xi|q
) 1

q

≤

(
n∑
i=1

|xi|p
) 1

p

≤ n
1
p
− 1
q

(
n∑
i=1

|xi|q
) 1

q

. (11.3)

Proof. Assume that (
∑n

i=1 |xi|
p)

1
p = 1. Then, |xi| ≤ 1 for every 1 ≤ i ≤ n. Hence, for

all q ≥ p the following inequality holds

n∑
i=1

|xi|q ≤
n∑
i=1

|xi|p = 1 =

(
n∑
i=1

|xi|p
) q

p

.
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Therefore, (
n∑
i=1

|xi|q
) 1

q

≤

(
n∑
i=1

|xi|p
) 1

p

. (11.4)

If (
∑n

i=1 |xi|
p)

1
p 6= 1. Set

zi =
xi

(
∑n

i=1 |xi|
p)

1
p

.

Then (
∑n

i=1 |zi|
p)

1
p = 1. Therefore, by the above we obtain(

n∑
i=1

|zi|q
) 1

q

≤

(
n∑
i=1

|zi|p
) 1

p

. (11.5)

This is equivalent to

(
∑n

i=1 |xi|
q)

1
q

(
∑n

i=1 |xi|
p)

1
p

≤ (
∑n

i=1 |xi|
p)

1
p

(
∑n

i=1 |xi|
p)

1
p

. (11.6)

Hence, (
n∑
i=1

|xi|q
) 1

q

≤

(
n∑
i=1

|xi|p
) 1

p

. (11.7)

This gives the left-hand side of inequality (11.3)
Applying Theorem 11.8 with y = (1, . . . , 1) and p

q
+ 1− p

q
= 1 yields the right-hand side

of equation (11.3).
�

Theorem 11.10 (Interpolation inequality for Lp-norms). Let 1 ≤ p0 ≤ q0 ≤ ∞ and
0 < θ < 1. We define

1

pθ
=

1− θ
p0

+
θ

p1

.

Let f ∈ Lp0 ∩ Lp1. Then f ∈ Lpθ and

‖f‖Lpθ ≤ ‖f‖
1−θ
Lp0 ‖f‖

θ
Lp1 . (11.8)

Proof. Apply Hölder’s inequality with θpθ
p1

+ (1−θ)pθ
p0

= 1.∫
|f |pθdx =

∫
|f |pθθ|f |pθ(1−θ)dx

≤
(∫
|f |pθθ

p1
pθθ

) pθθ

p1

(∫
|f |pθ(1−θ) p0

pθ(1−θ)

) pθ(1−θ)
p0

= ‖f‖θLp1‖f‖
1−θ
Lp0 .

�

Theorem 11.11 (Young’s inequality). Let 1 ≤ p, q, r ≤ ∞ such that 1 + 1
r

= 1
p

+ 1
q
. Let

f ∈ Lp(Rn) and g ∈ Lq(Rn). Then f ∗ g exists a.e. and lies in Lr(Rn) with

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q.
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11.3. Calculus Facts

Let U ⊂ Rn be open and bounded.

Definition 11.12. We say ∂U is Ck if for each point x0 ∈ ∂U there exists r > 0 and a
Ck-function γ : Rn−1 → R such that we have

U ∩B(x0, r) = {x ∈ B(x0, r) : xn > γ(x1, ..., xn−1)}.
Note that

∂U ∩B(x0, r) = {x ∈ B(x0, r) : xn = γ(x1, ..., xn−1)}.
∂U is C∞ if it is Ck for k = 1, 2, . . . .

Definition 11.13. (1) If ∂U is C1, then along ∂U is defined the outward pointing
unit normal vector field

ν = (ν1, . . . , νn).

(2) The unit normal at any point x0 ∈ ∂U is ν(x0) = ν = (ν1, . . . , νn).
(3) Let u ∈ C1(U). We call

∂u

∂ν
= ν ·Du.

Theorem 11.14 (Gauss-Green Theorem). Suppose u ∈ C1(U). Then∫
U

uxidx =

∫
∂U

uνidS, (i = 1, . . . , n). (11.9)

Theorem 11.15 (Integration by parts formula). Let u, v ∈ C1(U). Then∫
U

uxiv dx = −
∫
U

uvxi dx+

∫
∂U

uνidS, (i = 1, . . . , n). (11.10)

Polarcoordinates. For x ∈ Rn \ {0} the polar coordinates are given by

r = |x| and ω =
x

|x|
∈ Sn−1 = {ω ∈ Rn : |ω| = 1}.

Theorem 11.16 (Integration in polar coordinates). Let f ∈ L1(Rn). Then∫
Rn
f(x)dx =

∫ ∞
0

∫
Sn−1

f(rω)rn−1dσ(ω)dr.

where σ is the Borel measure on the unit sphere Sn−1 in Rn.

Corollary 11.17. If f is a measurable function on Rn, nonnegative or integrable, such
that f(x) = g(|x|) for some function g on (0,∞), then∫

Rn
f(x)dx = σ(Sn−1)

∫ ∞
0

g(r)rn−1dr.

Theorem 11.18 (Arzela-Ascoli Compactness Criterion). Let {fk}∞k=1 be a sequence of
real-valued functions on Rn such that

|fk(x)| ≤M (k = 1, . . . , x ∈ Rn)

for some constant M and the {fk}∞k=1 are uniformly equicontinuous, i.e.

∀η > 0∃δ > 0 ∀k ∈ N ∀x, y ∈ Rn : |x− y| < δ ⇒ |fk(x)− fk(y)| < η.
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Then there exists a subsequence {fkj}∞j=1 ⊆ {fk}∞k=1 and a continuous function f, such that
fkj → f uniformly on compact subsets of Rn.

11.4. Convergence theorems for integrals

Definition 11.19 (Average of f over a ball B(x, r)). We denote by

−
∫
B(x,r)

f dy =
1

|B(x, r)|

∫
B(x,r)

f dy

the average of f over the ball B(x, r) and by

(f)U = −
∫
U

f dx =
1

| U |

∫
U

f dx

the average of f over U ⊂ Rn.

Theorem 11.20 (Lebesgue Differentiation Theorem). Let f : Rn → R be locally inte-
grable.

(i) Then for a.e. point x0 ∈ Rn,

−
∫
B(x0,r)

f dx −→ f(x0), as r → 0

(ii) In fact, for a.e. point x0 ∈ Rn,

−
∫
B(x0,r)

| f(x)− f(x0) | dx −→ 0, as r → 0. (11.11)

A point x0 at which (11.11) holds, is called a Lebesgue point of f .

Remark 11.21. More generally, if f ∈ Lploc(Rn) for some 1 ≤ p <∞, then for a.e. point
x0 ∈ Rn we have

−
∫
B(x0,r)

| f(x)− f(x0) |p dx −→ 0, as r → 0

11.5. Absolutely continuous functions

Definition 11.22. Let I be an interval in R. A function u : I → R is absolutely
continuous on I if and only if for every ε > 0 there exists a δ > 0 such that for every finite
sequence of pairwise disjoint subintervals ((xk, yk))k of I we have that∑

k

(yk − xk) < δ implies
∑
k

|u(yk)− u(xk)| < ε.

Theorem 11.23 (Fundamental theorem of calculus).

(1) Let f : I → R be Lebesgue integrable. The function

F (x) =

∫ x

x0

f(t)dt, x ∈ I

is for every x0 ∈ I absolutely continuous. In particular F is differentiable a.e. in I
and F ′(x) = f(x) for a.e. x ∈ I.
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(2) Let F : I = (a, b) → R be absolutely continuous. Then F is differentiable a.e. in I
and F ′ is Lebesgue integrable with

F (b)− F (a) =

∫ b

a

F ′(t)dt.
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