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CHAPTER 1

Introduction

The theory of Sobolev spaces give the basis for studying the existence of solutions (in
the weak sense) of partial differential equations (PDEs). As motivation for this theory we
give a short introduction on second order elliptic partial differential equations, but without
going deeper into the PDE-theory. For more information about the analytic and numerical
theory see [1], [4], [6] and [9].

Boundary value problems for second-order ordinary differential equations.

Classical formulation: Find a function « : [0, 1] — R such that
—u"(x) + b(a)u' (z) + c(z)u(z) = f(z), re:=(0,1), -
u(0) =u(l) =0, (11)

with given continuous coefficient functions b, ¢ and given continuous right-hand side f. A
function u € C2(Q) N C(Q) that satisfies (1.1) is called classical solution.

Variational formulation Let v : [0, 1] — R a so-called test function. We can multiply
(1.1) with a test function v and integrate over the interval

/ (—u"(z) + b(z)u (z) + c(z)u(z) ) v(z)dr = / f(z)v(x)dz. (1.2)
0 Q

Every solution of is a solution of (for every test function v). On the other hand if
a function u € C?(Q) N C(Q) satisfies equation for every test function v then u satisfies
the differential equation (1.1)).

With integration by parts we can rewrite as

—u'(x)v(x)

O—I—/ﬂu'(x)v'(x)dm—k/ﬂ (b(2)u' (z) + c(z)u(z) ) v(z)dz = /Qf(m)v(a:)da: (1.3)

Using the boundary conditions v(0) = v(1) = 0, equation (1.3]) yields
/Qu’(x)v'(x)dx + /ﬂ (b(2)u' (z) + c(z)u(x) ) v(z)dx = /Qf(x)v(x)dm : (1.4)
Derivatives occur in equation only in terms of the form
[ wwptons (L9

where ¢ : Q — R is sufficiently smooth and ¢|sq = 0. Equation (1.5)) is for w € C" equal to

—/0 w(x)¢'(z)dx. (1.6)
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The existence of the integral in ((1.6]) is given for w € Li_(2). The problem is, that if
w ¢ C', then w' in equation (1.5) has no meaning. This leads us to the definition of the
weak derivative of w.

DEFINITION 1.1. Suppose w,w € Li. (2). We say @ is the weak derivative of w, written
w’ = w provided

/ w(x)g'(x)de = — / w(x)p(x)dr for all test functions ¢ € C°(Q). (1.7)
Q Q

Therefore, the existence of the integral expressions in equation (1.4) (for b,c € L*>(Q)
and f € L*(Q)) is guaranteed for u,u’,v,v" € L?(Q). This suggests the Sobolev space
HYQ) = {w € LL,(0) : w, ' € @)},

To incorporate the boundary values of u,v € H' we need the Sobolev space H}. Note that
as in L? pointwise evaluation in H! does not make sense. Hence, we need the trace theorem
(Theorem in order to be able to assign ”"boundary values” along 0f2 to a function in the
Sobolev space.

DEFINITION 1.2. We say u € H}(Q) is a weak solution of ((1.2)) if
B(u,v) = (f,v) Vv € Hy(Q), (1.8)
where (-, -) denotes the inner product in L?(Q) and
B(u,v) := / u' (z)v (z)dx +/ (b(z)u (z) + c(z)u(z) ) v(z)dz, u,v € Hy(U).
Q 0
The identity (|1.8) is called variational formulation of (|1.2)).

Second order elliptic partial differential equations. The 1-dimensional example
brings us to the theory of weak solutions for a greater class of differential equations - second
order elliptic partial differential equations. Let U C R™ be open and bounded. We consider
the following boundary value problem on U.

Lu=f in U,
u=20 on OU, } (1.9)

where f : U — R is given and v : U — R is the unknown function. L denotes a second-order
elliptic partial differential operator having either the form

- i a" (2 Uy, + sz )y, + c(x)u (1.10)

ij=1

or else
n

Lu= =Y (a"(x)us,)s +Zb’ )y, + c(z)u, (1.11)

ij=1
for given coefficient functions (a*?)7;_,, (b°)i;, c. We assume the symmetry condition

al = g’ foralli,j=1,...,n. (1.12)
The differential operator L is in divergence form if it is given by equation (|1.11)).
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EXAMPLE 1.3. Let ™/ = §;;, b* = 0 and ¢ = 0. Then Lu = —Au.
We consider the problem (1.9)) for L given by
Lu = —div(a(z)Vu(zx)), (1.13)

where a € L®(U) and a > 0. Note that if a € C*(U), then Lu = —aAu — VuVa. Since a is
positive, we have that L is elliptic partial differential operator.

We assume for the moment that u is a classical solution of . We multiply by
a smooth test function v € C°(U), integrate over U and apply integration by parts to the
left-hand side to get

/a(x)Vu(a:)Vv(a:) dx:/f(a:)v(:z:) dx. (1.14)
U U

Note that there are no boundary terms since v = 0 on OU. By approximation we obtain that
the same identity holds when we replace v € C°(U) by any v € Hg(U). The left hand-side of
(1.14) makes sense if u € H'(U). We choose the Sobolev space to incorporate the boundary
condition from (|1.9), hence we consider u € H}(U). This leads to the definition of a weak
solution u of ((1.9).

DEFINITION 1.4. We say u € H}(U) is a weak solution of problem (1.9) with L given by

(L.13) if
B(u,v) = (f,v) Vv € Hy(U), (1.15)

where (-, ) denotes the inner product in L?(U) and
B(u,v) := / a(x)Vu(z)Vo(z)dz, u,v € HY(U).
U

More generally,
DEFINITION 1.5. We say u € Hy(U) is a weak solution of problem (1.9) with L given by

i
B(u,v) = (f,v) Yo € Hy(U), (1.16)

where (-, -) denotes the inner product in L*(U) and

B(u,v) := /U Z a" g, vy, + Z bu,,v + cuvdr, u,v € Hy(U).
i=1

ij=1
REMARK 1.6. The identity (|1.16|) is called variational formulation of ((1.9)).
THEOREM 1.7. (1) Let u be a classical solution of (1.9). Let B and (f,-) in Defini-

tion [1.8 be bounded on HY(U). Then u is a weak solution of (1.9).

(2) Let [ be continuous, u a weak solution of and u € C2(U)NC(U). Then u is
a classical solution of (@

Existence of weak solutions The central theorem in the theory of existence and
uniqueness of weak solutions is the following.

THEOREM 1.8 (Lax-Milgram). Let H be a Hilbert space and B : H x H — R a bilinear
form satisfying the conditions

(1) there exists a constant ¢; > 0 such that for all u,v € H
|B(u, v)| < erlull gl[oll o
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(2) there exists a constant ca > 0 such that for allu € H
lull? < c2B(uw)
Let f: H — R be linear and bounded. Then there exists a unique w € H such that
B(u,v) = f(v), forallve H. (1.17)

The following existence theorem for weak solutions of our boundary value problem is
based on the Laz-Milgram Theorem applied to the Hilbert space H}(U).

THEOREM 1.9 (Existence Theorem for a weak solution). There is a number v > 0 such
that for each p > « and each function f € L*(U), there exists a unique weak solution
u € HYU) of the boundary value problem

Lu+pu=f in U
u=20 on OU.

EXAMPLE 1.10. In the case Lu = —Au we have B(u,v) = [, Vu(z)Vv(z)dz. One can
check that v = 0 is possible. In the case Lu = —div(a(z)Vu(z)), witha € L>®(U),a > ¢ >0
the same holds true.



CHAPTER 2

Weak derivatives and Sobolev spaces

2.1. Preliminaries

Notation for derivatives. Let U C R” be open. Assume u: U — R, x € U. Let

ou , . u(x+ he;) — u(x)

)

provided the limit exists. We write

ou  0%u .
U, — ) = U T cicC.
Oz’ Oxi0x; Tt
A vector of the form a = (aq,...,a,) € N is called a multiindex of order

Each multiindex « defines a partial differential operator of order |«|, given by

olely
Dy = — 9%,
axlal e 8.7/'”&” n

If k£ € Ny, then
Dy ={Du: |a| =k}
is the set of all partial derivatives of order k. If £ = 1, then

Du=Vu= (Ug,... Uz,).

Locally integrable functions. The space of locally integrable functions on U, denoted
by Ll (U), is defined as the set of measurable functions f : U — R such that for all compact

loc

subsets K C U the following holds

/K |f(z)|dex < oo. (2.1)

REMARK 2.1. Constant functions, piecewise continuous functions and continuous func-
tions are locally integrable. Every function f € LP(U), 1 < p < oo is locally integrable.

Test functions. The space of test functions, denoted by C2°(U), is the space of infinitely
differentiable functions ¢: U — R with compact support. Note that the support of ¢ is
defined by supp ¢ = {z € U : ¢(x) # 0}.




ExXAMPLE 2.2. The following functions are elements in C°(R).

e_l%lw\, falls |z] < 1
0, falls |z| > 1.

“ia
hz) = e , falls |z| < 1
0, falls |z| > 1.

FIGURE 2.1. h(z)

2.2. Weak derivative

Every locally integrable function u € L (U) determines a regular distribution, i.e. a
linear and continuous function

T,:Cx(U) = R, T,(¢) = / u(z)p(x)dx. (2.2)

U
We also use the notation (7, ¢) resp. (u, ¢) instead of T,,(¢).
If we assume that u € C'(U) then its partial derivatives u,,, 1 < i < n, are continuous
and hence, u,, € Li (U). Therefore, u,, determines a regular distribution given by

Ty, : CZ(U) = R, T, (¢) = / Uy, (z)p(x)dx. (2.3)
U
Obviously, we have by integration by parts (cf. Theorem
1,..0) = [ w(@o(e)ds = [ uw)on, @)z, o€ CF). (2.4
U U

The left-hand side integral in (2.4) is defined only when wu,, exists a.e. and is in L _(U),
whereas the right-hand side integral is well defined for every u € L _(U).



DEFINITION 2.3 (Distributional derivative).

(1) The distributional derivative w.r.t. the i** variable, 1 <1i < n, of T, is the distribu-
tion (linear and continuous functional on C°(U)) 0,,7, given by

(00, Ty, &) = —(u, Oy, ) = —/ u(2)0y, ¢(x)dz, ¢ € CZ(U). (2.5)
U
(2) Let a be a multiindex of order |a|. Then the o' distributional derivative is the
distribution DT, given by

(D°1,6) = (-1 [ u@)D*o(a)dz, o€ CF(U). 26)
U

If u € C*(U) and a a multiindex of order k, then D“u exists in the classical sense and
we have by the integration by parts formula

/Dau(:v)aﬁ(m)dm:(—l)'“/u(a:)Daqzﬁ(:v)d:U.
U U

Dou € C(U) C L} (U) defines again a regular distribution given by

loc

%mwle%wwmm

and obviously,
(DTu, ) = Tpeu(), for all ¢ € CX(U).
We say that the classical and the distributional derivative of u € L{ _(U) coincide. What

loc

happens if u € L} (U), but u ¢ C*(U)? This leads us to the definition of the weak derivative
of u.

DEFINITION 2.4 (Weak derivative). Let u € L} (U) and o € N a multiindex. If there
exists a v € Ll _(U) such that

loc

/Uv(x)¢(x)dx = (—1)|a|/u(x)Do‘¢(x)dac Vo € CZ(R™) (2.7)

U

then v is called the weak ot~ partial derivative of u, denoted by
D% = .

In other words, if we are given u € L} _(U) and if there happens to exist a function

v € L (U) satisfying (2.7) for all ¢ € C>°(U) we say that D®u = v in the weak sense. If

loc
there does not exist such a function v, then u does not possess a weak o~ partial derivative.

REMARK 2.5. Classical derivatives are defined pointwise as limit of difference quotients.
Weak derivatives, on the other hand, are defined in an integral sense. By changing a function
on a set of measure zero we do not affect its weak derivatives.

LEMMA 2.6 (Uniqueness). A weak o'"-partial derivative of u, if it exists, is uniquely
defined up to a set of measure zero.



PROOF. Assume that v, v € L .(U) satisfy

w(x)D? r = ol [ w(2)d(x)de = (=D | 3(2)o(x)dx
[ w@proar = 1! [ v@ois = (<1 [ i)
for all ¢ € C°(U). This implies

/(v—@)qﬁd:c:O Vg € C(U).
U
Hence, v — v = 0 almost everywhere. 0

LEMMA 2.7. Assume that u € L, (U) has weak derivatives D*u for || < k. Then for
multiindices «, B with || + 5| < k one has

D*(D?u) = D(D*u) = D*Pu.

PROOF. Let ¢ € C*(U), then also D*¢ € C*°(U). Using the definition of weak
derivatives twice we obtain:

/DO‘ (D) 'a/Dﬁ 2)D*¢(z) dx

— (1)l / u(x) D (DP(x)) da

/ D‘”ﬂ (z) de.

If we change the roles of @ and [ we obtain
/ DP?(D%u) / D Pu(x) () da.

2.3. The Sobolev spaces W*?(U)
Let U C R" open. Let 1 < p < 0o and k be a non-negative integer.
DEFINITION 2.8. The Sobolev space
WhP(U)

is the space of all locally integrable functions u : U — R such that for every multiindex «
with |a| < k the weak derivative D*u exists and D*u € LP(U).

DEFINITION 2.9. We define the norm of u € W*P(U) to be

1
lellwon = (3 / Dru)Pde)’, 1< p < oo,

la|<k
lllyrey = D esssup,ey | Dulx)].
o<k

THEOREM 2.10 (Completeness). For each k € Ny and 1 < p < oo the Sobolev space
W*P(U) is a Banach space.

PrROOF. We have to show the following.
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(1) W*? is a normed vector space (exercise).
(2) WHP is complete.
We show (2). Assume (u,,)>_, is a Cauchy sequence in W*?(U). It follows from the
definition of the norm on W*?(U) that (D%u,,)%_, is a Cauchy sequence in LP(U) for each
la| <k, cf. Remark [2.11] Since LP(U) is complete, there exist functions u, u, € LP(U) such
that
|t — |, =0, | D%y, — ta ||, — 0, forall 0 < |a| < k.

We show that
u € WHP(U) and D% =u,, forall 0<|a| <k. (2.8)
We fix ¢ € C2°(U). Then

/ uD%¢dz = lim | u,D*¢dr = (—1)1° lim Do‘umqﬁd:c— (—1)l / Undd.
U

Thus, (2.8) holds and for all || < k
D%, =5 D in LP(U).

Hence,
— .
Uy 5w in WEP(U)

REMARK 2.11. (u,,)%_; is a Cauchy sequence in W*?(U)

2 e > 03N Vm,n > N [t — Un||lwrr@) < €

<:>V5>OE|NVm,n>N:<Z||Da(u )||Lp(U>
o<k

& Ve >03INVm,n> N : Z | D%y, — DaunHZp(U) <er
laf<k

= Ve > 03INVm,n > NVa,|a| <k 1 [|[D%p — D%y 1r@) < €
= Vo, |a| <EVe > 03INVYm,n > N : ||D%p, — D%y || ey < €
< Va,|a| < kis (D%uy,)5w_; a Cauchy sequence in LP(U).

m=1

REMARK 2.12. Note that W%P(U) = LP(U). For p = 2, the norm in Definition [2.9] is
induced by the inner product

/ D%u(z) D% (x)dz. (2.9)
<k
Hence, W*?2(U) is a Hilbert space and we write
HMU) = WR(U).
DEFINITION 2.13. The subspace W (U) C W*P(U) is defined by

- k,p
W) ==y,
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More precisely, u € WyP(U) if and only if there exists a sequence (i )nen in C°(U) such
that

[[tn — UHW’w’(U) — 0.
DEFINITION 2.14. Let U,V be open subsets of R”. We say V is compactly contained
in U, written
VccU
if V. K C U and K is compact.

DEFINITION 2.15. We define the space W/*”(U) to be the space of functions u : U — R
satisfying the following property. Let V CC U, then u|V e Whr(V).

Notation. Let (u;,)%_;, u € WkP(U)

m=1>

e We say (u,,) converges to u in W*P(U), written

Uy — u  in WFP(U), (2.10)

provided
n}gnoo [ UHW’%P(U) = 0. (2.11)

o We write
Uy —> u i WEP(U) (2.12)

to mean
Uy — u  in WHP(V) (2.13)

for each V CcC U.

LEMMA 2.16. Let u € W*P(U), ¢ € C=(U) and o a multiindex with || < k. Then
(1) D € Whlelr(q)),
(2) Cu € WFP(U) and

D%(Cu) = Z (g) DP¢D* Py (Leibniz formula). (2.14)
BLa

Proor. (1) follows from the definition of the Sobolev space. We show (2). We know
that w € L and D%u € L? for all |a| < k. Hence, (u € LP and D*(Cu) given by is in
L?. Therefore, Cu € W*P. We prove the Leibniz formula by induction. Let ¢,¢ € C®(U)
and |a| = 1. let 1 <4 < n. Then, by the definition of the weak derivative

/((u)zlgbdx = —/ Cuey,dx. (2.15)
U U
By the chain rule (classical Leibniz formula for the first derivative) we have

Combining (2.15) and (2.16]) yields

/U(Cu)xlﬁﬁdl'_/UCxindx—/U(Cﬁﬁ)xiud:c.
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Note that (¢ € C°. Again by the definition of the weak derivative we have

[@uote= [ Gusirs [ ou o
:/U(Cziu—i—uxiCde.

Therefore, (Cu)y, = Cpu+ ug,¢. Now let |a| =1+ 1, then o = S+~ with |5] = [ and |y| = 1.
By the definition of the weak derivative we have

/ Cu D% dx = / CuD’(DV¢)dx = (—1)1 / DP(Cu)D"¢ da. (2.17)
U U U
Using the induction hypothesis and again the definition of the weak derivative we obtain

(—1)f3|/UDB(gu)Dwdx.:(—nlﬁ/U [Z <§)D"§D5"u

o<p

_ (_1)|/3+|v|/UDw [Z (f) DICDPy

o<pB

:(_1)lal/U _Z <5>D7 (D”gDﬁffu)] ¢ dz

Lo<p

D¢ dx

pdx

= (=D /U > <f > (D7D Tu + D"CDﬁ—mu)] ¢dz.

Lo<p

(2.18)

Note that the last equality in (2.18]) is due to the induction basis (|y| = 1). Let p = o + 7.
Then we can rewrite the sum in the right hand side of (2.18]) as

> (B ) (D7¢D?u+ D7¢D ) = Y ( i )DPCD”‘pu +) (ﬁ ) D7¢D*u
o<p \7 pbiy T o<p 7

/8 o a—o /8 g a—o
B Y g (o

o<pB

() Qe
= o— o

(2.19)

Note that by the definition of the binomial coefficients for multiindices we have

()=(2) () -

Combining the equations (2.17)), (2.18)), (2.19) and (2.20) yields

/UCu D¢ dx = (_1)a|/U [Z (Z‘) DagDMu] 6 d.

o<«

13



LEMMA 2.17. Let uw € WkP(U) and V C U open, then u € W*P(V).

PRrROOF. Obvious consequence of the definition.

2.4. Examples

Weak derivatives.

ExAMPLE 2.18. Let n =1, U = (0,2) and

r, if0<z<1,
1, ifl<ax<?2.

We define

1, if0<zx<1,
v(z) = :
0, ifl<ax<?.

1 2 1

FIGURE 2.2. u(z) and v(z)
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/o2 u(z)¢f (v)de = /01 u(x)¢' (z)dx + /12 u(x)¢'(x)dx
= /01 x¢(v)dr + /2 1¢/ (z)dx

1

_ m(z)‘; - /Olgb(a:)dx—l— /12 & (z)dx

= 0(1) = [ ola)de + 9(2)=o(1)

_ /0 () = /0 o)) d.

EXAMPLE 2.19. Let n =1, U = (0,2) and

r, if0<z<1,
u(z) = :
2, ifl<ax<?.

In order to check, that u does not have a weak derivative we have to show that there does

not exist any function v € L _(U) satisfying

/02 u(z)¢' (z)de = — /OQU(JUM(x)dx, (2.21)

for all ¢ € C=°(U). Assume there exists a v € L} (U) satisfying (2.21). Then
2 2 1 2

—/0 v(z)p(x)de = /0 u(z)d (z)dr = /0 z¢' (z) + 2/1 ¢ (z)dz
1 1 1

= wota)], - [ dlant +2(0(2) = 9(1)) = —o) — [ s(o)ts

is valid for all ¢ € C°(U). We choose a sequence (¢,,)o0_, of smooth functions satisfying

(2.22)

u(z)

di il (@)

L
1 2 1 2

FIGURE 2.3. u(z) and some elements of the sequence ¢, ()
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0<¢m <1, dn(l)=1 and ¢nu(r) =30 Vo #1.
Replacing ¢ by ¢, in (2.22)) yields

2 1
1= g (1) = /0 () () — /0 b (1)
We take the limit for m — oo:

1= lim ¢p,(1) = lim

m— 00 m— 00

/jv(a:)gbm(x)dx — /01 (bm(x)d:c] = 0.

Elements in Sobolev spaces. Note that if n = 1 and U is an open interval in R,
then u € WP(U) if and only if u equals a.e. an absolutely continuous function whose
derivative (which exists a.e.) and the function itself belong to LP(U) (Exercise). Such a
simple characterization is however only available for n = 1.

In general a discontinuous and/or unbounded function can belong to a Sobolev space.

EXAMPLE 2.20. Let U = {z € R" : |z| < 1} =: B(0,1). We fix v > 0 and consider the
function )

u(z) = |z|77 = (ix?) , reU x#0.

FIGURE 2.4. |z

Statement: u € W'P(U) & v < =k

PROOF. Note that u € C'(U \ {0}). For z € U \ {0} we have

— VT4 .
Uy, (T) = W, 1<i<n. (2.23)

16



Therefore,
1

3
2 7
- |x|v+1

|Du(z)| = [Vu(z)| = <Z |t

and by Corollary (11.17)),
1 1
/ |DU([L’)|dQL’ = ’Y/ |l’|7ﬂy71dﬂf — C(n)’y/ T—V—lrn—ldr _ C(n)’y/ T—’Y—Q-i-ndr
) c ’ ’ (2.24)
Sl i -y =140 >0 :
B 0, otherwise.

Hence, if 7 + 1 < n, then |Du| € L'(U). Analogously we have u € LY(U), if v + 1 < n.

On the open set U \ {0} the function u has weak derivatives Du = (ug,,...,u,,) and
they coincide with the classical derivatives. We show that under certain circumstances u,,
define weak derivatives on the entire domain U.

Let ¢ € C*(U) and B, = {x € R" : |z| < £} for a fixed € > 0 then (by the integration-
by-parts formula (Theorem )

/ UGy, dr = —/ Uy, & dx + / ugv'dS
U\B: U\B-: 0B¢

with v*(z) = 7 so that v = (v!...v") is the inward pointing normal on 9B. and dS is the

spherical measure on the surface of the ball B.. The following holds.

‘/ u<b1/id5‘ < ng§||oo/ S < Ce IR0 ify+1<n (2.25)
9B: 0B.

lim Uy, dr = / lim 1\ . Uy, dr = / Upy,dx (2.26)
e—0 U\Be U e—0 U

lim Uy, pdr = / Uy, Pdx. (2.27)
e—0 U\BE U

With (2.25)),(2.26]) and (2.27)) it follows that
[ wtnide == [ wode voecE)
U U

and the locally integrable function u,, defined in (2.23) is in fact the weak derivative of u on
the entire domain U.
By an analogous calculation as in (2.24)) we have that
u,|Dul € LP(U) & (y+ 1)p < n.
Consequently, u € W1P(U) if and only if v < *P. In particular u ¢ WhP(U) for each
p > n. 0

EXAMPLE 2.21. Let U = {x € R"* : |z| < 1} and {ry : k € N} = UNQ". This forms
a dense subset in U. ({ry}32; is dense in U < for each u € U there exist a subsequence
{rg, }72, such that limry, — win U.)

17



For (v 4+ 1)p < n we define
up(z) = 27 | — rp| 7 e Whr(U)

and set .
u(z) = Z 27 K|z — 1 .
k=1

Then v € W'P(U) and is unbounded on each open subset of U.
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CHAPTER 3

Approximation in Sobolev spaces

In order to study the deeper properties of Sobolev spaces, without returning continually
to the definition of weak derivatives, we need procedures for approximating a function in a
Sobolev space by smooth functions. These approximation procedures allow us to consider
smooth functions and then extend the statements to functions in the Sobolev space by density
arguments.

We have to prove that smooth functions are in fact dense in W*?(U). The method of
mollifiers provides the tool.

3.1. Smoothing by convolution
DEFINITION 3.1.
(1) Let n € C*=(R") be given by
C et/ (=*=1), if |z] < 1,
n(x) = .
0, if |x| > 1,

with constant C' > 0 chosen such that [;, n(z)dz = 1.
(2) For each € > 0 we define
1 /x
ne@) == ().

e’ \e
We call i the standard mollifier.
REMARK 3.2.

(1) >0 and 7 € C°(R™).
(2) The functions 7. are C*° and satisfy

/ ne(z)der =1 and suppn. C B(0,¢).
REMARK 3.3. There are other examples of mollifiers, e.g.

u(t) = cos(m|t]?) + 1, ?f t] < 1,
0, if |¢] > 1.

DEFINITION 3.4. Let U C R™ be open and € > 0. Let

U.={zeU:dz,0U)>c}t={2xeU: Bx,e) CU},
where B(z,e) ={y e R" : |[v —y| < e}.
19



v(t)

n(x)

FI1GURE 3.1. Standard mollifier and cos-mollifier

Let f € L. (U). Then we define for all x € U.

(@) = frme() = / F)ne(a — y)dy = / R (3.1)

/¢ is the mollification of f in U.. The mollification of a function f € L}, (U) results from
the concept of convolution.

Convolution. Let f, g be measurable functions on R™. The convolution f * g is defined

by
frg(@)= [ flz—y)gly)dy
RTL
for all x € R™ such that the integral exists.

PROPOSITION 3.5. Assume that all considered integrals exist. Then
(1) frg=g=*f,
(2) frgxh=[fx(gxh),
(3) supp (f * g) € supp f + supp g.
THEOREM 3.6.
() If fe LP(R"), 1 < p < oo, g€ LYR") then f * g exists a.e. and f* g € LP(R™).
In fact [|f+ gll, < [If[lp - [l
(2) Let 1 <p<ooandl= % + %. If f € LP(R™) and g € LY(R™) then f * g ezists on
R™ and |f+ g (x)] < | F1,llgll, for every x € R™.
(3) Let1 < p,q,r < 0o such that 141 = %—i—%. If f € LP(R™) and g € LY(R") then fxg
ezists a.e. and lies in L"(R™). In fact ||f * gll, < || fll, - llgllq- (Young’s inequality)
(4) Let f,g € C.(R™). Then f * g exists for every x € R and f x g € C.(R").
(5) If f € L, g € C* and D%g is bounded for all multiindices o with |a| < k. Then
f*geCkand D*(f * g) = fx D% for |a| < k.
Mobollification Properties.

LEMMA 3.7. Let U. C U and f¢ be as in Definition [3.4] Then f € C*(U.) and for

every multiinder o« and x € U, we have

DA f*(x) = / D2 — ) (y)dy,
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where D% denotes the partial derivatives with respect to the variable x = (x1, ..., z,).
ProOF. Exercise. 0

ProoOF. Fix z € U, and h so small, that = + e;h € U,.. Then

fo(e +eh) = fi(x) _ / (?ﬂx eih —y) —n'e - ”)f(y)dy-

h h

Support 71 € (xy) Support 1° (x+he -y)
Ue :
ey (el
A
U - 2¢

\J;/

FIiGURE 3.2. Supports of n°

The support of

y —> (ng(:ﬁ + eh — }yl) — (7 — y))

is compact in U (cf. figure [3.2). Therefore,

[ <775(x+eih—z) —nff(x—y)) o= | (nfmem—? —nff(:c—w)f(y)dy

for some V' CC U. By the Heine-Cantor theorem and the mean value theorem we have that

nw@teh—y) —n(z—y) o,
h 8%(ﬂc y)

=0.

lim sup

Therefore,

o (o= 0

‘%/V(ns(weih—y) —n (@ =y) ) dy_/U

(x+eh—y)—n*(x — on*
< sup L W= S )| [ 1l
yeVv h axl U
B8,
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Hence,

—f€<>— flexen) /amx— )y -

h—>0

By the same argument one obtains that for every multiindex «, D* f¢ exists and

D o (a /DO‘E:U— fdy  (well) .
0

COROLLARY 3.8. Let U. C U be as in Definition[3.4 Assume that f € L}, (U) admits a
weak derivative D*f for some multiindex . Then

D(fxn.)(x) =n.+«Df (x), forallz € U..
Note that the derivative of the mollification D*(f * 7.) exists in the classical sense.

Proor. We have by Lemma and by the definition of the weak derivative
“(f *me)(x /D“ﬂf— fy)dy
0! [ Dy a = sy
= (0l [ @ =D )y

- / 7 (& — y) D% f(y)dy
=n"* D*f (2).

THEOREM 3.9 (Convergence of the mollification).
(1) fe L, (U)= f(x) 28 f(x) for almost every x € U, i.c.
fre U tim f(x) # f(2)}] =
(2) feCU) and K C U compact. Then
sup | (=) — ()] =3 0.

zeEK

(3) felL (U),1<p<oo, and K CU compact. Then

e—0
1f = £l oy = 0.

PROOF. (1) We use Lebesgue’s differentiation theorem (Theorem |11.20]), which as-
serts that

tim {1 (y) ~ F()ldy = Tim |Bx B Jo, 10 = @y =0

r—0 B(I,T’) r—0



() =

for a.e. x € U. We fix such an point = (Lebesgue point). Then

f@M@!/ f@—yﬁ@ﬂy—ﬂ@(?‘/ (=) () — f(@) dy
B(z,e) B(z,e)
< n_/‘x@n )W - s@ldy < [ ) - Sy
tre) C][ f(z)|dy =00, forae. x€U.

*) Suppns(x - C B(w £).

(
(xx) f]R” Ydy = 1.
(
(

Hence,
{re®: lm (@) £ f(2)}] =

Let K C U compact. Then there exists eg > 0 such that for all ¢ < g7 we have
K C U.. Hence, f¢(z) is well defined for all z € K. By the same argument as before
we have

) = F@ S Of 1) - S =C s 15 - f)

yEB(x,€)

We have that f € C(U ) and K C U is compact. Hence, f is uniformly continuous
on K, i.e.

Vn>03e>0Ve,ye K: |z —y|l<e = |f(x)— f(y)] <n.
Summarizing we have
Vn>03ey > 0Ve <oV e K: |f(x)— f(z)| < Cn.

Let K C U compact. Then there exists an open subset W of U with W CC U and
an £y > 0 such that for all ¢ < g and for all x € K we have that B(x,e) CU. C W.
Let 0 < e < gy. Then

1/ ey < N llzwqwy
Indeed by Holder’s inequality with % + i = 1 we have

(@()f@—vamﬂ
< /B(m) F() 7 (x = y)rne (z — y)idy

| (@) | =
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Therefore,

I i = [ | £ o< [ ( / e i) P dy) 0
= [ [ re=n 116 P ayas
:/w | f(y) I”/Kns(fv—y)dxdy

< ANz -
W is compactly contained in U. Hence, C'(W) is dense in L?, i.e.
Ve LP(W)Vé>03ge CW): |If = gllrow) <6
Fix 6 > 0 and choose g € C(W) such that || f — g||;, < J. Then
17 = Fllzeaey < W= 97 lleviy + 1197 = gllerao) + g = Flleei
<IIf = 9lleoqwy + 19" = gllzeaey + I1F = 9ll o)
<20+ [lg° = gllrix)-
By (2) we have that

e—0

1
lg° = gllriy) <| K |7 sup 19°(z) — g(x)| — 0.
T€

Summarizing we have

VK C U compact ¥n>03ey>0Ve<eo @ ||f°— fllzex) < m.

3.2. Partition of unity

In the following section we use the method of mollification to construct partitions of
unity. We will use these results in the following proofs to obtain global properties from local
ones.

LEMMA 3.10. Let K be a compact subset of R™ and U C R™ open such that K C U. Then
there exists a function ¢ € CP(R™) such that 0 < <1,¢ =1 on K and suppty C U.

PROOF. Let
K.={zeR": d(z,K)<e}, >0

Let € > 0 small enough that K3;. C U.
We set

vle) =1 Lo (0) = [ @yl @y, xR

By the above properties of mollification we know that ¢» € C*°, ¢ =1 on K and
supp ¥ € suppn® + Ky © K3 C U.
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FI1GURE 3.3. Partition of unity

LEMMA 3.11. Let K C R"™ be compact with K C Ule Vi, where (V;)¥_, is a sequence
of open sets in R™. Then there exists a sequence (K;)%_, of compact sets in R™ such that
K;CV;yand K CUJ;_, K.

PROOF. Since K is bounded we can assume that V; is bounded. Let
1
Vin = {@ € Vy : d(@,0;) > ~},
n

Then V;,, C Vj, for all n € N and each sequence (V},)nen is increasing. The sets (V)5 en
form an open cover of K. K is compact. Hence, there exists an N € N such that

=
=
N

O

THEOREM 3.12. Let U C R" be bounded and U CC Ji_, Vi, where (V;)E_, is a sequence
of open sets in R"™. There exists a sequence of smooth functions &, 1 < i < k, such that
0<&<1,supp& CViand d =1 on U

We call the sequence (&;)¥_; a smooth partition of unity subordinate to the open
sets (V;)F,.

PrROOF. Let K C R" be compact such that U C K C Ule Vj. According to Lemma|3.11
there exist compact subsets K; C Vj such that U C K C Ule K;. According to Lemma
for each j € {1,...,k} there exists a function ¢; € C°(R") satisfying 0 < ¢; < 1,
;=1 on K; and supp&; C V;. Let

G=v1, &=l =t1), ..., &=l =) ... (1 — p1).
Then we have that 0 < ¢&; <1 and §; € C°(V;) for all 1 < j < k. Furthermore,

k
1—2,5]:1—[wl+¢2(1—¢1)+...+(1—¢k_1)] (3.2)
= (1_¢1)(1_¢2)~~(1_@/’k)~ (3-3)
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For each point x € U there is at least one factor (1 — ;) that vanishes. Hence, the product
equals zero on U and thus,

O

THEOREM 3.13. Let U C R"™ be open with locally finite open cover (V;)2,, i.e. U C
U2, Vi and for every x € U there exist only finitely many V; such that x € V;. Then there
exists a sequence of smooth functions (&;)ien such that 0 < & <1, supp& C Vi and > & =1
on U.

We call the sequence (&;)°, a smooth partition of unity subordinate to the locally
finite cover (V;)2,.

PROOF. According to Lemma we can choose an open cover (W;)2, of U such that
W; C V;. Then, analogously to Theorem the statement holds. Note that by the local
finiteness of the cover we have that for every x € U there are only finitely many &; such that

x € suppé;. Hence, > & (x) is finite for every x € U. O

LEMMA 3.14. Let U C R" be open with open cover (V;)22,. Then there exists an open
cover (W;)2, of U such that W; C'V; for all i € N.

PRrROOF. Let A = U\ U2, Vi. Then A C V; and A is closed in U. There exists an
open set W; such that A ¢ Wy, € W, C Vi. The collection (W1, Vs,...) forms a cover
of U. Let Wh,...,Wy1 be open sets such that {W1, ..., Wy, Vi, Vieyq, ...} covers U. Let A =

U\ <Uf:_11 WUz, VkH). A is closed in U. There exists an open set W) such that
AC W, CW, CV, Then {Wi,..., Wy, Viy1,...} is an open cover of U. O

Using the method of mollification and the partition of unity we will show in the following
that functions in a Sobolev space can be approximated by smooth functions. We start
with local approximation (convergence on VV{ZCP(U )), then we extend this idea to global
approximation (convergence on W#?(U)) and finally, requiring restrictions on the boundary

oU, we will obtain approximation by functions belonging to C*°(U), and not just C*°(U).

3.3. Local approximation by smooth functions
Let U C R™ open. Remember that for £ > 0
U.={zxeU : d(z,0U) > ¢}
THEOREM 3.15. Let u € WHP(U), 1 < p < co. Lete >0 and set
u(z) = (n° xu)(x), xz e U,
where n° is the mollifier defined in Definition[3.1. Then
(1) uf € C>(U.) for all € >0,

e—0

(2) u* — u in WEP(U).

loc
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PROOF. u € WkP(U), therefore u € L (U). Hence, (1) has already be shown in Lemma
3.7 Corollary [3.8 yields that for all || < k

D% (z) = n. * D (z), forall z € U.. (3.4)
we have to show that for all V. CC U
li_r)r(l) [u® = ullyipy = 0 <= Vla] <k : }:1_1% | D% — D%ul| 1y () = 0.
Using (3.4)) and Theorem [3.9 we obtain
lim | D" — Doy = lim [ D — D%l

1 o, \e Yo, ||P _
= ll_{% [(D%u)® = D U’HLP(V) = 0.

3.4. Global approximation by smooth functions

THEOREM 3.16. Let U C R™ be open and bounded. Let u € W*P(U), 1 < p < oo. Then
there exists a sequence (U, )men i C®(U) N WHEP(U) such that

nlLLmOO [ uHWk,p(U) = 0. (3.5)
PROOF. Let )
U={x€U : dz,0U) > Z}’ ieN.
Then Uz g Ui+1 and
- 1
U= U :d(x,0U) > =}.
Ut et s dwon) > 3)

Let V; = Uiy3 \ U;. Then #{j € N: V;NV; # 0} < 3. Therefore, each = € U is element of

at least one and at most three sets of the family (V;),.. We choose Vi CC U such that

! : Uy %
| V|<+1I Uiy | Vi 1 ,
I Vk+ Ucso Vl<+2I
Ui a
. |
| Vi Vs NViso ‘

F1GURE 3.4. The families Uy, V;
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[e.9]

Let (&);2, be a smooth partition of unity subordinate to the family of open sets (V;);,,
ie.

0<&<1, §eCE(Vi), forallieNy, Y &=1onU. (3.6)
1=0

Let u € W*P(U) Then by Lemma we have that &u € WFP(U) and supp {u CC V.
Let 0 > 0 be fixed. By Theorem we can choose g; > 0 such that u’ = 7 * (§ u)

satisfies
p )
[u’ = & ullwrrwy < il (3.7)
suppu’ C Wi = U4 \ U; D V. (3.8)
We define

v(x) = Zul(:p), xeU.

v € C(U), since for every x € U we have that #{i € Ny : u'(x) # 0} < 3. We have

u:u-lzifiu.
i=0

Therefore,

oo o
[ = vllwrrw) = H > Gu—) u
=0

=0 Wk (U)
< éu = il <Y 0277 =4,
i=0 1=0

Note that [[v|[yrs@ry < [[v = ullypro@ + l[ullprow < co. Summarizing we have that
V6 >03Fv e WU)NCEU) : lu—vlly, @) <0
U

REMARK.

(1) The assumption of U to be bounded is not absolutely necessary. The same proof
holds for example if U = {x € R" : x, > 0}. U is unbounded but has boundary
oU = {z, = 0}.

(2) Note that Theorem is also true for U = R", see [II, Theorem 3.16].

3.5. Global approximation by functions smooth up to the boundary

THEOREM 3.17. Let U C R™ be open and bounded and OU is C*. Let u € W*P(U),

1 < p < oo. Then there exists a sequence (uy,)>_, in C*(U) such that
Jim{jug, — ullwrrw) = 0. (3.9)

28



PROOF. Step 1: Let xp € OU. 9U is C', i.e. (cf. Definition [11.12)) there exists r > 0
and 7 : R"! — R € C" such that - upon relabeling and reorienting the coordinate axes if
necessary - we have

B(zo,r)NU = {x € B(xo,7): xp > y(T1,...,20-1)}

en XO

Rn-]

Step 2: Let V = B(wzo,5) NU. Let 0 < e << 1and A >> 1 such that for the shifted
point
¥ =x+4 Nee,, €V,
where e, is the n'* standard unit vector, the following holds

B(z%,¢) CU N B(xg,r).

Now we define u.(x) = u(x.), x € V. This is the function v translated a distance e\ in
e, direction. The idea is that we have "moved up enough” so that ”there is room to mollify

within U”. We can mollify the function u. within the ¢ - ball (i.e. we can mollify it within
U). Let

v (x) =107 *u(z).
Clearly, v* € C*=(V). The mollification v* converges towards u in W*?(V'). This is true if
and only if for all |a| < k we have

: a, € (6 j—
lim | D0 — D"l ) = 0.
Indeed,
| D" — D%ul| o vy < || D" — D%l ovy + || D%us — D*ul[zp(vy —> 0,  when ¢ — 0.

The first term on the right-hand side vanishes for ¢ — 0 by the argument of Theorem
[3.15] The second term vanishes for ¢ — 0 by the fact that translation is continuous in L?
(Exercise).

Step 3: OU is C'. Hence, by definition, for every € AU there exists r, > 0 and a
continuous function v, : R"! — R such that

B(z,r,) NU ={w € B(z,1) : wp > Yalwi,...,wn1)}
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Therefore, {B(x,r;) : x € OU} forms an open covering of OU. OU is compact (bounded and
closed). Hence, there exists N € N and zy,...,xy € OU such that

N
ou C | J B(a,, %) (3.10)
=1

Let V; = B(x;, 3) NU. Choose § > 0. Steps 1-2 show that for every 1 <i < N there exists
a function v; € C*(V;) with

s = ullwssqy <.
We choose V; CC U such that U C Uf\io‘/;. By Theorem we get that there exists a
function vy € C*°(Vp) such that

[lvo — UHqup(vo) <. (3.11)

Let (&)ﬁio be a smooth partition of unity subordinate to the open cover
T1 N

{Vh, B(z1, 5), ..., B(zy, 7)}

of Ujie. 0<&<1,&€C2(Wp), &€ CO(B(x:,%)), 1 <i<Nand Y & =1o0nT.
We define

N
V= Zéﬂ)l € COO(U)

i=0
Then we have for all | « |< k:
N N
o = sy = || D &ilvi =) <D l& @ = Wllyrn
=0 Wk.p(U) 1=0

N
< CO(N,k,p) Y llvi = ullyasy,y < C NG =: .
i=0
Note that [|v||y k() < 0o. Summarizing we have that
Voo > 03w € C(U) N WHP(U) : |lv — llyyrn(ry < do-
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REMARK 3.18.

60 = Wby = (3 1060~ )y )

la|<k

3=

and by Leibniz’s formula

D€ (v — w) ()] = |3 (g) D26, (2) D (s — u)(x)

B<a
<3 () Ips@ll P - i)
B<a
<sup |D*6i(a |Z< >|D5 —u)(@)|.
sa B<a
Hence,
D60 = Dl < supsup Do) |5 () D= )
z€V; BLa B<a L2 (Vi)

< Ci(p, o) supsup | D*Pg;(z)[" <g> | D7 (u = i)[[7, 1)

zeV; f<a B<a

Summarizing we have

=

la|<k z€V;

la|<k la|<k B<a

< Cip. k) sup sup [D°6(2)] [ 31 D%~ v) [y,

la|<k z€V; ik

=

Cp7k‘/;7£l Z”Dau_vl ” Vi)

la|<k

Actually an analogous proof (see [I, Theorem 3.18]) gives the following statement

THEOREM 3.19. Let U C R™ be open and let it have the segment property (see [1,, p.54]).

Then the set of restrictions to U in C(R™) is dense in WHP(U), 1 < p < oo.
and the following corollary

COROLLARY 3.20. Let 1 < p < 0o. Then
WEP(R) = W (R")
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CHAPTER 4

Extensions

In general, many properties of W*?(U) can be inherited from W*?(R") provided U is
"nice”. The goal of this section is to extend functions in the Sobolev space W*?(U) to become
functions in the Sobolev space W#P(R"). Indeed, we need a strong theorem. Observe for
instance that extending v € WP(U) by setting it zero in R™\ U will not in general work, as
we thereby create such a strong discontinuity along QU that the extended function no longer
has a weak partial derivative. We must invent a way to extend u that preserves the weak
derivatives across OU.

THEOREM 4.1 (Extension Theorem). Let k € Ny. Let 1 < p < co. Let U C R" open and
bounded and assume OU is C*. Let V C R" be open such that U CC V. Then there exists
a linear and bounded operator

E:WkP(U) — WFP(R™)
such that for all u € W*P(U):

(1) Eu=wu a.e. on U,
(2) supp Eu C V,
3) 1Ew) lwrr@ny < C(p, k, U, V) |lullwrr@)-

DEFINITION 4.2. We call Fu an extension of u to R™.

DEFINITION 4.3 (essential support). Let u € W*?(U). Then the support of u is given
by
supp(u) = U \ U{V C U open: u=0a.e onV}.
If necessary we write esssupp(u) (essential support) for the support of u € Wkr(U)

to avoid confusion with the classical support of a continuous function. Note that for a
continuous function the essential support and the classical support coincide (Exercise).

PROOF. Let k =1and 1 <p < .
Step 1: Let xy € OU. Suppose that OU is flat near zy and lies in the plane {z, = 0},

see figure [4.1]

Then we may assume there exists 0 > 0 such that
BT :=Un B(zy,0) = BN {x, >0}
B™ :=(R"\U) N B(xg,0) = BN{x, <0},

where B = B(xy, 6).
Assume that u € C*(U). We define

() = u(z), if z € BT, 1)
W@, .. Tpe1, =) 4 u(xy, . 2y, —%), ifre BT '
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L=}

B n-1

FIGURE 4.1. half-ball at the boundary

This is called a higher-order reflection of u from B* to B~.
Step 2: We show that u € C''(B).

We use the notation u~ := E|B* and ut = E‘BJF. Then we have
lim w (21, Tp1,0,) = lim ub(z1,..., 20 1,7,).
Tp—0" Tp—0T
Obviously, for 1 <i<n —1,
ou™(x) T,
= =30 ,u(xy,...,—x,) + 40, u(xy,...,——
Hence, by the above
ou~ ou ou™
li e Ty) = oo Tp_1,0) = lim —(zq,..., 2,
xnl—I>r(l)— 8:52 (wl’ & ) 8% (xl Tt ) a:nl—r)%+ 6331 (xl v )
For i = n we have
O (@) = 30, u( ) 20, ul In)
u (x) = 30, u(xy, ..., —Tp) — 20, u(Ty, ..., ——
oz, nAt ! 2
and therefore,
ou~ out
lim T1,...,&y) = Op u(x1,...,2,-1,0) = lim T1,. .., Ty
Tn—0— 8:cn( ! ) e 10) Tn—0T 8:1:'n< ! )

Summarizing we have for all multiindices |o| < 1
Daqu’{xn:O} = Daufy{mn:()}.
Step 3 Using these calculations we have
[@llwrrm) < Cp llullwrrsh, (4.2)
where C,, is some constant that does not depend on u. (Exercise).
Step 4 What happens if U is not flat near xy? We reduce the general case to the case

where OU is flat near 5. We need the assumption that U is C'. Then for every zq € OU
there exists an r > 0 and a C'-function v : R*! — R such that we have

UNB(zg,r) ={x € B(xo,r) : Ty > Y(x1, ... Tp-1)}
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and
oU N B(zg,r) = {x € B(xo,7) : Tp = (21, ... Tp_1)}.
There exists a bijective C'-function ¢ and its inverse v such that ¢ straightens out OU

near xo”. Explicitly ¢ resp. ¢ are given by

¢:B=B(xg,r) — WCR" (21,...,2,) = (¥1, ..., Tp_1,Tpn — Y(T1, ..., Tn_1)).

,lvb W — Ba (yla' e ayn) = (yla <oy Yn—1,Yn _’Y(ylw . 7yn—1))-
These two maps have the following properties:

(1) p(OUNB) — {z, =0} NW,

(2) potp=1Idg and Yoo = Ildy

@ Xn =\
Jiy
P(S)
W+
@_¢w

FIGURE 4.2. Straightening out the boundary

Let y = ¢(z), x = ¥(y) and v/ (y) = u(y(y)) for y € WT. Then choose a small ball Q
around yo = ¢(zo) and use the steps 1-3 to obtain a function @' € C'(Q) as extension of v’
from QT to Q satisfying B

[/ l[wir@) < C - [lv/[lwirgh.-
Let R :=¢(Q). We transform back to z-variables, and obtain an extension
u:R— R, x— u(d(x))

satisfying
[ullwrery < C - [lullwrewy, (4.3)
where C' is independent of w.
Step 5: OU is compact and C'. Therefore, there exist finitely many open sets U; such
that

N
oU < | JUs.
i=1
U cc V. Hence, we can arrange that U; C V for all 7. We choose Uy CC U such that

N
UcUmgV
=0
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Subordinate to the cover (U;)Y,, of U there exists a smooth partition of unity, i.e. a sequence
of smooth functions (&)~ such that 0 < & < 1, supp& C U and > & =1 on U.

Note that since u € C'(U) we have that {u € CH(U). According to Steps 1-4 there exists
an extension

fi_u: U, — ]R,
such that L
&ullwrews < Cill&ullwrrw)- (4.4)

Note that yu = u, since supp & C Uy CC U. We define

uz) =) Gu@), welJUicv

1=0

and 7@ = 0 for z € R"\ (U, Ui). Then supp@ C V and
[Tl ogeey < Cllullwro) (4.5)

for some constant C, independent of u.
Step 6: For u € C'(U) and we can define our extension operator E as follows

Eu=7. (4.6)
The operator is linear and satisfies: Fu = u on U, supp Eu C V and
[@llwro@ny < Cllullwrew).

Step 7: Let u € W'P(U) and 1 < p < co. We define the extension operator using a
density argument. By Theorem we can choose a sequence (u,,)5°_; € C*(U) such that

b, — |l i@y —3 0. (4.7)
By the linearity of E and equation (4.5) we have
1B (um) = E(w) [wir@ey < C - lum — ullwre ).
(U )2°_; is Cauchy-sequence in W (U). Hence, (E(u,,))5o_, is Cauchy sequence in W7 (R™).
Since W?(IR") is complete there exists a limit lim,, o, TU,, in WHP(R") and we can define
Eu= lim Eu,,. (4.8)

m—r0o0
The operator E : W1P(U) — W1P(R") defined in (4.8)) is well-defined (i.e. does not depend
on the choice of the sequence (u,,)) and satisfies the properties of the theorem.
Step 8: The case p = ¢ is left to the reader. [l

REMARK 4.4.

(1) Theorem is also true for the half-space R? = R™"! x R*. This is obtained by
Step 1-3 of the proof.

(2) Assume that OU is C%. Then the extension operator F constructed above is also a
bounded linear operator from W*?(U) to W%P(R™).

(3) The above construction does not provide an extension for the Sobolev spaces
W*kP(U), k > 2. This requires a more complicated higher-order reflection tech-
nique, see e.g. [1, Chapter 4].

36



CHAPTER 5

Traces

In the following chapter we discuss the possibility of assigning ”"boundary values” along
OU to a function u € WP(U), assuming that OU is C'. If u € C(U), then u clearly has values
on AU in the usual sense, but a typical function u € W1P(U) is in general not continuous and
only defined almost everywhere in U. Since 0U has n-dimensional Lebesgue-measure zero,
there is no direct meaning we can give to the expression ”"u restricted to the boundary”. To
resolve this problems we need the trace operator.

THEOREM 5.1 (Trace Theorem). Let U C R™ be open, bounded and OU is C'. Let
1 < p < oo. Then there exists a linear bounded operator
T: W' (U) — LP(0U)
such that
(1) Tu = u‘BU for allu € W'»(U) N C(U)
(2)

I Tul| Lo ovy < Cllullwrew,
for each u € WYP(U), with the constant depending only on p and U.
DEFINITION 5.2. We call T'u the trace of u on OU.
REMARK 5.3.

(1) There is a version of Theorem for the Sobolev spaces W*P(U) for 1 < k < >

see e.g. [1, Theorem 5.22].
(2) There does not exist a bounded linear operator

T:LP(U) — LP(OU)
such that T, = u|aU whenever v € C(U) N LP(U).

PROOF. Let u € CY(U).
Step 1: Let zp € OU. As in the proof of Theorem (.1 we assume that oU is flat near
xo lying in the plane {z,, = 0}. Choose an open ball B = B(zg, ) such that

BT :=UNB=Bn{z, >0},
B~ = (R"\U)NB = BN {x, <0}
Let B = B(x, 5y and I'= BN U, see figure . We show that
ull Loy < C oy B [ullwro(s): (5.1)

We choose & € C°(B) such that € > 0 on B and € = 1 on B. Then suppéu C BT
and éu = won I. Let 2’ = (z1,...,2,-1) € R""!. Then, by the fundamental theorem and
Holder’s inequality, we have
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FIGURE 5.1.

0o p
[u (2, 0) < ( / |<£u>xn<x’,t>\dt)
0
< p—1 T /,t pdt
< /0 (€u)a (2, 1)]
<t [ el 0 + (. O
0

We integrate over I' and obtain
[leatopar <@t [ et 0 + leu, (0 Patds
r r7-1Jo
<CBY) [ @ + s, (o) da
Bt
< C(p, B [[ullyro ey
This yields equation ((5.1]).
Step 2: Analogously to the proof of Theorem we can straighten out the boundary

near x if necessary to obtain the setting in Step 1 (cf. figure |4.2)). After transforming back
to the original setting we obtain the estimate

[ 10?8 < Clullynsg (5.2)

where I' is some open subset of QU containing xy.
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Step 3: OU is compact. Therefore, there exist finitely many open subsets I'; of OU such

that
N
i=1
and by Step 1 and Step 2 we obtain
HUHLP(I‘i) < CiHuHWLp(U)' (5.3)
Therefore,
N N
el zoorry = /w ul’da < Z/F ulPdze = " ull oy < CN D) lullyiney: — (54)
i=1 /T i=1
We define
Tu = ul,, (5.5)
then our previous estimate implies
[Tullzeovy < Cllullwrirwy - (5.6)

Hence, Theorem is proven for u € C'(U).
Step 4: Assume now u € WP(U). Choose (u,,)%_, € C>®(U) N W'P(U) such that

m—o0

|, — vl wrr@wy — 0.

By the equations (5.5 and ([5.6) we have
T (e — w) || Lrovy < C [ty — wl|wrww)-
Hence, (T'u.,)50_; is a Cauchy sequence in LP with limit lim,, . Tu,, € LP. We define
Tu = lim (Tuy,).
m—o0

The operator Tu is well defined (does not depend on the choice of the sequence (u,)%°_,),

bounded and linear.

The sequence (u,)>®_, is constructed from u by smoothing by convolution (Theorem
3.17). If u € C(U) N W'P(U) we have by Theorem that (u,,) converges uniformly to
u on compact subsets of U, especially on 9U. Therefore, (Tu,,)_, converges uniformly to

u‘ oy O OU. O
Of special interest are functions which have trace zero. In the following theorem we
examine more closely what it means for a Sobolev function to have zero trace.

THEOREM 5.4 (Trace Zero Theorem). Let U C R™ be open. Assume U is bounded and
OU is C'. Let 1 < p < oo andu € WY (U). Then

Tu=0<ucW,?U)
Recall that
m—00

u e WP (U) <= 3 sequence (up,)°_, in C*° such that ||u, — ullyro@y — 0.
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PROOF. 1. ”<”: By the definition of the trace operator we have for u € Wy (U) with
(um)2°_, as above that

1Tull 1o ory) = 1T = Tty + Ttt| o)
< | Tw = Tum|l vy + 1Tl ogor)
= [|Tw — Ttml| o ) = O-
Therefore, Tu = 0 with equality in LP. We have that
W, (U) C {u e W(U) : Tu=0}.

2. 7=7: We show Tu = 0 = u € Whr(U). By definition Tu = 0 if and only if there
exists a sequence (u,,) in C'(U) such that

Uy, — w in WP(U)  and | Tl ooy = 0, if m — oo. (5.7)

Using partition of unity and flattening out OU as before, we may assume that
U=RI=R"'"xR"=R""' x {z e R,z >0}, 58)
u € WHP(U) with compact support in R7. '
Recall that
supp(u) = U \ U{V CUopen: u=0ae. onV}.

Step 1: Let 2’ € R* !, z,, € R*. Let (uy,) in C*(U) be as in equation (5.7). Then
i (2 ) = (2, 0) + / (o, (2, 1)t
0

and by the triangle inequality and inequality (11.2)

it )" < G (Juna 0P + ([ a0l at) ).

By Holder’s inequality we have
(e )" < €, (|um<as',o>|p cat [ |<um>xn<x',t>|f’dt)
0

We fix z,, and integrate over R"~!:

/ [ (2, 2,) )P da’ < C, (/ | (2, 0)[Pda’ + xﬁ_I/ / |(Um) e,y (x',t)|pdx’dt) :
Rn—1 Rn—1 0 Rn—1

Let m — oo. Then by equation ({5.7) we have

/ (!, z)[Pde’ < Cp bt / ' / . (2, )P’ dt. (5.9)
Rn—1 0 Jret

Note that

|t (2, 0)["da’ = [ Ttm|| o g1y — 0, if m — o0.
Rn—1

Step 2: Let ¢ € C°(RT) satisfying 0 < ¢ < 1 and
d[o,u =1, de\[OQ] =0.
Let x = (2, x,) € R} and define the function (,,(z) = ((ma,).
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FIGURE 5.2. (p(x)

The function

win () = (1 = Gu(@))u(z)
is in W'P(R") and

1
supp wy,, C {(2/,t) € suppu: t > —}.
m
We show that

|wm — ullwregn) =0, m — oc. (5.10)

The weak partial derivatives of w,, are given by

(Wm)a, (27, 20) = U, (27, 2,) (1 = G (@', ) — M (Mg )u(2’, )

and for 1 <i<n
(Wi )z, () = (1 = G () ), ().

Hence, for 1 <i<mn

- (W) z; — g, |"da = / [(1 = Gn(2) ), () — g, () [P

~ [ 6@ @iz =5 .

and
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/ (W) e, — Uy, |"de = / / |G (2 ) g, (2, ) + mu(z’, ) (mt)[Pdtdz’
n rr-1Jo

<G ( / |Gtz [Pd + mP / u(a',t)[Pdtda’ )
Rn— 1

=:C, (A + Bn) -

Since u € W'P(R") we have that u,, € LP(R"). By definition ¢, < 1 and ¢,, — 0 for all
x € R%. Therefore, by Lebesgue domination theorem

A, —0, ifm— occ.
We use Step 1 in order to get an estimate for B,,. By equation (/5.9 we have

/ / u(a,t)[Pdtdx’
Rn—1
< C’pmp/m/ lu(z',t)[Pdx’dt
Rn—1
<C mp/ (// u,, (2, t\pdxdt>ds
Rn—1
2
< C,m? (/ sP™ 1ds)/ / [ug, (', t)[Pdx’ dt
Rn—1
2
= Cp/ / g, (2, 1) |Pda’dt ™= 0
0 Jre-t

/ (W) e, — Uy, |Pdz — 0, ifm — oco.

Hence,

Summarizing we have equation .

Step 4: We use smoothing by convolution to construct a sequence () in C(R7).
Let £, = =. We know that w,, = 0 for all (2/,z,) € R*! x (0, 1) and w,, has compact
support in R”. Hence, wy, * 7., is well defined on R’} and has compact support. Therefore,

w * 1., € CZ(RY) and by Theorem
| W * N, — Win|lyy10 — 0.
Let @, = wy, * 1., . Then

|, — |l < [ — Winllyy1 + || W — ©l[yyr = 0, m — o0.
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CHAPTER 6

Sobolev inequalities

In this chapter we prove a class of inequalities of the form
Jullx < CHUHW’%P(U)’ (6.1)

where X is a Banach space, i.e. we consider the question: "If u € W*P(U), does u belong
automatically to a certain other Banach space X7?” Inequalities of the form (6.1) are called
Sobolev type inequalities. This kind of estimates give us information on the embeddings
of Sobolev spaces into other spaces.

Recall that we say that a Banach space E' is continuously embedded into another Banach
space F', written E/ — F if there exists a constant C' such that for all x € E

2]l < Clizll - (6.2)

This means that the natural inclusion map i : £ — F, x — z is continuous.

We start the investigations with the Sobolev spaces WP(U) and will observe that these
Sobolev spaces indeed embed into certain other spaces, but which other spaces depends upon
whether

1<p<n, (6.3)
p=n, (6.4)
n<p<oo. (6.5)

The case (6.3)) is covered by the Gagliardo-Nirenberg-Sobolev inequality, see Section
and the case ([6.5)) is covered by the so called Morrey’s inequality, see Section ((6.5]).

6.1. Gagliardo-Nirenberg-Sobolev inequality

DEFINITION 6.1. If 1 < p < n, the Sobolev conjugate of p is
« np
P :
n—p

Note that
1 1 1

—=-——— and px>p. (6.6)
p p n
THEOREM 6.2 (Gagliardo-Nirenberg-Sobolev Inequality). Let 1 < p < n. There ezists a
constant C, depending only on n and p such that

[ull Lo+ gy < Cl|Duf| o) (6.7)
for all uw € CH(R™).
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Motivation. We first demonstrate that if any inequality of the form
”uHLQ(R") < CHDuHLp(Rn)a (6.8)

for certain constants C' > 0, 1 < ¢ < oo and functions u € C'°(R") holds, then the number
q cannot be arbitrary. Let u € C2°(R"™), u # 0 and define for A > 0

ux(z) := u(Azx) (r € R") .

We assume that holds and apply it to wu,, i.e. there exists a constant C' such that
for all A > 0

||U/\||L4(R") < CHDU/\HLP(R”)- (6.9)
Now X
lun(@)*dz = | Ju(Az)lde = < | fu(y)|*dy
R~ R™ Rn
and

P
|Duy(x)|Pde = NP [ |Du(\x)|Pdx = j\\— | Du(y)[Pdy.

Rn Rn RTL
Hence, by we get
1\ AP 5
(57) " Mullzoeny < €(55) I Dulluoeny
and therefore,
||u||Lq(]Rn) S C’)\l_g'i‘g ||DU||L;7(RH).

If1-— % + % # (0 we can obtain a contradiction by sending A to 0 or oo, depending on

whether 1 — sHe>0or1-24+2<0.T hus, if in fact the desired inequality 1.) holds,

1_ np_

we must necessarily have 1 — % + % = 0. This implies that % = and therefore, ¢ = et

PROOF. Assume p = 1. Note that u has compact support. Therefore, we have for each
i1=1,...,nand z € R"

x;
U(._'L') = / uxi(l‘lw"7xi—1ayi7xi+1a"-7In)dyi

and -
lu(z)| < / |Du(xy, ..o Tt Yiy i1, - - - Tn)|dY;
Then

n—1
x)|71 <H</ ’DU%,---;%‘1,yi,5€z’+17-~~7$n)|dyz’>

We integrate the above inequality with respect to x; and obtain:

1

e’} co T e’} n—1
/ |u(z)|*=Tdz; < / H </ |DU($1;-~;mi—1,yi7$i+1,-~';l’n)|d%‘> day

1

0o ﬁ co N 0o n—1
—oc0 —00 ;9 —0o0
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Applying the general Holder inequality (Theorem [11.6) with p; = %1, t=1,....,n—1 we
obtain

1

[ee] o0 ﬁ n 00 00 n—1
/ ()| day < (/ |Du|dy1> (H/ / | Du) da; dy,) :
—00 —00 j=9 Y —00 J —00

Now we integrate with respect to x5 and obtain

_1

// 2)|7 T drydey < /_OO (/_ \Du]dy1> de/ (H/ / yDu|dx1dyZ> _1dm2

1

(/ / |Du|dx1dy2> / H I" " dry,

11=/ |Duldy,  and Ii:/ / |Duldaydy; fori=3,...,n

Applying the general Holder inequality once more we obtain

/ / |n Tdaydr, < (/ / | Du| dzy dy2> </ / | Dul dyy de)

1

n 0o 00 00 n—1
H (/ / / | Du| dxy dxs dyl-> )
73 —00 —o —0oQ

We continue by integrating with respect to x3,...,x, and and using Holder’s general in-
equality to obtain finally

where

n

n o] [ee] ﬁ n=t
/ M%dmﬁ H (/ / |Du|dI1...dyi...dxn> = ( |Du|d$> . (6.10)
R i=1 - - R

This is the Gagliardo-Nirenberg-Sobolev inequality for p=1.
We consider now the case 1 < p < n. Let v := |u|” for some v > 1. We apply (6.10) to
v. Then, by Holder’s inequality (Theorem |11.5])

n—1
( / |u|n””1dx) < [ pwtdr=r [ P~ ipulde

pi 1 (6.11)

§'y</ |u](71)z’p1da:> (/ |Du|pdas) :

We choose 7 so that 5 = (v — 1)-E5. That is, we set

p(n —1)
n—p
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p—1 n—p

in which case 2% = (y — 1)-2 = & = p*. Therefore, 1} becomes
—1

P

—1 bp=2 1
(/ ]u\p*d:v) ’ < 7( |u|p*d:v> ( |Du|pda:>
n R” R”
n—1_p-1
< |u p*d:v) ’ < ”y( |Du|pdx>
R™ R

-1 -1 1
1 —p—:—* and v = C(n, p).
n p p

what is equal to

D=

Note that

6.2. Estimates for W'? and W,”, 1 <p <n

The Gagliardo-Nirenberg-Sobolev inequality (Theorem gives the continuous embed-
ding of W1P(U), 1 < p < n, into the space L?", where p* is the Sobolev conjugate of p.

THEOREM 6.3. Let U C R™ open and bounded and suppose OU is C'. Assume 1l <p <n
and w € WYP(U). Then u € LP"(U) with the estimate

1wl Lo 0y < Cllullwrrw), (6.12)
where the constant C depends on n,p and U. In particular, we have for all 1 < q < p*
[ull oy < Cllullwrswy- (6.13)

ProoF. The Extension Theorem (Theorem yields that there exists an extension
u = Fu € W'"?(R") such that u = u in U, u has compact support and

||ﬂ||W1,p(Rn) < CHU”Wl,p(U). (6.14)

Because w has compact support we know from Theorem that there exists a sequence
(tp)2°_, of functions in C'2°(R™) such that

Up — U in WHP(R"). (6.15)
Now according to Theorem [6.2] we have that for all [,m > 1
[tm — wl| o ®n) S Cll Duy, — DUZHLP(Rn)' (6.16)
Thus, by equation and ,
Up — T in LP . (6.17)

By the Gagliardo-Nirenberg-Sobolev inequality we have
[t o ey < Cll Dt | 2o )
and hence,
[ oy < CND oy < Cllnoaey (6.15)
Therefore, by the properties of the extension u we have
[ll Lor 0y = Nl o 0y < Nl Lo gny < CllEllrp@ny < Cllullyrn -
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Since |U| < oo we obtain by Hélder’s inequality equation ((6.13)). O
REMARK 6.4. The boundedness of U is not essential. Remark [£.4] gives the statement

(6.12) for U = R% = R ! x R*. Corollary gives the statement (6.12)) for U = R™.

THEOREM 6.5. Let U C R™ be open and bonded. Let u € WyP(U), 1 < p < n. Then we
have the estimate

[ullzaw) < CllDul| e
or each q € [1,p*]. e constant depends only on p,q,n and U.
f h 1,p*]. Th tant d d [ dU
In particular , for all 1 < p < n,
[ullzry < CllDullzew).

PROOF. Let u € Wy”. Then there exists a sequence (u,)%_, in C>°(U) such that
Uy — u in WHP(U). Now we extend each function u,, to be 0 on R™\ U. Analogously to
the above proof we get from the Gagliardo-Nirenberg-Sobolev inequality (Theorem the
following estimate

[ull Lo 0y < CllDullzew).-
Since U is bounded we have |U| < oo and therefore, for every 1 < ¢ < p* the following
estimate holds

[ullzaw) < Cllullze ).

6.3. Alternative proof of the Gagliardo-Nirenberg-Sobolev inequality
DEFINITION 6.6 (Maximal function). Let f € L}, (R"). Then

loc
1
Mf:vzzsup—/ fy)|dy
(@) = g [ W)
is the maximal function of f.

THEOREM 6.7 (Hardy-Littlewood maximal inequality). If f € LY(R™), then for every
A>0

() > 0 < el (6.19)
where Cy is a constant which depends only on the dimension n. We say that M(f) is of

weak type (1,1).
If fe LP(R"), 1 < p < oo, then

1M, < Collfl, (6.20)
where C, depends only on n and p.

PROOF. See [10]. O

REMARK 6.8. The proof of inequality (6.20)) is based on a typical interpolation argument:
If we have

M) < Cullfll (6.21)
and

IM(Plloo < Cpllfllo (6.22)
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then it follows that
IMHIL, < Collfll, 1<p< oo

Note that M (f) does not satisfy (6.21)), but the weaker estimate (6.19). Hence, we need a
stronger interpolation argument: Estimate (6.19)) and

IM(f)llo < Cliflls
yield
MO, < Cullfll, 1<p<oo.

DEFINITION 6.9 (Riesz potentials). Let f € L
Riesz potential of f of order 1 is given by

1 = (|- "% =

(D) = (11 )@ = [

(The Riesz potential of order a > 0 would be I,(f)(x) = (|- |*™™ * f)(x).)
PROPOSITION 6.10. If f € LY(R™), then for all X >0

) > 2 < e ()7 (6.23)

where C1(n) is some positive constant that depends only on n.
If fe LP(R"), 1 <p <mn, then

(DI e < Cpn) (£, (6.24)

where Cp(n) is some positive constant that depends only on n and p.

1..(R™) be a non-negative function. The

f(y)
Y

PROOF. We may assume that f > 0. Given ¢ > 0 we divide the integral defining I;(f)
into a good part and a bad part.

_ ) o), )
e = [ [ = e 629

We get an estimate for the ”good part” gs(z) by Holder’s inequality. For p > 1 we have

1

g5() :/ fly )n 1dy < HfH (/ |z — y|q(1n)dy> ’
R7\ B(z,5) |3j Yl "\B(z,9)

where ¢ = z%' Substituting z = y — = in the second term on the right-hand side and

applying integration in polar coordinates (Theorem [11.16|) yields

1 1
(L= ([ s}
R\ B(z,9) R™\ B(0,8)
(/ / g(1—n)+n— 1dS( )d)
Sn—1

= |0B(0, 1)| P c(n p)o T
Summarizing we obtain for p > 1

gs(x) < Cln,p) |If1I, 677 - (6.26)
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For p = 1 we obtain:

f y —-n —n
g5(x) = / TG g il s ey < 0
R™\ B(z,5) |z —y y€R™\ B(z,6)

The ”bad part” bs(z) can be dealt with by a maximal function argument. Let
Bj = B(IE, 2_]5) and A] = BJ \ Bj+1, j 2 0.
The sets A;, j > 0 form a partition of the ball B(z, ). Since
Aj={yeR": 270§ < | — y| <2796},

bs(z) = / %d@/

we have

(z,6) |ZL‘—
Z/I—yI”1
= (6.27)
<22(j+1n161 n/f
7>0
=2"15) 277(2775)" / fy
7>0

Since f >0, |A;] < |Bj] and |B;| = (2776)"|B(0,1)|, we get the following estimate
S 9vi(2ig) / Flo)dy < ofm) 327 ,|/ F(v)dy, (6.29)
§>0 >0 B, B

where c¢(n) = |B(0,1)|. Using the definition of the maximal function (Definition we
obtain

> ]‘/ F(y)dy < 2M(f)(x). (6.29)

j>0
Summarizing the estimates (6.27)), (6.28]) and (6.29) we obtain
bs(x) < C(n)oM(f)(x). (6.30)
Putting the estimates (6.26]) and (/6.29)) into (6.25)) yields the upper bound
L()@) < Clnp) (SMF)(@) + 3" I11,) (6.31)

|m>m
M) (@)

Observe that the minimum of the right-hand side is attained with § = C'(n, p) (
We get, by putting the minimum into equation (6.31)), the following

L(f)(x) < Cln,p) IIF i (M(f) (@)~ *. (6.32)
Hence,
[ nn@I#de < conn 057 [ a@ps
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Applying Theorem [6.7] for p > 1 yields
L (f)(z)
Rn

This is what we wanted to prove.
The case p = 1 is similar. We use the weak conclusion of Theorem which asserts

that
1f1l,
W

oy =
nfpd]) S C(n,p) ||f||p 3

VA>0: {M(f) > A} < Cy
Hence, by equation ([6.32) we have

1) > M} < CA ],)7
[

Gagliardo-Nirenberg inequality - another proof. Proposition [6.10] gives an alter-
native proof for Theorem [6.2]

PROOF IT THEOREM [6.2l Let v € C}(R") and 1 < p < n. For every x € R", s € R and
w € 0B(0,1) we have

u(z + sw) —u(x) = /OS %u(m + rw)dr

(6.33)
= / Du(x + rw) -wdr.
0
Since u has compact support, we have
lim u(x 4+ sw) =0
5§—00
and therefore,
u(z) = —/ Du(z + rw) - wdr. (6.34)
0

Integration over 0B(0, 1) yields

/ o S0 = = / - [ ute - oarasie, 655

The left-hand side equals
(m)u(z), (6.36)
where ¢(n) = |0B(0,1)|. Using Fubini’s theorem we get for the right-hand side of ([6.35)

/ / Du(x + rw) -wdrdS = / / u(z + rw) - wdSdr. (6.37)
2B(0,1) 2B(0,1)
Using the transformation formula in Theorem [11.16] yields

D _
/ / W + 1) - wdS(w)dr = Mdz _ [ Dl =2), 658
8B(0,1) R" |2 R |z —y|"

Summarizing the equations (6.35]), (6.36)), (6.37) and (6.38]) we obtain

u(zx) = C(n) 5 WC@ (6.39)
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and therefore,

D
lu(z)| < C(n) / Duoll (6.40)
r [T — Y|
Hence, by Definition
u(z)] < C(n)L1(|Dul) (). (6.41)
Proposition [6.10] yields
1| Dul)ll 2z, < Cp(n) [| D], (6.42)

Equations (6.41]) and ((6.42)) give the statement
lull 2o < Cn.p) D],

It remains to show the statement for p = 1. We may assume that u is non-negative. The
support of u can be written as union of the sets

Aj = {xERnZ2j<U($)§2j+1} 7j€Z‘

We consider the function

0, if u(x) <27
vj(z) = ¢ u(x) — 27, if 270 < u(z) < 271! (6.43)
27 if 277 < w(x).

Since v;(x) > 2771 if and only if u(x) — 27 > 2771 we obtain
A = {27 <u <27} <[ {u> 2} [ = [{u>4-271}] (6.44)
<[{u>3-27"} [ =[{vy; >271}]. '

The function v; is continuous on R™ and compactly supported. Hence, by smoothing by con-
volution we can construct a sequence in C°(R™), which converges by Theorem (3.9 uniformly
to v;. This approximation argument allows us to apply the potential estimate (6.41)) to v;:

|vj ()] < C(n)Lh(|Dvj])(x). (6.45)
Equation (6.45)) and (6.44) yield
[Aja] < [{v; > 271}
< [{Li(|Dyy]) > C(n) =277} .
Using the weak estimate (6.23]) in Proposition for A = C(n)™1277! we get

Ayl < i) (Cuz it [ pujas) "

The definition of v; yields that the support of Dwv; is contained in A; and Dv; = Du on A;.
Hence,

Rn

|Aj1| < C(n) (2—3' / |Du|dx> : (6.46)
Aj
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By the definition of A; we obtain

/\u nldm—Z/ lu(z) |7 dx

JEZL

<3 (@) 4 (6.47)

jET

— 21 3 (27T Ay ).

Equation (6.46)) yields

2n-1 Z (2”1)" TAjq| < C(n (/ | Du(x |d:1:>
]EZ

( [ 1o W) (6.49
= C(n) (/ | Du(x )]dx) o

Summarizing equation ((6.47) and ([6.48)) yields the statement:
[ull o < C(1,n) | Dull; .

6.4. Holder spaces

Morrey’s inequality (Section gives the continuous embedding of the Sobolev spaces
WP(U), p > n into spaces of Holder continuous functions, the so called Holder spaces.

Throughout this chapter let U C R™ be open, 0 < v < 1.

DEFINITION 6.11 (Hélder continuous). A function u : U — R is said to be Hélder
continuous with exponent ~, if there exists a constant C' > 0 such that for all x,y € U

u(z) —u(y)| < Clz —y[".

For v = 1 the function is said to be Lipschitz continuous and C' is called Lipschitz
constant.

EXAMPLE 6.12. f(z) = \/z, z € [0, 1], is Holder continuous with exponent v = 3, but it
is not Lipschitz continuous.
We show that

Va,y€[0.1]: |f(x) — fly)| < |z —y|,
h VE— VAl <o - ylt. (6.49)
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Since |z — y| = [v& + /yl|v/x — \/y| we have

|-y Viel+lyl, - o VEEVE
Ve \@’_‘ﬁ+ﬁ‘§ﬁ+ﬂ’ GV RN

1
o —y|7 = |z —yl°.

Now assume f is Lipschitz continuous, i.e.
L > 0¥,y € 0,1] ¢ Ve — Vil < Lz —yl.
Let x = n—lz, Yy = n%l, then the following holds
1 1 1 1
n o n n n

This is equivalent to
1
JL>0VneN: [n—-1]< L1 - [ <L
n
Such constant L can not exist. Therefore, f is not Lipschitz continuous.

DEFINITION 6.13.

(1) If w : U — R is bounded and continuous, we write
[ullo = sup [u(z)].
xeU
(2) The 4%~ Hélder seminorm of u : U — R is
u(z) —u
i sap 110 =)
wtyer  |T =y
and the 4"~ Hélder norm is defined by
lullon := llulloe + [t

DEFINITION 6.14 (Hélder space). Let k € Ng and 0 < < 1. The Holder space Ck(U)
consists of all functions C*(U) for which the norm

[ullky = > D%l + > [Du]
|| <k || =k
is finite.

So the Holder space consists of all the functions that are k-times continuously differen-
tiable and whose k-th partial derivatives are bounded and Holder continuous.

THEOREM 6.15. (C*7(U), || - |[x~) is a Banach space.

PrOOF. First we need to verify that || - ||z indeed is a norm, so one has to check the
norm properties:
(1) Jlu| =0=u=0
(2) [|Aull = |A] - lull
(3) llu+vll < flull + o]
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which follow directly from [|ully := 3, [[D%ul| o being a norm and the seminorm properties
of [ . ]0’7. .
Now let (u,)nen be a Cauchy sequence in C*7(U), i.e.

Ve>0dn(e) >0Vm,n>n(e): ||um — upllr, <e.

Then (u,)nen also is a Cauchy sequence in (C*(U), || - ||x), where
lulls =) [1D%ullce.
a<k

This is a Banach space. Therefore, there exists a limit u € C*(U).

What is left to show is that for any multiindex o with |a| < k:
lim [D%u,, — D%ujo~ = 0.

n—oo

We know that
Ve, y e U,x #yVe >0dN € NVm,n € N :
| D% () = D%um(x) — D%un(y) + Dum(y)| < elz —y|"
and
Vo € UVe > 03N € NVn > N : | D%, (z) — D*u(z)| < e.
We fix x,y € U and € > 0. Then
| D%y () — D*u(x) — Dun(y) + Du(y)]
< [D%un(x) = D% (2) = D%un(y) + D% (y)| + [D"um(2) — Du(z)
+ [D%um () — Du(x)]
<elr —y|" + |Dup(x) — D*u(x)| + |DUp(z) — Du(x)|

Let m — oo. Then for all x,y € U and for all € > 0 there exists an N € N such that for all
n>N

| D%y (2) — D*u(z) — D%un(y) + Du(y)| < ez —y[.
Hence,

lim [D%u,, — D%u)o, =0

n—oo

and u € Ck(U). O

6.5. Morrey’s inequality

THEOREM 6.16 (Morrey’s inequality). Let n < p < oo. Then there exists a constant C,
depending only on n and p such that

[ull commny < Cllullwogny, (6.50)
for all uw € CY(R™) N WHP(R™), where v =1 — -
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PRrOOF. 1. We show that there exists a constant C'(n) such that for any B(z,r) C R"

| Du(y)]
dy < C / NI g, 6.51
|B xz,T | / wr) )’ ( ) B(z,r) |.’IJ - y|n—1 ( )
Let x € R™", r > 0 be fixed. Let w € 0B(0,1) and s < r. Then

u(z + sw) — u(z)| < /0

Hence,

Eu(x + tw)‘dt = / | Du(z + tw) - w|dt = / | Du(z + tw)|dt.
0 0

w(x + sw) — u(x)|dS(w sDum w)|dt dS(w). .
[ s —u@las@) < [ [ pues st (©32)

We apply Fubini to the right hand side and apply integration in polar coordinates (Theorem

11.16|) to obtain
/ / | Du(x + tw)|dt dS(w / / | Du(x + tw)|dS(w)dt
8B(0,1) dB(0,1)
D
By U1
B(z,s) |y _$|n

Now, multiplying equation (6.52) by s"~! and integrating from 0 to r with respect to s,
yields the inequality:

D
// w(z + sw) — u(z)|dS(w)s" 1ds</ / | Duly 1d ds.  (6.53)
0B(0,1) (z,r) |y_$|n

On the left-hand side of (6 - we apply integration in polar coordinates to obtain

s D n _D
[ -t [Feras [ 2L, [ DAL,
B(a,r) 0 Blar) [y — 2| n Jpen [y — x|

Note that |B(x,r)| = r"|B(0,1)| = r"C(n). Hence, we have
D
[ )~ i < coyipan) [ A2,
B(z,r) B(z,r) ly — |

This is equation (6.51]).
2. Now fix x € R®. We apply equation (6.51)) as follows

1
)] < ey [ Iule) =y + e / y)ldy
|B(‘T7 1>| B(z,1) | (z 1)
Du(y)| |
< —dy + = u(y)|dy
/B(ac,l) ly — |t |B(z,1)] B(z71)| )l

[ Du(y)] / dy
= ——dy + wy)| ="
/B;(ac,l) ‘y - ‘T‘n_l B(z,1) | ( )| |B<(L’, 1)|

| Du(y)| < / dy )%
< 29, ()Pt )"
/B(r,n Y=z wen " B D)
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The last inequality holds, since (B(z, 1), Ee 1)I) is a probability space. We apply Holder’s
inequality to the first term on the right-hand side and obtain

p—1

> 1 o
lu(z)| < (/ |Du(y)|pdy) (/ W@) + C(nup)HuHLP(B(ac,l))‘
B(z,1) Bz |y — x|" T

Hence, by integration in polar coordinates we have

1 1 rn—l 1 ) 1 -
/ —“dy:C(”)/ Wdr:/ r("_l)_(”_l)p—ldr:/ 5 dr
B(e) |y — " T o r\ eI 0 0

Since p > n, we have Z%i < 1. Therefore,

1 —-n
/ r5Tdr = C’(n,p)rzf1
0

0

Summarizing we have
u(z)] < C(n, p)ullwrr@n).

Since x was arbitrary, we can conclude

sup |u(z)| < C|lullwremn)- (6.54)

z€R™

3. Choose any two points z,y € R" and write r := |z — y|. Let W = B(z,r) N B(y, ).

Then

lu(z) — u(y)| < \W|/ lu(z) — u( |dz+|W|/ lu(y) — u(z)|d=
B(xz,r) ’/ )|dz+m 5 )Iu(y)—u(z)|dz::A—|—B

56



By inequality [6.51] we obtain

A<C/ Dul)l
B(z,r) |x_Z|n 1

v 1 o
< ( |Du(z)|pdz> / = dz
R B(z,r) |I - Zl(n_ )ﬁ

< C(n,p)||Dul ponyr ™

= C(n,p)|| Dul|om |z — y|" "
The same estimate holds for B. Therefore, we have the following estimate
[u(z) = u(y)| < C||Dul|on |z —y[' "

which implies

u(r) —u
M < C||Du||Lp(Rn), Vo, y € R".
|z —y[?
Thus,
[u]o,, = sup Ju(z) = uly)| < C||Dul|;» < Cllullwrem@n)- (6.55)
styern T —y|
The inequalities (6.54)) and (6.55) yield the statement. O

REMARK 6.17. A slight variant of the proof above provides

o) -t < ¢ 3 ([ n Dula)pa)’

for all w € CY(B(z,2r)), y € B(z,r) CR", n < p < co. The estimate is indeed valid if
we integrate on the right hand side over B(x,r) instead of B(z,2r), but the proof is a bit
trickier.

6.6. Estimates for W and Wol’p, n<p<oo
DEFINITION 6.18. We say u* is a version of a given function u provided
u=u" ae.

THEOREM 6.19. Assume u € WP(R"), n < p < oo. Then u has a version u* € C%(R")

n

fory=1-— = with the estimate
||U*||0077(Rn) < CHUHWLP(]R”)' (6.56)
Proor. Use Corollary and follow the proof of Theorem [6.20] 0
THEOREM 6.20. Let U C R™ open, bounded and suppose OU is C*. Assume u € WP (U),

n < p < oo. Then u has a version u* € COV(U) for vy =1 — o+ with the estimate

[0 lgo@y < Cllullwrow)- (6.57)
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PROOF. According to Theorem there exists a compactly supported function u =
Eu € WP(R") such that u =% on U and

”Ele,p(Rn) < CHUHWLP(U)' (6.58)

Since u has compact support, we obtain from Theorem the existence of functions u,, €
C®(R™) such that

||um - HHWLP(IRW) — 0. (659)
Now according to Theorem [6.16| we have for all m,l € N
||Um - ulHCO,'y(Rn) S C“um - ul||w1,p(Rn)~ <660)

()52, converges to w in WHP(R™), therefore it is Cauchy sequence in C%7(R™). Since this
is a complete Banach space, there exists a function u* € C%7(R") such that

[t = u* || o gy = 0. (6.61)

Owing to the equations and (6.61)) we see that w = u* a.e. on R", i.e. u* is a version
of u. Note that w = u a.e. on U hence, u* is a version of u on U.

Theorem can be applied to the functions u,, € C*(R"), i.e.
[l o gy < Clltimllwrpn)
and therefore, by the equations , and we have
||u*||C’0»V(]R”) < CHEHWLP(R”) < CHUHWLP(U)'
By the definition of the norm ||-|| 0, we have

[ lcon @y < 1wl gon gny:

REMARK 6.21.
(1) Note that for p = co we have the following inequality
[u*lcor @) < Cllullwrew).

Hence, every u € W1°(U) has a Lipschitz continuous version u*.
(2) Let n < p < co. Inequality l} does not hold for v € (1 — > 1].

(3) If U € R™ is bounded then
||U*||Coyﬁ(ﬁ) < CHU”WLP(U)

for all 0 < 5 < .
(4) Let U C R" open and bounded. Assume u € WyP(U), n < p < co. Then u has a
version u* € C*(U) for y =1 — &, with the estimate

[u*llcon@) < CllDull -
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6.7. General Sobolev inequalities
THEOREM 6.22. Let U C R™ be open and bounded with a C' boundary. Assume u €
WkP(U), 1 <p < oco.
(1) If k <%, thenu € LI(U), where % =1k ith

D n
HUHLQ(U) < CHUHWk,p(U)a (6.62)

where the constant C' depends only on k,p,n and U.
(2) If k > o, then u € C™7, where m = k — L%J —1 and

B L%J +1-2, if % 1s not an integer,
B any positive number < 1, if g 18 an integer.
We have the estimate
”UHme(m < CHUHWI%P(U)' (6.63)
Proor. Case 1: Let k < 7. u € WHkP(U), then DPu € WhP(U) for all |3] < k — 1 and
||Dﬂu||w1,p(U) < HuHW’w’(U)' (664)
We apply Theorem [6.3] and obtain
1D7ul| e 1y < CIID%ul|yr iy < Ntllyinery,  forall |8l <k —2. (6.65)
Using this equation we obtain
||U||Wk71»p*(U) < C”U”ka(U)' (6.66)

Set p; = p* and apply the same step again to u € W*=1P1(U). Then we obtain
||D5UHLPT(U) < Cllullyrpqy, forall |8 <k—2. (6.67)
Applying the step k-times yields the estimate

HUHLQ(U) < CH“Hwk,p(U)> (6.68)

where L =1 — £
p n

. :
Case 2: Let k> 2 and 2 is no integer. Choose ¢ such that £ <2 < (+1,ie. (= [2].
Then ¢ < k. Since u € W*?(U) we have D’u € W (U) for all |8| < k — ¢ and

HDBUHWE,p(U) < ||U||Wk,p(U)~ (6.69)

Since £ < % we can apply case 1 and obtain

1D"ul ) < €| D7 forall |8] <k—¢,

“HWW(U)’

where % == — % Therefore,

1
P
HDﬁuHLq(U) < Cllullyyrsqry, forall |8 <k—L
This equation yields
||u||Wk%q(U) < CHUHWk,p(U)- (6.70)
Hence, u € W*=54(U).
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Note that = ]lj — . Hence, ¢ = Smce 2 < {+1, we have ¢ > n. We can apply
Theorem to DPy e WH |a| < k E — 1 and obtaln
||DﬁuHCo,w(U < OHDBUHWL(;(U) < CHUHWk%,q(U)a (6.71)
where y=1—-12 f[ J+1——

Using the equatlons and - yields
full e-rzn = > 1D+ > [Dulo,
|| <k—[%]-1 lal=k—2]-1

< CHUHWk%q(U) < C”Unwk,p(U)-

Case 3: Let k > % and % is an integer. Set / = 2 — 1. Then ¢ < g < k. Analogously
to the case 2 we get that v € W* %4, where % = % — £, This implies ¢ = n. Since |U| < o0

we have u € W*=4" for all r < n. Hence, D € Wr(U) for all |o| < k — ¢ — 1. We apply
Theorem [6.3] and obtain

1Dl < CID%ull g,
< CH“HW’C*&T(U) < CHuHkae,n-

Sl

Note that the last constant depends on |U]. Therefore, for all |af < k—¢—1=Fk — 2 the
functions D®u are in L*, n < s < o0.

Hence, u € W*™5*(U) and D*u € W for all o < k — +—1. Let n < s < oo and apply
Theorem [6.20]

n
1Dl @y < CID gy, Torall o <k = —1,

where v =1 — . Analogously to the case 2 we obtain
ueCFT(T), 0<y<1
and
lull -2 -10 < Cllullwieny < Cllullwraw)-
O

COROLLARY 6.23. Let U C R" be open and bounded with a C' boundary. Let j, k € Ny
and 1 < p < co. Assume uw € WHIP(U). If k <2, then u € WH(U), where % = Il) — & with
HUHWJ',q(U) < CH“HW’H—J’,P(U)? (6.72)

where the constant C' depends only on k,p,n and U.

6.8. The borderline case
We established Sobolev inequalities for
(1) k < 2 (Gagliardo-Nirenberg-Sobolev inequality)
(2) k> - (Morrey’s inequality)
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What can we say about the case n = %?
Considering the fact that the Sobolev conjugate index p* = % converges to oo as p — n,

we might expect by the Gagliardo-Nirenberg-Sobolev inequality that W"(U) is continuously
embedded in L*>*(U). This is however false for n > 1. Let U = B(0,1) C R™. The function

u(x) = log (log (1 + é)) belongs to W™ (U) but not to L>(U).

LEMMA 6.24. Let U C R" be open and bounded. Let v € Wh™(U). Then there exists a
constant C' such that

||u||LP(U) < CHUHWLH(U)a (6.73)
where

p = 00, ifn=1,

1 <p<oo, ifn > 1.

REMARK 6.25.
(1) We will see in the proof that the boundedness of U is not necessary for the case
n = 1. The same argument holds for U = R"™ with constant equal to 1.
(2) If U € R™ bounded, then the constant C' depends on U and n and in the case of
n > 1 additionally on some arbitrarily chosen parameter g € [max(n,p), 00).

PROOF. 1. Let n =1 and u € C}(U). Let x € U. Then

ju(z)] < / " | Du(y)ldy.

Therefore,
[ull oo < [1Du]l -
By the same argument as in the proof of Theorem [6.3| we obtain that for uw € W*(U) the
following equation holds
[ul| Ly < Cllullwinw, (6.74)
where C' depends on n and U.
2. Let n > 2 and choose n < g < o0. Set%:%jté. Then 1 < s <n and ¢ = 2. Note

n—s

that since |U| < oo the following estimate holds

1_1 1—=
[l sy < " [UF  [lull ),

Theorem [6.3| yields

I
Note that s* = ¢. Therefore,

[s* S C(”? S, U)HUHWLS(U)

||u||Lq(U) < C(n,q, U)HuHlen(U)-
Again, since |U| < oo the following estimate holds
||u||LP(U) < C(n,q, U)”UHWM(U)'
for all 1 < p < gq. Since ¢ < oo was arbitrarily chosen, we have that for all 1 < p < oo there
exists a ¢ € [n,00) with p < ¢ such that
HuHLP(U) < C(”a q, U)Hu”WL”(U)
Note that the constant does depend on the choice of q. U
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REMARK 6.26.

(1) The space W'™(R™) embeds into the space BMO (the space of bounded mean
oscillation), cf. Remark [8.4]

(2) Trudinger’s inequality (Theorem gives the embedding of W, (U) in another
Sobolev space.

THEOREM 6.27 (General case k = %) Let U C R™ be open and bounded with a C*
boundary. Assume u € WPP(U), 1 < p < oo. Ifk = =, then w € LYU) for all p < q < oo

and
HUHLq(U) < Cllullyyrs (6.75)

where the constant C' depends on k,n,p,q.

6.9. Trudinger inequality
THEOREM 6.28 (Trudinger Inequality). Let U C R™ be open and bounded. Let u €

Wy (U). Then
|ul )
exp < C|U|, 6.76
| {(CHDUIIn v (670

where ¢ > 0 and C' > 1 are constants which depend only on n.

REMARK 6.29. This theorem yields that the Sobolev space Wy (U), U bounded, is
embedded in the Orlicz space L¥(U) with ¢(t) = exp <|t %1> — 1. L¥(U) is the space of all
measurable functions u : U — R such that

(4 <y <

il o = inf{e > 0 /gp

U

See [1I, Theorem 8.25]

Proof of Trudinger’s inequality. Let U C R" be open and bounded. Let f € L{ _(U).
Recall (Definition that the Riesz potential of f of order 1 is given by

L(He) = (-1 o) = [ /)

—_— y.
|z —y|*!
PROPOSITION 6.30. Let U C R™ be open and bounded, n < g < oo and f € L™(U). Then

1L, < a5 BO, DU f1],- (6.78)

(6.77)

REMARK 6.31. Proposition [6.30]is the special case p = n of the following statement: Let
U C R" be open and bounded, 1 < p <n and

p<g< 2,
n—p
Then, for f € LP(U) and § = | — - >0,
1—6\""° -1, 1.5
I, < (15)  IBODIHUE, (6.79)
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Note that Proposition [6.10] states that for 1 <p <n

(DI e < Co(n) (111, -

and for p > n

()l < C(np [UDIFL-

PROOF. Let

[

Since n < ¢ < oo we have

1<s<

n —

We show that the function h(y) = |y|" " is in L*(U). Let R > 0, so that |U| = |B(0, R)| =
|B(0,1)|R™. Then

1 1
/U |y|3(”_1)dy = /B(O,R) |y|s(n=1) i (6.:80)

In order to prove equation ([6.80) we have to consider two cases. Case 1: B(0, R)NU # 0.
Then

/|y|5(1_”)dy=/ |y|s(1_")dy+/ )" dy
U U\B UNB

S/ Rs(ln)dy+/ ’y|s(1—n)dy
U\B UNB

— WA BR[| gty
UNB

—B\UIRO g [ gty

UnB

S/ !yls“"’der/ ly|* M dy
B\U UNB

= / "My
B

Case 2: B(0,R)NU = . Then
/ |y|s(1fn)dy < / Rs(l—n)dy — |U|Rs(1—n) _ |B(O7R)|Rs(1—n) < / |y|s(1fn)dy‘
U U B
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Applying integration in polar coordinates (Theorem m ) to equation ([6.80)) yields

/ ly ”)dy—/ / ro=mE=106 () dr
B(0,R) gn—1

R (1-n)+n
s(I—=n)+n
n

= ———————|B(0,1)|Rs0=m*"
s(l—n)—l—n| (0.1)
1 1

— - = |B(0.1)|R"(/n=1+1/s)
sl/n—1+1/s| (0. 1)

= 41B(0,1)|RT,
S

= [0B(0,1)]

where we used * = 1—1—5— L. Since |U| = |B(0,1)|R", s > 1 and % = 1+%—% the following

estimates hold
1

Ivll, < (1) 1BO, DI R
(0, D]*5Uls
— ¢ E B, )

We apply Young’s theorem (Theorem [11.11)) with % + % =1+ % and obtain by the above
estimate

w =

(Ol = h* Fllg < NI,
1_1 _1 1
< ¢ " m B0, 1)UL f],
0

PROOF OF THEOREM [6.28] Let U C R™ and f € L™(U). Let ¢ > n, then 2= > n and
therefore, Proposition [6.30] asserts

()l < (gn) @7 | B(, DI (O] | £, (6.81)
where n/ = . Since gn’(1 — ) = q, we get
L@ do < (g™ =51 B0, )™ U712
/ (6.82)

= (qn)™BO, DIUIAL"

/U (%)q dz < gl (@)q u]. (6.83)

We show the following estimate by applying the equation ((6.83))

/UZ Al (ucllufu )‘)W dr < G| (6.84)

k=0

Hence,
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We divide the sum on the left-hand side into two parts

/UZ ! <|Icll|\f|y )|) Zku/ ('I;an ) nldx

:Zk'/cjélllfll ) * +Zk'/(”;ufn )d

=141l
(6.85)
Applying (0.83) yields
N kn! o0 k
1 [L(f) (= )l) o <n’|B(0,1)|>
— —_— dv < |U|n ;
Zk'/( allfl =W S (T s
>k /B0, 1)]\" '
oS o (M
Stirling’s formula yields
k* k
< eF<e?*  k>1.
(k—=1!' " Vork — B
Summarizing we obtain
=L /e2n/|B(0,1)]\"
<|Up'y" (w) . (6.87)
k=1 1

We choose ¢;(n) so that e?n/|B(0,1)| < ¢@’. Then the sum on the right-hand side con-
verges and there exists a constant C'(n) such that

11 < Cn)|U]. (6.88)

In order to get an estimate for I we set g(z) = <%> . Then, by Holder’s inequality,

we obtain for 1 < k < n:

[ (P ) et ,
< ([ lataras) o
= |U]F (/U (W) dx> ",
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We apply equation ((6.83) to the integral on the right-hand side and obtain

[ ar ot (o (1502 )

= iyt (2O

1

Nk+E |B(0’1)| k
< |U) ') (m)

= c(n)fe ?*|U|.

Summarizing we obtain

_ ()@
= 'U”Zm/(clufu )

c(n)ke 2
<|U|+|U|Z

(6.89)

where C'(n) > 1. Collectin the equations (6.85]), (6.88)) and (6.89) we obtain that there exist

constants ¢;(n) and Cy(n) such that

/Z <|]1 )|)kn/dx<02|U\.
viz K\ allfll -

k=0
The monotone convergence theorem yields

/Uexp { (%)} dz < Cy|U|.

Let u € C2°(U). Then equation (6.41)) yields
()] < C(n)| L (Du)(2)]
and by (6.91)) we obtain

fon{ () )= o (24) e

where Cy(n) > 1.
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CHAPTER 7

Compact embeddings

The Gagliardo-Nirenberg-Sobolev inequality shows that W1?(U) is continuously embed-
ded into LP"(U), if 1 < p < n. Now we show that W'P(U) is in fact compactly embedded
into some L4(U) space.

DEFINITION 7.1 (compactly embedded). Let X and Y be Banach spaces, X C Y.
We say X is compactly embedded in Y if and only if the operator

[d: X =Y, z—uz

is continuous and compact, i.e.

(1) 3CVYz € X : ||z|ly < C|lz||x,

(2) for all sequences (z,)5°, in X with sup, ||z,||x < oo there exists a subsequence
1—00

(xn,)52, and y € Y such that ||I(z,,) —y|ly — 0.

THEOREM 7.2 (Rellich-Kondrachov Compactness Theorem). Let U C R"™ open and
bounded and let OU be C*. Let 1 < p <n. Then

WP (U) cc LY(U),
forall1 < q < p*.
PrROOF. We fix ¢ € [1,p*). Let u € W'P(U). Theorem yields
Jull e < CHUHWLP(U)'

Hence, the operator Id: W1? — L4 is continuous.
We have to show compactness. Let (tp)0_; € WP(U) and sup,, [[in|lwir@) < A.
We show that there exists a subsequence (U, )7, of the bounded sequence (,,)5_; and a

u € LY(U) so that ||iy,, — |z R ), By the extension theorem we may assume that
(1) (up)SS_, is in WHP(R™) with um‘U U,
(2) for all m € N there exists V with U CC V such that supp u,, C V,
(3) sup,, |[tm|lwrp@ny < o0o.

We first consider the smooth functions
u;, =N *up € CO(R") (6 >0, meN).

We may assume that for all m € N the support of «;, isin V.
Statement I

lim sup [Jus, — U La(v) =0 .

e=0 1 eN
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Verification: If u,, is smooth, then

() — () = / 10— ) )y

1
d
:/ n(y)/ Eum(x—sty)dtdy
B(0,1) 0

1
= —5/ n(y)/ Du,(x —et) - ydtdy.
B(0,1) 0

1
J @) = wn@lae << [ a) [ [ 1Duna =ty dearay
B(0,1) 0o Jv
§5/ | Dy, (2)]dz.
1%

Summarizing we have for u,, € C(R"™) with suppu:, € V the estimate

Thus,

[z, — UmHLl(v) < 6”DUmHLl(v)- (7.1)

By approximation (Theorem [3.17)) this estimate holds for u,, € WH?(V). Since V is open
and bounded, we obtain

||u —um||L1 <5||Dum||L1 <€C||Dum||Lp(V)
By assumption we have that sup,, [|um|lwir) < co. Therefore,

. . B
Jim sup [ty =t 113y = 0 (7.2)

Note that 1 < ¢ < p*. Let 0 < 6 <1 such that

1 1-6 0
q 1 p
We apply the interpolation theorem for LP-norms (Theorem [11.10) to obtain
€ € 0
[, — umHLq(v) < Jug, — “m”Ll(V)H“ umHLP*(V)'
Theorem [6.3] yields
€ 0
gy = wmll oy < N5 = w1y g = | Sprnr
and by equation ([7.2))
iy up 15, =t 41, = (7.3)

Statement 2: Let € > 0 be fixed. The sequence (u%,)°_; in C2°(R™) is uniformly bounded
and uniformly equicontinuous, i.e.

(1) sup,, [|uz |l < 00
(2) Vp>036 >0Vm € NVz,y e R" : |z —y| <6 = |[u,(z) —uS,(y)| <.
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Verification: Let x € R™.

i (2)] < / (@ — ) um()ldy < sup | (@) / ()| dy
B(z,e) TER™ 1%
C

1 1 1
< = luy, < V|7 |luy, = .
= | u ||L1(V) > €n| |7 ||lu ||LP(V) on
Hence,
C
sup Ju, .. < = (7.4
meN en
By Lemma and the Minkowski inequality for integrals (Theorem [11.4)) we have
. . 1 1 C
| Dy, (2)] < / | D (@ = ) umW)|dy < —7 V17 [umllovy = 57 (7.5)
B(z,e) € €
Hence,
C
Dus . 7.6
sup || Du, |, < < (7.6)

Equation ([7.6)) yields
Vn>035>0Ym e NVe,y e R": [z —y| < = |u;,(x) —u,(y)] <n.

The sequence (uZ,)_, satisfies the requirements of the Arzela-Ascoli compactness crite-

rion (Theorem [11.18]), which asserts that for the uniformly bounded and uniformly equicon-
tinuous family of functions (ug,) there exists a subsequence that converges uniformly to a
continuous function on compact subsets of R", i.e.

Ve > 03N, C N, #N. = 00 : (u5)jen.converges uniformly on V. (7.7)
This implies that (u5);jen- converges in L?(V) (1 < ¢ < 00). Summarizing we have
1
Ve e N3g, > 0Ve <e,Vm € Nt |[Jug, — uml| oy < 7 (7.8)
. € € 1
Ve > 03N; SNV € NIN, C N Vi, j € New [|uf — |, ) < 7 (7.9)
We combine equation (|7.8) and ([7.9)) to obtain
3
VEGNElNgQNVi,jENg: ”U’i_ujHLQ(V) S Z (710)

We apply Cantor’s diagonal argument. Note that by definition
Ny DNy DN3D---DNyD ...
Let d; = minN;. Then d; € N; for all j > i and by equation (7.10) we have for all
1,7 €N
|wa, — ua, || <maX{1 1}
di dillLa(vy = i

Then we have
Ve >0dN e NVi,j > N : Hudi —udeLq(V) < E.
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Hence, (ug,)ien is Cauchy sequence in L9(V') with limit w € L9(V'), i.e. there exists u € LI(V)
such that
Since U C V' we have
g, — ull pary = 0, if ¢ — oo, (7.11)
U

The Arzela-Ascoli theorem (Theorem [11.18)) gives the compact embedding of WP(U),
n<p<ooin L 1< q< 0.

THEOREM 7.3. Let U C R" open and bounded and let OU be C*. Let n < p < co. Then
WP (U) cc LY(U),
forall1 < q < o0.
SKETCH OF THE PROOF. By the Arzela-Ascoli theorem (Theorem we obtain that
C*(U) cc O(U)
for all 0 < 7 < 1. Then use Morrey’s inequality (Theorem to obtain the statement. [J
Lemma and Theorem give the statement for the borderline case p = n:

THEOREM 7.4. Let U C R" open and bounded and let OU be C*. Then
wt™(U) cc LY(U),
forall1 < q<n.

PrROOF. Lemma yields the continuous embedding. Choose a bounded sequence
()2°_; in WH™(U). Then, since U is bounded, we have that for every p < n the sequence
(t)2°_; is bounded in W?(U). Theorem asserts that there exists a limit u € LP"(U)

m=1

such that
[ttm = ttl| o 17y = O
If we choose § < p < n, then n < p* and we have
[tty = vl g g7y = 0
OJ
REMARK 7.5. Summarizing we have by Theorem Theorem [7.3] and Theorem [7.4] the
following statement:
WhP(U) cc L?, (7.12)
for all 1 <p < o0.
Note also that
WyP(U) cc L, (7.13)
for all 1 < p < oo, even if we do not assume AU to be C!.
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CHAPTER 8
Poincaré’s inequality

The inequality
[ull e < Cl|Dul| e (8.1)

does not hold for every u € WP(U), where U C R™ is open and bounded. The Gagliardo-
Nirenberg inequality (Theorem states that it holds for u € C!}(R™) and hence for u €
WhP(R"). Theorem states that it holds for u € VVO1 P(U), U C R"™ open. If we consider
an arbitrary smooth function that is constant and nonzero on the unit ball B(0, 1) and zero
outside, we have

1
[Dull, = 0 and fjul] ,,- = [B(0, 1)]>.
However, if we replace the integrand on the left-hand side of (8.1)) by ||u — (v)v||;», where
d
(u)y = / u(gs)—:lj (mean value of u in U)
v U
we obtain an inequality that holds for all w € W'P(U).

8.1. General formulation and proof by contradiction

THEOREM 8.1 (Poincaré’s Inequality). Let U C R™ be open, bounded and connected with
a C*-boundary OU. Let 1 < p < oco. Then there exists a constant C, depending only on n,
p and U, such that

lu = vl < CllDulLrw) (8:2)
for all u e WP (U).

PROOF. By contradiction. We assume that the statement is not true, i.e.
Vk € N3u, € WHP(U) : ||up — (uk>U”LP(U) > kHDukHLp(U). (8.3)

We define
U — (Uk)U

ur — (ui)vlle@y

V ‘=

Then ||vg|| 2oy = 1 and (vy)y = 0. The gradient of vy,
Duk

Dy, = ,
©7 T = @ullew)
satisfies by assumption (8.3|)
| Dug || e 1
Dv = < - 8.4
|| k”LP(U) ||Uk: — (Uk;>U||LP(U) L ( )
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Hence,

1
fonlwswy < Clnp) (1Dl sy + letlzs) < Clop) (14 )

and
sup || vk || iy < 2C (0, p).
keN

By Remark [7.5] we have that

W?(U) cc LP(U), 1<p<oo.

By definition there exists a subsequence (vy;)72, and a v € LP(U) with [[v[| .y = 1 and
(v)y = 0 such that
}5{}0 [ UHLP(U) =0.

Let ¢ € C2°(U). Then, using Lebesgue’s Theorem and the definition of the weak deriva-
tive, we have

/vgbwidx = lim /vkj ¢p,dr = — lim /(vkj)xi odr =0,
j—00 : j—o0 :

where the last equality follows from lim;_,« || Dvg,||zr) = 0. Hence, Dv = 0. Since U is
connected, Proposition implies that v is constant a.e on U. As (v)y = 0 we have v =0
a.e. on U, which is a contradiction to ||v||Lr@y = 1. O

PROPOSITION 8.2. Let U C R" open and bounded and connected. Let uw € W'P(U) and
Du =0 a.e. inU. Then u is constant a.e. on U.

PROOF. Step 1: Let ¢ > 0. We consider the smooth functions
ut =n.xu € C*(Uy),
where U, = {z € U : d(x,0U) > e}. Corollary [3.8] yields
D, (u:) =n. * Dy,u.

Hence, by assumption D, ,u. = 0 a.e. on U, Consequently, u. is constant on each connected
subset of UL,.

Step 2: Choose x,y € U. Since U is connected there exists a polygonal path I' C U
that connects x and y. Let § = min,erd(z,0U) and € < 0. Then I' C U, and x,y lie in the

same connected subset of U.. Hence, u®(z) = u®(y) = const.
Step 3: u € W'?(U). Theorem [3.9| yields that

e—0
u® — u a.e. on U.

Hence, u is constant a.e. on U. 0
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8.2. Poincaré’s inequality for a ball

THEOREM 8.3 (Poincaré’s inequality for a ball). Let 1 < p < co. Then there exists a
constant C', that depends only on n and p, such that

lu = (@) penllr e < CrllDullr@en), (85)
for each ball B(z,r) C R"™ and each function u € WP(B(x,r)).
PRrROOF. Let U = B(0,1) and u € WHP(U). Theorem [8.1] yields the estimate

lu = (a0 llrBon) < CllDu|Lr501)- (8.6)

Let now u € W'(B(z,r)). We define
v(y) = u(z +ry), ye BO1).

Then v € WP(B(0,1)) and by equation we have

v — (v) Byl ze(B(0,1)) < ClIDV||r(B(0,1))- (8.7)
Changing variables, we recover equation (8.5]).

REMARK 8.4. Let u € WH(R") and B(z,r) C R". Then Theorem (8.3 yields

(/B(m) ‘u(y) - (WB@,@]”%) 1

<cr ( / \Du(yﬂ”czy)"
B(z,r)

S|=

Cr
<—" _|Dull g
Bz,
C

= ———1 || Dul[pnan).
| B(0,1)["

By Holder’s inequality we obtain for the left-hand side

n

—u L u(y) — (u)B ni i
/Bu,r) [0 (>B<“>'|B<x,r>|S(/B@,T)' ®) = Waten] |B<x7r>|) '

dy
/B( : ’u(y) - (U)B(:cm)’m < C’||Du||Ln(Rn), (8.8)

where C' depends only on n.
Space of bounded mean oscillation. A function f € L}, (R") is called of bounded
mean oscillation if

Hence,

d
e oy V0~ el < )

B(z,r)CR"™

The space of all such functions is called the space of functions of bounded mean oscillation

(BMO(R™)) and the left-hand side of equation defines a norm ||-|| gy gn) O this space.

Therefore, we have that W™ (R") is continuously embedded into BMO(R™) with
Ln(Rn) S CHUHWI,n(Rn) (81())

HUHBMO(R") < C||[Du
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8.3. Poincaré’s inequality - an alternative proof

ProOOF II oF THEOREM B3 Let B C R” be a ball with radius R. We show that for
u € C*(B) the following estimate holds

u(z) — (u)s| < Cln / é{”mn dy, zeB. (8.11)

Let z,y € B and w = . Then

lz—yl
u(z) —uly) = _/o au(m + rw)dr
= _/lm g Du(x + rw) - wdr.

We integrate over B with respect to y and obtain

| B|(u(x) //w ’ u(z + rw) - wdrdy.

By integration in polar coordinates (Theorem [11.16)) on the right-hand side we obtain equa-
tion (8.11]). Using Definition we get the potential estimate

u(z) —up| < C(n)L(|Vul)(2). (8.12)
Case: n =1: Equation (8.11)) yields

lu(2) — (u)s] < C(n) / Du(y)\dy. (8.13)

(/[ 1ute) B|p)1 C)|BIF |1Dul,.

We apply Holder’s inequality to the right-hand side with exponents % +1-— % = 1 and obtain

([ 1ute) - <u>B|p)’l’ < C(\BI} B4 Dl

= C(n)|Bl||Dul|p, = 2C(n) R Dul| .

Hence,

Case n > 1:
1. Let 1 < p < n. We apply Proposition to the potential estimate (8.12)) and obtain

1

( JICE <u>B|p*> " < CONIDU gy < O Dull o

74



Holder’s inequality applied to the left-hand side with exponents ]% +1-— ]% = 1 yields

1
=

(/B lu(z) — (U)B|p)’1’ < |B|r v </B u(z) — (U)BVD*)Z)

1
< |B|"C(n)[|Dull 1
= C(n) R Dul]

2. Let n < p < 0o0. Choose 1 < g < n so that ¢* > p. (This is always possible!!) Then,

by the above computations

1
3

(/B ’u<$)_(U)B’q*> < C(n)[|Dul| o(5)-

Applying Holder’s inequality to the left-hand side with exponents £ + 1 — & =1 yields

bS]

([ 1) = sl )" <11 ( [ 1uto) - wil”)
B B
< |B|5_‘T*C<n)||Du||Lq(B)-
Now applying Holder’s inequality to the right-hand side with exponents % +1- % = 1 yields

(/B ufe) - <u>Byp)’1’ By

— B FCm) | Dull g
1
= |B|"C(n)[|Dul| 1,5,
= On) RIDull s
3. Let p = 0co. Then equation (8.11]) yields
1
) = (wal < oDl [ ———dy
B |z =yl

Integration in polar coordinates (Theorem [11.16) gives
u(z) = (u)s| < C(n)R||Dul| .

Bl »C(n)[|[Dull 1o (g,

Hence,
lu = ()5l < C(n)R|Dul.

4. Let p = 1. We apply the same procedure as in the case p = 1 in the alternative proof
of the Gagliardo-Nirenberg inequality (Proof 1T of Theorem in Section :

Let h(z) = u(z) — (u)p, z € B. We set
h*(z) = max {h(x),0} and h~(z) = max{—h(x),0}.

In the following let h = h™ or h = h~. The support of h can be written as union of the
sets

Aj={zeR":2 <h(z) <2} |jel
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We consider the function

0, if hx) <27
vj(x) = ¢ h(z) — 27, if 27 < h(x) <2711 (8.14)
2 if 291 < h(z).

Since v;(x) > 2971 if and only if h(z) — 27 > 2771 we obtain

(A = {2 < h <202} < [{h>2 ) = [{h>4.-271}

<|{h>3-271 = | {v; > 21} (8.15)

The function v; is continuous on B. Hence, by smoothing by convolution we can construct
a sequence of smooth functions which converges by Theorem uniformly to v; on B. This
approximation argument allows us to apply the potential estimate (8.12) to v; and obtain

vj(z) = (vj)B| < C(n)L(|Dvj|)(z). (8.16)
Equation (8.16]) and (8.15)) yield
[Aja] < [{v; > 271}
< [{vj = (v)p > 27"}

<|{lv; = (v;)s| > 277"} |
< | {L(|Dv;]) > C(n)~ "2~} .

Using the weak estimate (6.23]) in Proposition for A = C(n)~12771 we get

Ayl < i) (Cz et [ puas) "
Rn

The definition of v; yields that the support of Dwv; is contained in A; and Dv; = Dh on A;.
Hence,

n

|Aj11| < C(n) (2_j /A |Dh|d:c> o : (8.17)

J

By the definition of A; we obtain

[ @ =Y [ bl

JEZ
<D (@) A (8.18)
JEZ
= 2751 Y ()T Ay,
JEZ
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Equation yields
271 Y @) A < €)Y ( /

jez jez \’ 4

|Dh(x) |dx> -

n

(Z/ Dh(x |dx>l (8.19)

JEZ

= C(n) < |Dh(m)|dx) o

Equation and give the estimate
175 e < CO) DR

R

The same argument holds for h~. Hence, we have
L A L | L P L

n
Ln—T1

< C(n) /B |Dh* (z)| + |Dh™(z)|dx

— Cn) /B |\ Dh(x)|dz
(n)|[DA|| 1.

Since h(x) = u(z) — (u)p, we have

CE <u>B|n"1)" < C)1Dullys

Applying Holder’s inequality with ”—1 +1-— = 1 yields

n—1

[ luto) = (@ <5 (/ ulo) - (Wal?1) "

<|BI*C(n)|[Dull 5,
= C(”)RHD“HLl(B)
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CHAPTER 9

Fourier transform

DEFINITION 9.1 (L*-Fourier transform). For f € L'(R™) we define its Fourier transform

fier = [ emepys (9.1)
and its inverse Fourier transform

Fo) = / T () (9.2)

REMARK 9.2. Since ‘eﬂm‘wg | = 1 and u € L'(R"), these integrals converge absolutely
for all ¢ € R™ and define bounded functions:

| [ t@esmtinl < [ e f@)ldn = 7],
THEOREM 9.3 (Fourier Inversion). Let f, f € L'(R"). Then
flz) = / FOS™wde, for ace. z € R™ (9.3)
PROOF. See[5]. O
REMARK 9.4. Let f, f, f € L'(R"). Then we have
(f)v: f= (f)A a.e. in R™. (9.4)

The Fourier transform on L?. We intend now to extend the definition of the Fourier
transform and its inverse to L*(R").

THEOREM 9.5 (Plancherel). Let f € L'(R™) N L*(R"). Then fife L*(R") and

171y = 11y = 1 (9.5)
PROOF. See [4]. 0

In view of the equality (9.5 we can define the Fourier transform of f € L*(R"™) as follows.
Choose a sequence (f) € LY(R™) N L*(R™) with f, — f in L?*(R"). Note that C>°(R") is
dense in LP(R"), 1 < p < co. According to (9.5)) we have

ka = fill .= e = fi)| = e = il
Hence, (f;,) is Cauchy sequence in L2(R") with limit in L2. We define
f: lim J?k
k—o0
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Note that the limit does not depend on the particular choice of the sequence (fy). We

similarly define f This gives the following theorem.

THEOREM 9.6. There exists a unique linear and bounded operator F : L?* — L?, such

that

(1) IFflly = I flly for f € L2,
(2) Ff=f for feL'NnL

THEOREM 9.7 (Properties). Let f € L*(R™) and T € R™.
(1) Let f.(x) = f(x — 7). Then

Jr(&) = e (©).
(2) Let e,(x) = e*™@7. Then

erf(§) = F(€ ).
(3) Let fo(x) = e "f(iz). Then

~

F2(&) = 7lee)
(4) Let D*f € L*(R™) for some multiindex . Then

D2 f(€) = (2mi) "€ f(€).
(5) Let g € L*(R™). Then
(6) Let g € L*(R™). Then

[ g = [ Fwies
ProOF. We prove (4) and (6) only. Let f € C2°(R"). Then

Deu(€) = / e E DO f (1) da
= (—1)k / De > f () da

— (1)l (=2ig) / e T f(w)de

n

= (2mi) "¢ F ().

Let now f € L*(R™). Since C2°(R") is dense in L?(R"), there exists a sequence (f3)%,
C°(R™) that converges to f in L. Let f be the L*-limit of the sequence (D f;,)32, C C
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Then, for every ¢ € C>°(R")

- fz)p(x)dr = lim D fi(z)p(x)dx

k—oo Rn

= (=Dl lim [ fo(x)D(z)dx

k—o00 R™

= ()" [ f@)D ()

~ [ D*r@)pta)ds,

Hence, D“f = f“. Note that by Theorem (Plancherel) we have that ﬁ converges to f
in L?. By the above we obtain

Dof = lim Dof, = lim (2mi)°le®f, = (2mi)lelea T,
k—o0 k—o0

This gives (4).
Let o € C. Then, by Theorem

~ 2
If +agli. = Hf + agHLQ. (9.11)

Expanding we deduce

@I+ ag(@)F(@) + ag(a)f(z) + lag(z) Pdo

- [ |fw

Again, by Theorem [9.5] we obtain

—~ ~

' @) (@) + 75(@) Fla) + |ag () Pz

/ ag(a)T(a) + 9(a) () = / @) Ta) + @) o)

If we take a = 1 we obtain

| 9@ + 5@ @ = | §a)fw) + §la)Flopde (912)
If we take o = ¢ we obtain
[ 9@ - ige)f@)ds = [ 5@ F@) - i) ) (913)
We multiply equation (9.13) with ¢ and obtain
[ ~s@F@) +ga)s@is = [ =5 + G (9.14)

Combining equation (9.12) and (9.14) yields the statement.

O

THEOREM 9.8 (Characterization of H* by the Fourier Transform). Let k € N. A function
u € L?(R") belongs to H*(R™) if and only if

(1+]-"a e L2(RY). (9.15)
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In addition, there exists a positive constant C' such that

1 ko~
Sl oy < 1411 < Cllullgngan: (9.16)

L2(R")

PROOF. 1. Assume first that u € H¥(R"). Then for each multiindex |o| < k, we have
D%y € L*(R"™). Theorem [9.7] (4) asserts that

Dow(€) = (2mi)eu(e)  for ae. £ € R™ (9.17)

Thus, by Theorem we have that (2mi€)l*u(¢) € L*(R™) for each |a| < k.
Let 1 <j<mnand a; =(0,...,k,...,0), where k is at the j position of the multiindex
a;. Then we have

Desu() = (2mi)*efu(é).
Hence, by Theorem [9.5],

L2

=3 [l oy

— (2m)% / W)Y sy

> c(n, k)(2m)™ [ Ja(y)*ly*dy.
R

Summarizing we have

a(y) ly[*dy < C(n.k) > |Dul[.. (9.18)

R 1<|a|<k

Since |y|* < 1, if [y| <1 and |y|" < |y|*", if |y| > 1, the following estimate holds:

| fawawfa= [ aPa- v

= | [aw)Pdy+ [ [a@)lyl*dy+2 [ Jay)*ly"dy
R R R

<3( [ i+ [ awPyta).
R™ R™
We apply Theorem and equation ((9.18)) to the right-hand side and obtain

/.

2
u(y) (1 + |y|k)‘ dy < Cn,k) | llullz=+ Y I1D%ullzz | = C(n k) ullz.

1<|a|<k
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2. Assume (1+|-[")a € L2(R"). We show that u € H*(R"). Let || < k. Then
[ lemiyeyeat) iy = ol [ e Pa) Py
R™ R

< @2m)* [ |y*aly)) dy

e (9.19)
< (np* [ (el
o i,

Hence, (27i)°ly*tu(y) € L*(R™). Let

ua = ((2m0) 'y u(y)) .
We show that u, is the weak derivative of u. Let ¢ € C°(R"). We use Theorem to
obtain

s Dp(z)i(z)dx = 5 Dop(z)a(x)ds
_ / (2mi) " Bl (x)
(1) / i) () p(a) da

— (1) [ m)e(ws

where u denotes the complex conjugate of the function u : R™ — C. Hence,

Dp(x)u(x)dr = (—1) / Uq(x)p(x)dz, for all p € C.

n

Rn
If we take the complex conjugate on both sides of the equation we obtain

Dp(x)u(x)dr = (—1) / uo(2)p(z)dz,  for all p € C°.

n

RTL
Hence, u,, is the weak derivative of u and by equation (9.19) the weak derivative is in L*(R").

It remains to show the left-hand side inequality of (9.16)). By Theorem and equation
(9.19) we have that for every |a| < k the following estimate holds

@ ki~
1D ul| 72 gy < (2m)% : ly**a(y)|*dy.
Hence,
> 1Dl < Clnk) [ 1 fity) Py (9.20)

1<|a|<k

Theorem yields
[ / aly)|2dy. (0.21)
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By combining equation (9.20)) and (9.21)) we obtain
lullfpe < C(n k) | (1 + [y [ay)Pdy
R

<Cu by [ (1 lyfae) Py

= CO(n, k;)H(lJr |-|k)a\

L2(R™)

O
We can define the fractional Sobolev spaces.

DEFINITION 9.9. Let 0 < s < oo and u € L*(R"). We say u € H*(R™) if (1+ ||")u €
L*(R™) and define for s ¢ N the norm

12l s ey = 1L+ - )l 2 ey -
REMARK 9.10. Note that
1+ ") ~ (1 +y)*)?, forallyeR"
Hence, we have the following equivalent characterization: a function u € L?*(R") belongs to
H*(R") if and only if
1+ )23 € L*(R"). (9.22)
Alternatively, the following definition is common as well

DEFINITION 9.11. Let 0 < s < 0o and u € L2(R"). We say u € H*(R") if (1+|-[*)270 €
L*(R™) and define for s ¢ N the norm

[ ul Hs(R) — H(l + 1 |2>%a“L2(R”)'

84



CHAPTER 10

Exercises

Chapter 2
EXERCISE 1. Let u € L] _(R) and

loc
T,: C®(R) — R, Tu(¢) = / w(@)b(x)dz.
R
Show that the integral exists and that T), is linear and continuous.
Remark: Note that a sequence ¢,, € C°(R) converges to ¢ in C°(R), if
(1) there exists a compact interval [a, b] such that supp ¢, C [a,b] for all n € N.
(2) Ve >0Vl € NgdN,;Vn > N, : sup, gp,(f)(x) - gp(l)(x)‘ < e

EXERCISE 2. Consider the function v : R — R, given by

0, if z <0,
u(z) = :
x, if x> 0.

Determine the distributional and the weak derivative (if it exists) of u.

EXERCISE 3. The Heaviside function H : R — R is defined by

0 ifz <0
H — ) [— )
(z) {1, it 2> 0.

Determine the distributional derivative of H. Prove or disprove that H does not have a weak
derivative.

EXERCISE 4. Prove Lemma 2.6l
EXERCISE 5. Prove Lemma 2.7
EXERCISE 6. Show that W*?(U) is a normed vector space.

EXERCISE 7. Show that

(u,v) = Z /UDO‘u(x)DO‘U(x)dJ;

ol <k
defines an inner product on H* and /(u, u) = |||| -
EXERCISE 8. Prove Lemma [2.10
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Chapter 3
EXERCISE 9. Let U. and f¢ be as in Definition [3 - Show that for x € U; and 1 < i <mn

0 i f%x+@ t/aw7m— fy)dy .

— f(x) := lim
8$Zf (I) ° h1*>0
EXERCISE 10. Let u be absolutely continuous (cf. Section on an interval U =
(a,b) C R. Show that u admits a weak derivative v € L'(U) and that the weak derivative
coincides with the classical derivative almost everywhere.

EXERCISE 11. Let U = (a,b) C R be an open interval. Assume that u € L{. (U) admits
a weak derivative v € L'(U). Show that there exists an absolutely continuous function @
such that

u(x) = u(x), for a.e. z € U, (10.1)
. u(z+h) —a(x)

v(x) = lim , for a.e. x € U. (10.2)
h—0 h

Hint: Let xg € U be a Lebesgue point of u, i.e.

lim ) / —u(zo)|dy = 0.
(zo,r)

r—0+ |B X, T
Define a(z) = u(zo) + f y)dy and use Theorem |3

EXERCISE 12. Let U = (a,b) € R. Show that v € WP(U) if and only if u coincides
a.e. with an absolutely continuous function % : U — R with @ € LP(U) and its derivative
w € LP(U).

Hint for exercises 10-12: The following facts for absolutely continuous functions follow
from the fundamental theorem (Theorem [11.23])

(1) u: I = (a,b) — R is absolutely continuous if and only if there exists a function
v € L'(I) such that

(2) u: I — R is absolutely continuous if and only if its classical derivative u’ exists
a.e. in I and belongs to L'(I).

EXERCISE 13. Let 1 <p < oo and f € LP(R"™). Let f,(t) = f(t — h), h € R". Prove
/0= fllo =0
Hint. Use that C.(R") is dense in LP, 1 < p < 0.

EXERCISE 14. Give an example to show that the result in Exercise 13 is not true when
p = o0.

EXERCISE 15. Reconsider the estimate in Remark [3.18
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Chapter 4
EXERCISE 16. Show that

[@llwirs) < Cp llullwrrss),
where B , BT, v and @ are as in the proof of Theorem (Extension Theorem).
EXERCISE 17. Let u € W2P(U) N C?(U). Show that w ¢ C?(B), but
[@llw2r(m) < Cp ullwaes,
where B , BT and u are as in the proof of Theorem (Extension Theorem).
EXERCISE 18. Let u € Wh(U). Let

(2) = {u(:v), if v € Bf

w(zy, ..., Ty 1, —x,), ifze€ B,

Show that the weak derivatives of w are given by

ou | ug, on BT
or; Uz, (T1, .., Tpo1, —Tp), on B~
if 1 <i<nand
ou ) uy,, on BT
Or, | —ug, (T1,...,Tp_1,—T,), on B~.
EXERCISE 19. Show that the operator E : WP(U) — WHP(R") defined by
Eu= lim Fu,
m—00

does not depend on the particular choice of the sequence (u,,)%_, C C*(U) and satisfies the
properties of Theorem

Chapter 5

EXERCISE 20. Verify Step 2 in the proof of Theorem analogously to Step 4 in the
proof of Theorem

EXERCISE 21. Let U = (a,b) CR and uw € W'*(U), 1 < p < co. Then
Tu=0< a(a) =u(b) =0,

where T : WHP(U) — LP(9U) is the trace operator and @ is the absolutely continuous
representation of u, cf. Exercise [12]

EXERCISE 22. Let u € W*P(U) and zy € U. Show that

xo € suppu < VYV C U open with zp € VIp e CF(V): /u(x)go(x);«éo,
v

where suppu = U \ |J{V C U open : u=0 a.e. on V}.
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EXERCISE 23. Let u € C(U). Let
supp(u) = {x € U : u(z) # 0}

and
esssupp(u) = U\ U{V CUopen: u=0ae. onV}.

Show that
SUpp U = €ss Supp u.

EXERCISE 24. Let U = {(z,y) € R*: 2% +y* < 1}. Construct a sequence (u,);2, in
C(U) N WEYU) such that

C
||UnHL1(U) < n and HunHLl(aU) =C,
where C' is some constant independent from n.

EXERCISE 25. Show that the sequence (u,)>, constructed in Exercise 24] satisfies

[l 1oy < Cllunllyra @,

where C' is some constant independent from n.

Chapter 6

EXERCISE 26. Prove the general Holder inequality (Theorem[11.6): Let 1 < py, ..., pp <
0o, with pil—|—~-—|-ﬁ = 1. Assume u, € LPx for k=1...,m. Then

m
/ |u1 .. um|dx < H ||UZ'||LPk(U)
u k=1

EXERCISE 27. Let n € C°(R") such that n(0) =1, 0 < n(z) < 1 for all x € R", and
suppn C B(0,1). Let f € C®(R") N W*P(R"). Show that fr(x) := f(x)n(z/R) converges
to f in WHP(R™) for R — oo. As a consequence show that Wi P(R") = W*?(R") for all
1<p<oo.

EXERCISE 28. Show that the statement of Theorem [6.2]is true for p = n, if n = 1.
EXERCISE 29. Recalculate the proof of Theorem [6.2] for p = 1 and n = 2.

EXERCISE 30. Let U C R” open and bounded. Let 1 < p < n. Show that for u € W,”
we have that [ully1, ) is equivalent to || Dul|, (U).

EXERCISE 31. Let U C R"™ be open and bounded and suppose OU is C!. Assume
1 <p<nandueW?P(U). Show that

ullyra@y < Cllullyze e
for all ¢ € [1, p*].

EXERCISE 32. Show that f(z) = 2%, x € [0, 1], is Holder continuous with exponent o/,
0 <o <a<1, but not for o/ > a.

EXERCISE 33. Show that (C*7(U),| - ||x) is a Banach space.
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EXERCISE 34. Let U = {x € R" : |z| < 1}. Let u(z) = |z|", o € (0,1). Show that
we W(U), p>mn,if and only if & > 1 — 5

EXERCISE 35. Let U C R"™ be open, bounded and suppose OU is C'. Assume u €
WhP(U), n < p < oo. Show that for all v € (0,1 — =]

||u*”C’0»’Y(U) < CHUHWLP(U)' (10.3)
where u* is a version of u. Use Exercise |34 to show that equation does not hold for
ve(l- > 1]. Then show that

Hu*“COW(R") < CHuHWLP(R")
does not hold for v € (1 — 2, 1].

EXERCISE 36. Prove Theorem [6.201

EXERCISE 37. Let U C R" open and bounded. Assume u € WyP(U), n < p < co. Then
u has a version u* € C%(U) for v =1 — =, with the estimate

[ o @y < ClIDu| -
EXERCISE 38. Present the proof of Proposition Introduce first all definitions needed.

EXERCISE 39. Present the alternative proof of Theorem (given in Section in the
case 1 < p < n.

EXERCISE 40. Present the alternative proof of Theorem (given in Section in the
case p = 1.

EXERCISE 41. Let U = {z € R": |z| < 1}, where |z]| is the euclidean norm on R", i.e.

Let u(x) = In (ln (1 - |?1|>> on U \ {0}. Show that u € L"(U).
Hint:
(1) In(1 4+ z) < z for all x > 0.
(2) fooo t"le~tdt =T'(n).
EXERCISE 42. Let U and u be as in Exercise 41l Show that the classical derivatives
ou
aZL‘Z‘ ’
which exist on U \ {0}, are the weak derivatives of u on U and

ou
('9932-

e L"(U).
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Chapter 7

EXERCISE 43. Show that the estimate ([7.1)) in the proof of Theorem is valid for
(U)o in WHP(V).

EXERCISE 44. Verify equation [7.6, by applying Lemma and Minkowski’s inequality
for integrals (Theorem [11.4)).

EXERCISE 45. Prove Theorem [7.3

EXERCISE 46. What do we have to change in the proof of Theorem to obtain a proof
for Theorem [T.4?

Chapter 8

EXERCISE 47. Let f € L*(]0,27], &) be given by its Fourier series

’ 27

f(t) _ Z aneint7
nez
where

, 1 [ ,
n - 9 e - — t 7Zntdt 6 (C.
an={f.e") =5 | T(D)e
Let Y. oz nla,|* < co. Show that the weak derivative of f is given by

g(t) = Z ina,e™

ne”L
and is in L*([0, 2], 4£).
Remark: The partial sums
N
Sy = Z ane™
n=—N

 3r)-

converge to f in L*([0, 27]

EXERCISE 48. Let f € L*([0, 2], 2£) be given by its Fourier series

ft) = Z a,e™

nez

with >~ n?|a,|? < co. Show that Poincaré’s inequality (Theorem 8.1)) holds with constant
one.
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CHAPTER 11
Appendix

11.1. Notation

11.1.1. Geometric notation.

(1) R™ is the n-dimensional real euclidean space equipped with the euclidean norm
1

[2llgn = |2 = (j{:!xAQ>
i=1
(2) R ={z = (21,...,2,) € R": 2, > 0}.
11.1.2. Notation for functions. Let U C R".
(1) If u: U — R, we write
u(z) =u(zy,...z,), z€U.

We say u is smooth if u is infinitely differentiable.
(2) Ifu: U — R™, we write

u(z) = (u'(x),...,u™(z)), xcU.
The function «” is the k** component of u, k =1,...,m.
11.1.3. Function Spaces. Let U C R".
(1)
C*(U) = {u:U — R| u is continuous},
C(U) = {u € C(U)| u is uniformly continuous on bounded subsets of U},
C*(U) = {u:U — R| u is k-times continuously differentiable},

CH(T) = {u e CHU) ‘D u is uniformly continuous on bounded subsets of U } .

for all multiindex o with |a| < k

Thus, if v € C*(U), then D*u continuously extends to U for each multiindex
|a] < k. On the other hand, if V' C U is compact, then every continuous function
on V is uniformly continuous (Heine-Cantor).

(2)

C*®(U) = {u: U — R u is infinitely differentiable } = ﬂ CH(U)
k=0

Cc>=(U) =) C*D)
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(3) C.(U),C*U), ete. denote the functions in C'(U), C*(U), etc. with compact support.

C=(U), cf. page [T
(4) Let 1 < p < oo. The space of p-times integrable functions, denoted by LP(U),

consists of equivalence classes of measurable functions u : U — R™ such that
1

D
\|U||Lp=( / |u|p) < .

where two such functions are equivalent if they are equal a.e. (w.r.t. the Lebesgue

measure).
The space of essentially bounded functions, denoted by L>(U), consists of equiv-
alence (a.e. equivalence) classes of measurable functions u : U — R" such that

l|lull, = esssupga |u| < oo, (11.1)
where esssupg. v = inf{a € R: [{z € R" : u(x) > a}| = 0}.
(5) Ly (U)={u : U—=R|ue LP(V) for cach V CC U}, cf. page[7]
Note that V. CC U means V C K C U, where K is compact (compactly
contained), cf. page[12]
(6) WkP(U), cf. page
H*(U), cf. page |11},
WP (U), cf. page

11.1.4. Notation for derivatives. Assume u: U — R, z € U.

(1) 2% (2) = limp_yo0 w, provided the limit exists.

dz;
(2) We write u,, for 2%, 83282 for ., etc.
7 10T 5
(3) Multiindex Notation
(a) A vector of the form o = («, ..., a,) € Ny is called a multiindex of order

la| = a1 + -+ + ay.

(b) Let x € R™, then

=zt ann
(c) We define for a given multiindex «
olel
Dou(z) = _9%ul(z) _ oo - O

) agll ce 352‘:
(d) Let k € Ny. The set of all partial derivatives of order k is denoted by
DFu(z) == {D%(z)||a| = k}.
(e) Let a, 8 be multiindices, then
f<as= B <ai,..., 0 <.
(f) Let a, 8 be multiindices with § < . Then

(3) = =

where a! = aq!- -+ ay,!.
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(g) Leibniz formula. If u,v € C2(U), then

D uv) =Y (g) DuD* Py

BLa

11.2. Inequalities
THEOREM 11.1. Let 1 < p < oo. Then
(a+0b)P <207Ya? +b°), a,b>0. (11.2)

PrROOF. The function t + t? is convex for ¢t > 0. Therefore,

a+b\" 1
< =(a” :
( 5 ) _2(a + b°)

COROLLARY 11.2. Let 1 < p < oo. Then

1F + 005y < 27 (1) + N Woer)

PROOF. Use the triangle inequality and apply Theorem witha = |f|and b= |g|. O
THEOREM 11.3 (Young’s inequality). Let 1 < p, ¢ < co and ]% + % = 1. Then

P e
ab < < + — a,b> 0.
p q
PrOOF.

1 1
ab = elog (ab) _ 6loga—‘,-logb _ eglogap—i-alogbq'

The function x +— €* is convex for all x € R. Therefore,

1 o1 o af b
_eloga +_elogb = 4

1 1
eglogal’—&-glogbq S .
p q p q

O

THEOREM 11.4 (Minkowski’s inequality for integrals). Let (1, dz) and (s, dy) be mea-
sure spaces and F : Q1 x Q9 — R be measurable. Let r > 1. Then

(f ([ o) @) < [ ([ e a

THEOREM 11.5 (Holder’s inequality). Let 1 < p, ¢ < oo, }—1) —1—5 = 1. Then, if u €
LP(U), v e LYU), we have

/U\uv\dx < HUHLP(U)HUHL‘Z(U)
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THEOREM 11.6 (General Holder Inequality). Let 1 < py,...,p, < oo, with pil—i—- .

1. Assume uy € LP*(U) for k=1...,m. Then

m
[ 1+ wlde < T sl
v k=1

PRrROOF. Induction, and using Holders inequality.
Let m = 2. This is clear from Hélders inequality.

Induction step:
1 1 1
— 44 <_ + > =1

b1 Pm  Pm+1
1 1 _ Pm + Pmi1 . . PmDPm+1
- + — ; o= —
Pm Pm+1 PmPm+1 Dm + Pm+1
=
/ [ur (@)« - wn (@)1 (2)[dz < Jun || zer - - [t || Lom-1 [ um s | o
U

It remains to show that ||w,tmi1llre < |[tml|Lem - || Umat || Lrme -

Note that pi + 5 O‘H = 1. Hence,we can use Holder’s inequality to obtain

o e
« [e] o | Bm o o Pm+1 Pm1
U |um’|um+1| dﬂf S U |um’ * dl‘ U |um+1| a dﬁl’f .

COROLLARY 11.7. Let 1 < p < q < oo. Let U C R"™ be bounded. Then
1A oy S WU Fll paery-

Proor. Apply Theorem with u = |f]”, v = 1 and exponents E+1-f8=1

Similar proofs establish the following discrete versions of the above inequalities

THEOREM 11.8. Let 1 < p < o0 and % —|—§ =1 Letx = (x1,...,2,) € R" and

y=(y1,---,Yn) € R". Then

1 1
> ] < (Zmlp (Z !yi\q> .
=1 i=1 i=1

COROLLARY 11.9. Let 1 <p<g<oo. Let x = (x1,...,x,) € R". Then

n % n 1 1 n %
(Zuir]) g(ZW’) <npa <Z|xi|q> .
=1 i=1 i=1

RS

(11.3)

PROOF. Assume that (> 7, ]xz|p)% = 1. Then, |z;| < 1 for every 1 < i < n. Hence, for

all ¢ > p the following inequality holds

n n n %
Sl <l =1 - (Z rﬂ"’) |
=1 =1 =1
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Therefore,

(Z um)q < (Z m|p> ' : (11.4)

T
—
(i i)

= 1. Therefore, by the above we obtain

(Z |zi|q> q < (Z |zi|p> ' . (11.5)

(i l2al)
(Z?:l |4[")

If (S0 Jasl?)7 # 1. Set

Zi =

B =

Then (Z?:l |Zi|p)

This is equivalent to
iy |=il")
(> i [zil”)

1 1
(Z |a;iyq> < (Z \xi|p> . (11.7)
i=1 i=1
This gives the left-hand side of inequality (11.3)

Applying Theorem [11.8 with y = (1,...,1) and § +1-t=1 yields the right-hand side

of equation (|11.3]).

< (11.6)

[l=| Q=
Bl=| BI=

Hence,

O

THEOREM 11.10 (Interpolation inequality for LP-norms). Let 1 < py < qo < oo and
0<6<1. We define
1 1-6 6

Do Do D1
Let f € LPoNLPr. Then f € LP and

1-0)) ¢110
1l e < LF Il o (111200 - (11.8)
ProoF. Apply Holder’s inequality with (’% + (1;% =1

[lsrde= [ 11570 s

Pgf
< ( / !f!p"(’;el"> h ( / \fr’”“‘”peﬁ%)

0 1-0
= [ zon [1F 11 oo -

pg(1—90)

O

THEOREM 11.11 (Young’s inequality). Let 1 < p,q,r < oo such that 1 + % =
f e LP(R™) and g € LYR™). Then f x g exists a.e. and lies in L"(R™) with

1F glle < [1711p llgllq-
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11.3. Calculus Facts
Let U C R™ be open and bounded.

DEFINITION 11.12. We say 9U is C* if for each point zy € OU there exists r > 0 and a
C*-function ~ : R"! — R such that we have
UN B(zo,r) ={z € B(xo,7) : Ty > Y(T1, ey Tn1) }.
Note that
oU N B(xg,r) = {zx € B(xo,7) : zp = y(x1, ..., Tp1) }.
oU is C*® if it is C* for k =1,2,....
DEFINITION 11.13. (1) If OU is C*, then along OU is defined the outward pointing
unit normal vector field

v='. ...
(2) The unit normal at any point zq € U is v(zg) = v = (v1,...,y).
(3) Let u € CHU). We call
ou
% =v - Du.

THEOREM 11.14 (Gauss-Green Theorem). Suppose u € C1(U). Then
/ Uy, dT = / uv'dS, (i=1,...,n). (11.9)
U ouU

THEOREM 11.15 (Integration by parts formula). Let u,v € C*(U). Then

/uwivdx:—/uvzidx—i—/ ur'dS, (i=1,...,n). (11.10)
U U ouU

Polarcoordinates. For x € R™ \ {0} the polar coordinates are given by

r=lz| and w=|x—|65"_1:{w€]R”:|w|:1}.
xr

THEOREM 11.16 (Integration in polar coordinates). Let f € L*(R™). Then

f(z)dx :/ frw)r™tdo(w)dr.
Rn 0o Jgn-1
where o is the Borel measure on the unit sphere S"~1 in R".

COROLLARY 11.17. If f is a measurable function on R™, nonnegative or integrable, such
that f(x) = g(|z|) for some function g on (0,00), then

. f(z)dz = o(S" ) /Ooog(r)rnldr.

THEOREM 11.18 (Arzela-Ascoli Compactness Criterion). Let {fi}32, be a sequence of
real-valued functions on R™ such that

G@ <M (k=1.. zeRY
for some constant M and the {fy}7>, are uniformly equicontinuous, i.e.
Vn>036>0Vk e NVz,y e R": |z —y| <0 = |fr(x) — fu(y)| <n.
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Then there exists a subsequence {fy;}52, C {fu}iZ, and a continuous function f, such that
Jr; = [ uniformly on compact subsets of R™.

11.4. Convergence theorems for integrals

DEFINITION 11.19 (Average of f over a ball B(z,r)). We denote by

]{B(M)fdy— |/m Ty

the average of f over the ball B(x,r) and by
fdx = / fdx
o= f 0= g

THEOREM 11.20 (Lebesgue Differentiation Theorem). Let f : R™ — R be locally inte-
grable.

(i) Then for a.e. point o € R™,

][ fdr — f(x), asr — 0
B(zo,r)

the average of f over U C R".

(ii) In fact, for a.e. point o € R,
][ | f(z) — f(xg) | dv — 0, asr — 0. (11.11)
B(zo,r)

A point xo at which (11.11) holds, is called a Lebesque point of f.

REMARK 11.21. More generally, if f € L} (R™) for some 1 < p < oo, then for a.e. point
zo € R™ we have

][ | f(x) — f(xg) |P dx — 0, asrT — 0
B(zo,r)

11.5. Absolutely continuous functions

DEFINITION 11.22. Let I be an interval in R. A function u : I — R is absolutely
continuous on [ if and only if for every € > 0 there exists a > 0 such that for every finite
sequence of pairwise disjoint subintervals ((xy, yx)), of I we have that

Z(yk — 1) <6 implies Z lu(yr) — u(zy)| < e.
k k

THEOREM 11.23 (Fundamental theorem of calculus).
(1) Let f: 1 — R be Lebesgue integrable. The function

:/xf(t)dt, xel

18 for every xg € I absolutely continuous. In particular F is differentiable a.e. in I
and F'(x) = f(x) for a.e. x € I.
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(2) Let F: I = (a,b) — R be absolutely continuous. Then F is differentiable a.e. in I
and F' is Lebesque integrable with

F(b) — Fla) = / " F.
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