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Kurzfassung

Die Bestimmung eines mathematischen Modells stellt einen sehr wichtigen Schritt in der
Analyse und Regelung von physikalischen Systemen dar. Die erhaltene mathematische Beschrei-
bung liefert die Grundlage für die Simulation, den Reglerentwurf, die Stabilitätsanalyse oder
aber auch für einen Neuentwurf der Anlage. Im Rahmen dieser Arbeit werden primär zwei
mathematische Modellierungswerkzeuge behandelt, welche auf eine besonders strukturierte
Systemdarstellungen führen. Die behandelten Systemklassen – welche im Folgenden als Euler-
Lagrange und Port Hamilton’sche Systeme bezeichnet werden – sind bereits seit langem in der
Analyse und Regelung von finit-dimensionalen Systemen in Verwendung. Diese Arbeit unter-
sucht nun deren Anwendbarkeit auf infinit-dimensionale Systeme, wobei auf die geometrische
Struktur der Gleichungen und Randbedingungen besonderer Wert gelegt wird.

Im ersten, einführenden Kapitel werden die Variationsrechnung und geometrische Struk-
turen auf Mannigfaltigkeiten untersucht, um einige Fragestellungen aufzuwerfen. Die Beant-
wortung dieser Fragen geschieht in den nachfolgenden Kapiteln.

Ein robustes, mathematisches Regelwerk ist unverzichtbar für die Untersuchung von infinit-
dimensionalen Systemen. Im Abschnitt I sind einige Kapitel der Einführung des Eckpfeilers der
nachfolgenden Untersuchungen – der Theorie von Jet Bündeln – gewidmet.

Nach diesem eher formalen Teil wird das vorgestellte Regelwerk bei der Analyse von
Euler-Lagrange Systemen angewendet. Die Bewegungsgleichungen dieser Systemklasse fol-
gen aus einem Variationsprinzip – dem Prinzip der kleinsten Wirkung. Die Formulierung
dieses Prinzips auf der Basis von Jet Bündeln wird als Ausgangspunkt für die Untersuchung
des finit- und infinit-dimensionalen Falls verwendet. Es wird gezeigt, dass die Bestimmung
der Randbedingungen durch die Einführung der erweiterten Cartan Form möglich ist. Einige
Untersuchungen zur zeitlichen Evolution von Euler-Lagrange System und ein Anwendungs-
beispiel zur erarbeiteten Theorie beschließen diesen Abschnitt.

Die Analyse von Euler-Lagrange Systemen macht eine bestimmte Struktur in den Gle-
ichungen sichtbar, deren Verallgemeinerung zur Klasse der „Port Hamiltonian Systems with
Dissipation” (kurz pHd Systeme) führt. Im Abschnitt III wird die geometrische Darstellung
von finit-dimensionalen pHd Systemen eingeführt und verwendet, um eine entsprechende
infinit-dimensionale Version zu erarbeiten. Wie im Fall der Euler-Lagrange Systeme wird die
geometrische Struktur und das Auftreten der Randbedingungen, oder vielmehr der Randtore
(boundary ports), untersucht. Danach wird das Verhalten der Systembeschreibung im Hinblick
auf Zusammenschaltungen untersucht.

Der letzte Abschnitt dieser Arbeit ist der Regelung von infinit-dimensionalen Systemen
gewidmet. Zuerst wird die Stabilität von finit-dimensionalen Systemen im Sinne von Lya-
punov wiederholt. Diese wohlbekannten Resultate werden im Weiteren verwendet um eine
erweiterte Version der Stabilitätsdefinition im Sinne von Lyapunov für infinit-dimensionale
Systeme zu erhalten. Einige allgemeine Bemerkungen bzgl. Reglerentwurf beenden diesen
Abschnitt.

Der Anhang enthält eine Sammlung von mathematischen Definitionen, die Bestimmung
der Bewegungsgleichungen der Kirchhoff-Platte unter Verwendung von partieller Integration
und eine Beschreibung des Maple Packets „JetVariationalCalculus“, welche eine Implemen-
tierung der Algorithmen aus Abschnitt II entspricht.



Abstract

Modeling is an essential, or rather the most important step in the analysis and control of phys-
ical systems. The derived mathematical description of a plant serves as a basis for simulation,
controller design, stability analysis, and even redesign of the whole structure. This thesis treats
mainly two mathematical modeling tools, which supply system representations with particu-
lar rich structure. These system classes – referred to as Euler-Lagrange and port Hamiltonian
systems – are well established for the analysis and control of finite-dimensional systems. This
thesis will investigate their applicability for infinite-dimensional systems. Special attention is
spent on the geometric structure and the determination of the boundary conditions.

The first, introductory chapter is dedicated to a short review on calculus of variations and
structures on manifolds. This review is used to state several questions whose answering is the
content of the main chapters of this thesis.

A robust mathematical framework is indispensable for the treatment of infinite-dimensional
systems. In part I several chapters are spent on the introduction of the cornerstone of the sub-
sequent analysis – the theory of jet bundles. These chapters are additionally dedicated to the
definition of the used notation, which will turn out to be a crucial point of the subsequent
derivations.

After this rather formal part the introduced mathematical framework is applied to the
analysis of Euler-Lagrange systems. These systems are characterized by the fact, that their
equations of motion could be extracted from a variational principle – Hamilton’s principle. The
formulation of this principle in the language of jet bundles serves as the point of departure for
the analysis of the finite- and infinite-dimension case. It will be shown, that the derivation of
the boundary conditions of such systems could be done by the introduction of the extended
Cartan form. Some considerations on the time evolution of Euler-Lagrange systems and an
application close this part.

The presented analysis of Euler-Lagrange systems makes a certain structure visible, whose
generalization leads to the class of port Hamiltonian systems with dissipation – or pHd sys-
tems for short. In part III the geometric representation of finite-dimensional pHd systems is
introduced and used for the definition of a corresponding infinite-dimensional version. Again
the geometric construction of the boundary conditions, or rather boundary ports, is investi-
gated. After that it is possible to analyze the behavior of infinite-dimensional pHd systems
with respect to interconnection. An example closes this part.

The final part of this thesis is dedicated to the control of infinite-dimensional systems. At
first the stability of the finite-dimensional systems in the sense of Lyapunov is recalled. These
well known results are used to introduce an extended version for the stability of infinite-
dimensional systems. Finally this criterion based on Sobolev norms is applied to an I-pHd
system. Some remarks on infinite-dimensional controller design close this part.

The appendix includes a rather dense collection of mathematical definitions, the determi-
nation of the equations of motion for the Kirchhoff-plate using the integration by parts tech-
nique, and the description of the computer algebra package “JetVariationalCalculus”, which
corresponds to the results presented in part II.
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Preface

Antoine de Saint-Exupéry presents in his book “The Little Prince” his painting depicted in
figure 1.

Figure 1: The hat

He further explains, that all people in his surrounding misinterpreted the contents of this
painting as a simple hat. But in fact he painted a snake, that had swallowed an elephant.

Figure 2: The snake with elephant

These pictures and the experience, the six years old Antoine made, give me the perfect oppor-
tunity to explain the emotions I had and impressions I got throughout the preparation of this
thesis.

Prof. Kurt Schlacher invited me to participate as a Ph.D. student in the European spon-
sored project GeoPlex (www.geoplex.cc) in the year 2002. During my work at the Institute of
Automatic Control and Control Systems Technology at the JK university Linz, he introduced
me to the theory of the calculus of variations and port Hamiltonian systems. He had derived
a pomising algorithm for the determination of the Euler-Lagrange equations and I started to
implement these ideas within a computer algebra package. This situation represents more or
less the “hat” of the story. Unfortunately I discovered the “snake with the swallowed elephant”
in the form of unsatisfactory boundary conditions resulting from the derived theory for higher
order problems in the year 2003.



II

An unbelievable high number of wrong ideas for the solution of this problems caused the
same kind of uncertainty, that must have been familiar to the snake with this huge elephant
in its stomach and could be summarized by a simple question: “wasn’t it to big for me?”. In
fact the used mathematical framework is far beyond that, what is taught during the education
of technical engineers. Additionally the investigated mathematical problems in their highest
generality are not directly linked to physical or even engineering problems that are known to
me.

Fortunately all these discouraging circumstances were balanced by small successes that
appeared from time to time during my calculations. Additionally the fruitful discussions with
almost every colleague at the Institute of Automatic Control and Control Systems Technology
supplied indispensable support and encouraged me to continue my investigations.

I would like to thank Richard Stadlmayr and Martin Staudecker for reminding me of the
relationship between down-to-earth problems and jet theory. From a scientific point of view
Markus Schöberl, Bernhard Roider, Gernot Grabmair, and Kurt Zehetleitner have owned spe-
cial regards. Beside the already mentioned colleagues I would like to thank Hannes Seyrkam-
mer, Johann Holl, Stefan Fuchshumer, Harald Pachler, and Brigitta Peitl for the marvellous
working atmosphere. Last but not least I would like to thank Prof. Dr. Kurt Schlacher for his
never ending support and his clever advices.

The scientific work in the last four years convinced me in the fact that science is not a „linear
working area“. One has to accept, that the increase of working power, or rather personal
sacrifice does not necessarily lead to better scientific output. Cognitions are the result of hard
work, a lot of discussions, and in the end luck. Especially people responsible for the funding of
scientific research should always be aware of this fact and accept that not every grain of seed
will yield a large crop.

Finally I hope that the subsequent results, whose generation was sometimes painful, gru-
elling, but also exciting and thrilling, are correct and useful in the scientific evolution of the
theory of automatic control.

Linz, 14. Februar 2006 Helmut Ennsbrunner
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Chapter 1
Introduction

The symbiotic coexistence of mathematics, physics, and engineering has a long tradition. Prob-
lems of all three disciplines caused the discovery of cognitions and solutions in each other
scientific area. This thesis will treat a physical principle, its mathematical formulation and
solution, and finally the implementation of the derived algorithms in computer algebra. The
generated software is intended to be used in the modeling of physical systems by engineers.
Thus all three areas are linked in the upcoming investigations.

Control theory supplies information about the properties of dynamic systems by means of
the analysis of the corresponding mathematical models. Thus the mathematical description of
systems is a crucial step in the derivation of control structures and stability investigations.

The derivation of mathematical models – known as modeling – is a procedure that differs
drastically between different scientific areas as, e.g., economics, biology, mechanics. Through-
out this thesis we will confine ourselves to the case of physical models, whose derivation is
based on physical principles. In the following a short summary of well known physical princi-
ples, that are used by engineers, is given.

1.1 Physical Principles

Every engineering field is equipped with certain fundamental principles and equations. In the
following enumeration several examples from mechanics, electrodynamics and thermodynam-
ics are listed.

• conservation of mass

• conservation of momentum

• conservation of angular momentum

• conservation of energy

• Kirchhoff’s current and voltage law

• Maxwell’s equations

• Hamilton’s principle

5



1 Introduction 1.2 Calculus of Variations 6

A very useful and efficient principle is the Hamilton’s principle, which states, that a special
functional L is minimized by the actual motion of a system [Olver, 1986]. This principle can
be evaluated by the introduction of the calculus of variations and enables the determination of
the so called Euler-Lagrange equations. These equations represent only a necessary condition
for the functional L to be minimal.

Remark 1.1 Variational principles like, e.g., the Hamilton’s principles, open up new possibilities

in mathematical physics or control, since they offer more insight into the structure of a problem.

Therefore, it is often meaningful to study the Euler-Lagrange equations even if their solutions do

not coincide with the minimal solution of the variational problem belonging to them.

The Euler-Lagrange equations equal the equations of motion of certain systems, that bring
along a variational principle like, e.g., Hamilton’s principle of least action in mechanics [Gelfand,
S.V. Fomin, 2000]. Thus the mathematical solution of Hamilton’s principle in the framework
of the calculus of variations equals the determination of the equations of motions and is con-
sequently of particular interest.

The following section is dedicated to the introduction of the calculus of variations as it is
widely accepted in engineering disciplines and defined in, e.g., [Gelfand, S.V. Fomin, 2000].
This presentation will serve as a basis for several questions, whose answering will be the
content of part II of this thesis.

1.2 Calculus of Variations

Already the antique scientists studied problems to find a minimal solution like the isoperimet-
ric problem, etc. Great interest in extremal problems has lead to the development of different
variational problems in mathematics, physics or control in the last centuries. The classical
calculus of variations studies the so called variational functional, like the simple example

L =

∫ t2

t1

l (t, x (t) , ẋ (t)) dt ,

where the boundary points t1, t2 ∈ R, t1 < t2 are fixed and the integrand depends on the
independent variable t, on a sufficiently smooth function x, as well as its first time derivative.
The function l denotes the Lagrangian density. The problem is to find a function x (t) such that
the functional is minimal.

1.2.1 Classical Approach

The calculus of variations, also denoted as variational calculus, is a mathematical methodology
that investigates minimal (or at least extremal) points of variational functionals. Subsequently
we will consider the functional defined by

L (x) =

∫

D

l
(
X, x(n) (X)

)
dX1 . . . dXr . (1.1)

Here the Lagrangian density l is a sufficiently smooth function of the independent coordi-
nates X i, i = 1, . . . , r, the nth order derivatives x(n) of the dependent coordinates x, and the
dependent coordinates xα, α = 1, . . . , s on the domain D.
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A minimal point of the functional L equals an element f : X i → fα (X i) of a certain
normed linear function space F(n) such that

L (x) ≥ L (f) ∀x ∈ F(n)

is met. There exist several methods to determine the extremal points, i.e. the functions
f ∈ F(n) as, e.g., minimizing sequences or the Ritz method (see [Gelfand, S.V. Fomin, 2000]).
Here we will make use of a method which is due to Euler. This method takes into account,
that the variational functional is a continuous mapping

L (·) : F(n) → R

x → L (x) .

Consequently the functional supplies for every ε > 0 a δ > 0, such that from

|L (x) − L (f)| < ε

results
‖x− f‖ < δ .

Here, the norm

‖x‖ =
n∑

r=0

s∑

α=1

max
X∈D

∣
∣
∣(xα)

(r) (X)
∣
∣
∣

is used. Thus one is able to derive a necessary condition, which must be met by all local
extrema.

An at least local extremum (minimum resp. maximum) f ∈ F(n) is characterized by

L
(

f + f
′

)

≥ L (f) resp. L
(

f + f
′

)

≤ L (f)

for admissible functions f
′

∈ F(n).
This enables the definition of a new, but in general nonlinear functional for a fixed function

x (X) given by

4L
(

f
′

)

= L
(

x+ f
′

)

− L (x) , x ∈ F(n).

The linear part δL (f ′) of this functional

4L
(

f
′

)

= δL (f ′) + ε
∥
∥
∥f

′

∥
∥
∥

is called the variation of the functional L (x). The quantity ε
∥
∥f

′
∥
∥ incorporates higher order

terms and meets ε→ 0 as
∥
∥f

′
∥
∥→ 0.

Theorem 1.2 A necessary condition for the differentiable functional to have an extremum at f is

that its variation vanishes for x = f , i.e. that

δL (f ′) = 0 (1.2)

for all admissible f ′. (see [Gelfand, S.V. Fomin, 2000])

This relation marks all points f ∈ F(n) having a “horizontal tangent” over the infinite
dimensional function space F(n) by means of partial differential equations.
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1.2.2 Questions

The previous considerations lead to the following questions.

• What are the topological properties met by the domain D?

• How could the arbitrary increments f
′

be represented in more general spaces?

• How could one derive correct boundary conditions from equation (1.2)?

• How do external inputs come into play?

• Is it possible to provide additional information about the evolution of such Euler-Lagrange
systems?

All these questions will be treated in the chapters 5 to 8.
Chapter 9 is dedicated to the investigation of the time evolution of Euler-Lagrange systems.

It will turn out that the derived equations are equipped with a particular rich structure.
In part III we will consider more general systems equipped with a certain structure. Ad-

ditionally, we will not require that the structure results from a variational principle. In the
following we introduce some well known structures on manifolds. The definitions of the used
mathematical objects can be found in part I and appendix A.

1.3 Structures on Manifolds

A structure on a manifold can be seen as an additional underlying property, which could be
very useful in the analysis of, e.g., dynamic systems on manifolds. Both subsequently discussed
structures are well known for finite dimensional systems.

1.3.1 Poission Structure

The general definition of a Poisson structure

Definition 1.3 (Poisson structure) Let M be a manifold and let C∞ (M) denote all smooth

real functions on M. A Poisson structure on M is a bilinear map – called the Poisson bracket –

given by
{F,G} : C∞ (M) × C∞ (M) −→ C∞ (M)

(F,G) −→ {F,G}

which satisfies for F,G,H ∈ C∞ (M)

• {F,G} = −{G,F} (skew symmetry)

• {F, {G,H}} + {G, {H,F}} + {H, {F,G}} = 0 (Jakobi identity)

• {F,GH} = {F,G}H +G {F,H} (Leibniz rule)

(see, e.g., [Nijmeijer, A.J. van der Schaft, 1990])
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leads to the introduction of the Hamilton vector field vF of a Hamilton function F by

{F,G} = LvF
(G) = vF cdG ,

where the Lie derivative L and the exterior derivative d are used.
Let M be a Poisson manifold with local coordinates (x1, . . . , xr). Then there exist locally

smooth functions wij (x) , i, j ∈ 1 . . . r , such that the Poisson bracket is given by

{F,G} (x) =
r∑

i,j=1

wij (x)
∂F

∂xi
(x)

∂G

∂xj
(x) . (1.3)

Since

{F,G} (x) = LvF
(G) = dG (vF ) (x) =

∂G

∂xj
vjF (x)

{F,G} (x) = −{G,F} (x) = −LvG
(F ) (x) = −dF (vG) (x) = −

∂F

∂xi
viG (x)

implies ∂G
∂xj v

j
F (x) = − ∂F

∂xiv
i
G (x), this definition is only possible if additionally

wij (x) = −wji (x)

is met. By the fact that
wij (x) =

{
xi, xj

}

and that the Jacobi identity
{
xi,
{
xj, xk

}}
+
{
xj,
{
xk, xi

}}
+
{
xk, {xi, xj}

}
= 0 must be met,

the functions wij (x) are also restricted to

r∑

l=1

(

wlj
∂wik

∂xl
+ wli

∂wkj

∂xl
+ wlk

∂wji

∂xl

)

= 0. (1.4)

It is worth mentioning that this restriction represents an integrability condition.
One could extract from (1.3) a map

W (x) : T ∗ (M) −→ T (M)

dF −→ vF = wij (x) ∂F
∂xi (x) ∂j

(1.5)

in order to derive the Poisson bracket {F,G} = vF cdG. We conclude, that the Poisson bracket
is determined by a skew symmetric tensor field W (x) = wij (x) ∂i ⊗ ∂j.

T (M) � W
T ∗ (M)

Z
Z

Z
Z

Z
Z

Z
Z

τM
~ =�

�
�

�
�

�
�

�

τ̄M

M C∞ (M)

d

6

If the rank of the Poisson bracket, which equals the rank of the structure matrix wij (x), is
equal to dim (M) then it is called nondegenerated.
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1.3.2 Symplectic Structure

In contrary to the Poisson structure the symplectic structure is directly defined by a tensor field
with special properties.

Definition 1.4 A 2-form ω = ωijdx
i ∧ dxj ∈

∧2 T ∗ (M) on an even dimensional manifold M of

dimension 2n is called symplectic (and then M is called symplectic manifold), iff it satisfies

• dω = 0 (closed)

• ω is nondegenerate; that is, the linear transformation associating to a vector v = vi∂i the

1-form vcω is nonsingular. In local coordinates x, since vcω = viωijdx
j, this merely says

det (ωij) 6= 0

(see, e.g., [Frankel, 1997])

Actually a symplectic 2-form is a map

ω : T (M) −→ T ∗ (M)

vH −→ vHcω
(1.6)

visualized in

T (M)
ω - T ∗ (M)

Z
Z

Z
Z

Z
Z

Z
Z

τM
~ =�

�
�

�
�

�
�

�

τ̄M

M C∞ (M)

d

6

and consequently the dual mapping to (1.5).
It is now remarkable, that we are able to identify – in the case of a nondegenerated Pois-

son bracket on an even dimensional manifold – the skew symmetric tensor field W with a
symplectic 2-form. From

{F,G} = ω (vF , vG) = vGcvF cω

it follows that
vGcvF cω = −vGcdF ⇒ vF cω = −dF

and in local coordinates we get the correspondence

ωij = − [W ]−1
ij .

Both, the Poisson and symplectic structure represent a map between the tangent and the cotan-
gent bundle. Additionally these maps have the property that the image of the map applied on
its source, by means of the interior product, always vanishes, i.e. the image is restricted to
be an annihilator of the source. This consideration could be extended and summarized in
the notion of a Dirac structure, whereby all elements of tangent and cotangent bundle are
marked, that – beside other properties – annihilate each other (see [van der Schaft, 2000]).
Consequently Poisson and symplectic structures are dirac structures.

From the modeling point of view all these structures become of interest, if the equations
of motion determine such a structure. For example, if the equations of motion represent a
Hamilton vector field it is possible to make use of the corresponding Poisson structure.

These considerations lead now again to several questions, that are of interest.
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1.3.3 Questions

• How could dissipative elements be taken into account?

• How could this approach be extended to the case of infinite-dimensional systems?

• Which geometric objects could be used for representation?

• How do in- and outputs – or more generally speaking – ports appear in this setting and
what is meant by collocation?

• How are boundary conditions, or rather boundary ports taken into account?

In part III we will consider finite- and infinite-dimensional systems, that are equipped with
a Poisson structure and try to answer the stated questions.

1.4 Control

The last part of this thesis is dedicated to topics that are related to the design of controllers for
infinite-dimensional systems. In fact no methodology for a certain design will be derived, but
several remarks and general questions concerning this task are stated. The central question
will be of course the stability of infinite-dimensional systems, as this is inseparably linked to
the design of a controller. It will be shown, how the stability in the sense of Lyapunov could
be used to determine certain stability criteria based on Sobolev norms.



Part I

The Mathematical Framework

12
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Every challenge demands the introduction of appropriate tools!

This rather general statement applies in many cases. Even in everyday life it is common to
adjust ones tool box before manipulating, e.g., the electrical installation. Also in computer
science the implementation of complex software is done by the definition of a sophisticated
class structure. Thereby programmers divide the problem is several subtasks, focus on their
solution and generate frameworks. Such frameworks enable other coders to make use of
techniques who are far beyond their own knowledge.

All these examples have in common that the described tools are designed by experts. These
experts generate tools, structures, and mechanisms that ease the solution of problems by users.
Clearly these users must be instructed in the application of such tools in order to achieve the
results of interest.

Control engineering represents another example of such a development. Several questions
that occurred in control theory where answered by the use of theorems, definitions, proofs etc.
stated by mathematicians. Mostly their intension was not to solve certain control problems
rather than the generation of a robust framework for mathematical manipulations.

This thesis will also follow this procedure. Its first part is dedicated to the introduction of
the applied mathematical framework. It is intended to summarize the mathematical objects
used in the subsequent investigations. Additionally, the applied notation is fixed, definitions
are stated, and references to the corresponding literature are given. In order to develop a
more comprehensive picture a collection of additional definitions is provided in appendix A.

The nonlinear control theory as presented in, e.g., [Isidori, 1995], [Nijmeijer, A.J. van der
Schaft, 1990], [Sastry, 1999] gave rise to the use of differential geometry. Roughly speaking
this framework generalizes the theory of surfaces in R

n to more complex spaces. Topology, al-
gebra and functional analysis are united to enable the introduction of coordinate independent
representations. At first glance might be astonishing that a theory on geometry could have any
impact on the theory of dynamic systems. In fact the notion of coordinate transformation links
both disciplines and enables engineers to interpret, e.g., finite-dimensional dynamic systems
as vector fields on manifolds. These identifications enabled a completely new and joyful point
of view and controller design methods like, e.g., the input-state or input-output linearization
were developed. In the more recent years these investigations have been extended to infinite-
dimensional systems [van der Schaft, B.M. Maschke, 2002], [Macchelli, 2002]. This class of
systems has several independent and dependent coordinates, whose evolution is defined by
means of partial differential equations. Such systems are of main interest in this thesis.

In the next chapter some basics in differential geometry, which are well known from the
analysis of finite-dimensional systems, are recalled. After that, an appropriate geometric ob-
ject for systems with several independent and dependent coordinates is defined. Finally, these
objects are extended to spaces that enable us to handle partial derivatives of dependent coor-
dinates with respect to independent ones in a geometric fashion.



Chapter 2
Manifolds

The analysis of physical systems by means of mathematical modeling immediately leads to the
circumstance that there exist different, but equivalent models for the same system. This is
mainly caused by the degree of freedom in the introduction of the corresponding coordinates.
Additionally, it is well known that this choice is crucial for the applicability of the derived
model.

Consequently we are looking for a mathematical object which allows a coordinate invariant
description of the system. Consider a plant parametrized in four different ways by the coordi-
nates (x1

a, x
2
a), (x1

b , x
2
b), (x1

c , x
2
c), (x1

d, x
2
d) as visualized in Fig. 2.1. All these coordinates partly

x2
b

x1
b

φb

x2
c

x1
c

φc

x2
a

x1
a

φa
x2
d

x2
d

φd

M

Figure 2.1: The idea of a manifold.

describe the real mathematical representative of the plant – the manifold M (Def. A.38).
As shown later, the modeling of infinite-dimensional systems is mostly related to bounded

domains, what leads to the slightly more general definition 2.1.

Definition 2.1 (manifold with boundary) An n-dimensional (topological) manifold M with

boundary is a Hausdorff topological space such that every point has a neighborhood homeomor-

phic to the Euclidean half-space H
n (Hn = {(x1, . . . , xn)|xn ≥ 0}, n ∈ N). (see, e.g., [Choquet-

Bruhat, Cecile DeWitt-Morette, 1982], [Munkres, 1984])

14
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Here the definitions (Def. A.25), (Def. A.16), and (Def. A.31) are taken into account. All local
coordinate systems are referred to as charts and defined by

Definition 2.2 (chart) A chart (U, φ) of a manifold (with boundary) M is an open set U of M,

called the domain of the chart, together with a homeomorphism φ : U → V of U onto an open set

V in R
n (Hn). (see, e.g., [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

A chart is equipped with adapted local coordinates.

Definition 2.3 (local coordinates) The coordinates (x1, . . . , xn) of the image φ (x) ∈ R
n of the

point x ∈ U ⊂ M are called the coordinates of x in the chart (U, φ). (see, e.g., [Choquet-Bruhat,

Cecile DeWitt-Morette, 1982])

A collection of compatible charts, which fully describes (i.e. covers) the manifold is named
atlas.

Definition 2.4 (atlas) An atlas of class Ck on a manifold M is a set {(Ua, φa)} of charts of M
such that the domains {Ua} cover M and the homeomorphisms {φa} enable the formulation of

class Ck maps φb ◦ φ
−1
a : φa (Ua ∩ Ub) → φb (Ua ∩ Ub). (see, e.g., [Choquet-Bruhat, Cecile DeWitt-

Morette, 1982])

If the maps between all charts of an atlas are smooth – of class C∞ – we denote such manifolds
smooth (Def. A.39). Unless otherwise stated we will assume all manifolds to be smooth in the
subsequent investigations.

The definition of an atlas corresponding to a manifold enables the definition of additional
topological properties.

Definition 2.5 (orientable manifold) A differentiable manifold is said to be orientable if there

exists an atlas such that on the overlap Ua∩Ub of any two charts (Ua, φa) and (Ub, φb) the Jacobian

determinant of the map ϕab = φb ◦ φ
−1
a is positive.

Consequently an orientable manifold enables the introduction of an orientation and we get
the following definition.

Definition 2.6 (oriented manifold) An oriented manifold is an orientable manifold with fixed

orientation in a certain coordinate chart (Ua, φa) of an atlas with positive Jacobian determinants.

The introduction of a C∞-atlas corresponding to a certain manifold intrinsically supplies
smooth maps φb ◦ φ

−1
a between different charts on their overlap Ua ∩ Ub, as stated by defini-

tion (Def. 2.4). Thus different parametrizations (i.e. local coordinates of a physical problem)
become equivalent and it is possible to switch from one description to another. These consid-
erations lead to the fact that the notion of manifolds frees modeling from artefacts caused by
a certain choice of coordinates.

In order to be able to handle relations of different manifolds, we introduce smooth maps
between manifolds.

Definition 2.7 (map between manifolds) A map f : M → N between the manifolds M and

N is said to be smooth, iff its local representation

floc = ϕb ◦ f ◦ φ−1
a : φa (Ua) → ϕb (Vb)

is smooth for every coordinate chart (Ua, φa) on M and (Vb, ϕb) on N .
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In the subsequent treatment of differential geometric objects, the explicit declaration of the
used coordinate charts will be suppressed. This implies that the map f : M → N is synony-
mously used to its local representation floc.

Throughout this thesis we will make use of the summation convention (Def. 2.8), which
enables a compact notation.

Definition 2.8 (summation convention) If in a product a letter figures twice, once as super-

script and once as subscript, summation must be carried out with respect to this letters. The

summation sign
∑

will be omitted. (see [Kreyszig, 1991])



Chapter 3
Bundles

Actually the introduced coordinate invariant representation of a physical system does not allow
to distinguish dependent from independent coordinates. From a differential geometric point
of view this can be solved by the introduction of fibred manifolds.

Definition 3.1 (fibred manifold, fibre) A fibred manifold is a triple (E , π,B) where E and B
are manifolds and π : E → B is a surjective submersion. E is called the total space, π the

projection, and B the base space. For each point p ∈ B the subset π−1 (p) of E is called the fibre

over p and is usually denoted Ep. (see [Saunders, 1989])

Thus the fibre Ep represents the space of dependent coordinates at a certain point p ∈ B
of the independent coordinates. As a shortcut for the fibred manifold (E , π,B) we will use its
projection π in the upcoming investigations. If there exists a local trivialisation (Def. A.42) at
every point p ∈ B (see Def.3.2) the fibred manifold is referred to as bundle.

Definition 3.2 (bundle) If (E , π,B) is a fibred manifold and p ∈ B then a local trivialisation

of π around p is a triple (Wp,Fp, tp) where Wp is a neighborhood of p, Fp is a manifold and

tp : π−1 (Wp) → Wp ×Fp is a diffeomorphism satisfying the condition

pr1 ◦ tp = π|π−1(Wp) .

A fibred manifold which has at least one local trivialisation around each point of its base space is

called locally trivial and is known as a bundle. (see [Saunders, 1989])

E ⊃ π−1 (Wp)
tp - Wp × Fp

B ⊃ Wp

π|π−1(Wp)

?

id
- Wp

pr1

?

All manifolds Fp specified in a local trivialisation are related by Lemma 3.3, whereby the
typical fibre F is introduced.

Lemma 3.3 (typical fibre) If (E , π,B) is a bundle then there is a manifold F such that, for each

local trivialisation (Wp,Fp, tp) of π, the manifolds F and Fp are diffeomorphic. (see [Saunders,

1989])

17
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An assignment of the dependent coordinates by means of a function of the independent co-
ordinates is of particular interest in the context of physical systems, as their solution represents
such a map.

Definition 3.4 (section) A map σ : B → E is called a section of π if it satisfies the condition

π ◦ σ = idB. The set of all sections of π will be denoted Γ (π). (see [Saunders, 1989])

These definitions are depicted in figure 3.1.

σ

E
π

Bp

Ep

Figure 3.1: A bundle with fibre Ep and section σ.

3.1 Bundle maps

A map f : E → H between the total manifolds E ,H of certain bundles does not preserve
the bundle structure in general. From a modeling point of view this implies that a local
decomposition on the image of the map between dependent and independent coordinates is
lost. One is able to preserve the bundle structure by a restriction of the map f to the class of
bundle morphisms.

Definition 3.5 (bundle morphism) If (E , π,B) and (H, ρ,N ) are bundles then a bundle mor-

phism from π to ρ is a pair
(
f, f̄
)

where f : E → H, f̄ : B → N and ρ ◦ f = f̄ ◦ π. The map f̄ is

called the projection of f .

E
f - H

B

π

?

f̄
- N

ρ

?

(see [Saunders, 1989])

The image of the bundle morphism
(
f, f̄
)

satisfies the bundle structure of ρ. Thus a section
σ on π defines also a section γ on ρ by

f ◦ σ = γ ◦ f̄ .

This relation could be used to determine γ by means of the inverse map f̄−1. Clearly the
inverse map must exist, which is guarantied in the case of a diffeomorphic map f̄ .
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Definition 3.6 (transformation of sections) A bundle morphism
(
f, f̄
)

induces a transforma-

tion of sections σ on (E , π,B) to sections γ on (H, ρ,N ) if f̄−1 exists. With local coordinates X i

resp. Y j on the base manifold B resp. N we get

γ : N → H

Y j → Y j, f ◦ σ ◦ f̄−1
(
Y j
)

.

In contrary to ordinary manifolds, there exist several methods to construct new bundles
from given ones. The most general way is the construction of a product bundle π × ρ of two
bundles π and ρ.

Definition 3.7 (product bundle) If (E , π,B) and (H, ρ,N ) are bundles then the product bundle

is the triple (E ×H, π × ρ,B ×N ). (see [Saunders, 1989])

Indeed one could consider two bundles π and ρ whose base manifolds coincide. This leads
to the notion of a fibred product bundle.

Definition 3.8 (fibred product bundle) If (E , π,B) and (H, ρ,B) are bundles over the same

base space B then the fibred product bundle is the triple (E×BH, π ×B ρ,B), where the total space

is defined to equal

{(a, b) ∈ E ×H : π (a) = ρ (b)}

and the projections map is defined by

(π ×B ρ) (a, b) = π (a) = ρ (b) .

This configuration can be visualized with

E ×B H
π∗ (ρ) - E

Q
Q

Q
Q

Q
Q

Q
Q

Q

π ×B ρ

s
H

ρ∗ (π)

?

ρ
- B .

π

?

(see [Saunders, 1989])

A more general case is given if ρ is not a bundle, but simply a smooth map ρ : H → B. This
construction is called pull-back bundle.

Definition 3.9 (pull-back bundle) If (E , π,B) is a bundle and ρ : H → B is a map then the

pull-back of π by ρ is the bundle (ρ∗ (E) , ρ∗ (π) ,H), where the total space ρ∗ (E) is defined to

equal

{(a, b) ∈ E ×H : π (a) = ρ (b)}

and the projection is defined by

ρ∗ (π) (a, b) = b .
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This construction leads to

ρ∗ (E) E

H

ρ∗ (π)

?

ρ
- B .

π

?

(see [Saunders, 1989])

In the particular case when the pull-back map ρ is an embedding (Def. A.41) ρ = εW :
W → B then the pull-back ε∗W (π) is called the restricted bundle. As the total space ε∗W (E)
is diffeomorphic to the submanifold π∗ (W ) of E , the restricted bundle can be regarded as
sub-bundle.

Definition 3.10 (sub-bundle) If (E , π,B) is a bundle and E ′ ⊂ E is a submanifold such that the

triple (E ′, π|E ′ , π (E ′)) is itself a bundle, the bundle π|E ′ is called a sub-bundle of π. A sub-bundle

with the particular property π−1 (π (E ′)) = E ′ is referred to as restricted bundle. (see [Saunders,

1989])

3.2 Linear bundles

As it will be shown later, one of the most important bundle structures is characterized by a
typical fibre to be a vector space (Def. A.13). Such bundles are referred to as vector bundles.

Definition 3.11 (vector bundle) A vector bundle is a quintuple (E , π,B, σ, µ) where

• (E , π,B) is a bundle;

• σ : E ×B E → E satisfies, for each p ∈ B, σ (Ep × Ep) ⊂ Ep
µ : R × E → E satisfies, for each p ∈ B, µ (R × Ep) ⊂ Ep

for each p ∈ B,
(

Ep, σ|Ep×Ep
, µ|

R×Ep

)

is a real vector space;

• for each p ∈ B there is a local trivialisation (Wp, R
n, tp) called a linear local trivialisation,

satisfying the condition that, for q ∈Wp, the composite of

tp|Eq
: Eq → {q} × R

n

with pr2 : {q} × R
n → R

n is a linear isomorphism. (see [Saunders, 1989])

A more general notion of linear bundles is given in the case of a typical fibre being an affine
space. Similarly this leads to the notion of affine bundles.

Definition 3.12 (affine bundle) Let (E , π,B) be a vector bundle. An affine bundle modeled on

π is a quintuple (A, ρ,B, α) where

• (A, ρ,B) is a bundle;
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• α : A×B E → A satisfies, for each p ∈ B, α (Ap × Ep) ⊂ Ap

for each p ∈ B,
(

Ap, Ep, σ|Ap×Ep

)

is an affine space;

• for each p ∈ B there is a local trivialisation (Wp, R
n, tp) called an affine local trivialisation,

satisfying the condition that, for q ∈Wp, the composite of

tp|Aq
: Aq → {q} × R

n

with pr2 : {q} × R
n → R

n is an affine isomorphism. (see [Saunders, 1989])

In the following we will define some very important vector bundles.

3.2.1 Tangent and cotangent bundle

The rather simple observation that it is possible to assign a linear tangent space to a sufficiently
smooth surface at a point p, as visualized in figure 3.2, leads directly to the definition of the

Uα

φ−1
α (x1)

φ−1
α (x2)

φα

x2

x1φα (p)

∂2

∂1

p

Figure 3.2: The idea of the tangent space.

tangent space.

Definition 3.13 (tangent space) A tangent space Tp (M) to the n-dimensional manifold M at

p is the set of all mappings vp, wp : C∞ (p) → R satisfying for all α, β ∈ R and f, g ∈ C∞ (p) the

two conditions

vp (αf + βg) = α (vp (f)) + β (vp (g))

vp (fg) = vp (f) g (p) + vp (g) f (p)

with the vector space operations in Tp (M) defined by

(vp + wp) (f) = vp (f) + wp (f)

(αvp) (f) = α vp (f) .
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Thus Tp (M) is an n-dimensional vector space. A tangent vector to M at p is any vp ∈ Tp (M).
(see [Boothby, 1986])

Obviously, it is possible to assign a linear tangent space to every point of the manifold and
thus we are able to define the tangent bundle.

Definition 3.14 (tangent bundle) The tangent bundle (T (M) , τM,M) of a manifold M con-

sists of the total manifold

T (M) =
⋃

p∈M
Tp (M)

and the natural projection

τM : T (M) → M

Tp (M) → p .

A section on the tangent bundle assigns to each point p of the manifold M an element of
the linear tangent space Tp (M), i.e. a vector.

Definition 3.15 (vector field) A vector field v of class Cr on M is a function assigning to each

point p ∈ M a vector whose components in the frames of any local coordinates (Uα, φα) are

functions of class Cr on the domain Uα of the coordinates. (see [Boothby, 1986]). Consequently

v is a section of τM.

Using local coordinates, we represent a vector field on an m-dimensional manifold with
local coordinates xi, i = 1, . . . ,m by

vi (x)
∂

∂xi
= vi (x) ∂i ∈ Γ (τM) , i = 1, . . . ,m .

We are now able to mark vector fields on the total manifold of a bundle (E , π,B) with special
properties. A vector field v ∈ Γ (τE) is said to be π-projectable, iff there exists a field w ∈ Γ (τB)
such that

π∗ ◦ v = π ◦ w

E
v -�
τE

T (E)

B

π

?
� τM

w
- T (B)

π∗

?

is met. We say v is π-vertical in the case π∗ ◦ v = 0. It is easy to show that the set of all
π-vertical vectors V π form a sub-bundle of τ E .

Definition 3.16 (vertical bundle) If (E , π,B) is a bundle, then the vertical bundle to π is the

vector sub-bundle (V π, τ E |V π , E) of the tangent bundle τE whose total space V π is defined by

V π = {ζ ∈ T (E) : π∗ (ζ) = 0} .

(see [Saunders, 1989])
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Thus we are able to define a vertical vector field.

Definition 3.17 (vertical vector field) A vertical vector field v is a section on the vertical bundle

(V π, τE |V π , E), i.e. v ∈ Γ (τE |V π). (see [Saunders, 1989])

A π-projectable vector field generates locally the 1-parameter transformation group with
parameter ε, which is also a bundle automorphism

(
f, f̄
)

: π → π

with f̄ = exp (επ∗ ◦ v) , f = exp (εv). For v ∈ Γ (τ E |V π) one gets the fibre preserving automor-
phism, i.e. f̄ = idB, f = exp (εv).

The dual object to the tangent space is the cotangent space and defined by

Definition 3.18 (cotangent space) The dual space to the tangent space Tp (M) is the space of

linear forms on M. It is an n-dimensional vector space called the cotangent space T ∗
p (M) to

p ∈ M. A cotangent vector or 1-form is any ωp ∈ T ∗
p (M).

Similarly to the definition of the tangent bundle we are able to construct the cotangent
bundle.

Definition 3.19 (cotangent bundle) The cotangent bundle (T ∗ (M) , τ̄M,M) of a manifold M
consists of the total manifold

T ∗ (M) =
⋃

p∈M
T ∗
p (M)

and the natural projection

τ̄M : T ∗ (M) → M

T ∗
p (M) → p .

The sections of the cotangent bundle are denoted covector fields or 1-forms. Using local co-
ordinates, we represent a covector field on an m-dimensional manifold with local coordinates
xi, i = 1, . . . ,m by

ωi (x) dxi ∈ Γ (τ̄M) , i = 1, . . . ,m .

3.2.2 Tensor Bundles, Exterior Bundles and Algebra

It is possible to extend the idea of dual spaces to more general spaces, whose elements are
multi-linear maps and denoted as tensors. Tensor fields and a very important sub-class – the
exterior forms – are defined in the chapter A.3 of the appendix.



Chapter 4
Jet Theory

Having partial differential equations at ones disposal, the mathematical framework introduced
so far is not sufficient. In fact, one has to handle higher-order partial derivatives of the depen-
dent coordinates xα with respect to the independent ones X i. From a differential geometric
point of view this can be achieved by the use of jet theory.

4.1 Notation

Let γ be a smooth section of a bundle (E , π,B) with adapted coordinates (X i, xα), i = 1, . . . , r,
α = 1, . . . , s. The kth order partial derivatives of γα will be denoted by

∂k

(∂X1)j1 · · · (∂Xr)jr
γα = ∂[J ]γ

α = γα[J ] ,

with the multi-index J , #J = k =
r∑

i=1

ji.

Definition 4.1 (multi-index) An ordered multi-index J = j1 . . . jr, has the length #J =
∑r

i=1 ji.
The special index J = j1, . . . , jr, ji = δil, i = 1, . . . , r, l ∈ {1, . . . , r} will be denoted by 1l and

J + 1l is a shortcut for ji + δil with the Kronecker symbol δil. (see [Pommaret, 2001])

In the construction of the Cartan form as presented in part II, we have to choose a multi-
index from a set of multi-indices with equal length. This process can be made unique by the
introduction of a multi-index order.

Definition 4.2 (multi-index order) Let Ja = ja1 . . . jar and Jb = jb1 . . . jbr be two multi-indices.

We say Ja > Jb if in the difference Ja − Jb the right-most nonzero entry is positive.

Remark 4.3 The introduced multi-index order is motivated by the inverse lexicographic order as

defined in, e.g., [Cox, J. Little, D. O’Shea, 1992].

24
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4.2 First order jet bundles

As mentioned before, in the treatment of partial differential equations one has to deal with
partial derivatives of dependent coordinates with respect to independent coordinates. To be
more precise, one does not consider derivatives of coordinates rather than the derivatives of
sections. This immediately leads to the 1-jet of a section.

Definition 4.4 (1-jet of a section) Let (E , π,B) be a bundle and let p ∈ B. Define the sections

φ, ψ ∈ Γ (π) to be 1-equivalent at p if φ (p) = ψ (p) and if, in some adapted coordinate system

(X i, xα), i = 1 . . . r, α = 1 . . . s around φ (p)

∂φα

∂X i

∣
∣
∣
∣
p

=
∂ψα

∂X i

∣
∣
∣
∣
p

.

The equivalence class containing φ is called the 1-jet of φ at p and is denoted j1
pφ.

One can provide the set of all 1-jets of sections Γ (π) with the structure of a differentiable
manifold.

Definition 4.5 (first jet manifold) The first jet manifold of (E , π,B) is the set

{
j1
pφ : p ∈ B, φ ∈ Γ (π)

}

and is denoted J1π. The functions π1 and π1
0, called the source and target projection respectively,

are defined by
π1 : J1π → M

j1
pφ → p

and
π1

0 : J1π → E
j1
pφ → φ (p)

and visualized in

J1π
π1

0 - E

B

π1

?

id
- B .

π

?

The functions π1 and π1
0 are surjective submersions.

An adapted coordinate system of π induces an adapted system on J1π, which is denoted by(

X i, xα, xα[1i]

)

with the r · s new coordinates xα[1i]
. Both projections π1, π1

0 allow the definition

of bundles as stated by proposition 4.6 .

Proposition 4.6 If (E , π,B) is a bundle then (J1π, π1,B) and (J1π, π1
0, E) are bundles. (see

[Saunders, 1989])

By construction we can prolong a section of π to π1 and get the definition.
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Definition 4.7 (1st prolongation of a section) If (E , π,B) is a bundle then the first prolonga-

tion of a section φ ∈ Γ (π) is the section j1φ ∈ Γ (π1) defined by

j1φ (p) = j1
pφ

for p ∈ B. (see [Saunders, 1989])

It is worth mentioning that a section γ of the bundle (J1π, π1,B) is not necessarily the first
jet j1 (σ) of a section σ of π, since those sections must meet the relations ∂iγ

α− γα[1i]
= 0. Even

more important is the possibility to prolong a given bundle morphism to the first jet.

Definition 4.8 (1st prolongation of a morphism) Let (E , π,B) and (H, ρ,N ) be bundles, and

let
(
f, f̄
)

be a bundle morphism, where f̄ is a diffeomorphism. The first prolongation of
(
f, f̄
)

is

the map defined by

j1
(
f, f̄
) (
j1
pφ
)

= j1
f̄(p)

(
f ◦ φ ◦ f̄−1

)
.

This could be visualized in the following diagram.

J1π
id - J1π

j1
(
f, f̄
)

- J1ρ � id
J1ρ

E

π1
0

? f - H

ρ1
0

?

B

π1

?

j1
pφ

6

id
- B

π

?

φ

6

f̄
- N

ρ

?

(
f ◦ φ ◦ f̄−1

)

6

�
id

N

ρ1

?

j1
f̄(p)

(
f ◦ φ ◦ f̄−1

)

6

If no confusion is possible, the notation j1f will be used rather than j1
(
f, f̄
)
. With local coordi-

nates (X i, xα) resp.
(
Y j, yβ

)
for π resp. ρ the first prolongation results in

j1f : J1π → J1ρ

X i, xα, xα[1i]
→ Y j = f̄ j

(
X i
)
, yβ = fβ

(
X i, xα

)
, yα[1j ]

= j1f
(
X i, xα, xα[1i]

)

where

yβ[1j ]
= j1fβ

(
X i, xα, xα[1i]

)

= djcdy
β =

(
∂yβ

∂xα
dicdx

α +
∂yβ

∂X i

)(
∂X i

∂Y j
◦ f̄
(
X i
)
)

= dicdy
β

(
∂X i

∂Y j
◦ f̄
(
X i
)
)

is used. The vector fields dj resp. di are referred as total derivative (see Def. 4.11) with respect to

Y j resp. X i. (see [Saunders, 1989])
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4.3 nth order jet bundles

Analogously to the first jet of a section γ, we define the nth-jet jnγ of γ by jnγ = (xi, γα (x) ,
∂[J ]γ

α (x)
)
, #J = 1, . . . , n. The nth-jet manifold Jnπ of π may be considered as a container for

nth-jets of sections of π. Furthermore, an adapted coordinate system of E induces an adapted

system on Jnπ with
(

X i, xα[J ]

)

, α = 1, . . . , q, #J = 0, . . . , n. The natural projections and the

corresponding bundles are given by

πn : Jnπ → B , (Jnπ, πn,B) and (4.1)

πnm : Jnπ → Jmπ , (Jnπ, πnm, J
mπ) , m < n

for m = 1, . . . , n− 1 with πn (jn (γ (x))) = x and πnm (jn (γ (x))) = jm (γ (x)).
All these bundle lead to the following definition.

Definition 4.9 (jet framework) The nth-order jet framework Πn of a bundle π is defined as the

collection of all jet bundles

πk , πkw , w < k , k = 1, . . . , n , w = 0, . . . , n− 1 .

In fact all bundles of a jet framework are related. It is obvious that it is not possible to define
arbitrary sections on a jet bundle πnm without violating the jet framework, i.e. such a section is
not necessarily the prolongation of a section on π. These relations can be summarized in the
so called contact structure.

Definition 4.10 (contact structure) A contact structure on an nth order jet bundle Jnπ is given

in local coordinates
(

X i, xα, xα[J ]

)

by two vector valued one forms

h = dX i ⊗
(
∂i + xα[1i]

∂α + · · · + xα[J+I1]∂
[J ]
α

)
(4.2)

v =
(
dxα[J ] − xα[J+I1]dX

i
)
⊗ ∂[J ]

α , (4.3)

where

I1 = 1i,#J = 0, . . . , n , ∂[J ]
α =

∂

∂xα[J ]

.

(see [Saunders, 1989])

The contact structure incorporates two very important objects – the total derivatives

Definition 4.11 (total derivative) The field di ∈ Γ
(
(πn+1

n )
∗
(τJnπ)

)

di = ∂i + xα[1i]
∂α + · · · + xα[J+I1]∂

[J ]
α , I1 = 1i , #J = 1, . . . , n , ∂[J ]

α =
∂

∂xα[J ]

is referred to as nth order total derivative with respect to the independent coordinate X i. It is the

unique operator that meets

(
jn+1σ

)∗
(dif) = ∂i ((j

nσ)∗ f) , ∂i =
∂

∂X i

for all functions f ∈ C∞ (Jnπ) and sections σ ∈ Γ (π). (see [Saunders, 1989])
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and the contact forms

Definition 4.12 (contact form) The form ωα ∈ Γ
(
(πn+1

n )
∗
(τ̄Jnπ)

)

ωα[J ] = dxα[J ] − xα[J+I1]dX
i , I1 = 1i , #J = 1, . . . , n

is referred to as contact form on the nth jet manifold and meets

(
jn+1σ

)∗
ωα[J ] = 0

for all sections σ ∈ Γ (π). (see [Saunders, 1989])

It is now remarkable that the contact forms allow the introduction of an exterior ideal (Def.
A.58) denoted as contact ideal.

Definition 4.13 (contact ideal) The contact forms ωα[J ] on the nth jet manifold generate an ideal

In over the exterior algebra
∧
Jnπ on the jet manifold Jnπ. Such an ideal will be denoted contact

ideal.

Every element of the contact ideal α ∈ In annihilates the distribution of nth order total
derivatives ∆ = span (di) and defines thereby a dual distribution ∆⊥.

An exterior ideal is said to be closed with respect to the exterior differentiation, if the
exterior derivative of an element of the ideal is again an element of the ideal, i.e.

α ∈ In 7−→ dα ∈ In .

Such an ideal is called a differential ideal (see, e.g., [Sastry, 1999]). The investigation of the
closeness of the contact ideal leads immediately to the following theorem.

Theorem 4.14 The contact ideal In on
∧
Jnπ is not closed on

∧
Jnπ with respect to the exterior

derivative.

Proof. It is obvious that the exterior derivative of a contact form ωα[J ] ∈ In given by

d
(
dxα[J ] − xα[J+I1]dX

i
)

= dxα[J+I1] ∧ dX i , I1 = 1i , J = n

cannot be an element of the ideal In.
This theorem is closely related to the non-involutivity of the Cartan distribution as stated

in, e.g., [Saunders, 1989] and [Giachetta, G. Sardanashvily, L. Mangiarotti, 1994].
In part II we will apply the “inverted” procedure used in the non-closedness proof, i.e. we

will asks for elements of the contact ideal whose exterior derivatives lead to a certain form

λ0 = dxα[J ] ∧ dX ,

where dX represents the volume form dX = dX1 ∧ . . . ∧ dXr. This results in m ≥ 1 elements
of the contact ideal ωα[J−I1] ∧ ∂I1cdX that meet

d
(
ωα[J−I1] ∧ ∂I1cdX

)
= d




dxα[J−I1] ∧ ∂I1cdX
︸ ︷︷ ︸

λI1

−xα[J ]dX




 , I1 = 1i

= −dxα[J ] ∧ dX .
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Consequently this is in general not a unique procedure. It is now remarkable that the m
obtained forms

λI1 = dxα[J−I1] ∧ ∂I1cdX

are pairwise contained in the exterior derivative of
(
m
2

)
different, lower-indexed contact ele-

ments ωα[J−I2] ∧ ∂I2cdX given by

d







(
dxα[J−I2] − xα[J−I2+1i]

dX i − xα[J−I2+1k]dX
k
)

︸ ︷︷ ︸

ωα
[J−I2]

∧∂I2cdX







, I2 = 1i + 1k , #I2 = 2 , i < k .

Surprisingly three forms out of the
(
m
2

)
similarly obtained forms

λI2 = dxα[J−I2] ∧ ∂I2cdX

are once again contained in the exterior derivatives of the
(
m
3

)
different, lower-indexed contact

elements ωα[J−I3] ∧ ∂I3cdX given by

d
((

dxα[J−I3] − xα[J−I3+1i]
dX i − xα[J−I3+1k]dX

k − xα[J−I3+1r]dX
r
)
∧ ∂I3cdX

)
,

I3 = 1i + 1k + 1r,
i < k < r

.

This sequence of contact elements related under the exterior derivative of lower-indexed ones
can be continued and finally ends up in one single, i.e.

(
m
m

)
, contact element ωαJ−Im ∧ ∂ImcdX

d
((

dxα[J−Im] − xα[J−Im+1q]dx
q
)
∧ ∂ImcdX

)
, #I = m .

This investigation shows that a form dxα[J ] ∧ dX is related to a unique, lower indexed contact

element ωα[J−Im] ∧ ∂ImcdX, #Im = m. This observation is visualized in the following example.

Example 4.15 Let us consider the form

λ000 = dxα[J ] ∧ dX = dx1
[121] ∧ dX1 ∧ dX2 ∧ dX3 .

Obviously we obtain three elements of the contact ideal, i.e. m = 3, whose exterior derivative

supplies λ000

(
dx1

[021] − x1
[121]dX

1 − x1
[031]dX

2 − x1
[022]dX

3
)
∧ ∂1cdX

1 ∧ dX2 ∧ dX3

(
dx1

[111] − x1
[211]dX

1 − x1
[121]dX

2 − x1
[112]dX

3
)
∧ ∂2cdX

1 ∧ dX2 ∧ dX3

(
dx1

[120] − x1
[220]dX

1 − x1
[130]dX

2 − x1
[121]dX

3
)
∧ ∂3cdX

1 ∧ dX2 ∧ dX3 .

The forms λI1 are in this case given by

λ100 = dx1
[021] ∧ ∂1cdX

1 ∧ dX2 ∧ dX3

λ010 = dx1
[111] ∧ ∂2cdX

1 ∧ dX2 ∧ dX3

λ001 = dx1
[120] ∧ ∂3cdX

1 ∧ dX2 ∧ dX3 .

The three elements of the contact ideal, i.e.
(
3
2

)
= 3, whose exterior derivative supplies λ000 are

(
dx1

[011] − x1
[111]dX

1 − x1
[021]dX

2 − x1
[012]dX

3
)
∧ ∂2c∂1cdX

1 ∧ dX2 ∧ dX3

(
dx1

[110] − x1
[210]dX

1 − x1
[120]dX

2 − x1
[111]dX

3
)
∧ ∂3c∂2cdX

1 ∧ dX2 ∧ dX3

(
dx1

[020] − x1
[120]dX

1 − x1
[030]dX

2 − x1
[021]dX

3
)
∧ ∂1c∂3cdX

1 ∧ dX2 ∧ dX3 .
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The forms ωαJ−I2 ∧ ∂I2cdX contain pairwise the forms λI1, i.e. λ100, λ010 and λ001.The forms λI2
are consequently given by

λ110 = dx1
[011] ∧ ∂2c∂1cdX

1 ∧ dX2 ∧ dX3

λ011 = dx1
[110] ∧ ∂3c∂2cdX

1 ∧ dX2 ∧ dX3

λ101 = dx1
[020] ∧ ∂1c∂3cdX

1 ∧ dX2 ∧ dX3 .

Finally the single, i.e.
(
3
3

)
contact element ωαJ−I3 ∧ ∂I3cdX is give by

dx1
[010] − x1

[110]dX
1 − x1

[020]dX
2 − x1

[011]dX
3 ,

and λ111 = dx1
[010]. The exterior derivative of the form ωαJ−I3 ∧ ∂I3cdX contains all three λI2. This

construction is visualized in the following diagram.

λ000

λ100 λ010 λ001

λ110 λ101 λ011

λ111

The contact structure could be used to introduce two differentials – the horizontal dh and
the vertical differential dv. These differentials represent a decomposition of the exterior deriv-
ative

d = dh + dv

(see, e.g., [Giachetta, G. Sardanashvily, L. Mangiarotti, 1994]) and are defined as follows.

Definition 4.16 (horizontal differential) The horizontal differential of a form ω ∈
∧
Jnπ is

defined by

dh (ω) = asym (hcd (ω)) + d (asym (hc (ω)))

= dX i ∧ Ldi
(ω) ,

where the contact structure of Def.4.10 is used. (see, e.g., [Saunders, 1989] or [Giachetta, G.

Sardanashvily, L. Mangiarotti, 1994])

Definition 4.17 (vertical differential) The vertical differential of a form ω ∈
∧
Jnπ is defined

by

dv (ω) = asym (vcd (ω)) − d (asym (vc (ω)))

= d (ω) − dh (ω) ,

where the contact structure of Def.4.10 is used. (see, e.g., [Saunders, 1989] or [Giachetta, G.

Sardanashvily, L. Mangiarotti, 1994])
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Here the alternating map asym (·) as defined in (Def.A.50) is used.
These differentials meet the homology properties

dhdh = 0 , dvdv = 0 , dvdh + dhdv = 0 .

The following lemma provides a connection between Stokes’s theorem (Def. A.70) and the
horizontal differential.

Lemma 4.18 For every σ ∈ Γ (π) the following relation holds

d ◦ (jnσ)∗ =
(
jn+1σ

)∗
◦ dh .

Proof. As the exterior derivative commutes with the pull-back it follows that

d ◦ (jnσ)∗ = (jnσ)∗ ◦ d = (jnσ)∗ ◦ (dh + dv) =
(
jn+1σ

)∗
◦ dh ,

where (jn+1σ)
∗
◦ dv = 0 is used. (see, e.g., [Saunders, 1989])

Consequently we get for the integral of the horizontal differential of a form ω ∈
∧
Jnπ over

the bounded base manifold D of the bundle (E , π,D)
∫

D

(
jn+1σ

)∗
(dhω) =

∫

D

d ((jnσ)∗ ω) =

∫

∂D

ι∗ ((jnσ)∗ ω) .

Thus the relation of the horizontal differential and the boundary operator ∂ is visualized.

Remark 4.19 The application of the horizontal differential dh onto an (r − 1)-form ω ∈ (πn)∗∧r−1

B equals the total divergence as defined in [Olver, 1986].

The introduction of a bundle morphism between two jet bundles (Ψn, ψ) : Jnρ → Jnπ
enables one to pull-back elements of ∧Jnπ onto ∧Jnρ. With regards to the corresponding
contact structures, it is possible to mark a special kind of bundle morphisms - the contact
bundle morphisms.

Definition 4.20 (contact bundle morphism) A bundle morphism (Ψn, ψ) : ρn → πn qualifies

as contact bundle morphism if

(Ψn)∗ : Iπn → Iρn

Θ → (Ψn)∗ Θ

maps elements Θ of the contact ideal Iπn on πn onto elements (Ψn)∗ Θ of the contact ideal Iρn on

ρn.

It is worth mentioning that we do not require Ψ to be a diffeomorphism. Another, even
more important property of a contact bundle morphism (Ψn, ψ) : ρn → πn is given by

ψ∗ ◦ (jnσ)∗ = (jnγ)∗ ◦ (Ψn)∗

where the prolongations of the sections σ ∈ Γ (π), γ ∈ Γ (ρ) are used. This is nothing else
than the basic property of a bundle morphism. In the upcoming investigation of boundary
conditions, where the map ψ is given by the inclusion map ι (see section 8.1) we will make
heavy use of this property.

Finally it is left to discuss the prolongation of a bundle morphism to the nth jet.
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Definition 4.21 (the nth prolongation of a morphism) The second prolongation of a bundle

morphism leads to

yβ[1j+1k] = dkcdy
β
[1j ]

=

(
∂yβ[1j ]

∂xα[1i]

dwcdx
α
[1i]

+
∂yβ[1j ]

∂xα
dwcdx

α +
∂yβ[1j ]

∂Xw

)(
∂Xw

∂Y k
◦ f̄
(
Y j
)
)

dw

(

yβ[1j ]

)(∂Y w

∂Xk
◦ f̄
(
Y j
)
)

.

Finally the nth prolongation is defined recursively by

yβ[J+1k] = dw

(

yβ[J ]

)(∂Xw

∂Y k
◦ f̄
(
Y j
)
)

as shown in [Giachetta, G. Sardanashvily, L. Mangiarotti, 1994].

It is obvious that these calculations represent a costly job. If the bundle morphism is
induced by a 1-parameter transformation group f̄ = exp (επ∗ ◦ v) , f = exp (εv), we are able to
consider its infinitesimal generator v instead. Fortunately one obtains a much simpler relation
given by

Definition 4.22 (nth prolongation of a vector field) Let us consider a vector field

v = Ẋ i∂i + ẋα∂α ∈ Γ (τE)

where Ẋ i = Ẋ i (X i, xα) and ẋα = ẋα (X i, xα) is used. The nth prolongation of this vector field is

given by

jnv = Ẋ i∂i + ẋα∂α +
(

LdJ

(

ẋα − Ẋ i∂ix
α
)

+ Ẋ i∂ix
α
[J ]

)

∂[J ]
α ∈ Γ (τJnπ) , 1 ≤ #J ≤ n

where dJ = (d1)
j1 ◦ · · · ◦ (dp)

jp and ∂
[J ]
α = ∂

∂xα
[J]

is used. (see, e.g., [Olver, 1986])

and in the case of a vertical vector field v = vα∂α ∈ Γ (τE |V π) we obtain an even simpler
version given by

jn (v) = v + LdJ
(vα) ∂[J ]

α , 1 ≤ #J ≤ n . (4.4)



Part II

Euler-Lagrange Systems

33



34

Physical systems supply more than just a bunch of differential equations!

This introductory statement tries to summarize the fact that physical systems provide more
information than just their equations of motion. This additional information can be extracted
from, e.g., energy considerations or structural properties of the equations of motion.

Here we will consider Euler-Lagrange equations that are equipped with a particular rich
structure. These equations are defined to be the necessary condition met by certain functions
xα (X i) such that the functional

L =

∫

D

l
(
X i, xα, x(n)

)
dX1 · · · dXr ,

is minimal. Here we have introduced r ≥ 1 independent variables (X i), i = 1, . . . , r and s ≥ 1
dependent variables (xα), α = 1, . . . , s. The Lagrangian density l may also depend on the
partial derivatives x(n) of the dependent variables with respect to the independent ones up
to the order n > 0. Furthermore, the function l is assumed to be smooth on the domain D
of integration. The methodology to determine the Euler-Lagrange equations is referred to as
calculus of variations.

The following chapter is dedicated to the introduction of the calculus of variations within
the language of jet manifolds. The general problem, the solution using integration by parts,
and the subsequently applied solution based on the so called Cartan form is discussed. After
that, the variational formula is used for finite-dimensional and infinite-dimensional Euler-
Lagrange systems in chapter 6 and 7. Special attention is paid on infinite-dimensional Euler-
Lagrange systems and the non-uniqueness of the Cartan form. The achieved results give rise
to an extension of the approach, which leads finally to the so called extended Cartan form
presented in chapter 8. This mathematical object allows the unique derivation of the domain
and boundary conditions of an infinite-dimensional Euler-Lagrange system of arbitrary order.

This part is closed by chapter 9 which is dedicated to the analysis of the time evolution of
Euler-Lagrange systems. Again we treat the finite- and the infinite-dimensional case separately.
It will turn out that there exists a certain function h, which is invariant under the motion of
a finite-dimensional Euler-Lagrange system in the time-invariant scenario. In the infinite-
dimensional, time-invariant case this object is replaced by an invariant functional.

Finally we conclude that the Euler-Lagrange systems are equipped with a Poisson structure
and directly supply the Hamilton operator vh.



Chapter 5
Calculus of Variations

Particular instances of problems involving the concept of a functional were considered more
than three hundred years ago, and in fact, the first important results are due to Euler (1707-
1783). The most developed branch of the calculus of functionals is concerned with finding the
maxima and minima of functionals and called the calculus of variations.

In the introduction the classical approach based on function spaces is sketched and several
questions are stated. Here we reformulate this task in the context of differential geometry in
order to answer the stated questions.

5.1 The Variational Formula

The representation of the calculus of variations on jet bundles requires in a first step the precise
definition of the used spaces.

5.1.1 Local coordinates

We assume a plant described by r independent and s dependent coordinates. As already
mentioned in Chap. 3 the appropriate mathematical representative of such plants is a bundle.
Consequently we consider the bundle (E , π,D) with dim (E) = r + s, dim (D) = r and choose
the local coordinates (X i, xα), i = 1, . . . , r, α = 1, . . . , s according to E and (X i) according
to D. Additionally, it is assumed that the base manifold D is a bounded, oriented manifold
with coherently oriented boundary ∂D. Furthermore we introduce the nth order domain jet
framework Πn as the collection of all corresponding jet bundles up to the nth order – see Def.
4.9.

Remark 5.1 We have provided the domain D with the topological properties of a bounded, ori-

ented manifold and thus answered the first introductory question.

Now we are able to introduce the Lagrangian functional in the language of jet manifolds.
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5.1.2 Lagrangian functional

The Lagrangian functional L represents a map

L : Γ (π) → R

σ → L (σ)

given by

L (σ) =

∫

D

(jnσ)∗
(
l
(
X i, xα, xα[J ]

)
dX
)

, dX = dX1 ∧ · · · ∧ dXr, #J = 1, . . . , n (5.1)

where dX denotes the volume form on D. The r-form l dX is called the Lagrangian of the
variational problem, where the Lagrangian density l ∈ C∞ (Jnπ) is used. Thus the Lagrangian
is a section of the pull-back bundle (πn)∗ (τ∧rD), i.e. l dX ∈ Γ ((πn)∗ (τ∧rD)). Additionally, we
make use of the nth prolongation of the section σ

σ : D → E

X i →
(
X i, xα = σα

(
X i
))

to pull-back the Lagrangian to τ∧rD, i.e.

(jnσ)∗ (l dX) ∈ Γ (τ∧rD) .

This construction can be visualize by the following commutative diagram

(πn)∗ (∧rD) ∧rD

Jnπ

(πn)∗ (τ∧rD)

?

ldX

6

� jnσ

πn
- D.

τ∧rD

?

Now we are able to introduce the variation of a section σα (X i).

5.1.3 Variation

We introduce the variation of the section σ ∈ Γ (π) as a fibre preserving bundle automorphism
(exp (εv) , idD) generated by a π-vertical field v ∈ Γ (τE |V π). A section σ ∈ Γ (π) is called
extremal, iff it meets the condition

d

dε
L (exp (εv) (σ))

∣
∣
∣
∣
ε=0

=

∫

D

d

dε
(jn (exp (εv) (σ)))∗ (l dX)

∣
∣
∣
∣
ε=0

=

∫

D

(jn (Lv (σ)))∗ (l dX)

=

∫

D

jn (σ)∗ Ljnv (l dX)

= 0

for any admissible variational field v ∈ Γ (τE |V π) (see, e.g., [Saunders, 1989]). From this
representation we want to derive the necessary condition for extremal points – the Euler-
Lagrange equations.
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Remark 5.2 The Lie derivative of the Lagrangian along the vertical vector field v is the differential

geometric analogon to the linear part δL (f ′ (X)) of the functional 4L
(
f

′

(X)
)

defined in the

introduction. Consequently the second question is answered.

5.2 Euler-Lagrange equations

To derive the Euler-Lagrange equations for (5.1), we apply Cartan’s formula (see Def. A.64)
given by

Ljn(v) (ω) = jn (v)cdω + d (jn (v)cω)

and get
L1 (σ) + L2 (σ) = 0 , (5.2)

with

L1 (σ) =

∫

D

(jnσ)∗ (jnvcdl∧dX) , L2 (σ) =

∫

∂D

ι∗ ((jnσ)∗ (jnvc (ldX))) , (5.3)

where Stokes’s theorem (see Def. A.70) with the inclusion mapping ι : ∂D → D is used. Since
the functional L1 (σ) of equation (5.2) depends on the interior D̊ of D and the functional L2 (σ)
on the boundary ∂D, both of them must vanish. In the present form, the functional L2 (σ)
vanishes for every arbitrary section and L1 (σ) leads to conditions for every jet coordinate xα[J ],
the Lagrangian density depends on.

In fact this trivial solution is much too restrictive, as the used variational vector field on
Jnπ is obtained by the prolongation of a vertical vector field on E – denoted by jnv.

In the subsequent investigations, we will discuss two different ways to incorporate this
additional information. The first possibility evaluates the functional L1 (σ) of equation (5.3),
where the prolongation of the vertical vector field is carried out using equation (4.4). Conse-
quently the obtained integrand contains total derivatives that could be used to derive a mini-
mal amount of domain conditions1 by means of integration by parts. Obviously the application
of integration by parts also introduces additional boundary conditions.

The second possibility, which is due to Cartan, introduces a modification of the initial
Lagrangian functional (5.1) in order to prevent the necessity of a prolonged variational vector
field. The modification of the integrand by means of elements of a special contact ideal leads
to the minimal amount of domain and boundary conditions without the use of integration by
parts.

5.3 Integration by parts solution

A common strategy to derive the domain conditions is the integration by parts technique ap-
plied to L1 (σ), e.g., see [Olver, 1986]. A straightforward application of this method is possible
if all boundary terms vanish. Additionally, one has to keep in mind that classical integration
by parts is only valid in R

1([Zeidler, 1990]). Thus it is not the appropriate tool to handle
integrals over higher dimensional domains. In appendix B the rectangular Kirchhoff plate is
investigated using classical notation as introduced in, e.g., [Gelfand, S.V. Fomin, 2000] and
the classical integration by parts technique is applied to determine the domain and boundary

1The domain conditions must be met only on the interior D̊ of the domain D, as the boundary ∂D is of measure
zero in the functional L1 (σ).
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conditions. In fact the same results are obtained as given by Ritz in [Ritz, 1909]. Finally it
is shown that the stated condition on the edges is a result of the wrong application of the
integration by parts technique.

Fortunately there exists another solution that allows the straight forward derivation of the
domain and boundary conditions – the Cartan form solution. Additionally, it is remarkable
that this method is more suitable for computer algebra systems (see appendix C).

5.4 Cartan form solution

The upcoming modifications of the Lagrangian functional in equation (5.1) is based on the
following theorem.

Theorem 5.3 The Lagrangian functional is invariant under any additional element of the contact

ideal ω ∈ In (see Def. 4.13), i.e.
∫

D

(jnσ)∗ (l dX) =

∫

D

(jnσ)∗ (l dX + ω) .

Proof. This theorem is a trivial consequence of the property of elements of the contact ideal,
i.e.

(jnσ)∗ ω = 0 .

Consequently we may add any term ω to ldX in (5.1) and try to construct a new functional
C : Γ (π) → R,

C (σ) =

∫

D

(
j2n−1σ

)∗
(c) = L (σ)

with the so called Cartan form c = ldX + ω, such that
∫

D

(
j2n−1σ

)∗ (
j2n−1vcdc

)
=

∫

D

(
j2n−1σ

)∗
(vcdc) (5.4)

is met.

Remark 5.4 The prolongation order of the section σ must be increased, i.e.

jnσ → j2n−1σ,

due to the special construction of the Cartan form c as shown in section 6.2.

If the stated suppression of the prolongation of v in (5.4) is possible, then we can pick the
domain condition directly from the expression

∫

D

(
j2n−1σ

)∗
(vcdc) = 0 . (5.5)

The boundary conditions for first order Lagrangians l ∈ C∞ (J1π) result simply from the ex-
pression ∫

∂D

ι∗
((
j1σ
)∗ (

j1vcc
))

=

∫

∂D

(
j1σ̄
)∗ (

v∂c
(
Ψ1
)∗
c
)

= 0 . (5.6)

Here we have introduced the boundary section σ̄ : ∂D → Ē and the contact bundle morphism
(Ψ1, ι) (see section 8.1.2) and the variational vector field restricted to the boundary denoted
v∂.
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Remark 5.5 In the case of higher order Lagrangians the Cartan form construction is not sufficient

anymore and we have to introduce – as shown in chapter 8 – the extended Cartan form.

Since the construction of C is quite different for the finite-dimensional case2, i.e. r = 1,
n ≥ 1, the first order infinite-dimensional case3, i.e. r > 1, n = 1, and the nth order infinite-
dimensional case, i.e. r > 1, n > 1, we discuss them in detail in the chapters 6, 7, and
8.

2The Euler-Lagrange equations become ordinary differential equations in the finite-dimensional case.
3The Euler-Lagrange equations become partial differential equations in the infinite-dimensional case.



Chapter 6
Finite-dimensional Euler-Lagrange Systems
(F-EL Systems)

In the finite-dimensional case we consider the bundle (E , π,D) with dim (E) = s+1, dim (D) =
1 and the adapted coordinates (X1, xα), α = 1, . . . , s. The volume form simplifies to dX= dX1

and the domain of integration is the one dimensional bounded manifold D with the boundary
points a, b ∈ R, a < b in the local coordinateX1. Thus the zero dimensional boundary manifold
∂D consists of the two points a, b.

6.1 Structure of the Cartan form

Since every contact form ωα[J−11] =
(

dxα[J−11] − xα[J ]dX
1
)

, #J < n meets (jnσ)∗
(

ωα[J−11]

)

= 0

for an arbitrary section σ ∈ Γ (π), we choose

c = ldX + p[J ]
α

(
dxα[J−11] − xα[J ]dX

1
)

, #J = J = 1, . . . , n , xα[0] = xα (6.1)

as Cartan form c with suitable functions p
[J ]
α ∈ C∞ (J2n−1π). Thus the determination of the

functions p
[J ]
α is now of interest.

6.2 Derivation of the Cartan form

The Euler-Lagrange equations are the necessary conditions that must be met by a section σ,
such that ∫

D

(jnσ)∗ (l dX)

becomes extremal. Up to now we have determine the necessary condition

(
j2n−1σ

)∗
(vcdc) = 0 ,

which does not directly lead to the Euler-Lagrange equations, as it depends on the unknown
section σ. Fortunately we are able to determine the Euler-Lagrange from the horizontal part
of vcdc. This is a simple consequence of the fact, that the vertical part of vcdc vanishes auto-
matically under the pull-back (j2n−1σ)

∗
.
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Consequently we introduce the horizontal projection (see [Giachetta, G. Sardanashvily, L.
Mangiarotti, 1994]) in equation (5.5) and obtain

(
j2n−1σ

)∗
(vcdc) =

(
j2nσ

)∗
(d1c (vcdc)) ∧ dX1 (6.2)

with the vector field of the total derivative

d1 = ∂1 + xα[11]∂α + · · · + xα[J+11]∂
[J ]
α + · · · , ∂[J ]

α =
∂

∂xα[J ]

(see Def. 4.11). Additionally, we are now able to determine the missing functions p
[J ]
α from

the following expression

(d1c (jnvcdc)) ∧ dX1 =

= jnvc
(
(−d1cdc) ∧ dX1

)

= −jnvc
((
d1c
(
dl ∧ dX1 + dp[J ]

α ∧
(
dxα[J−11] − xα[J ]dX

1
)
− p[J ]

α dxα[J ] ∧ dX1
))

∧ dX1
)

= jnvc
(
dl −

(
d1cdp

[J ]
α

)
∧
(
dxα[J−11] − xα[J ]dX

1
)
− p[J ]

α dxα[J ]

)
∧ dX1

= jnvc
(
dl ∧ dX1 −

(
d1cdp

[J ]
α

)
∧ dxα[J−11] ∧ dX1 − p[J ]

α dxα[J ] ∧ dX1
)

,

which results in

(d1c (jnvcdc)) ∧ dX1 = jnvc
(
dl ∧ dX1 − Ld1

(
p[J ]
α

)
∧ dxα[J−11] ∧ dX1 − p[J ]

α dxα[J ] ∧ dX1
)

.

We are able to achieve the suppression of the prolongation of the vertical vector v (or simply

we can replace jnv by v), iff we choose the functions p
[J ]
α according to

p
[J ]
α = ∂

[J ]
α l #J = J = n

p
[J ]
α = ∂

[J ]
α l − Ld1

(

p
[J+11]
α

)

= ∂
[J ]
α l + (−1) Ld1

(

∂
[J+11]
α l

)

#J = J = n− 1

... =
...

p
[J ]
α = ∂

[J ]
α l − Ld1

(

p
[J+11]
α

)

= ∂
[J ]
α l +

∑n−#J
#I=1 (−1)#I LdI

(

∂
[J+I]
α l

)

LdI
= Ld1 ◦ · · · ◦ Ld1
︸ ︷︷ ︸

#I−times

... =
...

p
[J ]
α = ∂

[J ]
α l − Ld1

(

p
[J+11]
α

)

= ∂
[1]
α l +

∑n−1
#I=1 (−1)#I LdI

(

∂
[1+I]
α l

)

#J = J = 1 .

(6.3)
Combining the relations (6.1), (6.3), we can rewrite the exterior derivative of the Cartan form
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as

dc = dl ∧ dX1 + dp[J ]
α ∧

(
dxα[J−11] − xα[J ]dX

1
)
− p[J ]

α dxα[J ] ∧ dX1

= dl ∧ dX1 + d
(

∂[J ]
α l +

∑n−#J

#I=1
(−1)#I LdI

(
∂[J+I]
α l

))

∧
(
dxα[J−11] − xα[J ]dX

1
)

−
(

∂[J ]
α l +

∑n−#J

#I=1
(−1)#I LdI

(
∂[J+I]
α l

))

dxα[J ] ∧ dX1

= dl ∧ dX1 + (dh + dv)
(

∂[J ]
α l +

∑n−#J

#I=1
(−1)#I LdI

(
∂[J+I]
α l

))

∧
(
dxα[J−11] − xα[J ]dX

1
)

−
(

∂[J ]
α l +

∑n−#J

#I=1
(−1)#I LdI

(
∂[J+I]
α l

))

dxα[J ] ∧ dX1

= dl ∧ dX1 + dh

(

∂[J ]
α l +

∑n−#J

#I=1
(−1)#I LdI

(
∂[J+I]
α l

))

∧ dxα[J−11]

+dv

(

∂[J ]
α l +

∑n−#J

#I=1
(−1)#I LdI

(
∂[J+I]
α l

))

∧
(
dxα[J−11] − xα[J ]dX

1
)

−
(

∂[J ]
α l +

∑n−#J

#I=1
(−1)#I LdI

(
∂[J+I]
α l

))

dxα[J ] ∧ dX1

= ∂αldx
α ∧ dX1 +

∑n

i=1
(−1)i Ldi

(
∂iαl
)
dxα ∧ dX1

+dv

(

∂[J ]
α l +

∑n−#J

#I=1
(−1)#I LdI

(
∂[J+I]
α l

))

∧
(
dxα[J−11] − xα[J ]dX

1
)

= δα (l) dxα ∧ dX1 + dv

(

∂[J ]
α l +

∑n−#J

#I=1
(−1)#I LdI

(
∂[J+I]
α l

))

∧
(
dxα[J−11] − xα[J ]dX

1
)

︸ ︷︷ ︸

θ

with the Euler-Lagrange operator δα, which is given by

δα (·) = ∂α (·) +
∑n

i=1
(−1)i (Ld1)

i (∂[i]
α (·)

)
, (Ld1)

i = Ld1 ◦ · · · ◦ Ld1
︸ ︷︷ ︸

i−times

, ∂[i]
α =

∂

∂xα[i]
(6.4)

in finite-dimensional case. It is remarkable that the 2-form θ meets

d1cθ = 0 or equivalently
(
j2nσ

)∗
(θ) = 0

and consequently the prolongation of the variational vector field becomes unnecessary.

Remark 6.1 It is obvious that the constructed Cartan form qualifies as a Lepagian form (see

[Giachetta, G. Sardanashvily, L. Mangiarotti, 1994]).

6.2.1 Extracting the Euler-Lagrange equations

Obviously, the Euler-Lagrange equations can be extracted from

(−d1cdc) ∧ dX1 = 0 (6.5)

or equally
δα (l) dxα ∧ dX1 = 0 . (6.6)

The application of the horizontal projection in (6.2) leads obviously to an algebraic relation,
i.e. the Euler-Lagrange equations δα (l) = 0, on J2nπ.
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Additionally, we get the boundary conditions

jnv∂ c
(
Ψ1
)∗
c = jnv∂c

((
p[J ]
α ◦ Ψ1

)
dxα[J−11]

)
= 0 . (6.7)

This condition has to be met at the “time”-boundary points (a, b). In the case of Euler-Lagrange
systems, it is assumed that the variational vector field v vanishes at the “time”-boundary. Con-
sequently no boundary conditions appear for finite-dimensional Euler-Lagrange systems, as
the equation 6.7 is always met.

Remark 6.2 In the theory of calculus of variations all independent coordinates are treated equiv-

alently, i.e. they are assumed to be local coordinates of the manifold D. In fact, the additional

assumption in the context of Euler-Lagrange systems that the variational vector field vanishes on

“time”-boundaries is the first and the only distinction of an independent coordinate X1 – the time

t.



Chapter 7
Infinite-dimensional Euler-Lagrange Systems
(I-EL Systems)

In the case of infinite-dimensional EL systems we make use of a bundle (E , π,D) with the
total manifold E , dim (E) = r + s and the bounded base manifold D, dim (D) = r > 1.
Additionally, we choose the local coordinates (X i), i = 1, . . . , r according to D and (X i, xα),
α = 1, . . . , s corresponding to E . Before we actually start to analyze the infinite-dimensional
case we discuss the considered domains.

7.0.2 Considered Domains

The switch from the finite-dimensional to the infinite-dimensional case equals the consider-
ation of domains of integration with possibly higher topological complexity. We will confine
ourselves to the case of a base manifold (or domain of integration) D homeomorphic to an
r-dimensional unit sphere. We will consider base manifolds D without boundary, i.e.

∂D = 0

as shown in Fig.7.1. It is obvious that the derivation of the boundary conditions for infinite-

1-dim. circular
domain:

2-dim. closed
domain:

Figure 7.1: Domains without boundary.

dimensional EL-systems becomes trivial, if no boundary exists. Thus we consider also domains
D with boundary, i.e.

∂D 6= 0

as shown in the figures 7.2 and 7.3. Here we distinguish between smooth and non-smooth
boundaries. It will turn out that from the differential geometric point of view the distinction

44
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2-dim. plain domain with
circular boundary:

2-dim. domain with
smooth boundary:

Figure 7.2: Domains with smooth boundary.

2-dim. plain domain with
rectangular boundary:

2-dim. domain with
non-smooth boundary:

3-dim. domain with
non-smooth boundary:

Figure 7.3: Domains with non-smooth boundary.

between smooth and non-smooth domains is not of main importance, as long as we confine
ourselves to the case of non-smooth boundaries that are built up by a finite amount of bounded
smooth manifolds. As the construction of the extended Cartan form is a local procedure, it will
not differ for smooth and non-smooth boundaries (see section 8.4).

Subsequently we have divided the investigation of the I-EL systems in two sections. At first,
we consider the case of first order Lagrangians l ∈ C∞ (J1π). After that, the more general case
of nth order Lagrangians l ∈ C∞ (Jnπ) is treated.

7.1 Systems with 1
st order Lagrangian

The preliminary work of section 5.1 enables us to establish the Cartan form solution in a
straight forward manner. At first let us define the structure of the Cartan form c.

7.1.1 Structure of the Cartan Form

Following the considerations from above, one sees that a possible choice for the Cartan form
is given by

c = ldX + p[1j ]
α

(
dxα − xα[1i]

dX i
)
∧ (∂jcdX) , j, i = 1, . . . , r , (7.1)

with suitable functions p
[1j ]
α ∈ C∞ (J1π).

In the next step we have to determine these functions such that equation (5.4) is met.
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7.1.2 Derivation of the Cartan Form

We are again able to apply the horizontal projection in the form of

(
j1σ
)∗ (

j1vc (dc)
)

=
(
j2σ
)∗ (

Dc
(
j1vc (dc)

)
∧ dX

)
, D = drc · · · cd1 , (7.2)

in order to obtain the Euler-Lagrange equations as algebraic relations on J2π. Here the total
derivatives di of definition 4.11 are used again.

Having the horizontal projection at ones disposal, we determine the expression

Dc
(
j1vc (dc)

)
∧ dX =

= j1vc ((−1)rDc (dc)) ∧ dX

= (−1)r j1vc
(

Dc
(

d
(

l dX + p[1j ]
α

(

dxα ∧ ∂jcdX − xα[1j ]
dX
))))

∧ dX

= (−1)r j1vc
(

Dc
(

dl ∧ dX + dp[1j ]
α ∧

(

dxα ∧ ∂jcdX − xα[1j ]
dX
)

− p[1j ]
α dxα[1j ]

∧ dX
))

∧ dX

= j1vc
(

dl ∧ dX −
(
djcdp

[1j ]
α

)
dxα ∧ dX − p[1j ]

α dxα[1j ]
∧ dX

)

.

This relation becomes independent of the prolongation of the vertical vector field j1v, i.e. no

Ldi
(vα) will appear, iff the functions p

[1j ]
α are determined by

p
[J ]
α = ∂

[J ]
α l , #J = 1 , J = 1j . (7.3)

Remark 7.1 There exists only a single contact form that can be used to cancel out a certain dxα[1j ]

form entry of dc. Thus the proposed Cartan form is unique.

The combination of (7.1) and (7.3) leads to

dc = dl ∧ dX + dp[1j ]
α ∧

(

dxα ∧ ∂jcdX − xα[1j ]
dX
)

− p[1j ]
α dxα[1j ]

∧ dX

= dl ∧ dX +
(
dh
(
∂[1j ]
α l
)

+ dv
(
∂[1j ]
α l
))

∧
(

dxα ∧ ∂jcdX − xα[1j ]
dX
)

− ∂[1j ]
α l dxα[1j ]

∧ dX

= ∂αldx
α ∧ dX + ∂[1j ]

α l dxα[1j ]
∧ dX + Ldj

(
∂[1j ]
α l
)
dXj ∧ dxα ∧ ∂jcdX

+dv
(
∂[1j ]
α l
)
∧
(

dxα ∧ ∂jcdX − xα[1j ]
dX
)

− ∂[1j ]
α l dxα[1j ]

∧ dX

= δα (l) dxα ∧ dX + dv
(
∂[1j ]
α l
)
∧
(

dxα ∧ ∂jcdX − xα[1j ]
dX
)

︸ ︷︷ ︸

θ

with the Euler-Lagrange operator δα,

δα (·) = ∂α (·) +
∑n

i=1
(−1) Ldi

(
∂[1i]
α (·)

)
(7.4)

and a (p+ 1)-form θ, which meets Dcθ = 0. Consequently we are able to determine the
domain and boundary conditions.

It is worth mentioning, that the Cartan form qualifies also in this case as a Lepagian form
(see [Giachetta, G. Sardanashvily, L. Mangiarotti, 1994]).
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7.1.3 Extraction of the Euler-Lagrange Equations

From the functional (5.5) and the considerations in equation (7.2), we are able to determine
the Euler-Lagrange equations as the partial differential equations

((−1)rDcdc) ∧ dX = 0

or equivalently
δα (l) dxα ∧ dX = 0 .

It is obvious that these partial differential equations represent the algebraic relations on J2π
of interest.

7.1.4 Extraction of the Boundary Conditions

The integral of equation (5.6) leads in this case to the expression

ι∗
((
j1σ
)∗

(vcc)
)

=
(
j1σ̄
)∗ ((

Ψ1
)∗

(vcc)
)

(7.5)

=
(
j1σ̄
)∗ ((

Ψ1
)∗ (

vα∂αc
(
ldX + p[1j ]

α

(
dxα − xα[1i]

dX i
)
∧ (∂jcdX)

)))

=
(
j1σ̄
)∗ ((

Ψ1
)∗ (

vα∂αc
(
p[1j ]
α dxα ∧ (∂jcdX)

)))

=
(
j1σ̄
)∗ ((

vα ◦ Ψ1
)
∂αc

(
Ψ1
)∗ (

p[1j ]
α dxα ∧ (∂jcdX)

))

=
(
j1σ̄
)∗ (

vα∂ ∂αc
((
p[1r]
α ◦ Ψ1

)
dxα ∧ dX̄

))

=
(
j1σ̄
)∗
(

v∂c
((

δ
[1r]
∂α (l)

)

dxα ∧ dX̄
))

,

which must vanish on the boundary for any admissible variational field v. Here we have in-

troduced the boundary Euler-Lagrange operator δ
[1r]
∂α (l) = p

[1r]
α ◦Ψ1. Thus we get the boundary

condition
δ
[1r]
∂α (l) dxα ∧ dX̄ = 0 , (7.6)

with is again an algebraic relation. Additionally, we made use of the boundary volumes form
dX̄ and assumed that ∂rcdX = dX̄. This is always possible by the introduction of a special
change of coordinates and explained in more detail in section 8.1.1.

Now we are able to switch to a more general case of infinite-dimensional Euler-Lagrange
systems.

7.2 Systems with nth order Lagrangians

7.2.1 General Problem

Unfortunately the case l ∈ C∞ (Jnπ), n > 1 is substantially more difficult than the first order
case. The main reason for this fact is that in the determination process of the Cartan form,
one can find several contact forms ωα[J−I1],#I1 = 1 that allow the cancellation of a certain
form part dxα[J ] in dc (see theorem 4.14). The only exceptions are the previously treated finite-
dimensional case r = 1 and the infinite-dimensional case r > 1 with first order Lagrangian
n = 1. In both configurations, there exists only one unique index I1 and thus the corresponding
Cartan form is unique.

In the next step we will analyze the impact of this non-uniqueness on the domain and
boundary conditions.
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7.2.2 Construction of the Cartan Form

In the upcoming investigations we will use contact forms in the following representation

ωα[J−I1] =
(
dxα[J−I1] − xα[J−I1+1i]

dX i
)
, I1 = 1kl

, kl ∈ {1, . . . , r} , l = 1, . . . ,mJ .

Remark 7.2 The used notation ωα[J−I1] implies that the corresponding contact form exists only for

non-negative entries in the multi-index [J − I1].

We assume that there exist 1 ≤ mJ ≤ r contact forms for a given multi-index J, #J > 0.
Furthermore let us apply all possible contact forms ωα[J−I1] in the construction of the Cartan
form, i.e.

c = l dX +

mJ∑

l=1

p[J−I1,J ]
α

(
dxα[J−I1] − xα[J ]dX

kl
)
∧ ∂kl

cdX , #J = 1, . . . , n , I1 = 1kl
(7.7)

to realize p
[J−I1,J ]
α xα[J ] dX entries in c. It is necessary to introduce the double multi-indexed

functions p
[J−I1,J ]
α in order to incorporate the non-uniqueness of the correspondence between

xα[J ] and ωα[J−I1]. Again we require the Euler-Lagrange equations to be algebraic relation on a
certain jet manifold and consequently we introduce the horizontal projection

(
j2n−1σ

)∗ (
j2n−1vc (dc)

)
=
(
j2nσ

)∗ (
Dc
(
j2n−1vc (dc)

)
∧ dX

)
, D = drc · · · cd1 .

Finally we obtain

(
Dcj2n−1vcdc

)
∧ dX = (7.8)

= j2nvc ((−1)rDcdc) ∧ dX

= (−1)r
(

j2nvcDcd

(

ldX +

mJ∑

l=1

p[J−I1,J ]
α

(
dxα[J−I1] ∧ ∂kl

cdX − xα[J ]dX
)

))

∧ dX

= (−1)r
(

j2nvcDc

(

dl ∧ dX

+

mJ∑

l=1

(
dp[J−I1,J ]

α ∧
(
dxα[J−I1] ∧ ∂kl

cdX − xα[J ]dX
)
− p[J−I1,J ]

α dxα[J ] ∧ dX
)

))

∧ dX

= j2nvc

(

dl ∧ dX −
mJ∑

l=1

(
dkl

cdp[J−I1,J ]
α ∧ dxα[J−I1] ∧ dX + p[J−I1,J ]

α dxα[J ] ∧ dX
)

)

= j2nvc

(

dl ∧ dX −
mJ∑

l=1

(

Ldkl

(
p[J−I1,J ]
α

)
∧ dxα[J−I1] ∧ dX + p[J−I1,J ]

α dxα[J ] ∧ dX
)
)

.
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Thus all dxα[J ] form parts disappear in dc or equivalently the prolongation of the vertical vector
field v becomes unnecessary, see again (5.4), iff we choose

mJ∑

l=1

p
[J−I1,J ]
α = ∂

[J ]
α l #J = n , I1 = 1kl

mJ∑

l=1

p
[J−I1,J ]
α = ∂

[J ]
α l −

r∑

i=1

Ldi

(

p
[J,J+1i]
α

)

#J = n− 1 , I1 = 1kl

... =
...

p
[0,J ]
α = ∂

[1k1 ]
α l −

r∑

i=1

Ldi

(

p
[1k1

,1k1
+1i]

α

)

#J = 1 , J = 0 + 1k1 , mJ = 1 .

(7.9)

This construction does obviously not determine the Cartan form uniquely. Actually it deter-
mines a family of forms. In the next step, we investigate the domain conditions that can be
determined from every element of this family.

7.2.3 Conditions on the domain

If we consider the equation (7.8) we see that all p
[J,J+1i]
α are canceled out by lower indexed

p
[J−I1,J ]
α except for the case #J = 0. This is a consequence of the fact that a jet variable xα[J ]

with multi-index J = 1k1 , #J = 1 leads to the introduction of a unique function p
[0,1k1 ]
α .

Remark 7.3 This fact was responsible for the uniqueness of the Cartan form in the case of first

order Lagrangians.

Thus we have to focus on p
[0,1k1 ]
α in equation (7.8) and get

r∑

k1=1

Ldk1

(

p
[0,1k1 ]
α

)

=
r∑

k1=1

Ldk1

(

∂
[1k1 ]
α l −

r∑

i=1

Ldi

(

p
[1k1

,1k1
+1i]

α

))

=
r∑

k1=1

Ldk1
∂
[1k1 ]
α l −

r∑

k1=1

Ldk1

r∑

i=1

Ldi

(

p
[1k1

,1k1
+1i]

α

)

=
r∑

k1=1

Ldk1
∂
[1k1 ]
α l −

∑

#J=2

LdJ

(

∂[J ]
α l −

r∑

j=1

Ldi

(
p[J,J+1j ]
α

)

)

=
r∑

k1=1

Ldk1
∂
[1k1 ]
α l −

∑

#J=2

LdJ
∂[J ]
α l

+
∑

#J=2

LdJ

r∑

j=1

Ldi

(
p[J,J+1j ]
α

)

=
r∑

k1=1

Ldk1
∂
[1k1 ]
α l −

∑

#J=2

LdJ
∂[J ]
α l

+
∑

#J=3

LdJ

(

∂[J ]
α l −

r∑

j=1

Ldi

(
p[J,J+1j ]
α

)

)

= . . . ,
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where we have made extensive use of

Ldi
Ldj

(f) = Ldj
Ldi

(f) , f ∈ C∞ (Jnπ) , i, j = 1, . . . , r

and
LdJ

= (Ld1)
j1 ◦ · · · ◦ (Ldr

)jr
︸ ︷︷ ︸

#J-times

, [J ] = [j1 . . . jr] .

We see that all p
[J−I1,J ]
α , #J > 0 can be replaced by the assignments of equation (7.9) and

consequently it follows that

dl ∧ dX −
mJ∑

l=1

(

Ldkl

(
p[J−I1,J ]
α

)
∧ dxα[J−I1] ∧ dX + p[J−I1,J ]

α dxα[J ] ∧ dX
)

=

=

(

∂αl +
n∑

#I=1

(−1)#I LdI

(
∂[I]
α l
)

)

dxα ∧ dX

= δα (l) dxα ∧ dX ,

with the Euler-Lagrange operator δα given by

δα (l) = ∂αl +
n∑

#I=1

(−1)#I LdI

(
∂[I]
α l
)
, LdI

= (Ld1)
i1 ◦ · · · ◦ (Ldr

)ir
︸ ︷︷ ︸

#I−times

. (7.10)

This derivation shows that every element of the determined family leads to the same domain
conditions, i.e. partial differential equations. On the one hand this result is rather satisfactory,
because the determination of the domain conditions is solved. On the other hand this implies
that there exists no distinguished Cartan form using the presented construction. Thus it is
necessary to add additional restrictions if one wants to obtain a unique Cartan form. This can
be achieved by the use of an additional index ordering as presented in section 7.2.5.

In the next step we will investigate the consequences of the non-uniqueness of the Cartan
form on the determination of the boundary conditions.

7.2.4 Conditions on the boundary

The condition on the boundary results in
(
Ψ2n−1

)∗ (
j2n−1vcc

)
= j2n−1v∂ c

((
Ψ2n−1

)∗ (
ldX + p[J−I1,J ]

α

(
dxα[J−I1] − xα[J ]dX

kl
)
∧ ∂kl

cdX
))

= j2n−1v∂ c
((
p[J−1r,J ]
α ◦ Ψ2n−1

)
dxα[J−1r] ∧ dX̄

)
(7.11)

= j2n−1v∂ c
(
p[J−1r,J ]
α ◦ Ψ2n−1

)
dxα[J−1r] ∧ dX̄

= 0

with
I1 = 1kl

, kl ∈ {1, . . . , r} , l = 1, . . . ,mJ , #J = 1, . . . , n .

Additionally, we have again assumed that the boundary volume form is given by dX̄ = ∂rcdX.
Unfortunately the boundary conditions are not uniquely determined, which is visualized by

the still unknown functions p
[J−1r,J ]
α in (7.11).

To overcome this non-uniqueness problem, we will make use of an additional index order
(see Def. 4.2) in 7.2.5 and discuss the resulting partial differential equations and boundary
conditions. It will turn out that the chosen ordering does also not allow a correct determination
of the boundary conditions.
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7.2.5 Unique Cartan Form using Index Ordering

The introduction of an index order (see Def. 4.2) enables us to identify uniquely, which contact
form ωα[J−I1], #I1 = 1 has to be used in the construction process of the Cartan form, i.e., which
ωα[J−I1] has to be used to cancel out a dxα[J ] entry in dc. This can be done by choosing the

minimal index (J − I1)min in the determination process of ωα[J−I1].
Having this ordering at ones disposal, we are able to define the Cartan form to be of the

following structure

c = ldX + p[J ]
α

(
dxα[J−I1] ∧ ∂kcdX − xα[J ]dX

)
, #J = 1, . . . , n , I1 = 1k. (7.12)

Here the uniquely determined functions p
[J ]
α result from the index ordering and thus they are

no more equipped with a double multi-index.

Remark 7.4 The used index order is not geometrically motivated and consequently the deter-

mined Cartan form is not invariant under coordinate transformations. It will be shown that this

is the major drawback of this approach in the determination of the boundary conditions.

Following the considerations from above, we see that the expression

(
Dcj2n−1vcdc

)
∧ dX = j2nvc

(
dl ∧ dX − dkcdp

[J ]
α ∧ dxα[J−I1] ∧ dX − p[J ]

α dxα[J ] ∧ dX
)

= j2nvc
(
dl ∧ dX −

(
Ldk

(
p[J ]
α

)
∧ dxα[J−I1] ∧ dX + p[J ]

α dxα[J ] ∧ dX
))

does not require the prolongation of the variational vector field anymore, iff we choose

p
[J ]
α = ∂

[J ]
α l #J = n, I1 = 1k

p
[J ]
α = ∂

[J ]
α l − Ldi

(

p
[J+1i]
α

)

= ∂
[J ]
α l + (−1) Ldi

(

∂
[J+1i]
α l

)

#J = n− 1, I1 = 1k

... =
...

p
[J ]
α = ∂

[J ]
α l − Ldi

(

p
[J+1i]
α

)

= ∂
[J ]
α l +

∑n−#J
#I=1 (−1)#I LdI

(

∂
[J+I]
α l

)

n > #J > 1, I1 = 1k

... =
...

p
[J ]
α = ∂

[J ]
α l − Ldi

(

p
[J+1i]
α

)

= ∂
[J ]
α l +

∑n−1
#I=1 (−1)#I LdI

(

∂
[J+I]
α l

)

#J = 1 .

(7.13)
Like before we are now able to derive the domain conditions.

7.2.6 Conditions on the domain

Combining the relations (7.12) and (7.13), we can rewrite dc as

dc = dl ∧ dX + dp[J ]
α ∧

(
dxα[J−I1] ∧ ∂kcdX − xα[J ]dX

)
− p[J ]

α dxα[J ] ∧ dX

= dl ∧ dX +
(
dhp

[J ]
α + dvp

[J ]
α

)
∧
(
dxα[J−I1] ∧ ∂kcdX − xα[J ]dX

)
− p[J ]

α dxα[J ] ∧ dX

= δα (l) duα ∧ dX + dv
(
p[J ]
α

)
∧
(
dxα[J−I1] ∧ ∂kcdX − xα[J ]dX

)

︸ ︷︷ ︸

θ
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with the Euler-Lagrange operator δα (·) defined by equation (7.10) and a (p+ 1)-form θ, which
meets Dcθ = 0. The system of partial differential equations follows again from

((−1)rDcdc) ∧ dX = 0 , (7.14)

which is of course equivalent to δα (l) = 0.

7.2.7 Conditions on the boundary

Again, one gets the conditions on the boundary from the expression

(
Ψ2n−1

)∗ (
j2n−1vcc

)
= j2n−1v∂c

(
Ψ2n−1

)∗ (
ldX + p[J ]

α

(
dxα[J−1k] − xα[J ]dX

k
)
∧ ∂kcdX

)
(7.15)

= j2n−1v∂c
((
p[J ]
α ◦ Ψ2n−1

)
dxα[J−1r] ∧ dX̄

)
,

which must vanish for any admissible variational field v = vα∂α. Unfortunately the derived
conditions are not the boundary conditions of interest. In fact the coordinate dependents of
the index ordering implies that the same system would have different boundary conditions
in different coordinate systems. Consequently this approach does not allow to derive the
boundary conditions of infinite-dimensional Euler-Lagrange systems.

In the next chapter we will discuss an extension of this approach that enables the deriva-
tion of the domain and boundary conditions using the so called extended Cartan form. It is
worth mentioning that the extended Cartan form approach makes use of certain index order-
ing principles that are geometrically motivated.



Chapter 8
The Extended Cartan Form

Up to now all investigations were based on the ideas presented in section 5.1. The determi-
nation of the Cartan form was discussed in the finite- and infinite-dimensional case. It was
shown that the non-uniqueness of the Cartan form in the infinite-dimensional case with nth or-
der Lagrangian density does not influence the domain conditions and that this does not apply
for the boundary conditions.

Before we actually start to extend the Cartan form approach, some general remarks on the
geometric meaning of boundary conditions must be given.

8.1 Pull-back of the Jet Framework

The oriented base manifold D is assumed to be bounded by the coherently oriented boundary
manifold ∂D. The inclusion mapping ι : ∂D → D describes the relation of both manifolds and
enables us to pull-back the jet framework as shown in

(
X i
) (

X i, xα
) (

X i, xα, xα[J ]

)

D � π
E � π1

0 . . . �
πnn−1

Jnπ

∂D

ι

6

�
ι∗π

ι∗E �
ι∗ (π1

0)
. . . �

ι∗
(
πnn−1

) ι∗Jnπ

(
Xj
∂

) (
Xj
∂, x

α
) (

Xj
∂, x

α, xα[J ]

)
.

The achieved bundle structure on the boundary is obviously no more a jet framework. Roughly
speaking there are too less independent coordinates available to qualify as a jet framework. On
the other hand the additional undetermined coordinates can be seen as a degree of freedom
and this gives a first idea of what boundary conditions are all about.

In order to make this idea more visible, we introduce a special class of coordinate transfor-
mations on the domain D.

53
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8.1.1 Coordinate Transformation

We introduce special local coordinates (Y i) on the domain D, such that the inclusion mapping
ι : ∂D → D becomes

ι : ∂D → D (8.1)

Ȳ i → Y i = Ȳ i, Y r = Y r
∂ = const. , i = 1, . . . , (r − 1) .

Here we have introduced new adapted coordinates
(
Ȳ i
)

on the boundary manifold ∂D. Ad-
ditionally, we require that points of the domain p ∈ D meet in this new local coordinates
pr ≤ Y r

∂ , i.e. the coordinate Y r has to point out of the domain (see Fig. 8.1).

D

φα φβ

X2

f̄

Y 2

X1 Y 1

p

p

p

p2

Y 2
∂

Figure 8.1: Change of coordinates on the domain.

An appropriate bundle morphism (see Def. 3.5) for the coordinate transformation is given by

f̄ : D → D

Y j → X i
(
Y j
)
, j, i = 1, . . . , r

f : E → E

Y j, yα → X i
(
Y j
)
, xα = yα , α = 1, . . . , s .

The prolongation of this bundle morphism to the nth jet (see Def. 4.21) enables us to pull-back
the Lagrangian and to obtain

l′
(
Y i, yα, yα[J ]

)
dY = (jnf)∗

(
l
(
X i, xα, xα[J ]

)
dX
)

,

whereby the transformed Lagrangian density l′ and the transformed volume form dY are in-
troduced. Subsequently we will suppress the superscript, i.e. we will use l dY instead of
l′dY to keep a concise notation. Of course this construction does not lead to a uniquely de-
termined bundle morphism as illustrated in figure 8.2. This non-uniqueness is an immediate
consequence of the non-uniqueness of the map f̄ .
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X2

X1

f̄1

f̄2

Y 2

Y 1

Y 2

Y 1

Figure 8.2: Non uniqueness of f̄ .

8.1.2 Boundary Jet Framework

Having the special local coordinates (Y i) at ones disposal, we are able to enlighten the relation
of the inclusion map ι and a section on the domain σ ∈ Γ (π). In order to motivate the
upcoming modifications we consider the following example.

Example 8.1 Let us consider a bundle π with local coordinates (Y 1, Y 2, y1) and its first and

second jet J1π resp. J2π with local coordinates
(

Y 1, Y 2, y1, y1
[10], y

1
[01]

)

resp.
(

Y 1, Y 2 , y1, y1
[10],

y1
[01], y

1
[20], y

1
[11], y

1
[02]

)

. The pull-back of this structure along ι results in ι∗π with local coordinates
(
Ȳ 1, y1

)
, ι∗J1π with

(

Ȳ 1, y1, y1
[10], y

1
[01]

)

, and ι∗J1π with
(

Ȳ 1, y1, y1
[10], y

1
[01], y

1
[20], y

1
[11], y

1
[02]

)

.

Now we are able to introduce a section of the pull-back bundle structure

σ0 : ∂D → ι∗E

Ȳ 1 → Ȳ 1 , y1 = σ1
∂0

(
Ȳ 1
)

.

This section is related to a section σ of π by σ ◦ ι = σ1
∂0. Obviously an arbitrary choice of σ1

∂0 does

not violate the domain jet structure. Due to the special choice of the independent coordinates, we

are able to derive a section σ1 on ι∗J1π from σ0 by

σ1 : ∂D → ι∗J1π

Ȳ 1 → Ȳ 1 , y1 = σ1
∂0

(
Ȳ 1
)
, y1

[10] =
∂σ1

∂0

(
Ȳ 1
)

∂Ȳ 1
, y1

[01] = σ1
∂1

(
Ȳ 1
)

.

Obviously one can again choose an arbitrary function σ1
∂1 without violating the domain jet struc-

ture. Thereby the degree of freedom obtained by the pull-back of the jet framework is incorporated.

Consequently we are able to introduce a section σ2 on ι∗J2π by

σ2 : ∂D → ι∗J2π

Ȳ 1 →
Ȳ 1, y1 = σ1

∂0

(
Ȳ 1
)
, y1

[10] =
∂σ1

∂0(Ȳ 1)
∂Ȳ 1 , y1

[01] = σ1
∂1

(
Ȳ 1
)

y1
[20] =

∂2σ1
∂0(Ȳ 1)

∂(Ȳ 1)
2 , y1

[11] =
∂σ1

∂1(Ȳ 1)
∂Ȳ 1 , y1

[02] = σ1
∂2

(
Ȳ 1
) .
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Again the function σ1
∂2

(
Ȳ 1
)

incorporates the gained degree of freedom. It is worth mentioning

that σ2 and σ1 meet by construction all integrability conditions, i.e. they are compatible with σ0

resp. σ0 and σ1.

This example illustrates that every section σk : ∂D → ι∗JkE , k = 0, . . . , n is equipped
with a function σα∂k that could be freely chosen without violating the domain jet structure. We
conclude that all local coordinates yα[0...0jr] can be assigned freely on the pull-back structure
in accordance to the domain jet framework. From a mathematical point of view, this effect
represents the loss of the contact structure on the pull-back bundles ι∗π.

Fortunately it is possible to introduce a jet bundle structure on the boundary. This en-
ables us to introduce the bundle morphisms (Ψn, ι) : π̄ n → πn that qualify as contact bundle
morphisms, i.e.

(Ψn)∗ : In → In∂.

All elements of the domain contact ideal In are mapped onto elements of the boundary contact
ideal In∂ by means of the pull-back (Ψn)∗. Here we have already used the boundary bundle π̄

Definition 8.2 (boundary bundle) The boundary bundle
(
Ē , π̄, ∂D

)
according to a domain bun-

dle π consists of the (r − 1)-dimensional base manifold ∂D, the boundary projection π̄ and the

(s · kr)-dimensional total manifold Ē . We equip Ē with the local coordinates
(
Ȳ j , yα[0...0;0], y

α
[0...0;1],

yα[0...0;2], . . . , y
α
[0...0;kr−1]

)

or in a shorter notation
(

Ȳ j, yα[0...0;jr]

)

, jr = 0, . . . , kr − 1.

The dimension of Ē is determined by the quantity 0 ≤ kr ≤ 2n.

Thus we are able to define the boundary jet framework Πn
∂ consisting of the bundles

π̄ j , π̄ jw , w < j , j = 1, . . . , n , w = 0, . . . , n− 1

according to the boundary bundle π̄.
Additionally, we obtain a boundary contact structure (see Def. 4.10) corresponding to Πn

∂

in local coordinates

(

Ȳ j, yα[0...0;jr], y
α

[J̄ ;jr]

)

by two vector valued one forms

h∂ = dȲ i ⊗

(

∂̄i + yα[1i;jr]∂
[0...0;jr]
α + · · · + yα[J̄+I1;jr]∂

[J̄ ;jr]
α

)

, ∂̄i =
∂

∂Ȳ i

v∂ =
(

dyα[J̄ ;jr] − yα[J̄+I1;jr]dȲ
i
)

⊗ ∂
[J̄ ;jr]
α

where
i = 1, . . . , r − 1 , jr = 0, . . . , kr − 1 , I1 = 1i , #J̄ = 0, . . . , n

is used. Here we have introduced the boundary multi-index
[
J̄
]

= [j1 . . . jr−1].
The boundary contact structure leads to the definition of the boundary total derivatives

d∂i = ∂̄i + yα[1i;jr]∂
[0...0;jr]
α + · · · + yα[J̄+I1;jr]∂

[J̄ ;jr]
α , i = 1, . . . , r − 1 .

Furthermore the boundary contact forms are given by

ωα
∂[J̄ ;jr] = dyα[J̄ ;jr] − yα[J̄+I1;jr]dȲ

i , i = 1, . . . , r − 1 , jr = 0, . . . , kr − 1 .

The definition of boundary contact forms forces the introduction of a boundary contact ideal.
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Definition 8.3 The boundary contact forms ωα
∂[J̄ ;jr]

of the nth jet manifold Jnπ̄ form an ideal I∂n

over the exterior algebra
∧
Jn
(
Ē
)
. Such an ideal will be denoted boundary contact ideal.

All elements ω∂ of this boundary contact ideal I∂n meet the following relation

(jnσ̄)∗ (ω∂) = 0 ,

where the prolongation of the boundary section

σ̄ : ∂D → Ē

Ȳ i →
(
Ȳ i, yα[0...0;0] = σα∂0

(
Ȳ i
)
, yα[0...0;1] = σα∂1

(
Ȳ i
)
, . . . , yα[0...0;k] = σα∂k

(
Ȳ i
))

,

is used. The functions σα∂jr correspond to the used notation used in example 8.1.
The definition of the boundary bundle enables now the introduction of the subsequently

used contact bundle morphisms.

Definition 8.4 Boundary contact bundle morphisms are contact bundle morphisms, whose pro-

jection ψ is given by the inclusion map ι : ∂D → D. The boundary contact bundle morphisms

(Ψn, ι) : π̄ n → πn

are given in local coordinates
(

Y j, yα[J ]

)

resp.

(

Ȳ i, yα
[J̄ ;jr]

)

by

(

Ȳ i, yα[J̄ ;jr]

)

→
(

Y i = Ȳ i, Y r = Y r
∂ = const., yα[J ] = yα[J̄ ;jr]

)

, [J ] =
[
J̄jr
]

.

Thus the pull-back of the domain contact forms along the map Ψn

(Ψn)∗
(

dyα[J ] − yα[J+1j ]
dY j

)

= dyα[J̄ ;jr] − yα[J̄+1i;jr]
dȲ i = , #J = n− 1, j = 1, . . . , r

results in boundary contact forms. These bundle morphisms are visualized in the following
commutative diagram

(
Y j
) (

Y j, yα
) (

Y j, yα, yα[J ]

)

D � π
E � π1

0 . . . �
πnn−1

Jnπ

∂D

ι

6

�
π̄

Ē

Ψ

6

�
π̄ 1

0

. . . �
π̄ nn−1

Jnπ̄

Ψn

6

(
Ȳ i
) (

Ȳ i, yα[0...0;jr]

) (

Ȳ i, yα[0...0;jr], y
α

[J̄ ;jr]

)

.

Before we are able to present the structure of the extended Cartan form, we have to inves-
tigate some relations between domain and boundary contact ideal.
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Corollary 8.5 Every element λ ∈ Γ (∧Jnπ) that meets

(Ψn)∗ λ = λ∂ ∈ I∂n

vanishes under the concatenation of the pull-back along a domain section σ and the inclusion

mapping ι, i.e.

ι∗ ((jnσ)∗ λ) = 0 .

Proof. It is obvious that λ must be of the form

λ =
(

dyα[J ] − yα[J+1j ]
dY j + gdY r

)

∧ f , g ∈ C∞ (Jnπ) , f ∈ ∧ (Jnπ) , j = 1, . . . , r − 1

due to (Ψn)∗ λ ∈ I∂n. Thus we have to prove that

ι∗
(

(jnσ)∗
((

dyα[J ] − yα[J+1j ]
dY j + gdY r

)

∧ f
))

= 0 .

The pull-back along the prolongation of a domain section leads to

(jnσ)∗
((

dyα[J ] − yα[J+1j ]
dY j + gdY r

)

∧ f
)

=
(
∂r
(
∂[J ]σ

)
+ (g ◦ jnσ)

)
dY r ∧ (jnσ)∗ f

and by the application of

ι∗
((
∂r
(
∂[J ]σ

)
+ (g ◦ jnσ)

)
dY r

)
∧ ι∗ (jnσ)∗ f = 0

we have proved the corollary.
It is worth mentioning that every element of the domain contact ideal In is an element of

this class.
This preliminary work enables us now to define the structure of the extended Cartan form.

8.2 Structure of the Extended Cartan Form

The definition of the domain and boundary contact ideals are the cornerstone of the following
definition.

Definition 8.6 (Extended Cartan Form) The Extended Cartan Form – or ECF for short – is

given by

cext = l dY + ω + dω∂ = c+ dω∂

with the elements of the domain contact ideal ω ∈ In and the boundary contact ideal (Ψn)∗ ω∂ ∈
I∂n.

This definition is mainly forced by the following theorem.

Theorem 8.7 The Lagrangian functional is invariant under any additional elements of the do-

main contact ideal ω ∈ In and the exterior derivative of any elements of the boundary contact

ideal (Ψn)∗ ω∂ ∈ I∂n, i.e.

∫

D

(jnσ)∗ (l dY) =

∫

D

(jnσ)∗ (l dY + ω + dω∂) .
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Proof. Similarly to theorem 5.3 we make essential use of the property of elements of contact
ideals on the domain

(jnσ)∗ ω = 0

and on the boundary
ι∗ ((jnσ)∗ ω∂) = 0 .

These properties can be used in
∫

D

(jnσ)∗ (l dY + ω + dω∂) =

∫

D

(jnσ)∗ (l dY + ω) +

∫

D

d (jnσ)∗ ω∂

=

∫

D

(jnσ)∗ (l dY + ω) +

∫

∂D

ι∗ ((jnσ)∗ ω∂)

=

∫

D

(jnσ)∗ (l dY)

to prove the theorem.
The impact of the extension of the Cartan form on the domain conditions is treated in

corollary 8.8.

Corollary 8.8 The extended Cartan form cext and the original Cartan form c lead to the same

domain conditions, i.e.

((−1)rDcdc) ∧ dY = ((−1)rDcdcext) ∧ dY .

Proof. This is a trivial consequence of the identity

dcext = dc+ d (dω∂) = dc ,

which has to be used in
((−1)rDcdcext) ∧ dY = 0

to determine the domain conditions.
This result confirms the applied modification.

Remark 8.9 The fact that an additional exact form does not influence the domain conditions

in the calculus of variations is well known. Such an exact form generates a null Lagrangian as

defined in [Olver, 1986].

The introduced extensions will provide the necessary degrees of freedom to determine the
boundary conditions uniquely. It is remarkable that the consideration of any further extension
by means of an additional exact form, i.e.

l dY + ω + d (ω∂ + dω∂∂)

or equally by ∫

D

(jnσ)∗ (l dY + ω) +

∫

∂D

(jnσ̄)∗ ω∂ +

∫

∂∂D

(

jn
=
σ
)∗

ω∂∂

does not make any sense for the given Lagrangian functionals of the form
∫

D

l dY ,

because of the closeness of the exterior derivative, i.e. dd (·) = 0. This could be equally
explained by the fact that the boundary manifold has itself no boundary, i.e. it is closed.
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Remark 8.10 These considerations do not apply for Euler-Lagrange systems whose Lagrangian

functional is given by, e.g.,
∫

D1

l1 dY1 +

∫

D2

l2 dY2 +

∫

D3

l3 dY3

where D2 ⊂ ∂D1 , D3 ⊂ ∂D2. Such problems of coupled systems of different base-dimension will

not be treated in the Euler-Lagrange part of this thesis.

In the next section we will present a procedure to construct the extended Cartan form.

8.3 Construction of the Extended Cartan Form

8.3.1 Coordinate Expression of the ECF

The introduced bundle morphism
(
f, f̄
)

and its prolongations enable us to pull-back the La-

grangian to ldY, l ∈ C∞ (Jnπ) with the adapted local coordinates
(

Y j, yβ, yβ[J ]

)

.

We define the extended Cartan form in local coordinates to be given by

cext = ldY + p[J−I1,J ]
α ωα[J−I1] ∧ ∂[I1]cdY + d

(

p
[J̄−I2,J̄ ;jr]
α ωα[J̄−I2;jr] ∧ ∂[I2]c∂[1r]cdY

)

where

#J = 1, . . . , n

#I1 = 1 , I1 = 1j , j = 1, . . . , r

#J̄ = 1, . . . , n , jr = 0, . . . ,
kr
2

− 1

#I2 = 1 , I2 = 1i , i = 1, . . . , r − 1

is used. The pull-back of the form ωα
[J̄−I2;jr]

meets

(Ψn)∗ ωα[J̄−I2;jr] = ωα
∂[J̄−I2;jr],

i.e. is a contact form on the boundary jet bundle.

The still unknown functions p
[J−I1,J ]
α ∈ C∞ (J2n−1E), p

[J̄−I2,J̄ ;jr]
α ∈ C∞ (J2n−1E) represent the

necessary degree of freedom for the determination of the domain and boundary conditions.

Obviously all p
[J−I1,J ]
α ωα[J−I1] ∧∂I1cdY are elements of the domain contact ideal In and simi-

larly all (Ψn)∗
(

p
[J̄−I2,J̄ ;jr]
α ωα

[J̄−I2;jr]
∧ ∂[I2]c∂[1r]cdY

)

are elements of the boundary contact ideal

I∂n. Thus the stated requirements to qualify as extended Cartan form are met.

8.3.2 Derivation of the ECF

The multi-index ordering of definition 4.2 is an arbitrary choice and no geometric informa-

tion is used in its construction. Having the local coordinates
(

Y j, yβ, yβ[J ]

)

that incorporate

some additional information about the boundary shape at ones disposal, we are able to intro-
duce a geometrically motivated partial ordering. This is mainly caused by the existence of a
distinguished coordinate Y r and consequently of a distinguished index jr.
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Definition 8.11 (partial ordering) In the local coordinates
(

Y j, yβ, yβ[J ]

)

we define the follow-

ing partial ordering. Let Ja = ja1 . . . jar and Jb = jb1 . . . jbr be two multi-indices. We say

Ja >part Jb if in the difference Ja − Jb the rth entry is positive.

This partial ordering is compatible with Def. 4.2, i.e.

Ja >part Jb implies Ja > Jb .

In order to obtain a minimal amount of boundary conditions, it is necessary to apply the

partial ordering in the determination process of the functions p
[J−I1,J ]
α . Consequently we will

use the contact forms ωα[J−I1] with the smallest indices [J − I1] with respect to >part in the

determination process of the functions p
[J−I1,J ]
α . Due to the compatibility with the general

multi-index ordering, one can also use the general ordering >. This leads precisely to the

results as presented in section 7.2.5, if the local coordinates
(

Y i, yα, yα[J ]

)

are used.

From the general boundary condition (5.6) we know that

ι∗
((
j2n−1σ

)∗
(jnvccext)

)
= 0

must be satisfied. Fortunately we are able to reformulate this equation

ι∗
((
j2n−1σ

)∗
(jnvccext)

)
=

(
j2n−1σ̄

)∗ (
Ψ2n−1

)∗
(jnvccext)

=
(
j2n−1σ̄

)∗ (
jnv∂c

(
Ψ2n−1

)∗
cext
)

= 0

where we have used the boundary section σ̄ : ∂D → Ē , the properties of the boundary contact
bundle morphism, and the prolonged variational vector field jnv restricted to the boundary1

denoted by jnv∂. The pull-back of the extended Cartan form to the boundary (Ψ2n)
∗
cext is in

the local coordinates
(

Y j, yβ, yβ[J ]

)

a trivial operation and given by

(
Ψ2n

)∗
cext =

(
p[J−I1,J ]
α ◦ Ψ2n−1

)
dyα[J̄ ;jr] ∧ dȲ + d

(

p
[J̄−I2,J̄ ;jr]
α ωα

∂[J̄−I2;jr] ∧ ∂1i
cdȲ

)

=
(
p[J−I1,J ]
α ◦ Ψ2n−1

)
dyα[J̄ ;jr] ∧ dȲ + dp

[J̄−1i,J̄ ;jr]
α ∧ ωα

∂[J̄−1i;jr]
∧ ∂1i

cdȲ

−p
[J̄−1i,J̄ ;jr]
α dyα[J̄ ;jr] ∧ dȲ ,

where

J =
[
J̄ ; jr + 1r

]
, jr = 0, . . . ,

kr
2

− 1 , I2 = 1i , i = 1, . . . , r − 1

is used. In order to extract the boundary conditions we have to consider the horizontal pro-
jection

(
j2n−1σ̄

)∗ (
jnv∂c

(
Ψ2n−1

)∗
cext
)

=
(
j2nσ̄

)∗ ((
D∂cj

nv∂c
(
Ψ2n−1

)∗
cext
)
∧ dȲ

)

= (−1)r−1 (j2nσ̄
)∗ (

jnv∂c
(
D∂c

(
Ψ2n−1

)∗
cext
)
∧ dȲ

)
= 0

where D∂ = d∂r−1c · · · cd∂1 is used.

1As the variational vector field is a vertical vector field, this restriction is always possible.
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Remark 8.12 All boundary total derivatives d∂1, · · · , d∂r−1 used in D∂ annihilate the introduced

boundary contact forms ωα
∂[J̄−I2;jr]

.

We obtain finally

(
j2nσ̄

)∗ (
jnv∂c

(
(−1)r−1D∂c

(
Ψ2n−1

)∗
cext
)
∧ dȲ

)
= (8.2)

=
(
j2nσ̄

)∗
(

jnv∂c

(
(
p[J−1r,J ]
α ◦ Ψ2n−1

)
dyα[J̄ ;jr] ∧ dȲ − dicdp

[J̄−1i,J̄ ;jr]
α dyα[J̄−1i;jr]

∧ dȲ

−p
[J̄−1i,J̄ ;jr]
α dyα[J̄ ;jr] ∧ dȲ

))

= 0 .

This calculation shows that it is possible to cancel out a certain
(

p
[J−1r,J ]
α ◦ Ψ2n−1

)

dyα[J−1r]∧dȲ

form part entirely by means of an appropriate choice of the function p
[J̄−1i,J̄ ;jr]
α in the term

−p
[J̄−1i,J̄ ;jr]
α dyα

[J̄ ;jr]
∧dȲ, iff the multi-index of dyα[J−1r] is not of the form

[J − 1r] = Jr = [0..0jr] .

Every such cancellation operation introduces a lower-index form dicdp
[J̄−1i,J̄ ;jr]
α dyα

[J̄−1i;jr]
∧dȲ,

i = 1, . . . , r − 1 and thus we obtain precisely the same elimination process for every depen-
dent coordinate yα[0...0;jr] of the total boundary manifold Ē as we had used for the dependent
coordinates yα on the total domain manifold E .

Remark 8.13 The procedure used in the derivation of the domain condition results that the Car-

tan form c was built, such that no

g dyα[J ] ∧ dX , g ∈ C∞ (Jnπ) , [J ] 6= [0 . . . 0]

forms appear in ((−1)rDcdc) ∧ dX. Another consequence of this construction is that no prolon-

gation of the variational vector field v is necessary anymore.

Consequently we are able to define all p
[J̄−1i,J̄ ;jr]
α functions in the extended Cartan form,

such that no

g dyα[J̄ ;jr] ∧ dȲ , g ∈ C∞
(
Jn
(
Ē
))

,
[
J̄
]
6= [0 . . . 0] , jr = 0, . . . ,

kr
2

− 1

forms appear in
(
(−1)r−1D∂c (Ψ2n−1)

∗
cext
)
∧ dȲ. It is remarkable that we can replace the

prolongation of the variational field on the boundary jnv∂ simply by

v∂ = v∂
α
[0...0;jr]

∂

∂yα[0...0;jr]
, jr = 0, . . . ,

kr
2

− 1 ,

i.e. the boundary variational vector field, if the functions p
[J̄−1i,J̄ ;jr]
α are chosen properly.
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The determination of the relations that must be fulfilled by the functions p
[J̄−1i,J̄ ;jr]
α are

formulated in the following listing (8.3)

m∂J∑

l=1

p
[J̄−1wl

,J̄ ;jr]
α = p

[J−1r,J ]
α ◦ Ψ2n−1 #J = n , [J − 1r] =

[
J̄ jr

]
,

wl ∈ {1, . . . , r − 1}

m∂J∑

l=1

p
[J̄−1wl

,J̄ ;jr]
α =

(

p
[J−1r,J ]
α ◦ Ψ2n−1

)

−
r−1∑

j=1

Ld∂j

(

p
[J̄ ,J̄+1j ;jr]
α

) #J = n− 1 ,
[J − 1r] =

[
J̄ jr

]
,

wl ∈ {1, . . . , r − 1}

... =
...

p
[0...0,1wl

;jr]
α =

(

p
[Jr−1r,J ]
α ◦Ψ2n−1

)

−
r−1∑

j=1

Ld∂j

(

p
[1wl

,1wl
+1j ;jr]

α

) #J = jr + 2 ,
[J − 1r] = 1wl

+ Jr ,
m∂J = 1, wl ∈ {1, . . . , r − 1} .

(8.3)
Obviously we have determined a family of functions according to a certain index jr or

equally to every dependent coordinate yα[0...0;jr] in Ē . Now it is left to show that the derived

boundary conditions are invariant under a certain choice of the functions p
[J̄−1wl

,J̄ ;jr]
α out of

the determined family. In order to prove this, we have to consider equation (8.2). Similarly
to the construction on the domain, we can start on the bottom index Jr = [0 . . . 0; jr] and step
upwards in the scheme (8.3). This results in

(
p[Jr,Jr+1r]
α ◦ Ψ2n−1

)
dyα[Jr] ∧ dȲ −

r−1∑

wl=1

dwl
cdp

[0...0,1wl
;jr]

α dyα[Jr] ∧ dȲ

=
(
p[Jr,Jr+1r]
α ◦ Ψ2n−1

)
dyα[Jr] ∧ dȲ −

r−1∑

wl=1

Ld∂wl

((

p
[Jr+1wl

,Jr+1r+1wl ]
α ◦ Ψ2n−1

)

−
r−1∑

j=1

Ld∂j

(

p
[1wl

,1wl
+1j ;jr]

α

))

dyα[Jr] ∧ dȲ

=

(

p[Jr,Jr+1r]
α ◦ Ψ2n−1 −

r−1∑

wl=1

Ld∂wl
p
[Jr+1wl

,Jr+1r+1wl ]
α ◦ Ψ2n−1

)

dyα[Jr] ∧ dȲ

+
r−1∑

wl=1

r−1∑

j=1

Ld∂wl
Ld∂j

(

p
[1wl

,1wl
+1j ;jr]

α

)

dyα[Jr] ∧ dȲ

=

(

p[Jr,Jr+1r]
α ◦ Ψ2n−1 −

r−1∑

wl=1

Ld∂wl
p
[Jr+1wl

,Jr+1r+1wl ]
α ◦ Ψ2n−1

)

dyα[Jr] ∧ dȲ

+
∑

#J̄=2

LdJ̄

(

p
[Jr+J̄ ,Jr+J̄+1r]
α ◦ Ψ2n−1 −

r−1∑

j=1

Ldj

(

p
[J̄ ,J̄+1j ;jr]
α

))

dyα[Jr] ∧ dȲ

= · · ·

= δ
[Jr]
∂α (l) dyα[Jr] ∧ dȲ

= 0 ,



8 The Extended Cartan Form 8.3.3 Condition on the domain 64

where we have made again extensive use of

Ld∂i
Ld∂j

(f) = Ld∂j
Ld∂i

(f) , f ∈ C∞
(
Jn
(
Ē
))

, i, j = 1, . . . , r − 1

and
LdJ̄

= (Ld∂1
)j1 ◦ · · · ◦

(
Ld∂r−1

)jr−1

︸ ︷︷ ︸

#J̄-times

,
[
J̄
]

= [j1 . . . jr−1] .

Thus we see from (8.2) that the derived boundary conditions are independent of the func-

tions p
[J̄−I2,J̄ ;jr]
α iff (8.3) is met. Furthermore the derived boundary conditions are independent

of the used p
[J−I1,J ]
α in the construction of cext. This is caused by the fact that all appearing func-

tions p
[Jr,Jr+1r]
α , p

[Jr+1wl
,Jr+1r+1wl ]

α , . . . , p
[Jr+J̄ ,Jr+J̄+1r]
α are unique due to the introduced partial

ordering. In other words for every multi-index J = Jr + J̄ + 1r there exists a unique minimal
multi-index Jr + J̄ with respect to the introduced partial multi-index ordering >part (see Def.
8.11).

8.3.3 Condition on the domain

As shown by corollary 8.8 we are able to extract the domain condition similarly to the original
Cartan form domain condition, i.e.

((−1)rDcdcext) ∧ dY = 0

or equally δα (l) dxα ∧ dX = 0.

8.3.4 Condition on the boundary

The boundary conditions for an infinite-dimensional Euler-Lagrange system with nth order
Lagrangian are given by

(
(−1)r−1D∂c

(
Ψ2n−1

)∗
cext
)
∧ dȲ = 0

or equally δ
[Jr]
∂α (l) dyα[Jr] ∧ dȲ = 0. It is obvious that these conditions are analogous to the

domain conditions.
Finally we are able to state the following theorem.

Theorem 8.14 The domain and boundary conditions extracted from the extended Cartan form

are unique.

Proof. This theorem is a immediate consequence of the investigations shown in 7.2.3 and
8.3.2.

8.4 Domain with Non-smooth Boundary

Here we will consider domains D with non-smooth boundary manifold ∂D. In Fig. 8.3 a com-
parison of a domain with smooth and non-smooth boundary is given. This situation implies
that every point of the manifold D is only at least homeomorphic to the half plane (see 2.1).
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X1X1

X2X2

X3X3

Y 1

Y 1

Y 2Y 2

Y 3Y 3

Figure 8.3: Comparison between smooth and non-smooth boundary.

p

p

Figure 8.4: Domain D that does not allow a coherent orientation of the boundary ∂D at the
points p.

We have already assumed that the orientable boundary manifold ∂D is coherently oriented to
the oriented domain manifold D. This prevents domains that do not allow a coherent orien-
tation like, e.g., Fig. 8.4. Furthermore we require ∂D to be built up by a finite amount of
bounded smooth manifolds ∂Di, i.e.

∂D =
⋃k

i=1
∂Di , k <∞ .

Such a domain is depicted in Fig. 8.5. These prerequisites enable us to rewrite the Lagrangian

∂D1

∂D2

∂D3

∂D4

∂D5

∂D6

Figure 8.5: Domain D with boundary built up by smooth manifolds ∂Di.

functional as used in proof 8.2 in the form of
∫

D

(jnσ)∗ (l dY + ω + dω∂) =

∫

D

(jnσ)∗ (l dY + ω) +

∫

∂D

ι∗ ((jnσ)∗ ω∂)

=

∫

D

(jnσ)∗ (l dY + ω) +
k∑

i=1

∫

∂Di

ι∗i ((jnσ)∗ ω∂)

=

∫

D

(jnσ)∗ (l dY) .
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It is remarkable that all boundaries of the manifolds ∂Di, i.e. ∂∂Di are by construction of
measure zero in the Lie derivative of the Lagrangian functional. Thus we can exclude these
domains and the construction presented for a smooth boundary applies also for all boundary
parts ∂Di.

Remark 8.15 These investigations imply that Hamilton’s principle applied to a certain Lagrangian

l dY on an r-dimensional domain D could not result in any condition on a domain of dimension

less than r − 1. Consequently the analysis of the 2-dim. rectangular Kirchhoff plate (see e.g. sec-

tion 8.6) could not result in any condition on the edges of the plate, as they are 0-dim. domains.

This implies that the edge conditions presented in [Ritz, 1909] must be too restrictive. In appendix

B this effect is discussed using classical notation.

The analysis of physical systems from control point of view is undoubtedly interested in a
correct modeling of external inputs.

8.5 Systems with Inputs

The introduction of domain and boundary inputs into the theory of Euler-Lagrange systems
from a geometric point of view is the aim of this section.

In order to achieve this, we recall the domain

((−1)rDcdcext) ∧ dY = 0

and boundary condition
(
(−1)r−1D∂c

(
Ψ2n−1

)∗
cext
)
∧ dȲ = 0

developed in the recent chapters. An evaluation of these conditions leads to the following
representation

fβ
(
Y i, yα, yα[J ]

)
dyβ ∧ dY = 0 (8.4)

respectively

f
[0...0;jr]
β

(

Ȳ i, yα[J̄ ;j̄r]

)

dyβ[0...0;jr] ∧ dȲ = 0 , j̄r = 0, . . . ,
kr
2
, jr = 0, . . . ,

kr
2

− 1. (8.5)

In the case of a free system, we are able to identify the domain and boundary conditions by

fβ
(
Y j, yα, yα[J ]

)
= 0 (8.6)

respectively

f
[0...0;jr]
β

(

Ȳ i, yα[J̄ ;j̄r]

)

= 0 . (8.7)

Thereby we get in general a system of partial differential equations on the domain and on the
boundary.

These equations do not represent all conditions that can be extracted from the equations
(8.4) and (8.5). For example both equations are met, as soon as all dependent variables yβ

are determined by means of external setting as functions of the independent coordinates, i.e.
yβ (Y j). This equals the plug in of a section σ : D → E , yβ → yβ (Y j) and implies that

dyβ ∧ dY = 0 , dyβ[0...0;jr] ∧ dȲ = 0 . (8.8)
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Consequently equation (8.4) and (8.5) are met. Another scenario would be the assignment of
the dependent boundary coordinates, i.e.

yβ[0...0;jr] → yβ[0...0;jr]

(
Ȳ i
)

(8.9)

by means of external restrictions. Thereby the corresponding equation (8.5) is also met. This
behavior of boundary conditions is well known in mechanics and referred to as dynamic
boundary condition in the case of equation (8.7) and static boundary condition in the case
of equation (8.9).

This observations illustrate that any external setting of the dependent variables on the
domain or boundary causes the disappearance of the corresponding dynamic conditions. Con-
sequently the set of equations of motion is reduced and the remaining ones automatically
satisfy the introduced statical condition.

These preliminary considerations can now be used to introduce the notion of external
inputs to the language of Euler-Lagrange systems. The external assignment of the dependent
coordinates must be equal to the choice of an appropriate input. Thus we extend for example
the domain condition

fβ
(
Y j, yα, yα[J ]

)
dyβ ∧ dY + uβdy

β ∧ dY = 0 ,

whereby no modification of the static domain condition appears. On the other hand we are
also able to meet this relation by plugging the external setting yα (Y j) into fβ and choosing

uβ = − fβ
(
Y j, yα, yα[J ]

)∣
∣
yα(Y j)

.

This equation determines precisely the external input uβ, which is necessary to force the solu-
tion on the externally assigned function yβ (Y j).

An even more important consequence of these considerations is the information about the
correct geometrical introduction of external inputs to the extended Cartan form. From the
form representation on the domain

fβ
(
Y i, yα, yα[J ]

)
dyβ ∧ dY + uβdy

β ∧ dY = 0

respectively on the boundary

f
[0...0;jr]
β

(

Ȳ i, yα[J̄ ;j̄r]

)

dyβ[0...0;jr] ∧ dȲ + ū
[0...0;jr]
β dyβ[0...0;jr] ∧ dȲ = 0

we obtain directly the extended domain condition

(
(−1)rDc (dcext) + uβdy

β
)
∧ dY = 0

and the extended boundary condition

(

(−1)r−1D∂c ((Ψn)∗ cext) + ū
[0...0;jr]
β dyβ[0...0;jr]

)

∧ dȲ = 0 .

If the inputs are assumed to be functions of the independent coordinates only, i.e.

uβ = uβ
(
Y j
)

respectively ū
[0...0;jr]
β = ū

[0...0;jr]
β

(
Ȳ i
)

,
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then it is possible to incorporate the external inputs directly within the extended Cartan form
by

cext = ldY + p[J−I1,J ]
α ωα[J−I1] ∧ ∂[I1]cdY + d

(

p
[J̄−I2,J̄ ;jr]
α ωα[J̄−I2;jr] ∧ ∂[I2]c∂[1r]cdY

)

+uβ y
βdY + d

(

ū
[0...0;jr]
β yβ[0...0;jr]∂[1r]cdY

)

=
(
l + uβ y

β
)
dY + p[J−I1,J ]

α ωα[J−I1] ∧ ∂I1cdY

+d

(

p
[J̄−I2,J̄ ;jr]
α ωα[J̄−I2;jr] ∧ ∂[I2]c∂[1r]cdY + ū

[0...0;jr]
β yβ[0...0;jr]∂[1r]cdY

)

.

The extension of the Lagrangian density by

l + uβ y
β

in order to take external inputs into account, is also known from mechanics and the term uβ y
β

is denoted as viral. It is remarkable that the construction of the viral is not applicable for the
analysis of the closed loop behavior generated by a control law of the form

uβ
(
Y j, yα, yα[J ]

)
.
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8.6 Application: The Kirchhoff plate

Here we will consider the rectangular Kirchhoff plate as depicted in figure 8.6, with distributed
linear damping force f on the spatial domain DS and a damping torque M along the border
Y 3 = Y 3

∂ = const. .

Kirchhoff plate

y1

Y 2

Y 3

M

f

restraint support hinged support

Figure 8.6: The rectangular Kirchhoff plate with damping force f and daming torque M .

8.6.1 Local coordinate representation

We introduce the independent coordinates Y 1 = t, Y 2, Y 3 on the domain D. The motion of the
plate is described by the dependent coordinate y1. Here we are interested in the domain and
boundary conditions and consequently it is necessary to define a suitable inclusion mapping.
We will derive the boundary conditions on the border Y 3 = Y 3

∂ = const. and thus we have to
make use of the following inclusion map

ι1 : ∂D1 → D
(
Ȳ 1 = t, Ȳ 2

)
→

(
Y 1 = Ȳ 1 = t, Y 2 = Ȳ 2, Y 3 = Y 3

∂ = const.
)

,

where ∂D1 ⊂ ∂D. This configuration is visualized in figure 8.7. Now we are able to start the

D

Y 1 = t

Y 2

Y 3

ι1 ∂D1

Y 3
∂ = const.

Ȳ 1 = t

Ȳ 2

Figure 8.7: The used inclusion map ι1.

construction of the extended Cartan form.
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8.6.2 Construction of the extended Cartan form

The Lagrangian density is given by (see [Ritz, 1909])

l =
1

2
ρΛ
(
y1

[100]

)2
−

1

2
ς
((
y1

[020]

)2
+
(
y1

[002]

)2
+ 2νy1

[002]y
1
[020] + 2 (1 − ν)

(
y1

[011]

)2
)

with ρ,Λ, ς, ν ∈ R
+. Consequently we are ready to determine the functions p

[J−I1,J ]
α and

p
[J̄−1wl

,J̄ ;jr]
α .

Determination of the functions p
[J−I1,J ]
α

In a first step we derive all functions according to multi-indices meeting #J = 2. We get

p
[010,020]
1 = ∂

[020]
1 l = −ς

(
y1

[020] + νy1
[002]

)

p
[001,002]
1 = ∂

[002]
1 l = −ς

(
y1

[002] + νy1
[020]

)

p
[010,011]
1 + p

[001,011]
1 = ∂

[011]
1 l = −2ς

(
(1 − ν) y1

[011]

)
.

Here we recognize the non-uniqueness of the functions for the multi-index J = [011]. In fact
we have to make use of the partial ordering and get

p
[010,011]
1 = ∂

[011]
1 l = −2ς

(
(1 − ν) y1

[011]

)
.

In the next step we consider multi-indices J whose length is #J = 1. We obtain

p
[000,100]
1 = ∂

[100]
1 l −

r∑

i=1

Ldi

(

p
[100,100+1i]
1

)

= ρΛy1
[100]

p
[000,010]
1 = ∂

[010]
1 l −

r∑

i=1

Ldi

(

p
[010,010+1i]
1

)

=

= ∂
[010]
1 l − Ld2

(

p
[010,020]
1

)

− Ld3

(

p
[010,011]
1

)

= +ς
(
y1

[030] + νy1
[012]

)
+ 2ς (1 − ν) y1

[012]

p
[000,001]
1 = ∂

[001]
1 l −

r∑

i=1

Ldi

(

p
[001,001+1i]
1

)

= −Ld3

(

p
[001,002]
1

)

= ς
(
y1

[003] + νy1
[021]

)
.

Consequently it is left to derive the functions p
[J̄−1wl

,J̄ ;jr]
α .

Determination of the functions p
[J̄−1wl

,J̄ ;jr]
α

Here we obtain only a single function from the multi-index [J − 1r] =
[
J̄ jr

]
to be given by

p
[00,01;0]
1 = p

[010,011]
1 = −2ς

(
(1 − ν) y1

[011]

)
,

where obviously jr = 0 and
[
J̄
]

= [01] is used.
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Finally we are able to formulate the extended Cartan form

cext =
1

2
ρΛ
(
y1

[100]

)2
dt ∧ dY 2 ∧ dY 3

−
1

2
ς
((
y1

[020]

)2
+
(
y1

[002]

)2
+ 2νy1

[002]y
1
[020] + 2 (1 − ν)

(
y1

[011]

)2
)

dt ∧ dY 2 ∧ dY 3

+p
[010,020]
1

(
dy1

[010] − y1
[020]dY

2
)
∧ ∂2c

(
dt ∧ dY 2 ∧ dY 3

)

+p
[001,002]
1

(
dy1

[001] − y1
[002]dY

3
)
∧ ∂3c

(
dt ∧ dY 2 ∧ dY 3

)

+p
[010,011]
1

(
dy1

[010] − y1
[011]dY

3
)
∧ ∂3c

(
dt ∧ dY 2 ∧ dY 3

)

+p
[000,100]
1

(
dy1

[000] − y1
[100]dt

)
∧ ∂1c

(
dt ∧ dY 2 ∧ dY 3

)

+p
[000,010]
1

(
dy1

[000] − y1
[010]dY

2
)
∧ ∂2c

(
dt ∧ dY 2 ∧ dY 3

)

+p
[000,001]
1

(
dy1

[000] − y1
[001]dY

3
)
∧ ∂3c

(
dt ∧ dY 2 ∧ dY 3

)

+d
(

p
[00,01;0]
1

(
dy1

[000] − y1
[010]dY

2
)
∧ ∂2c

(
dt ∧ dY 2

))

.

8.6.3 The domain condition

From the general domain condition

(
(−1)rDc (dcext) −Ry1

[100]dy
1
[000]

)
∧ dY = 0 ,

which is extended by the distributed damping force u = f = −Ry1
[100], we are able to extract

the domain conditions. Here this results in
(

−d1cdp
[000,100]
1 − d2cdp

[000,010]
1 − d3cdp

[000,001]
1 −Ry1

[100]

)

dy1
[000] ∧ dt ∧ dX2 ∧ dX3 = 0

and finally the equation of motion is obtained by

ρΛy1
[200] + ς

(
y1

[040] + νy1
[022]

)
+ 2ς

(
(1 − ν) y1

[022]

)
+ ς

(
y1

[004] + νy1
[022]

)
+Ry1

[100]

= ρΛy1
[200] + ςy1

[040] + ςνy1
[022] + 2ς (1 − ν) y1

[022] + ςy1
[004] + ςνy1

[022] +Ry1
[100]

= ρΛy1
[200] + ςy1

[040] + ςy1
[004] + 2ςy1

[022] +Ry1
[100] = 0 .

8.6.4 The boundary condition on ∂D1

We consider the general boundary condition

(
(−1)r−1D∂c ((Ψn)∗ cext) −R∂y

1
[10;1]dy

1
[00;1]

)
∧ dȲ = 0 .

where the pull-back of the extended Cartan form along Ψn, i.e.

(Ψn)∗ cext = (Ψn)∗ p
[001,002]
1 dy1

[00;1] ∧ ∂3cdt ∧ dY 2 ∧ dY 3

+ (Ψn)∗ p
[010,011]
1 dy1

[01;0] ∧ ∂3cdt ∧ dY 2 ∧ dY 3

+ (Ψn)∗ p
[000,001]
1 dy1

[00;0] ∧ ∂3cdt ∧ dY 2 ∧ dY 3

+d
(

p
[00,01;0]
1

(
dy1

[00;0] − y1
[01;0]dY

2
)
∧ ∂2cdt ∧ dY 2

)
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has to be used. Additionally, we make use of the damping torque u∂ = M = −R∂y
1
[10;1] on ∂D1.

Finally we end up with the form

(

(Ψn)∗ p
[001,002]
1 −R∂y

1
[10;1]

)

dy1
[00;1] ∧ dt ∧ dY 2 − d∂2cdp

[00,01;0]
1 dy1

[00;0] ∧ dt ∧ dY 2 +

+ (Ψn)∗ p
[000,001]
1 dy1

[00;0] ∧ dt ∧ dY 2 = 0 .

Consequently we obtain the boundary conditions on ∂D1

y1
[00;0] = 0

(Ψn)∗ p
[001,002]
1 −R∂y

1
[10;1] = −ς

(
y1

[00;2] + νy1
[02;0]

)
−R∂y

1
[10;1] = 0 .

The boundary conditions on ∂D − ∂D1 are given by

y1
[00;0] = 0

y1
[00;1] = 0 ,

where the restraint support is taken into account.



Chapter 9
The Evolution of Euler-Lagrange Systems

The base manifold of the bundle π is given by the domain of integration D. We have intro-
duced local coordinates X i resp. Y i corresponding to this domain. The representation using
the coordinates Y i enables us to determine all boundary conditions by distinguishing the co-
ordinate Y r. Having physical systems at ones disposal, we have to consider an additional
distinguished coordinate – the time coordinate t.

Remark 9.1 The time coordinate t was already distinguished in the determination of the bound-

ary conditions of Euler-Lagrange systems. It is assumed that no variation takes place at the

time-boundary of the EL system.

In order to incorporate this additional information in the presented framework, we mark

Y 1 = X1 = t

as the independent coordinate representing the time. In figure 9.1 the domain D is depicted

X3

X1

X2

Y 1

Y 2Y 3

DS

∂DS

Figure 9.1: The space-time zylinder.

as a space-time cylinder, whereby the separation of time domain and spatial domain DS is
visualized. The time coordinate t is of special interest, as it allows to analyze the evolution of
certain functionals on DS along the solution σ of the EL system.

The extraction of the evolution information differs significantly for the finite-dimensional,
infinite-dimensional of 1st order, and the infinite-dimensional nth order case. For this reason
we discuss them separately.

73
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9.1 The finite-dimensional case

The extended Cartan form is in the finite-dimensional case given by

cext = c = ldY 1 + p[J ]
α

(
dyα[J−11] − yα[J ]dY

1
)
, #J = 1, . . . , n.

The single independent coordinate Y 1 equals the time coordinate t and consequently no spatial
domain DS exists.

In order to obtain the evolution information of interest, we reformulate the extended Car-
tan form in the following way

cext = −
(
p[J ]
α y

α
[J ] − l

)
dY 1 + p[J ]

α dyα[J−11]

= −hdY 1 + p[J ]
α dyα[J−11] ,

where we have introduced the function h =
(

p
[J ]
α yα[J ] − l

)

∈ C∞ (J2n−1E). It is remarkable that

this representation hides in some sense the application of the elements of the contact ideal

p
[J ]
α

(

dyα[J−11] − yα[J ]dY
1
)

that incorporate a dY 1 term. This procedure will be also applied in

the infinite-dimensional case.
From the domain condition

(−1)r (Dcdcext) ∧ dY = (−1) (d1cdcext) ∧ dY 1 = 0

we get

(−1)
(
d1c
(
−dh ∧ dY 1 + dp[J ]

α ∧ dyα[J−11]

))
∧ dY 1 =

= −dh ∧ dY 1 − d1cdp
[J ]
α dyα[J−11] ∧ dY 1 + d1cdy

α
[J−11]dp

[J ]
α ∧ dY 1 = 0 .

The exterior derivative of the function h results in

dh ∧ dY 1 =
∂h

∂yα
dyα ∧ dY 1 +

∂h

∂p
[J ]
α

dp[J ]
α ∧ dY 1

by construction. Consequently the domain condition is met iff

d1cdy
α
[J−11] =

∂h

∂p
[J ]
α

d1cdp
[11]
α = −

∂h

∂yα
(9.1)

d1cdp
[J ]
α = 0 , #J > 1 .

This representation states the equivalence of certain total derivatives and functions on the jet
manifolds. Consequently we obtained the evolution information of interest.

The first equation of (9.1) represents simply

d1cdy
α
[J−11] =

∂h

∂p
[J ]
α

= yα[J ] .

Roughly speaking all information about the evolution of the lumped parameter EL-system is

contained in the equations of (9.1) that determine the quantities d1cdp
[J ]
α , #J = 0, . . . , n.
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Having the evolutionary system representation (9.1) at ones disposal, it is easy to derive
the total time derivative of certain functions f whose exterior derivative is given by

df =
∂f

∂Y 1
dY 1 +

∂f

∂yα[J−11]

dyα[J−11] +
∂f

∂p
[11]
α

dp[11]
α +

∂f

∂p
[J ]
α

dp[J ]
α , #J > 1 .

It is obvious that the time derivative of such functions along the solution of the system1 is
determined by

d1cdf =
∂f

∂Y 1
d1cdY

1 +
∂f

∂yα[J−11]

d1cdy
α
[J−11] +

∂f

∂p
[11]
α

d1cdp
[11]
α +

∂f

∂p
[J ]
α

d1cdp
[J ]
α

=
∂f

∂Y 1
+

∂f

∂yα[J−11]

∂h

∂p
[J ]
α

−
∂f

∂p
[11]
α

∂h

∂yα
.

It is remarkable that the previously introduced function h ∈ C∞ (J2n−1π) is precisely of this
class and owns a time derivative given by

Ld1 (h) = d1cdh =
∂h

∂Y 1
+

∂h

∂yα
d1cdy

α +
∂h

∂p
[11]
α

d1cdp
[11]
α +

∂h

∂p
[J ]
α

d1cdp
[J ]
α

=
∂h

∂Y 1
,

which is nothing else, than its partial derivative with respect to time t. In the case of ∂h
∂Y 1 = 0

we see that the function h is invariant under the motion of the nth order finite-dimensional
Euler-Lagrange system.

Remark 9.2 This result confirms Noether’s theorem as the group of time translation becomes a

symmetry group of the variational problem if L∂1 (l) = 0 is met. (see, e.g., [Olver, 1986])

9.2 The infinite-dimensional case

9.2.1 Systems with 1st order Lagrangian

In the case of 1st order Lagrangians the extended Cartan form coincides again with the ordinary
Cartan form and is given by

cext = c = ldY + p[1j ]
α

(

dyα∂jcdY − yα[1j ]
dY
)

, j = 1, . . . , r .

Now we want to reformulate the domain condition

(−1)r (Dcdcext) ∧ dY = 0

and the corresponding boundary condition

(−1)r−1 (D∂c
(
Ψ2
)∗
cext
)
∧ dȲ = 0

1Here we assume the existence of a solution of the system.
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in order to make the time evolution of the I-EL system visible. This could be obtained by
choosing the following representation of the extended Cartan form

cext = ldY + p[11]
α

(
dyα ∧ ∂1cdY − yα[11]dY

)
+ p[1i]

α

(
dyα ∧ ∂icdY − yα[1i]

dY
)
, i = 2, . . . , r ,

whereby the contact form corresponding to the time coordinate, i.e. p
[11]
α

(

dyα ∧ ∂1cdY − yα[11]dY
)

is separated. Consequently we are again able to introduce a function h ∈ C∞ (J1π) such that

cext = −
(
p[11]
α yα[11] − l

)
dY + p[11]

α dyα ∧ ∂1cdY + p[1i]
α

(
dyα ∧ ∂icdY − yα[1i]

dY
)

= −hdY + p[11]
α dyα ∧ ∂1cdY + p[1i]

α

(
dyα ∧ ∂icdY − yα[1i]

dY
)

.

Remark 9.3 It is obvious that this representation “hides” again the contact form corresponding

to the time coordinate.

In order to derive the domain conditions we determine the exterior derivative

dcext = −dh ∧ dY + dp[11]
α ∧ dyα ∧ ∂1cdY

+dp[1i]
α ∧

(
dyα ∧ ∂icdY − yα[1i]

dY
)
− p[1i]

α dyα[1i]
∧ dY

and consequently we get

(−1)r (Dc (dcext)) ∧ dY = −dh ∧ dY − p[1i]
α dyα[1i]

∧ dY −
(
dicdp

[1i]
α

)
∧ dyα ∧ dY

−
(
d1cdp

[11]
α

)
dyα ∧ dY + (d1cdy

α) dp[11]
α ∧ dY

= −
∂h

∂p
[11]
α

dp[11]
α ∧ dY −

∂h

∂yα
dyα ∧ dY −

(
dicdp

[1i]
α

)
dyα ∧ dY

−
(
d1cdp

[11]
α

)
dyα ∧ dY + (d1cdy

α) dp[11]
α ∧ dY = 0 .

Thus the domain conditions are given by

d1cdy
α =

∂h

∂p
[11]
α

= δα (h) (9.2)

d1cdp
[11]
α = −

∂h

∂yα
− dicdp

[1i]
α = −

(

∂h

∂yα
− Ldi

∂h

∂yα[1i]

)

= −δα (h) ,

in this representation. Here we have applied that

−
∂h

∂yα[1i]

=
∂l

∂yα[1i]

= p[1i]
α , i = 2, . . . , r .

The boundary conditions follow from

(−1)r−1 (D∂c
(
p[1r]
α ◦ Ψ2

) (
dyα[0...0;0] ∧ dȲ

))
∧ dȲ = 0

to be given by
(
p[1r]
α ◦ Ψ2

)
dyα[0...0;0] ∧ dȲ = 0

or similarly
(

p
[1r]
α ◦ Ψ2

)

= 0 for a free boundary.
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This representation can now be used to derive the formal time derivative of a functional
∫

DS

(
j1σ
)∗

(f ∂1cdY) , f ∈ C∞
(
J1π

)
.

Additionally, we assume that the exterior derivative of f is given by

df =
∂f

∂Y i
dY i +

∂f

∂yα
dya +

∂f

∂yα[1i]

dyα[1i]
+

∂f

∂p
[11]
α

dp[11]
α , i = 2, . . . , r . (9.3)

Remark 9.4 The spatial domain DS is characterized by the fact that Y 1 = t = const. and

consequently all form parts dY 1 = 0 vanish in the corresponding functional.

Similar to the considerations presented in section 5.1 the simple approach

L∂1

∫

DS

(
j1σ
)∗

(f ∂1cdY) =

∫

DS

(
j2σ
)∗

(Ld1 (f ∂1cdY))

=

∫

DS

(
j2σ
)∗



d1cdf ∧ ∂1cdY + d (d1cf ∂1cdY)
︸ ︷︷ ︸

=0





=

∫

DS

(
j2σ
)∗

(d1cdf ∧ dY)

does not supply a separation of domain and boundary part of the time derivative of the func-
tional! Thus we extend the form f ∂1cdY by elements of the contact ideal In restricted to
domains with constant Y 1 coordinate in the following way

j1σ∗Ld1
(
f∂1cdY + p[1i]

α

(
dya − yα[1i]

dY i
)
∧ ∂ic∂1cdY

)
=

= j1σ∗
(
d1c
(
d
(
f∂1cdY + p[1i]

α

(
dya − yα[1i]

dY i
)
∧ ∂ic∂1cdY

))

+ d
(
d1c
(
f∂1cdY + p[1i]

α

(
dya − yα[1i]

dY i
)
∧ ∂ic∂1cdY

)))

= j1σ∗
(
d1c
(
df ∧ ∂1cdY + dp[1i]

α ∧
(
dya − yα[1i]

dY i
)
∧ ∂ic∂1cdY − p[1i]

α dyα[1i]
∧ ∂1cdY

)

+d
(
p[1i]
α d1cdy

a ∧ ∂ic∂1cdY
))

= j2σ∗
(
d1c
(
df ∧ ∂1cdY + dp[1i]

α ∧
(
dya − yα[1i]

dY i
)
∧ ∂ic∂1cdY − p[1i]

α dyα[1i]
∧ ∂1cdY

)

+d
(
p[1i]
α d1cdy

a ∂ic∂1cdY
))

,

where
i = 2, . . . , r

is used. Additionally, we choose

p[1i]
α =

∂f

∂yα[1i]

and make use of Dt = drc · · · cd2 in the horizontal projection of the domain part
(
j2σ
)∗
Dtcd1c

(
df ∧ ∂1cdY + dp[1i]

α ∧
(
dya − yα[1i]

dY i
)
∧ ∂ic∂1cdY

− p[1i]
α dyα[1i]

∧ ∂1cdY
)
∧ ∂1cdY =

=
(
j2σ
)∗

(−1)r−1 d1cDtc
(
df ∧ ∂1cdY + dp[1i]

α ∧
(
dya − yα[1i]

dY i
)
∧ ∂ic∂1cdY

− p[1i]
α dyα[1i]

∧ ∂1cdY
)
∧ ∂1cdY

=
(
j2σ
)∗
d1c
(
df ∧ ∂1cdY − dicdp[1i]

α ∧ dya ∧ ∂1cdY − p[1i]
α dyα[1i]

∧ ∂1cdY
)

.



9 The Evolution of Euler-Lagrange Systems 9.2.1 Systems with 1st order Lagrangian 78

This leads finally to

∫

DS

(
j2σ
)∗

(

∂f

∂Y 1
∂1cdY +

∂f

∂yα
d1cdy

α∂1cdY − dicdp[1i]
α d1cdy

a∂1cdY +
∂f

∂p
[11]
α

d1cdp
[11]
α ∂1cdY

)

=

∫

DS

(
j2σ
)∗

(

∂f

∂Y 1
+

(

∂f

∂yα
− dicd

∂f

∂yα[1i]

)

d1cdy
a +

∂f

∂p
[11]
α

d1cdp
[11]
α

)

∂1cdY .

Obviously we have obtained a structure of the functional that enables a straight forward
derivation of the domain impact on the formal time derivative of the functional along the
solution2 of the EL system.

The resulting time derivative is given by

L∂1

∫

DS

(
j1σ
)∗

(f ∂1cdY) =

=

∫

DS

(
j2σ
)∗

(

∂f

∂Y 1
+

(

∂f

∂yα
− dicd

∂f

∂yα[1i]

)

δα (h) −
∂f

∂p
[11]
α

δα (h)

)

∂1cdY

+

∫

∂DS

(
j1σ̄
)∗ (

p[1r]
α ◦ Ψ2

)
d1cdy

a
[0...0;0]∂1cdȲ

using the introduced domain and boundary condition representation of equation (9.2).

Remark 9.5 One could also derive the time derivative of a functional of the form
∫

DS

(
j1σ
)∗ (

f ′
(
Y i, yα, yα[1i]

, yα[11]

)
∂1cdY

)

if it is possible to determine yα[11] by means of p
[11]
α , i.e.

yα[11] = yα[11]

(
Y i, yα, yα[1i]

, p[11]
α

)
.

Additionally it is remarkable that the function h meets precisely (9.3) and thus we can
determine its exterior derivative to be given by

dh =
∂h

∂Y i
dY i +

∂h

∂yα
dya +

∂h

∂yα[1i]

dyα[1i]
+

∂h

∂p
[11]
α

dp[11]
α .

Consequently we are able to state

L∂1

∫

DS

(
j1σ
)∗

(h ∂1cdY) =

=

∫

DS

(
j2σ
)∗

(

∂h

∂Y 1
+

(

∂h

∂yα
− dicd

∂h

∂yα[1i]

)

d1cdy
a +

∂h

∂p
[11]
α

d1cdp
[11]
α

)

∂1cdY

+

∫

∂DS

(
j1σ̄
)∗ (

p[1r]
α ◦ Ψ2

)
d1cdy

a∂1cdȲ

=

∫

DS

(
j2σ
)∗

(

∂h

∂Y 1
+

(

∂h

∂yα
− dicd

∂h

∂yα[1i]

)

∂h

∂p
[11]
α

−
∂h

∂p
[11]
α

(

∂h

∂yα
− Ldi

∂h

∂yα[1i]

))

∂1cdY

+

∫

∂DS

(
j1σ̄
)∗ (

p[1r]
α ◦ Ψ2

)
d1cdy

a ∂rc∂1cdȲ .

2Here we assume again the existence of a solution of the infinite-dimensional system.
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Using the relation p
[1r]
α ◦Ψ2 = −p[1r]

α ◦Ψ2 and taking the domain and boundary conditions into
account, we obtain

L∂1

∫

DS

(
j1σ
)∗

(h ∂1cdY) =

∫

DS

(
j2σ
)∗ ∂h

∂Y 1
∂1cdY .

Consequently the functional
∫

DS
j1σ∗ (h ∂1cdY) is invariant under the motion of the I-EL sys-

tem, if
∂h

∂Y 1
= 0

is met.

Remark 9.6 This result confirms again Noether’s theorem as the group of time translation be-

comes a symmetry group of the variational problem if L∂1 (l) = 0 is met. (see, e.g., [Olver, 1986])

9.2.2 Systems with nth order Lagrangian

In the case of nth order Lagrangians the extended Cartan form is given by

cext = ldY + p[J−1j ,J ]
α

(

dyα[J−1j ]
∧ ∂jcdY − yα[J ]dY

)

+d

(

p
[J̄−1w,J̄ ;jr]
α

(

dyα[J̄−1w;jr] ∧ ∂wcdȲ − yα[J̄ ;jr]dȲ
))

where
j = 1, . . . , r , w = 1, . . . , r − 1 , #J,#J̄ = 1, . . . , n , dȲ = ∂[1r]cdY.

The domain condition
(−1)r (Dcdcext) ∧ dY = 0

and the corresponding boundary condition

(−1)r−1 (D∂c
(
Ψ2n−1

)∗
cext
)
∧ dȲ = 0

have to be reformulated in order to obtain a pleasant evolution information. As already indi-
cated by the previous results, we want to investigate the time evolution of functionals formu-
lated on the spatial domain DS.

The construction of the extended Cartan form is not a unique procedure. Until now we
have only used the partial ordering that corresponds to the coordinate Y r or rather to the
spatial boundary of the domain D. The physically motivated assignment of Y 1 to belong to
the system time t enables now the introduction of a second ordering.

Definition 9.7 (partial ordering 2) In the local coordinates
(

Y j, yβ, yβ[J ]

)

we define the fol-

lowing partial ordering. Let Ja = ja1 . . . jar and Jb = jb1 . . . jbr be two multi-indices. We say

Ja >part2 Jb if in the difference Ja − Jb the 1st entry is positive.

Consequently we confine ourselves in the determination of the contact forms in the con-
struction of the extended Cartan form to the set of contact forms ωα[J ] resp. ωα∂[J ] with the
largest multi-indices with respect to the partial multi-index ordering >part2. From this set of
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indices we determine the subset with the smallest indexes with respect to >part and use this in
the construction of the extended Cartan form. This concatenation of orderings is compatible
to the general index ordering and leads to a minimal amount of equations.

The concatenated orderings lead to the following representation of the extended Cartan
form

cext = ldY + p[J1−11,J1]
α

(
dyα[J1−11] ∧ ∂1cdY − yα[J1]dY

)

+p[J−1i,J ]
α

(
dyα[J−1i]

∧ ∂icdY − yα[J ]dY
)

+

d

(

p
[J̄1−11,J̄1;jr]
α

(

dyα[J̄1−11;jr] ∧ ∂1cdȲ − yα[J̄1;jr]dȲ
)

+ p
[J̄−1l,J̄ ;jr]
α

(

dyα[J̄−1l,jr]
∧ ∂lcdȲ − yα[J̄ ;jr]dȲ

))

with
i = 2, . . . , r , l = 2, . . . , r − 1 , [J1] = [j10 . . . 0] , j1 = 0, . . . , n− 1

and
[
J̄1; jr

]
= [j10 . . . 0; jr] , j1 = 0, . . . , n− 1 #J = #J = 1, . . . , n.

Here we have again separated all elements of the contact ideals that incorporate any ∂1cdY
resp. ∂1cdȲ entry. The reason for this reformulation is that the domain resp. boundary
condition will cause a total derivative d1 to operate on such entries and thus we obtain the
representation of interest.

Now we are able to introduce again the function h = p
[J1,J1+11]
α yα[J1] − l ∈ C∞ (J2n−1E) to

the domain condition and obtain

cext = −
(
p[J1,J1+11]
α yα[J1] − l

)
dY + p[J1−11,J1]

α dyα[J1−11] ∧ ∂1cdY

+p[J−1i,J ]
α

(
dyα[J−1i]

∧ ∂icdY − yα[J ]dY
)

+d

(

p
[J̄1−11,J̄1;jr]
α

(

dyα[J̄1−11;jr] ∧ ∂1cdȲ − yα[J̄1;jr]dȲ
)

+ p
[J̄−1l,J̄ ;jr]
α

(

dyα[J̄−1l;jr]
∧ ∂lcdȲ − yα[J̄ ;jr]dȲ

))

= −hdY + p[J1−11,J1]
α dyα[J1−11] ∧ ∂1cdY + p[J−1i,J ]

α

(
dyα[J−1i]

∧ ∂icdY − yα[J ]dY
)

+d

(

p
[J̄1−11,J̄1;jr]
α

(

dyα[J̄1−11;jr] ∧ ∂1cdȲ − yα[J̄1;jr]dȲ
)

+ p
[J̄−1l,J̄ ;jr]
α

(

dyα[J̄−1l;jr]
∧ ∂lcdȲ − yα[J̄ ;jr]dȲ

))

.
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On the boundary we make use of the function h̄jr = p
[J̄1−11,J̄1;jr]
α yα

[J̄1;jr]
∈ C∞

(
J2n−1Ē

)
and get

(
Ψ2n−1

)∗
cext =

(
p[J−1r,J ]
α ◦ Ψ2n−1

)
dyα[J̄ ;jr−1r] ∧ dȲ

+d

(

p
[J̄1−11,J̄1;jr]
α

(

dyα[J̄1−11;jr] ∧ ∂1cdȲ − yα[J̄1;jr]dȲ
))

+d

(

p
[J̄−1l,J̄ ;jr]
α

(

dyα[J̄−1l;jr]
∧ ∂lcdȲ − yα[J̄ ;jr]dȲ

))

= −d

(

p
[J̄1−11,J̄1;jr]
α yα[J̄1;jr]

)

∧ dȲ +
(
p[J−1r,J ]
α ◦ Ψ2n−1

)
dyα[J̄ ;jr−1r] ∧ dȲ

+dp
[J̄1−11,J̄1;jr]
α ∧ dyα[J̄1−11;jr] ∧ ∂1cdȲ

+d

(

p
[J̄−1l,J̄ ;jr]
α

(

dyα[J̄−1l;jr]
∧ ∂lcdȲ − yα[J̄ ;jr]dȲ

))

= −dh̄jr ∧ dȲ +
(
p[J−1r,J ]
α ◦ Ψ2n−1

)
dyα[J̄ ;jr−1r] ∧ dȲ

+dp
[J̄1−11,J̄1;jr]
α ∧ dyα[J̄1−11;jr] ∧ ∂1cdȲ

+d

(

p
[J̄−1l,J̄ ;jr]
α

(

dyα[J̄−1l;jr]
∧ ∂lcdȲ − yα[J̄ ;jr]dȲ

))

.

In order to derive the domain conditions, we determine the exterior derivative of the intro-
duced extended Cartan form representation

dcext = −dh ∧ dY − p[J−1i,J ]
α dyα[J ] ∧ dY + dp[J−1i,J ]

α ∧
(
dyα[J−1i]

∧ ∂icdY − yα[J ]dY
)

+dp[J1−11,J1]
α ∧ dyα[J1−11] ∧ ∂1cdY .

Consequently we get

(−1)r (Dc (dcext)) ∧ dY =

= −dh ∧ dY − p[J−1i,J ]
α dyα[J ] ∧ dY −

(
dicdp

[J−1i,J ]
α

)
∧ dyα[J−1i]

∧ dY

−
(
d1cdp

[J1−11,J1]
α

)
dyα[J1−11] ∧ dY +

(
d1cdy

α
[J1−11]

)
dp[J1−11,J1]

α ∧ dY

= −
∂h

∂p
[J1−11,J1]
α

dp[J1−11,J1]
α ∧ dY −

∂h

∂yα[J1−11]

dyα[J1−11] ∧ dY −
(
dicdp

[J−1i,J ]
α

)
dyα[J−1i]

∧ dY

−
(
d1cdp

[J1−11,J1]
α

)
dyα[J1−11] ∧ dY +

(
d1cdy

α
[J1−11]

)
dp[J1−11,J1]

α ∧ dY = 0 .

Here we have applied that

−
∂h

∂yα[J ]

dyα[J−1i]
=

∂l

∂yα[J ]

dyα[J−1i]
, J 6= J1 , #J = 1, . . . , n .

Thus the domain conditions are given by

d1cdy
α
[J1−11] =

∂h

∂p
[J1−11,J1]
α

, #J1 = 1, . . . , n

d1cdp
[0,11]
α = −

∂h

∂yα
− dicdp

[0,1i]
α = −δα (h) , i = 2, . . . , r

d1cdp
[J1−11,J1]
α = 0 , #J1 = 2, . . . , n .
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The boundary conditions follow from

(−1)r−1 (D∂c
(
Ψ2n−1

)∗
cext
)
∧ dȲ =

= (−1)r−1
(

D∂c
(

− dh̄jr ∧ dȲ +
(
p[J−1r,J ]
α ◦ Ψ2n−1

)
dyα[J̄ ;jr−1r] ∧ dȲ

+dp
[J̄1−11,J̄1;jr]
α ∧ dyα[J̄1−11;jr] ∧ ∂1cdȲ

+d

(

p
[J̄−1l,J̄ ;jr]
α

(

dyα[J̄−1l;jr]
∧ ∂lcdȲ − yα[J̄ ;jr]dȲ

)))

∧ dȲ

= −dh̄jr ∧ dȲ +
(
p[J−1r,J ]
α ◦ Ψ2n−1

)
dyα[J̄ ;jr−1r] ∧ dȲ

−d1cdp
[J̄1−11,J̄1;jr]
α dyα[J̄1−11;jr] ∧ dȲ + d1cdy

α

[J̄1−11;jr] dp
[J̄1−11,J̄1;jr]
α ∧ dȲ

+dlcdp
[J1∂ ,J̄+1l;jr]
α dyα[J̄−1l;jr]

∧ dȲ − p
[J̄−1l,J̄ ;jr]
α dyα[J̄ ;jr] ∧ dȲ

= −dh̄jr ∧ dȲ + p[J1+Jr,J1+Jr+1r]
α dyα[J̄1;jr] ∧ dȲ

−d1cdp
[J̄1−11,J̄1;jr]
α dyα[J̄1−11;jr] ∧ dȲ + d1cdy

α

[J̄1−11;jr] dp
[J̄1−11,J̄1;jr]
α ∧ dȲ

+dlcdp
[J̄1−11,J̄−11+1l;jr]
α dyα[J̄1−11,jr]

∧ dȲ

= 0 ,

where we have already used the construction rule of the functions p
[J̄−1l,J̄ ;jr]
α . By means of

these functions all p
[J−1r,J ]
α dyα[J−1r]∧dȲ terms, where [J − 1r] 6=

[
J̄1; jr

]
, are cancelled out. The

definition of h̄jr leads to an exterior derivative of the form

dh̄jr = p
[J̄1−11,J̄1;jr]
α dyα[J̄1;jr] + yα[J̄1;jr]dp

[J̄1−11,J̄1;jr]
α

and finally we obtain the boundary conditions

d1cdy
α

[J̄1−11,jr]
=

∂

∂p
[J̄1−11,J̄1;jr]
α

cdh̄jr = yα[J̄1;jr]

d1cdp
[J̄1−11,J̄1;jr]
α = −

∂

∂yα
[J̄1−11,jr]

cdh̄jr + dlcdp
[J̄1−11,J̄1−11+1l;jr]
α + p[J1+Jr,J1+Jr+1r]

α ,

where Jr = [0 . . . 0jr] is used.
In this nth order Lagrangian case, we will not try to derive the time derivative of an arbitrary

functional. Here we will focus only on the time derivative of the functional

L∂1

(∫

DS

(jnσ)∗
(
h ∂1cdY + d

(
h̄jr ∂1cdȲ

))
)

.

The application of Cartan’s idea using elements of the contact ideal In, I∂n restricted to DS
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leads to

(
j2nσ

)∗
Ld1
(
h∂1cdY + p[J−1i,J ]

α

(
dya[J−1i]

∧ ∂ic∂1cdY − yα[J ]∂1cdY
)

+d

(

h̄jr ∂1cdȲ + p
[J̄−1l,J̄ ;jr]
α

(

dya[J̄−1l;jr]
∂lcdȲ − yα[J̄ ;jr]dȲ

)))

=
(
j2nσ

)∗
d1cd

(
h∂1cdY + p[J−1i,J ]

α

(
dya[J−1i]

∧ ∂ic∂1cdY − yα[J ]∂1cdY
))

+d
(
d1c
(
h∂1cdY + p[J−1i,J ]

α

(
dya[J−1i]

∧ ∂ic∂1cdY − yα[J ]∂1cdY
)

+ d

(

h̄jr ∂1cdȲ + p
[J̄−1l,J̄ ;jr]
α

(

dya[J̄−1l;jr]
∂lc∂1cdȲ − yα[J̄ ;jr]∂1cdȲ

))))

.

Consequently we get on the domain DS

d1cDtc
(
dh ∧ ∂1cdY + dp[J−1i,J ]

α ∧
(
dya[J−1i]

∧ ∂ic∂1cdY − yα[J ]∂1cdY
)

− p[J−1i,J ]
α dyα[J ] ∧ ∂1cdY

)
∧ ∂1cdY

= d1c
(
dh ∧ ∂1cdY − dicdp[J−1i,J ]

α ∧ dya[J−1i]
∧ ∂1cdY − p[J−1i,J ]

α dyα[J ] ∧ ∂1cdY
)

=

(

∂h

∂Y 1
+

∂h

∂yα
d1cdy

α +
∂h

∂p
[0,11]
α

d1cdp
[0,11]
α − dicdp[0,1i]

α d1cdy
a

)

∧ ∂1cdY

=
∂h

∂Y 1
+

(
∂h

∂yα
− dicdp[0,1i]

α

)

d1cdy
α ∧ ∂1cdY +

∂h

∂p
[0,11]
α

d1cdp
[0,11]
α ∧ ∂1cdY

=
∂h

∂Y 1
.

Here the functions p
[J−1i,J ]
α are determined in such a way that all dyα[J ] ∧ ∂1cdY entries with

#J > 1 are cancelled out. Due to the introduction of the partial ordering >part2 in the deter-

mination of p
[J−1i,J ]
α and the fact that

−
∂h

∂yα[J ]

dyα[J−1i]
=

∂l

∂yα[J ]

dyα[J−1i]
, J 6= J1 , #J = 1, . . . , n ,

it is guarantied that

d1cdp
[0,11]
α = −

∂h

∂yα
− dicdp

[0,1i]
α = −

(
∂h

∂yα
− dicdp[0,1i]

α

)

.

This identity was used in the simplification applied in the last line of the latter equation.
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Additionally, we get on the boundary ∂DS

d1cDt∂c
(
Ψ2n−1

)∗ (
h∂1cdY + p[J−1i,J ]

α

(
dya[J−1i]

∧ ∂ic∂1cdY − yα[J ]∂1cdY
)

+ d

(

h̄jr ∧ ∂1cdȲ + p
[J̄−1l,J̄ ;jr]
α

(

dya[J̄−1l;jr]
∂lc∂1cdȲ − yα[J̄ ;jr]∂1cdȲ

)))

∧ ∂1cdȲ

= d1cDt∂c
(
−p[J−1r,J ]

α dya[J−1r] ∧ ∂1c∂rcdY + d
(
h̄jr ∧ ∂1cdȲ

)

+ d

(

p
[J̄−1l,J̄ ;jr]
α

(

dya[J̄−1l;jr]
∂lc∂1cdȲ − yα[J̄ ;jr]∂1cdȲ

)))

∧ ∂1cdȲ

= d1cDt∂c
(
−p[J−1r,J ]

α dya[J−1r] ∧ ∂1cdȲ − p
[J̄−1l,J̄ ;jr]
α dyα[J̄ ;jr] ∧ ∂1cdȲ

+d
(
h̄jr ∧ ∂1cdȲ

)

+ dp
[J̄−1l,J̄ ;jr]
α ∧

(

dya[J̄−1l;jr]
∂lc∂1cdȲ − yα[J̄ ;jr]∂1cdȲ

))

∧ ∂1cdȲ

= d1c

(

−p[J1+Jr,J1+Jr+1r]
α dyα[J1+Jr] + dh̄jr − dlcdp

[J̄−1l,J̄ ;jr]
α dya[J̄1−1l;jr]

)

∧ ∂1cdȲ

= −p[J1+Jr,J1+Jr+1r]
α d1cdy

α
[J1+Jr] +

∂h̄jr

∂p
[J̄1−11,J̄1;jr]
α

d1cdp
[J̄1−11,J̄1;jr]
α

+
∂h̄jr

∂yα
[J̄1−11,jr]

d1cdy
α

[J̄1−11,jr]
− dlcdp

[J̄1,J̄+1l;jr]
α d1cdy

a

[J̄1;jr]

=
∂h̄jr

∂p
[J̄1−11,J̄1;jr]
α

d1cdp
[J̄1−11,J̄1;jr]
α

+




∂h̄jr

∂yα
[J̄1−11,jr]

− dlcdp
[J̄1−11,J̄1−11+1l;jr]
α − p

[J̄1−11+Jr,J̄1−11+Jr]
α



 d1cdy
α
[J1∂−11,jr]

= 0 .

Consequently the functional

∫

DS

(jnσ)∗
(
h ∂1cdY + d

(
h̄jr ∂1cdȲ

))

is invariant along the solution of the corresponding Euler-Lagrange system if ∂h̄
∂Y 1 = 0.

Remark 9.8 This result confirms again Noether’s theorem as the group of time translation be-

comes a symmetry group of the variational problem if L∂1 (l) = 0 is met. (see, e.g., [Olver, 1986])
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9.3 Application: The Kirchhoff plate

Here we will make use of the model of the damped Kirchhoff plate as derived in section 8.6.
We will show, how the time evolution of the system could be described.

9.3.1 The extended Cartan form

The reformulation of the extended Cartan form leads to

cext =

(
1

2
ρΛ
(
y1

[100]

)2
− p

[000,100]
1 y1

[100]

−
1

2
ς
((
y1

[020]

)2
+
(
y1

[002]

)2
+ 2νy1

[002]y
1
[020] + 2 (1 − ν)

(
y1

[011]

)2
))

dt ∧ dY 2 ∧ dY 3

+p
[010,020]
1

(
dy1

[010] − y1
[020]dY

2
)
∧ ∂2cdt ∧ dY 2 ∧ dY 3

+p
[001,002]
1

(
dy1

[001] − y1
[002]dY

3
)
∧ ∂3cdt ∧ dY 2 ∧ dY 3

+p
[010,011]
1

(
dy1

[010] − y1
[011]dY

3
)
∧ ∂3cdt ∧ dY 2 ∧ dY 3

+p
[000,100]
1 dy1

[000] ∧ ∂1cdt ∧ dY 2 ∧ dY 3

+p
[000,010]
1

(
dy1

[000] − y1
[010]dY

2
)
∧ ∂2cdt ∧ dY 2 ∧ dY 3

+p
[000,001]
1

(
dy1

[000] − y1
[001]dY

3
)
∧ ∂3cdt ∧ dY 2 ∧ dY 3

+d
(

p
[00,01;0]
1

(
dy1

[000] − y1
[010]dY

2
)
∧ ∂2cdt ∧ dY 2

)

.

whereby the function

−h =
1

2
ρΛ
(
y1

[100]

)2
− p

[000,100]
1 y1

[100]

−
1

2
ς
((
y1

[020]

)2
+
(
y1

[002]

)2
+ 2νy1

[002]y
1
[020] + 2 (1 − ν)

(
y1

[011]

)2
)

is introduced. We do not have to consider a function h̄jr , because no p
[J̄1−11,J̄1;jr]
α function

appears in this example.

9.3.2 Domain Condition

From the general domain condition with external input

(
(−1)rDcdcext −Ry1

[100]dy
1
[000]

)
∧ dY = 0 ,

we obtain

d1cdy
α
[000] =

∂h

∂p
[000,100]
α

= y1
[100] (9.4)

d1cdp
[000,100]
α = −

∂h

∂yα[000]
− d2cdp

[000,010]
α − d3cdp

[000,001]
α −Ry1

[100]

= −ςy1
[040] − (2ς − ςν) y1

[022] − ς
(
y1

[004] + νy1
[022]

)
−Ry1

[100]

= −ςy1
[040] − ςy1

[004] − 2ςy1
[022] −Ry1

[100]
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where

p
[000,010]
1 = +ςy1

[030] + ςνy1
[012] + (2ς − 2ςν) y1

[012] = ςy1
[030] + (2ς − ςν) y1

[012]

p
[000,001]
1 = ς

(
y1

[003] + νy1
[021]

)
.

is used. It is obvious that the obtained domain condition representation is equivalent to the
one already determined in section 8.6.

9.3.3 Boundary Condition

We have already determined the conditions on ∂D1

p
[001,002]
1 −R∂y

1
[101] = −ς

(
y1

[002] + νy1
[020]

)
−R∂y

1
[101] = 0 .

9.3.4 Time evolution of a functional

We investigate now the evolution of the functional
∫

DS

(
j2σ
)∗ (

hdY 2 ∧ dY 3
)

=

=

∫

DS

j2σ∗

(
1

2
ς
((
y1

[020]

)2
+
(
y1

[002]

)2
+ 2νy1

[002]y
1
[020] + 2 (1 − ν)

(
y1

[011]

)2
)

−
1

2
ρΛ
(
y1

[100]

)2
+ p

[000,100]
1 y1

[100]

)

dY 2 ∧ dY 3

along the solution σ of the system. Consequently we have to modify the functional following
Cartan’s idea. We choose the following elements of the contact ideal I2 restricted to DS:

p[J−I1,J ]
α

(
dyα[J−I1] − yα[J ]dY

i
)
∧ ∂ic

(
dY 2 ∧ dY 3

)
, I1 = 1i , i ∈ {2, 3} , #J ∈ {1, 2}

Determination of the functions p
[J−I1,J ]
α

In a first step we derive all functions according to multi-indices with #J = 2. We get similar
to the results of section 8.6

p
[010,020]
1 = ∂

[020]
1 h = −∂[020]

1 l = ς
(
y1

[020] + νy1
[002]

)
= −p[010,020]

1

p
[001,002]
1 = ∂

[002]
1 h = −∂[002]

1 l = ς
(
y1

[002] + νy1
[020]

)
= −p[001,002]

1

p
[010,011]
1 = ∂

[011]
1 h = −∂[011]

1 l = 2ς
(
(1 − ν) y1

[011]

)
= −p[010,011]

1 .

In the next step we consider multi-indices J whose length is #J = 1. We obtain

p
[000,010]
1 = ∂

[010]
1 h−

r∑

i=2

Ldi

(

p
[010,010+1i]
1

)

= −p[000,010]
1

= −Ld2

(

p
[010,020]
1

)

− Ld3

(

p
[010,011]
1

)

= −ς
(
y1

[030] + νy1
[012]

)
− 2ς (1 − ν) y1

[012]

p
[000,001]
1 = ∂

[001]
1 h−

r∑

i=2

Ldi

(

p
[001,001+1i]
1

)

= −p[000,001]
1

−Ld3

(

p
[001,002]
1

)

= − ς
(
y1

[003] + νy1
[021]

)
.
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Consequently it is only left to derive the functions p
[J̄−1wl

,J̄ ;jr]
α .

Determination of the functions p
[J̄−1wl

,J̄ ;jr]
α

Here we obtain a single function from [J − 1r] =
[
J̄ ; jr

]
to be given by

p
[00,01;0]
1 = p

[010,011]
1 = +2ς

(
(1 − ν) y1

[011]

)
,

where jr = 0 and #J̄ = 1 is used.
Finally we end up with the following functional

∫

DS

(
j2σ
)∗ (

hdY 2 ∧ dY 3
)

=

∫

DS

(
j3σ
)∗
c̆

=

∫

DS

(
j3σ
)∗
((

−
1

2
ρΛ
(
y1

[100]

)2
+ p

[000,100]
1 y1

[100]

+
1

2
ς
((
y1

[020]

)2
+
(
y1

[002]

)2
+ 2νy1

[002]y
1
[020] + 2 (1 − ν)

(
y1

[011]

)2
))

dY 2 ∧ dY 3

+p
[010,020]
1

(
dy1

[010] − y1
[020]dY

2
)
∧ ∂2cdY

2 ∧ dY 3

+p
[001,002]
1

(
dy1

[001] − y1
[002]dY

3
)
∧ ∂3cdY

2 ∧ dY 3

+p
[010,011]
1

(
dy1

[010] − y1
[011]dY

3
)
∧ ∂3cdY

2 ∧ dY 3

+p
[000,010]
1

(
dy1

[000] − y1
[010]dY

2
)
∧ ∂2cdY

2 ∧ dY 3

+p
[000,001]
1

(
dy1

[000] − y1
[001]dY

3
)
∧ ∂3cdY

2 ∧ dY 3

+d
(

p
[00,01;0]
1

(
dy1

[000] − y1
[010]dY

2
)
∧ ∂2cdY

2
))

whose time derivative is of interest.

9.3.5 Domain impact

Thus we consider

L∂t

∫

DS

(
j3σ
)∗
c̆ =

∫

DS

(
j4σ
)∗

Ldt
(c̆)

=

∫

DS

(
j4σ
)∗
dtcdc̆+

∫

∂DS

(
j4σ̄
)∗
dtc
((

Ψ3
)∗
c̆
)

.
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This leads to
∫

DS

(
j4σ
)∗
dtc
(
(Dtcdc̆) ∧ dY 2 ∧ dY 3

)

=

∫

DS

(
j4σ
)∗
dtc

((

∂h

∂y1
[000]

− d2cdp
[000,010]
1 − d3cdp

[000,001]
1

)

dy1
[000]

+
∂h

∂p
[000,100]
1

dp
[000,100]
1

)

dY 2 ∧ dY 3

=

∫

DS

(
j4σ
)∗

((

∂h

∂y1
[000]

− d2cdp
[000,010]
1 − d3cdp

[000,001]
1

)

dtcdy
1
[000]

+
∂h

∂p
[000,100]
1

dtcdp
[000,100]
1

)

dY 2 ∧ dY 3

=

∫

DS

(
j4σ
)∗ ((

+ς
(
y1

[040] + νy1
[022]

)
+ 2ς (1 − ν) y1

[022] + ς
(
y1

[004] + νy1
[022]

))
y1

[100]

+y1
[100]

(
−ςy1

[040] − ςy1
[004] − 2ςy1

[022] −Ry1
[100]

))
dY 2 ∧ dY 3

=

∫

DS

(
j4σ
)∗
(

−R
(
y1

[100]

)2
dY 2 ∧ dY 3

)

on the domain.

9.3.6 Boundary impact

The boundary conditions supply
∫

∂DS

(
j4σ̄
)∗
dtc
((

Ψ3
)∗
c̆
)

=

∫

∂DS1

(
j4σ̄1

)∗
dtc
(
d2c
((

Ψ3
)∗
c̆
)
∧ dX2

)

where
((

Ψ3
)∗
c̆
)

= p
[001,002]
1 dy1

[00;1] ∧ dY 2 + p
[010,011]
1 dy1

[01;0] ∧ dY 2

+p
[000,001]
1 dy1

[00;0] ∧ dY 2 + d
(

p
[00,01;0]
1

(
dy1

[00;0] − y1
[01;0]dY

2
))

and consequently

(
d2c ((ιS)

∗ c̄) ∧ dX2
)

= p
[001,002]
1 dy1

[00;1] ∧ dY 2 + p
[010,011]
1 dy1

[01;0] ∧ dY 2

+p
[000,001]
1 dy1

[00;0] ∧ dY 2 − d2cdp
[00,01;1]
1 ∧ dy1

[00;0] ∧ dY 2

−p
[00,01;1]
1 dy1

[01;0] ∧ dY 2

= p
[001,002]
1 dy1

[00;1] ∧ dY 2 +
(

p
[000,001]
1 − d2cdp

[00,01;0]
1

)

dy1
[00;0] ∧ dY 2 .

Thus
∫

∂DS1

(
j4σ̄1

)∗
dtc
(
d2c
((

Ψ3
)∗
c̆
)
∧ dX2

)
=

∫

∂DS1

(
j4σ̄1

)∗
(

p
[001,002]
1 dtcdy

1
[00;1] ∧ dY 2

+
(

p
[000,001]
1 − d2cdp

[00,01;1]
1

)

dtcdy
1
[00;0] ∧ dY 2

)
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as dy1
[00;0] ∧ dY 2 = 0 at the boundary this simplifies to

∫

∂DS1

(
j4σ̄1

)∗
(

p
[001,002]
1 dtcdy

1
[00;1] ∧ dY 2

)

=

∫

∂DS1

(
j4σ̄1

)∗
(

−R∂

(
y1

[10;1]

)2
∧ dY 2

)

.

9.4 Time-invariant Hamiltonian representation

The next part of this thesis is dedicated to the so called time-invariant port Hamiltonian sys-
tems. Their description will be carried out on a manifold M in the finite- and on a bundle
(H, η,DS) in the infinite-dimensional case. The “time”-coordinate t will appear in this context
as simple curve parameter on H.

In order to derive this bundle structure from (E , π,D) we introduce the map

ιt : DS → D
(
Y 2, . . . , Y r

)
→

(
Y 1 = const., Y 2, . . . , Y r

)
.

This special inclusion map determines a new bundle structure by deriving the pull-back of the
domain jet framework along the contact bundle morphism (Ψn

t , ιt). Similarly to the consider-
ations on the determination of the boundary conditions, we obtain a jet bundle structure with
dependent coordinates yα[j1;0...0] on the total manifold H. Additionally, we confine ourselves

to Lagrangians that depend only on jet coordinates yα[j1 Jt]
with j1 ∈ {0, 1} . Furthermore we

assume that the functions p
[0,11]
α ∈ C∞ (H) allow a change of coordinates such that the bundle

(H, η,DS) is equipped with the local coordinates
(

Y i, yα, p
[0,11]
α

)

, i = 2, . . . , r, α = 1, . . . , s.

Under these restrictions we are able to identify the derived conditions on the total time deriv-

atives d1cy
α and d1cp

[0,11]
α with the coordinates of a vertical vector field

vh = ẏα∂α + ṗα̃∂α̃

with pα̃ = δα̃β̃p
[0,11]

β̃
and

ẏα = d1cy
α

ṗα̃ = δα̃β̃d1cp
[0,11]

β̃
.

Here we have used the Kronecker symbol δα̃β̃.The geometrical properties of such a Hamiltonian
operator vh are discussed in part III.

9.4.1 Application - the Kirchhoff plate

The map

δ11̃p
[000,100]
1 = ρΛy1

[100] = p1̃

enables us to pull-back the form hdt ∧ dY 2 ∧ dY 3 and we obtain

hdY 2 ∧ dY 3 =

(
1

2
ς
((
y1

[0;20]

)2
+
(
y1

[0;02]

)2
+ 2νy1

[0;02]y
1
[0;20] + 2 (1 − ν)

(
y1

[0;11]

)2
)

+

1

2ρΛ

(

p1̃
)2
)

dY 2 ∧ dY 3 .
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Having this form and equation (9.4) at ones disposal, we are able to determine the Hamilton
operator by

ẏ1 =
1

ρΛ
p1̃

ṗ1̃ = −ςy1
[0;40] − ςy1

[0;04] − 2ςy1
[0;22] −R

1

ρΛ
p1̃ .

Remark 9.9 In this case the Hamilton operator is nothing else than a generalized vector field

(see, e.g., [Saunders, 1989]).



Part III

Hamiltonian Systems
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Structure makes life much easier!

Some structures on manifolds as, e.g., the Poisson, symplectic, or Dirac structure, where
already treated in the introduction. It is now remarkable that every dynamic system, whose
mathematical description represents one of these structures is equipped with a pleasant un-
derlying property. This additional structural information could, e.g., ease the proof of stability.
In this part of the thesis we will discuss Poisson structure systems that incorporate dissipation
and in addition in- and outputs by means of ports .

Such port Hamiltonian systems with dissipation, or pHd systems [van der Schaft, 2000] for
short, have turned out to be a versatile tool for the mathematical modeling in control theory.
This class of systems comes along with a mathematical description that separates structural
properties, storage elements, and dissipative parts. Thus a network description of such plants,
which is very useful for simulation and control, becomes available.

We present in the subsequent investigations an extension of the finite-dimensional pHd
description to the infinite-dimensional case. It is shown, which differential geometric objects
have to be introduced and how boundary conditions come into play. Additionally, the key
property of pHd systems – their behavior with respect to interconnection – is investigated for
domain and boundary interconnections.

In the first chapter some well known results for finite-dimensional pHd systems are re-
called. The following chapter is dedicated to the introduction of a possible extension of the
approach to the infinite-dimensional case. We consider systems with 1st and nth order Hamil-
tonian density. Special attention is paid on the interconnection of two infinite-dimensional
pHd systems via power conserving interconnections. Additionally, it is remarkable that we
confine ourselves to the case where no differential operators are used in the system descrip-
tion. Finally the developed representation is applied to the Kirchhoff plate.



Chapter 10
Finite-dimensional port Hamiltonian
Systems with Dissipation
(F-pHd Systems)

In this section the geometrical structure and some additional properties of finite-dimensional
pHd systems are under investigation. The precise definition of the used spaces will serve as a
basis for the subsequent analysis of the infinite-dimensional case.

10.1 Geometrical structure of F-pHd systems

Let M denote the s-dimensional state manifold with coordinates (xα), α = 1, . . . , s. The canon-
ical product T (M) × T ∗(M) → C∞ (M) is given by the interior product ẋα∂αcẋβdx

β = ẋαẋα,
β = 1, . . . , s. Let U = span {eς} with coordinates (uς), ς = 1, . . . ,m denote the input vector
space. Consequently we choose the dual vector space Y = U∗ = span {eς} with coordinates
(yς) as the output vector space. The structure of a F-pHd system with state (xα), input (uς),
output (yς) and Hamiltonian H0 ∈ C∞(M) is given by

ẋ = (J −R)cdH0 + ucB (10.1)

y = BcdH0 (10.2)

or visualized as commutative diagram

U
B - T (M) � (J −R)

T ∗ (M)
B∗

- Y
Z

Z
Z

Z
Z

Z
Z

Z
τM

~ =�
�

�
�

�
�

�
�

τ ∗M

M C∞ (M)

d

6

where J = Jαβ∂α ⊗ ∂β, Jαβ = −Jβα, R = Rαβ∂α ⊗ ∂β, Rαβ = Rβα, B = Bα
ς e

ς ⊗ ∂α is used.
Additionally, the matrix

[
Rαβ

]
is positive semidefinite and all coefficients are assumed to meet

Jαβ, Rαβ, Bας ∈ C∞ (M). Obviously, the tensors J , R are maps of the form

J −R : T ∗(M) → T (M)

dH0 → (J −R)cdH0 .
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The tensor B is a map

B : U → T (M)

u → ucB

and its adjoint map is given by

B∗ : T ∗(M) → Y

dH0 → BcdH0 .

The exterior derivative d,
dH0 = ∂αH0dx

α

serves here as a map d : C∞ (M) → T ∗(M). The circumstance that the introduced Hamil-
tonian system is roughly speaking enveloped by the two linear spaces U and Y is visualized is
figure 10.1.

u yH0

Figure 10.1: A F-pHd system.

Remark 10.1 The map B is a special two feet tensor, as the first feet is an element of a linear

space, i.e. a vector and the second feet is a vector field on the manifold M. This construction

guaranties that the pairing of in- and output ucy takes place at the footing p ∈ M of the vector

field part of the tensor B. Consequently a port consists of two dual vector spaces and an additional

footing information.

10.2 The Hamilton operator and collocation

Let us introduce the Hamilton operator1 vH = ẋα∂a with ẋα from (10.1) and visualize it on the
state manifold in Fig. 10.2.

Remark 10.2 This introduction of the Hamilton operator is compatible to the classical definition

of a Hamilton vector field (see section 1.3.1), if the system is free, no dissipation is considered,

i.e. R = 0, and the functions Jαβ meet equation (1.4). In this case the tensor J induces a Poisson

structure on the manifold M.

1The introduced Hamilton operator is not a vector field on M because of its dependence on the input u. In
fact it is a submanifold of T (M) parametrized by u.
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Hamilton operator vH

trajectory

the state
manifold:

Figure 10.2: The finite dimensional Hamilton operator vH (for u = u (x)).

Taking into account this definition, we easily obtain the well known relation

LvH
(H0) = vHcd(H0) = − (RcdH0)cdH0 + ucy . (10.3)

Obviously the product ucy equals the external impact on the formal time derivative of the
Hamiltonian H0. One can often interpret this product as the power fed into the system. It is
common to call such an in- and output configuration collocated in- and outputs.

If the input map is given by B = −eς ⊗ JcdHς with suitable functions Hς , then from

LvH
(Hς) = ((J −R)cdH0 − uωJcdHω)cdHς , ω = 1 . . .m

it follows that LvH
(Hς) = yς is fulfilled for the case that (RcdH0)cdHς = (JcdHω)cdHς = 0.

This often applies in mechanics.



Chapter 11
Infinite-dimensional port Hamiltonian
Systems
(I-pHd Systems)

In order to extend the pHd approach from the finite- to the infinite-dimensional case, we have
to replace the state manifold M, its tangent bundle T (M), its cotangent bundle T ∗(M) and
the smooth functions C∞ (M) by new spaces. Furthermore, the free HamiltonianH0, the maps
J , R, B and the exterior derivative d have to be substituted by new functions and operators.

11.1 Geometrical structure of I-pHd systems

First we introduce the bounded base manifold D with local coordinates (X i) 1, i = 1, . . . , r.
Commonly these coordinates will represent the independent spatial coordinates according to
the analyzed plant. Additionally, let (H, η,D) be the “state” bundle with local coordinates
(X i, xα), α = 1, . . . , s, where xα represents the dependent coordinates.

From η we derive four important bundles:

• The nth jet bundle (Jnη, ηn,D) with the adapted coordinates
(

X i, xα, xα[J ]

)

according to

the total manifold Jnη;

• the vertical tangent bundle
(

V η, τH|V η ,H
)

with coordinates (X i, xα, ẋα);

• the exterior bundle
(
∧0
rT

∗ (H) , τ∧0
rT

∗(H),H
)

where ∧0
r (T ∗ (H)) = span {dX} and adapted

local coordinates (X i, xα, r);

• and the exterior bundle
(
∧1
rT

∗ (H) , τ∧1
r(T ∗(H)),H

)
where ∧1

r (T ∗ (H)) = span {dxα ∧ dX}
and adapted local coordinates (X i, xα, ṙα).

Here the volume form dX = dX1 ∧ · · · ∧ dXr is used.

1Here the independent coordinates do not incorporate the time coordinate, as we consider only time-invariant
pHd systems. Thus the base domain equals the r − 1 dimension spatial domain DS of the Euler-Lagrange part.
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Furthermore we define the interior product

c : V η × ∧1
r (T ∗ (H)) → ∧0

rT
∗ (H)

(ẋα∂α, ṙαdx
α ∧ dX) → ẋα∂αcṙαdx

α ∧ dX = ẋαṙαdX

to represent the canonical product of the I-pHd system. An nth order I-pHd system is equipped
with a Hamiltonian h0dX, h0 ∈ C∞ (Jnη). Considering the previously introduced bundles we
see that the Hamiltonian is a section on the pull-back bundle h0dX ∈ Γ

(
(ηn0 )∗ τ∧0

rT
∗(H)

)
.

Now we are able to replace T (M), T ∗(M), C∞ (M) of chapter 10 by the pull-back bundles
(η2n

0 )
∗
τH|V η, (η2n

0 )
∗
τ∧1

r(T ∗(H)), (ηn0 )∗ τ∧0
rT

∗(H). Additionally, we use the variational derivative

δ : (ηn0 )∗ ∧0
r T

∗ (H) → (η2n
0 )

∗
∧1
r (T ∗ (H)) instead of the exterior derivative of the chapter 10

and substitute the tensors J,R by suitable maps J,R : (η2n
0 )

∗
∧1
r (T ∗ (H)) → (η2n

0 )
∗
V η. The

map J is assumed to be skew symmetric, i.e. Jαβ = −Jβα, and R to be a symmetric positive
semidefinite map.

Remark 11.1 The maps J,R could also be differential operators (see, e.g., [Olver, 1986]), i.e.

maps of the form
(
η2n

0

)∗
∧1
r (T ∗ (H)) →

(
η2n+m

0

)∗
V η ,

where m > 0. Here we will confine ourselves to the non-differential-operator case.

For the input space we choose a vector bundle (U , ηU ,D) with local coordinates (X i, uς), ς =
1, . . . ,m and basis {eς}. Of course, the output space Y = U∗ is given by the dual vector bundle,
where we use the coordinates (X i, yς) and the basis {eς ⊗ dX}. Furthermore, we conclude that
there exists a bilinear map U ×D Y → ∧0

r (T ∗ (H)) given by uςeςcyςe
ς⊗dX = uςyςdX. The input

map

B : U →
(
η2n

0

)∗
V η

(uςeς) → uςeςcB
α
ς e

ς ⊗ ∂α

and its adjoint – the output map B∗

B∗ :
(
η2n

0

)∗
∧1
r (T ∗ (H)) → Y

δαh0dx
α ∧ dX → Bα

ς e
ς ⊗ ∂αcδαh0dx

α ∧ dX

are defined by the tensor Bα
ς e

ς ⊗ ∂α.
Finally we propose the structure of an infinite-dimensional port Hamiltonian system

ẋ = (J − R) (δ (h0dX)) + B (u) (11.1)

y = B∗ (δ (h0dX)) , (11.2)
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or visualized in the following commutative diagram.

U
B-
(
η2n

0

)∗
V η � (J − R) (

η2n
0

)∗
∧1
p T

∗ (H)
B∗

- Y

@
@

@
@

@
(η2n

0 )
∗
τH|V η

R 	�
�

�
�

�
(η2n

0 )
∗
τ∧1

pT
∗(H)

J2nη J2nη (ηn0 )∗ ∧0
p T

∗ (H)

δ

6

@
@

@
@

@

η2n
0

R 	�
�

�
�

�
η2n

0

D

ηU

?
V η

τH|V η
- H �

τ∧1
pT

∗(H)

∧1
pT

∗ (H) D

ηY

?

D .

η

?

The maps J,R are in local coordinates given by

J :
(
η2n

0

)∗
∧1
r (T ∗ (H)) →

(
η2n

0

)∗
V η

ṙαdx
α ∧ dX → Jβαṙα∂β

with Jβα = −Jαβ and

R :
(
η2n

0

)∗
∧1
r (T ∗ (H)) →

(
η2n

0

)∗
V η

ṙαdx
α ∧ dX → Rβαṙα∂β

with Rβα = Rαβ, Rβαṙαṙβ ≥ 0.

Remark 11.2 Here we have again introduced a combination of in- and output maps B and B∗

that provides all three ingredients of a port. Of course two components of the port are given by

the dual vector bundles U and Y representing the space of in- and output variables. The third

component is again given by the footing p ∈ H of the vertical vector field part of the tensor

Bα
ς e

ς ⊗ ∂α.

This general definitions will now be used to investigate the boundary conditions of I-pHd
systems with 1st order Hamiltonian. After that, we extend the achieved results to the case of
systems with nth order Hamiltonian.

11.2 Boundary Ports of I-pHd Systems

The central object of I-pHd systems is given by the Hamiltonian functional

H (σ) =

∫

D

(jnσ)∗ (h0dX) ,
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whereat the nth prolongation of the section σ ∈ Γ (η) is applied. The evolution of the I-pHd
system is determined by the η-vertical operator2 vh = ẋα∂α ∈ (η2n

0 )
∗
τH|V η with ẋα from (11.1)

and denoted as the Hamilton operator. Thus we are able to depict vh in figure 11.1, whereby
the fibre preserving property of the corresponding automorphism, i.e. the supposed solution,
is stressed.

vertical Hamilton operator vh

base manifold

fibres

the state
bundle:

Figure 11.1: The η-vertical Hamilton operator vh (Here we assume u = u
(

X i, xα[J ]

)

and con-

sequently vh becomes a generalized vector field).

In order to visualize the special properties of the Hamilton operator and to derive the
impact of the boundary conditions, we have to consider the time derivative of H along the so-
lution of the corresponding I-pHd system. We are able to formulate the formal time derivative3

of the Hamiltonian functional as

d

dt
H = Ljnvh

(H) =

∫

D

(
j2nσ

)∗
Ljnvh

(h0dX) . (11.3)

It is obvious that this mathematical problem is similar to the tasks treated in the calculus of
variations. Consequently we will make heavy use of the cognitions obtained in chapter 8.

First we introduce new local coordinates (Zi) resp. (Zi, zα) for the total resp. the base man-
ifold of the bundle η such that the requirements stated in section 8.1.14 are met. Consequently
we are able to pull-back the Hamiltonian h0dX and obtain h′0dZ. Again we will suppress the
superscript and use h0dZ instead of h′0dZ. The Hamilton operator is denoted by vh = żα∂α in
the local coordinates (Zj, zα). The corresponding boundary bundle is defined by

(
H̄, η̄, ∂D

)
,

equipped with the coordinates
(

Z̄i, zα[0...0;jr]

)

and the boundary section σ̄ : ∂D → H̄. Addition-

ally, we introduce the domain and boundary jet framework Πn resp. Πn
∂ and the corresponding

contact ideals In resp. I∂n.
This definitions enable us to introduce the extended Hamiltonian

hext = h0dZ + ω + d (ω∂) , ω ∈ In , (Ψn)∗ ω∂ ∈ I∂n ,

2Again, this operator is not a vector field, but a submanifold of
(
η2
0

)∗
τH|V η parametrized in u.

3The introduced formal time derivative becomes the time derivative, if the solution exists and is parametrized
in the time t.

4Here we use the local coordinates
(
Zi, zα

)
instead of

(
Y i, yα

)
in order to prevent confusion with the local

coordinates of the output bundle ηY .
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where we made use of boundary contact bundle morphism (Ψn, ι).
It is obvious that the additional forms ω, (Ψn)∗ ω∂ as elements of the contact ideals In, I∂n

do not modify the Hamiltonian functional, i.e.

H (σ) =

∫

D

(jnσ)∗ (h0dZ) =

∫

D

(jnσ)∗ (hext) .

Now it is left to determine the forms ω, ω∂ in an appropriate fashion, such that we can deter-
mine the domain and boundary impact of the system evolution on the Hamiltonian functional.
Similarly to the calculus of variations, we will discuss these points for systems with 1st and nth

order Hamiltonian separately.

11.3 Systems with 1
st order Hamiltonian

In this restrictive case we are able to construct the extended Hamiltonian analogously to the
Cartan form, i.e.

hext = h0dZ + p[1i]
α

(
dzα ∧ ∂icdZ − zα[1i]

dZ
)

.

The unknown functions p
[1i]
α are similarly defined and given by

p[1i]
α =

∂h0

∂zα[1i]

.

Finally we get

∫

D

(
j2σ
)∗

Lj1vh
(h0dZ) =

∫

D

(
j2σ
)∗

Lj1vh

(

h0dZ +
∂h0

∂zα[1i]

(
dzα − zα[1i]

dZi
)
∧ ∂icdZ

)

=

∫

D

(
j2σ
)∗

(

vhcd

(

h0dZ +
∂h0

∂zα[1i]

(
dzα − zα[1i]

dZi
)
∧ ∂icdZ

)

+d

(

vhc

(

∂h0

∂zα[1i]

dzα ∧ ∂icdZ

)))

=

∫

D

(
j2σ
)∗

(

vhcδαh0dz
α ∧ dZ +

dh

(

vhc

(

∂h0

∂zα[1i]

dzα ∧ ∂icdZ

))

+ dv

(

vhc

(

∂h0

∂zα[1i]

dzα ∧ ∂icdZ

)))

=

∫

D

(
j2σ
)∗
vhc
(
δαh0dz

α ∧ dZ − dh
(
∂[1i]
α (h0) dzα ∧ ∂icdZ

))
.

Thus we are able to conclude that

(
j2σ
)∗

Lj1vh
(h0dZ) =

(
j2σ
)∗
j1vhcd (h0dZ) (11.4)

=
(
j2σ
)∗
vhc
(
δαh0dz

α ∧ dZ − dh
(
∂[1i]
α (h0) dzα ∧ ∂icdZ

))
,

whereby the definition of the variational derivative as a map between the spaces
(η1

0)
∗
∧0
r (T ∗ (H)) and (η2

0)
∗
∧1
r (T ∗ (H)) is confirmed. This result can be used in (11.3) and
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consequently it follows from the definition of the Hamilton operator (11.1) and (11.2) that

d

dt
H =

∫

D

(
j2σ
)∗

(−R (δ (h0dZ))cδ (h0dZ) + (uςyς) dZ) (11.5)

−

∫

D

(
j2σ
)∗ (

vhcdh
(
∂[1i]
α (h0) dzα ∧ ∂icdZ

))

=

∫

D

(
j2σ
)∗

(−R (δ (h0dZ))cδ (h0dZ) + (uςyς) dZ)

+

∫

D

(
j2σ
)∗

dh
(
vhc
(
∂[1i]
α (h0) dzα ∧ ∂icdZ

))

=

∫

D

(
j2σ
)∗

(−R (δ (h0dZ))cδ (h0dZ) + (uςyς) dZ)

+

∫

D

d
(
j2σ
)∗ (

vhc
(
∂[1i]
α (h0) dzα ∧ ∂icdZ

))

=

∫

D

(
j2σ
)∗

(−R (δ (h0dZ))cδ (h0dZ) + (uςyς) dZ)

+

∫

∂D

ι∗
((
j2σ
)∗ (

vhc
(
∂[1i]
α (h0) dzα ∧ ∂icdZ

)))

is met. Here we have taken into account the special properties of the horizontal differential dh
(see definition 4.16).

Equation (11.5) states that the dissipative operator R, the pairing uςyς on the domain, and
the boundary term

∫

∂D

ι∗
((
j2σ
)∗ (

vhc∂
[1i]
α (h0) dzα ∧ ∂icdZ

))
= (11.6)

=

∫

∂D

(
j2σ̄
)∗ (

Ψ2
)∗ (

vhc∂
[1i]
α (h0) dzα ∧ ∂icdZ

)

=

∫

∂D

(
j2σ̄
)∗ (

vh∂c
((

Ψ2
)∗ (

∂[1i]
α (h0) dzα ∧ ∂icdZ

)))

=

∫

∂D

(
j2σ̄
)∗






(
żα ◦ Ψ2

)
∂αc

((
∂[1r]
α h0 ◦ Ψ2

)
dzα ∧ dZ̄

)

︸ ︷︷ ︸

λ∂






determine the evolution of the Hamiltonian functional H. Here the second prolongation of
the boundary section (j2σ̄) : ∂D → J2η̄, and the boundary volume form dZ̄ = ∂rcdZ =
(−1)r−1 dZ̄1 ∧ . . . ∧ dZ̄r−1 are introduced.

Consequently we see that the special construction of the Hamilton operator enables us to
determine the domain part of the time derivative of the Hamiltonian functional in a straight
forward manner. Additionally, we are able to identify the boundary impact to be given by the
form λ∂. Obviously it is left to introduce the boundary ports for the I-pHd system such that
the system purely interacts with the surrounding through ports.

Before we are able to extract this information, we have to define the appropriate spaces,
where the vector and form components of the form λ∂ are living in.
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11.3.1 Definition of the boundary spaces

In contrary to the determination procedure of the collocated output y on the domain, as stated
in equation (11.2), it will turn out that it is no more possible to give a unique separation of
the in- and output variables at the boundary. In order to overcome this problem we introduce
two pairs of dual bundles and state that both of them could be used as boundary ports for the
I-pHd system.

The first pair is given by the boundary input vector bundle
(
Ū , η̄Ū , ∂D

)
with local coordi-

nates
(
Z̄j, ūγ

)
, j = 1, . . . , (r − 1) , γ = 1, . . . , m̄ and the basis {eγ} and its dual – the boundary

output vector bundle
(
Ȳ , η̄Ȳ , ∂D

)
with local coordinates

(
Z̄j, ȳγ

)
and basis

{
ēγ ⊗ dZ̄

}
. The

second pair is given by the boundary input vector bundle
(

Ũ , η̄Ũ , ∂D
)

with local coordinates
(
Z̄j, ũγ

)
, j = 1, . . . , (r − 1) , γ = 1, . . . , m̃ and the basis {ẽγ} and its dual – the boundary output

vector bundle
(

Ỹ , η̄Ỹ , ∂D
)

with local coordinates
(
Z̄j, ỹγ

)
and basis

{
dZ̄ ⊗ ẽγ

}
.

Additionally, we introduce similarly to the domain vector bundles four vector bundles ac-
cording to the boundary bundle η̄:

• The nth jet bundle (Jnη̄, η̄n, ∂D) with the adapted coordinates

(

Z̄i, zα, zα
[J̄ ;jr]

)

according

to the total manifold Jnη̄;

• the vector bundle
(

∧0
r−1T

∗
(
H̄
)
, τ

∧0
r−1T

∗(H̄), H̄
)

, where ∧0
r−1T

∗
(
H̄
)

= span
{
dZ̄
}

and lo-

cal coordinates
(
Z̄i, zα, r∂

)
and

• the bundle
(

∧1
r−1T

∗
(
H̄
)
, τ

∧1
r−1T

∗(H̄), H̄
)

, where ∧1
r−1T

∗
(
H̄
)

= span
{
dzα ∧ dZ̄

}
and local

coordinates
(
Z̄i, zα, ṙ∂α

)
.

• The dual bundle to τ
∧1

r−1T
∗(H̄) is given by the vertical boundary tangent

bundle
(

V η̄, τ H̄|V η̄ , H̄
)

.

By construction we obtain the bilinear products

Ū ×∂D Ȳ → ∧0
r−1T

∗
(
H̄
)

(
ūγ ēγ, ȳζ ē

ζ ⊗ dZ̄
)

→ ūγ ēγcȳζ ē
ζ ⊗ dZ̄

respectively

Ỹ ×∂D Ũ → ∧0
r−1T

∗
(
H̄
)

(
ỹγdZ̄ ⊗ ẽγ, ũζ ẽ

ζ
)

→ ỹγdZ̄ ⊗ ẽγcũζ ẽ
ζ .

The form λ∂ stated in equation (11.6) meets obviously λ∂ ∈ Γ
(

(η̄2
0)

∗
τ
∧0

r−1T
∗(H̄)

)

. It is now

assumed that λ∂ is generated by both bilinear products, i.e.

λ∂ =
(
żα ◦ Ψ2

)
∂αc

((
∂[1r]
α h0 ◦ Ψ2

)
dzα ∧ dZ̄

)

= ūγ ēγcȳζ ē
ζ ⊗ dZ̄

= ỹγdZ̄ ⊗ ẽγcũζ ẽ
ζ

= ūγ ȳγdZ̄ = ỹγũγdZ̄ .
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It is worth mentioning that the vector field and the form part of λ∂ are elements of the intro-

duced boundary vector bundles 5, i.e. (żα ◦ Ψ2) ∂α ∈ Γ
(

(η̄2
0)

∗
τ
H̄|V η̄

)

, and
(

∂
[1r]
α h0 ◦ Ψ2

)

dzα ∧

dZ̄ ∈ Γ
(

(η̄1
0)

∗
τ
∧1

r−1T
∗(H̄)

)

.

Now it is left to formulate the relation between the form λ∂ and the dual in- and output
bundles by means of maps B̄, B̄∗ resp. B̃, B̃∗.

11.3.2 Determination of the boundary maps

At first we consider the bundle pairing η̄Ū and η̄Ȳ and formulate the boundary input map B̄ to
determine the vector part of λ∂ by

B̄ (ū) = ūγ ēγcB̄
α
ζ ē

ζ ⊗ ∂α

=
(
żα ◦ Ψ2

)
∂α .

Obviously we have introduced a map of the form

B̄ : Ū →
(
η̄2

0

)∗
V η̄ .

Consequently we can reformulate λ∂ and get

λ∂ = ūγB̄α
γ ∂αc

((
∂[1r]
α h0 ◦ Ψ2

)
dzα ∧ dZ̄

)
.

This leads directly to the adjoint map

B̄∗ :
(
η̄2

0

)∗
∧1
r−1 T

∗
(
H̄
)
→ Ȳ

given by

B̄∗
(
∂[1r]
α h0 ◦ Ψ2

)
= B̄α

ζ ē
ζ ⊗ ∂αc

((
∂[1r]
α h0 ◦ Ψ2

)
dzα ∧ dZ̄

)

= B̄α
ζ

(
∂[1r]
α h0 ◦ Ψ2

)
ēζ ⊗ dZ̄

= ȳζ ē
ζ ⊗ dZ̄ .

We see that this port configuration is fully defined by the tensor

B̄α
ζ ē

ζ ⊗ ∂α .

5Here and subsequently we will use vector bundles and their corresponding pull-back bundles synonymously.
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This procedure can be visualized in a diagram of the form

D �
ι

∂D

H̄

η̂

6

∂D J2η̄

η̄2
0

6

∂D

�
�

�
�

�
�

�
�

(η̄2
0)

∗
τ
H̄|V η̄

> }Z
Z

Z
Z

Z
Z

Z
Z

(η̄2
0)

∗
τ
∧1

r−1T
∗(H̄)

Ū

η̄Ū

6

B̄ -
(
η̄2

0

)∗
V η̄

(
η̄2

0

)∗
∧1
r−1 T

∗
(
H̄
) B̄∗

- Ȳ .

η̄Ȳ

6

Now we consider η̄Ũ and η̄Ỹ and formulate the boundary input B̃ map to determine the
form part of λ∂ by

B̃ (ũ) = B̃γ
αdz

α ∧ dZ̄ ⊗ ẽγcũζ ẽ
ζ

=
(
∂[1r]
α h0 ◦ Ψ2

)
dzα ∧ dZ̄ .

Here the input map B̃ is given by

B̃ : Ũ →
(
η̄2

0

)∗
∧1
r−1 T

∗
(
H̄
)

.

The definition of the input map results in

λ∂ =
(
żα ◦ Ψ2

)
∂αcB̃

[0r]γ
α dzα ∧ dZ̄ ⊗ ẽγcũζ ẽ

ζ

and consequently the adjoint map

B̃∗ :
(
η̄2

0

)∗
V η̄ → Ỹ

is given by

B̃∗ (żα ◦ ι) =
(
żα ◦ Ψ2

)
∂αcB̄

[0r]γ
α dzα ∧ dZ̄ ⊗ ẽγ

=
(
żα ◦ Ψ2

)
B̄[0r]γ
α dZ̄ ⊗ ẽγ

= ỹγdZ̄ ⊗ ẽγ .

We see that this port configuration is purely defined by the tensor

B̃γ
αdz

α ∧ dZ̄ ⊗ ẽγ .
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This procedure can be visualized in a diagram of the form

D �
ι

∂D

H̄

η̄

6

∂D J2η̄

η̄2
0

6

∂D

�
�

�
�

�
�

�
�

(η̄2
0)

∗
τ
H̄|V η̄

> }Z
Z

Z
Z

Z
Z

Z
Z

(η̄2
0)

∗
τ
∧1

r−1T
∗(H̄)

Ỹ

η̄Ỹ

6

� B̃∗ (
η̄2

0

)∗
V η̄

(
η̄2

0

)∗
∧1
r−1 T

∗
(
H̄
)

� B̃
Ũ .

η̄Ũ

6

If B̃γ
αdz

α ∧ dZ̄ ⊗ ẽγ = d
(
Hγ
∂dZ̄

)
⊗ ẽζ is met, we are additionally able to identify the collocated

output with the time derivative

ỹα =
(
żβ ◦ Ψ2

)
∂βcd (Hγ

∂ )

of the functions Hγ
∂ along the solution of the system.

11.3.3 Representation as I-pHd system

Finally we are able to define the representation of I-pHd systems with 1st order Hamiltonian
on η with local coordinates (Zi, zα) given by

ż = (J − R) (δ (h0dZ)) + B (u)

y = B∗ (δ (h0dZ))

żα ◦ Ψ2 = B̄ (ū)

ȳ = B̄∗
(
∂[1r]
α h0 ◦ Ψ2

)

respectively

ż = (J − R) (δ (h0dZ)) + B (u)

y = B∗ (δ (h0dZ))

∂[1r]
α h0 ◦ Ψ2 = B̃ (ũ)

ỹ = B̃∗
((
żα ◦ Ψ2

)
∂α
)

.

Both representations could be used to introduce a symbol for I-pHd systems – see figure 11.2.

Remark 11.3 The in- and output maps B, B∗, B̄, B̄∗, B̃, B̃∗ must result from a modeling

procedure as, e.g., calculus of variations. Here only the necessity of such maps in order to obtain

a pHd description was discussed.
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ū

ȳ

h0

u

y

D

ũ

ỹ

h0

u

y

D

Figure 11.2: The representation I-pHd system with 1st order Hamiltonian.

11.4 Systems with nth order Hamiltonian

We state, following the results of chapter 8, that the extended Hamiltonian is built by

hext = h0dZ + p[J−I1,J ]
α ωα[J−I1] ∧ ∂I1cdZ + d

(

p
[J̄−I2,J̄ ;jr]
α ωα

∂[J̄−I2;jr] ∧ ∂I2cdZ̄

)

where

#J = 1, . . . , n , #J̄ = 1, . . . , n , jr = 0, . . . , kr

#I1 = 1 , I1 = 1j , j = 1, . . . , r

#I2 = 1 , I2 = 1i , i = 1, . . . , r − 1

is used. Similarly to the construction of the extended Cartan form, we have to determine

the functions p
[J−I1,J ]
α resp. p

[J̄−I2,J̄ ;jr]
α such that the prolongation of the Hamilton operator

is suppressed in the domain condition resp. the boundary condition. By construction it is
possible to make use of equation (7.9), where we have to replace l by h0 in order to obtain the

condition for the functions p
[J−I1,J ]
α . Additionally, equation (8.3) supplies the corresponding

relations for the functions p
[J̄−I2,J̄ ;jr]
α .

Having the extended Hamiltonian form at ones disposal, we obtain
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∫

D

(
j2nσ

)∗
Ljnvh

(hext)= (11.7)

=

∫

D

(
j2nσ

)∗
(vhcd (hext) + d (jnvhchext))

=

∫

D

(
j2nσ

)∗
(vhcd (hext)) +

∫

∂D

ι∗
((
j2nσ

)∗
(jnvhchext)

)

=

∫

D

(
j2nσ

)∗
(vhcd (hext)) +

∫

∂D

(
j2nσ̄

)∗ (
vh∂c

(
Ψ2n

)∗
hext

)

=

∫

D

(
j2nσ

)∗
(vhc (δαh0dz

α ∧ dZ))

+

∫

∂D

(
j2nσ̄

)∗
(

vh∂c
((

δ[Jr]
α (h0) ◦ Ψ2n

)

dzα[J̄r] ∧ dZ̄
))

=

∫

D

(
j2nσ

)∗
(vhc (δαh0dz

α ∧ dY))

+

∫

∂D

(
j2nσ̄

)∗







(

Ld[Jr ]
(żα) ◦ Ψ2n

)

∂
[J̄r]
α c

((

δ[Jr]
α (h0) ◦ Ψ2n

)

dzα[J̄r] ∧ dZ̄
)

︸ ︷︷ ︸

λ∂







.

Obviously we obtain precisely the same configuration according to a certain multi-index [Jr] =
[0 . . . 0jr] resp.

[
J̄r
]

= [0 . . . 0; jr], as we did in the 1st order case, i.e. [Jr] = [0 . . . 00] resp.
[
J̄r
]

= [0 . . . 0; 0]. Consequently we have to carry out the same procedure as we have used for
the 1st order case according to every multi-index [Jr].

Definition of the boundary spaces

The first pair of boundary spaces is given by the boundary input vector bundle
(

Ū(jr), η̄Ū(jr)
, ∂D

)

with local coordinates
(
Z̄j, ū(jr)

γ
)

, j = 1, . . . , (r − 1) , γ = 1, . . . , m̄(jr) and the basis
{

ē(jr) γ

}

and its dual – the boundary output vector bundle
(

Ȳ(jr), η̄Ȳ(jr)
, ∂D

)

with local coordinates
(

Z̄j, ȳ(jr) γ

)

and basis
{
ē(jr)

γ ⊗ dZ̄
}

. The second pair is given by the boundary input vec-

tor bundle
(

Ũ(jr), η̄Ũ(jr)
, ∂D

)

with local coordinates
(

Z̄j, ũ(jr) γ

)

, j = 1, . . . , (r − 1) , γ =

1, . . . , m̃(jr) and the basis
{
ẽ(jr)

γ
}

and its dual – the boundary output vector bundle
(

Ỹ(jr), η̄Ỹ(jr)
, ∂D

)

with local coordinates
(
Z̄j, ỹ(jr)

γ
)

and basis
{

dZ̄ ⊗ ẽ(jr) γ

}

.

Additionally, we introduce similarly to the 1st order case the vector bundle

(

∧1
r−1T

∗
(
H̄
)
, τ

∧1
r−1T

∗(H̄), H̄
)

,

where ∧1
r−1T

∗
(
H̄
)

= span
{

dzα
[J̄r]

∧ dZ̄
}

6 and local coordinates
(

Z̄i, zα, ṙ
(jr)
α

)

.

6The total manifold Eh∂ has the local coordinates
(

X̄i, zα
[Jr]

)
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By construction we obtain the bilinear products

Ū(jr) ×∂D Ȳ(jr) → ∧0
r−1T

∗
(
H̄
)

(

ū(jr)
γ ē(jr) γ

, ȳ(jr) ζ
ē(jr)

ζ ⊗ dZ̄
)

→ ū(jr)
γ ē(jr) γ

c ȳ(jr) ζ
ē(jr)

ζ ⊗ dZ̄

respectively

Ỹ(jr) ×∂D Ũ(jr) → ∧0
r−1T

∗
(
H̄
)

(

ỹ(jr)
γ dZ̄ ⊗ ẽ(jr) γ

, ũ(jr) ζ
ẽ(jr)

ζ
)

→ ỹ(jr)
γ dZ̄ ⊗ ẽ(jr) γ

c ũ(jr) ζ
ẽ(jr)

ζ .

The form λ∂ stated in equation (11.6) meets obviously λ∂ ∈ Γ
(

(η̄2n
0 )

∗
τ
∧0

r−1T
∗(H̄)

)

and is

built by

λ∂ =
k∑

jr=0

λ
(jr)
∂ .

Now we assume all forms λ
(jr)
∂ to be generated by both bilinear products, i.e.

λ
(jr)
∂ =

(
LdJr

(żα) ◦ Ψ2n
)
∂
[J̄r]
α c

((

δ[Jr]
α (h0) ◦ Ψ2n

)

dzα[J̄r] ∧ dZ̄
)

= ū(jr)
γ ē(jr) γ

c ȳ(jr) ζ
ē(jr)

ζ ⊗ dZ̄

= ỹ(jr)
γ dZ̄ ⊗ ẽ(jr) γ

c ũ(jr) ζ
ẽ∂

ζ

= ū(jr)
γ ȳ(jr) γ

dZ̄ = ỹ(jr)
γ ũ(jr) γ

dZ̄ .

Determination of the boundary maps

At first we consider the bundles η̄Ū(jr)
, η̄Ȳ(jr)

and formulate the boundary input map such that

the vector part of λ
(jr)
∂ is determined, i.e.

B̄(jr)
(
ū(jr)

)
= ū(jr)

γ ē(jr) γ
cB̄(jr),α

ζ ē(jr)
ζ ⊗ ∂

[J̄r]
α

=
(

Ld[Jr ]
(żα) ◦ Ψ2n

)

∂
[J̄r]
α .

Obviously we have introduced a map of the form

B̄(jr) : Ū(jr) →
(
η̄2n

0

)∗
V η̄ .

Consequently we can reformulate λ
(jr)
∂ and get

λ
(jr)
∂ = ū(jr)

γ B̄
(jr),α
ζ ∂

[J̄r]
α c

((

δ[Jr]
α (h0) ◦ Ψ2n

)

dzα[J̄r] ∧ dZ̄
)

.

This leads directly to the adjoint map

B̄(jr)∗ :
(
η̄2n

0

)∗
∧1
r−1 T

∗
(
H̄
)
→ Ȳ(jr)
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given by

B̄(jr)∗
(

δ[Jr]
α (h0) ◦ Ψ2n

)

= B̄
(jr),α
ζ ē(jr)

ζ ⊗ ∂
[J̄r]
α c

((

δ[Jr]
α (h0) ◦ Ψ2n

)

dzα[J̄r] ∧ dZ̄
)

= B̄
(jr),α
ζ

(

δ[Jr]
α (h0) ◦ Ψ2n

)

ē(jr)
ζ ⊗ dZ̄

= ȳ(jr) ζ
ē(jr)

ζ ⊗ dZ̄ .

We see that this port configuration is defined by the tensor

B̄
(jr),α
ζ ē(jr)

ζ ⊗ ∂
[J̄r]
α ,

[
J̄r
]

= [0 . . . 0; jr] .

This procedure can be visualized in a diagram of the form

D �
ι

∂D

H̄

η̄

6

∂D J2nη̄

η̄2n
0

6

∂D

�
�

�
�

�
�

�
�

(η̄2n
0 )

∗
τ
H̄|V η̄

> }Z
Z

Z
Z

Z
Z

Z
Z

(η̄2n
0 )

∗
τ
∧1

r−1T
∗(H̄)

Ū(jr)

η̄Ū(jr)

6

B̄(jr)

-
(
η̄2n

0

)∗
V η̄

(
η̄2n

0

)∗
∧1
r−1 T

∗
(
H̄
) B̄(jr)∗

- Ȳ(jr).

ηȲ(jr)

6

Now we consider the bundles η̄Ũ(jr)
, η̄Ỹ(jr)

and formulate the boundary input map to deter-

mine the form part of λ
(jr)
∂

B̃(jr)
(
ũ(jr)

)
= B̃(jr),γ

α dzα[J̄r] ∧ dZ̄ ⊗ ẽ(jr) γ
c ũ(jr) ζ

ẽ(jr)
ζ

=
(

δ[Jr]
α (h0) ◦ Ψ2n

)

dzα[J̄r] ∧ dZ̄ .

Here the input map B̃(jr) is given by

B̃(jr) : Ũ(jr) →
(
η̄2n

0

)∗
∧1
r−1 T

∗
(
H̄
)

.

The definition of the input map results in

λ
(jr)
∂ =

(

Ld[Jr ]
(żα) ◦ Ψ2n

)

∂
[J̄r]
α cB̃(jr),γ

α dzα[J̄r] ∧ dZ̄ ⊗ ẽ(jr) γ
c ũ(jr) ζ

ẽ(jr)
ζ

and consequently the adjoint map

B̃(jr)∗ :
(
η̄2n

0

)∗
V η̄ → Ỹ(jr)



11 Infinite-dim. port Hamiltonian Systems 11.4.1 Representation as I-pHd system 110

is given by

B̃(jr)∗
((

Ld[Jr ]
(żα) ◦ Ψ2n

))

=
(

Ld[Jr ]
(żα) ◦ Ψ2n

)

∂
[J̄r]
α cB̃(jr),γ

α dzα[J̄r] ∧ dZ̄ ⊗ ē(jr) γ

=
(

Ld[Jr ]
(żα) ◦ Ψ2n

)

B̃(jr),γ
α dZ̄ ⊗ ē(jr) γ

= ỹ(jr)
γ dZ̄ ⊗ ẽ(jr) γ

.

We see that this port configuration is purely defined by the tensor

B̃(jr),γ
α dzα[J̄r] ∧ dZ̄ ⊗ ẽ(jr) γ

,
[
J̄r
]

= [0 . . . 0; jr] .

This procedure can be visualized in a diagram of the form

D �
ι

∂D

H̄

η̄

6

∂D J2nη̄

η̄2n
0

6

∂D

�
�

�
�

�
�

�
�

(η̄2n
0 )

∗
τ
H̄|V η̄

> }Z
Z

Z
Z

Z
Z

Z
Z

(η̄2n
0 )

∗
τ
∧1

r−1T
∗(H̄)

Ỹ(jr)

η̄Ỹ(jr)

6

� B̃(jr)∗ (
η̄2n

0

)∗
V η̄

(
η̄2n

0

)∗
∧1
r−1 T

∗
(
H̄
)

�B̃
(jr)

Ũ(jr).

η̄Ũ(jr)

6

11.4.1 Representation as I-pHd system

Finally we are able to define the representation of I-pHd systems with nth order Hamiltonian
on η with local coordinates (Zi, zα). We will consider here the example of a 3rd order I-pHd
system having the following structure

ż = (J − R) (δ (h0dZ)) + B (u)

y = B∗ (δ (h0dZ))

żα ◦ Ψ6 = B̄(0)
(
u(0)

)

y(0) = B̄(0)∗
(

δ[0...00]
α (h0) ◦ Ψ6

)

δ[0...01]
α (h0) ◦ Ψ6 = B̃(1)

(
ũ(1)

)

ỹ(1) = B̃(1)∗
((

Ld[1r ]
(żα) ◦ Ψ6

))

Ld[2r ]
(żα) ◦ Ψ6 = B̄(2)

(
ū(2)

)

ȳ(2) = B̄(2)∗
(

δ[0...02]
α (h0) ◦ Ψ6

)

.
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In fact there exist 8 different possible boundary configurations for a I-pHd system with 3rd

order Hamiltonian. A symbolic representation of the state 3rd order example is depicted in
figure 11.3.

ū(0) ȳ(0)

ū(1)

ȳ(1)

ū(2) ȳ(2)

h0

u

y

D

Figure 11.3: The representation an I-pHd system with 3rd order Hamiltonian.

Remark 11.4 A consequence of the proposed pHd system structure is that F-pHd resp. I-pHd

systems cannot be subdivided in several F-pHd resp. I-pHd subsystems in general, because one

must be able to introduce subsystems interacting through linear spaces.

11.4.2 Application - the Kirchhoff plate

Following the investigations of section 9.4.1 we are able to define the Hamiltonian to be given
by

h0dZ
1 ∧ dZ2 =

(
1

2
ς
((
z1
[20]

)2
+
(
z1
[02]

)2
+ 2νz1

[02]z
1
[20] + 2 (1 − ν)

(
z1
[11]

)2
)

+

1

2ρΛ

(
z2
)2
)

dZ1 ∧ dZ2 ,

where ς, ν, ρ,Λ ∈ R
+. Here we use the local coordinates (Z1, Z2, z1, z2) rather then

(

Y 2, Y 3, y1, p1̃
)

and suppress the first entry in the multi-index [0, Jt], i.e. we use simply the [Jt] instead.

Hamilton operator

The Hamilton operator vh = ż1 ∂
∂z1

+ ż2 ∂
∂z2

is defined by

ż1 =
1

ρΛ
z2

ż2 = −ςz1
[40] − ςz1

[04] − 2ςz1
[22] −R

1

ρΛ
z2 , R ∈ R

+ ,
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or better structured

[
ż1

ż2

]

=








[
0 1
−1 0

]

︸ ︷︷ ︸

J

−

[
0 0
0 R

]

︸ ︷︷ ︸

R








[
δ1h
δ2h

]

.

Here we have used a matrix representation to illustrate the appearance of the maps J and R.
Obviously it is left to introduce the boundary ports on ∂D1. The bearing of the Kirchhoff plate
leads to the following map

δ[01]
α (h0) ◦ Ψ4

1 = ς
(
z1
[0;2] + νz1

[2;0]

)

= B̃
(1),1
1 ũ(1) 1

= ũ(1) 1

ỹ(1) 1
= B̃

(1),1
1

(
LdJr

(
ż1
)
◦ Ψ4

1

)

= ż1
[01] ◦ Ψ4

1 =
1

ρΛ
z2
[0;1] .

The introduced damping torque M could be easily incorporated in this description by the

assignment of B̃
(1),1
1 = 1 and

ũ(1) 1
= −R∂ ỹ(1) 1

= −R∂
1

ρΛ
z2
[0;1] , R∂ ∈ R

+ .

From the fact that δ
[00]
2 (h0) = 0 resp. δ

[01]
2 (h0) = 0 we conclude that no tensor entries B̄

(0),i
2 =

B̄
(1),i
2 = 0 exist. Additionally, ż1 ◦ Ψ4 = 0 on ∂D due to the restraint support and thus also

B̄
(0),i
1 = 0 .

Derivative of Hamiltonian functional

Now we are able to derive the time derivative of the Hamiltonian functional, i.e.

Lvh

∫

D

(
j2σ
)∗
h0dZ =

∫

D

(
j4σ
)∗ (

vhc
(
δ1h0dz

1 ∧ dZ + δ2h0dz
2 ∧ dZ

))

+

∫

∂D1

(
j4σ̄1

)∗
((
ż1
[01] ◦ Ψ4

1

)
∂

[0;1]
1 c

((

δ
[01]
1 (h0) ◦ Ψ4

1

)

dz1
[0;1] ∧ dZ̄

))

=

∫

D

(
j4σ
)∗

(−δ2h0 R δ2h0dZ)

+

∫

∂D1

(
j4σ̄1

)∗
(

−
1

ρΛ
z2
[0;1] R∂

1

ρΛ
z2
[0;1]dZ̄

)

≤ 0 .

Here we have already used the general results presented in equation (11.7). Additionally, we
have restricted the boundary integral to the partition ∂D1 as the damping torque acts only
along this part of the boundary (see figure 8.7).

One of the most important properties of F-pHd systems is their structural invariance with
respect to power conserving interconnections. Thus we investigate in the subsequent section
the behavior of I-pHd systems with respect to domain and boundary interconnections.
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11.5 Interconnection of I-pHd systems

Here we will confine ourselves to the case of systems with 1st order Hamiltonians. It is obvious,
that the treatment of this system class is sufficient to introduce the interconnection procedure,
as the extension to nth order I-pHd systems equals only the use of a more involved notation.

11.5.1 Introduction of the considered I-pHd systems

In the following the I-pHd systems, which are generated by two interconnected I-pHd systems,
are formulated on a product bundle

(
H1 ×H2, ηH1

× ηH2
,D1 ×D2

)
.

We will investigate three different cases of interconnection – domain ⇔ domain, boundary
⇔ boundary, and boundary ⇔ domain. The considered systems are defined by

ż1
α = (J1 −R1)

αβ δβh01 + u1
ς B1

α
ς

y1 ς = B1
β
ς δβh01 ,

with boundary conditions

ū1
γ B̄1

α
γ = ż1

α ◦ Ψ2
1 , y1 γ = B̄1

α
γ

(
∂[1r]
α h01 ◦ Ψ2

1

)

or B̃1
γ

α ũ1 γ =
(
∂[1r]
α h01 ◦ Ψ2

1

)
, ỹ1

γ = B̃1
γ

α

(
ż1

α ◦ Ψ2
1

)

and

ż2
α = (J2 −R2)

αβ δβh02 + u2
ς B2

α
ς

y2 ς = B2
β
ς δβh02 ,

with boundary conditions

ū2
γ B̄2

α
γ = ż2

α ◦ Ψ2
2 , y2 γ = B̄2

α
γ

(
∂[1r]
α h02 ◦ Ψ2

2

)

or B̃2
γ

α ũ2 γ =
(
∂[1r]
α h02 ◦ Ψ2

2

)
, ỹ2

γ = B̄2
γ
α

(
ż2

α ◦ Ψ2
2

)
.

In all three cases the systems are linked by a I-pH system without dynamics defined by

yI α = Iαβ uI
β , Iαβ = −Iβα

or in matrix representation
[
yI1
yI2

]

=

[
I11 I12
I21 I22

] [
uI1
uI2

]

with I11 = −Iᵀ

11, I22 = −Iᵀ

22, I21 = −Iᵀ

12. This system belongs to the class of power-conserving
interconnections.

The time derivative of the interconnected Hamiltonian functional

d

dt
H12 =

d

dt

(∫

D1

h01dX1 +

∫

D2

h02dX2

)

will be analyzed for all considered interconnections.
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System 1 System 2power conserving
interconnection

ua ub
u∂a

y∂a

u∂1

y∂1

u1

y1

yI1 yI2

uI1 yI2

u2 u∂2

y2 y∂2

u∂b

y∂bya yb

D D D

H10 H20

Figure 11.4: The domain⇔domain interconnection.

11.5.2 The domain⇔domain interconnection

This interconnection represents the case, where the domain of two I-pHd systems coincides,
see Fig. 11.4. Thus the introduced product bundle reduces to the special case of a fibred
product bundle (see Def. 3.8). Consequently we get the following assignments

uI1
α = (K1)

ας y1 ς

uI2
α = (K2)

ας y2 ς

u1
ς = ua

ς + (K1)
ας yI1 α

u2
ς = ub

ς + (K2)
ας yI2 α .

Here and in the subsequent analysis we use (Ki)
ας = (Ki)ας = (Ki)

α
ς =

{
0 if α 6= ς
1 if α = ς

with

i ∈ {1, 2}.
The domain inputs result in

u1
ς = ua

ς + Ī11
ςε
B1

ϕ
ε δϕh01 + Ī12

ςε
B2

ϕ
ε δϕh02

u2
ς = ub

ς + Ī21
ςε
B1

ϕ
ε δϕh01 + Ī22

ςε
B2

ϕ
ε δϕh02

with Ī11
ςε

= (K1)
ςβ I11 βψ (K1)

ψε , Ī12
ςε

= (K1)
ςβ I12 βψ (K2)

ψε , Ī21
ςε

= (K2)
ςβ I21 βψ (K1)

ψε

, Ī22
ςε

= (K2)
ςβ I22 βψ (K2)

ψε and the boundary inputs are denoted by ū1 = ūa, ū2 = ūb.
Consequently we end up with an I-pHd system on

(
H1 ×H2, ηH1×DH2

,D
)

defined by
[
żα1
żα2

]

= (J −R)

[
δβh01

δβh02

]

+B

[
ua

ς

ub
ς

]

where

J =

[
Jαβ1 + B1

α
ς Ī11

ςε
B1

β
ε B1

α
ς Ī12

ςε
B2

β
ε

B2
α
ς Ī21

ςε
B1

β
ε Jαβ2 + B2

α
ς Ī22

ςε
B2

β
ε

]

R =

[
Rαβ

1 0

0 Rαβ
2

]

, B =

[
B1

β
ς 0

0 B2
β
ς

]

is used. The collocated outputs are given by

y1 ς = B1
β
ς δβh01 = ya ς

y2 ς = B2
β
ς δβh02 = yb ς .
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Thus the domain⇔domain interconnection preserves the structure of an I-pHd system. The
time derivative of the interconnected Hamiltonian functional leads to similar results as already
shown in equation (11.5) for the general case.

11.5.3 The boundary⇔boundary interconnection

This interconnection represents the case, where two I-pHd Systems are interconnected on a
common boundary ∂D12 defined by ∂D1 ⊃ ∂D12 ⊂ ∂D2. The boundary inputs on ∂D12 are in

System 1 System 2power conserving
interconnection

u∂a u∂b
ua

ya

u1

y1

u∂1

y∂1

yI1 yI2

uI1 yI2

u∂2 u2

y∂2 y2

ub

yby∂a y∂b

D1 ∂D12 D2

H10 H20

Figure 11.5: The boundary⇔boundary interconnection.

this case given by

ū1
γ = ūa

γ + (K1)
γβ
(

I11 βψ (K1)
ψε ȳ1 ε + I12 βψ (K2)

ψε ȳ2 ε

)

ū2
γ = ūb

γ + (K2)
γβ
(

I21 βψ (K1)
ψε ȳ1 ε + I22 βψ (K2)

ψε ȳ2 ε

)

and

ū1
γ = ūa

γ + (K1)
γβ
(

I11 βψ (K1)
ψε ȳ1 ε + I12 βψ (K2)

ψ
ε ỹ2

ε
)

ũ2 γ = ũb γ + (K2)
β
γ

(

I21 βψ (K1)
ψε ȳ1 ε + I22 βψ (K2)

ψ
ε ỹ2

ε
)

.

In the analysis of this interconnection, we have to specify the maps B̄ or equally B̃ for both
systems. In the following we will introduce only the map B̄1 for the first system and the maps
B̄2 and B̃2 for the second system. The combination B̃1 and B̃2 supplies similar results and is
omitted here. The considered inputs are given by

ū1
γ = ūa

γ + Î11
γε
B̄1

α
ε

(
∂[1r]
α h01 ◦ Ψ2

1

)
+ Î12

γε
B̄2

α
ε

(
∂[1r]
α h02 ◦ Ψ2

2

)

ū2
γ = ūb

γ + Î21
γε
B̄1

α
ε

(
∂[1r]
α h01 ◦ Ψ2

1

)
+ Î22

γε
B̄2

α
ε

(
∂[1r]
α h02 ◦ Ψ2

2

)
.

with Î11
ςε

= (K1)
ςβ I11 βψ (K1)

ψε , Î12
ςε

= (K1)
ςβ I12 βψ (K2)

ψε , Î21
ςε

= (K2)
ςβ I21 βψ (K1)

ψε ,

Î22
ςε

= (K2)
ςβ I22 βψ (K2)

ψε and

ū1
γ = ūa

γ + Î11
γε
B̄1

α
ε

(
∂[1r]
α h01 ◦ Ψ2

1

)
+ Î12

γ

ε B̃2
ε

α

(
ż2

α ◦ Ψ2
2

)

ũ2 γ = ũb γ + Î21
ε

γ B̄1
α
ε

(
∂[1r]
α h01 ◦ Ψ2

1

)
+ Î22 γε B̃2

ε

α

(
ż2

α ◦ Ψ2
2

)
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with Î11
ςε

= (K1)
ςβ I11 βψ (K1)

ψε , Î12
γ

ε = (K1)
γβ I12 βψ (K2)

ψ
ε , Î21

ε

γ = (K2)
β
γ I21 βψ (K1)

ψε ,

Î22 γε = (K2)
β
γ I22 βψ (K2)

ψ
ε .

The time derivative of the interconnected Hamiltonian H12 equals the sum of the individual
derivatives except the ∂D12-part. Here

∫

∂D12

(
ȳ1 γ ū1

γ + ȳ2 γ ū2
γ
)
dZ̄ resp.

∫

∂D12

(
ȳ1 γ ū1

γ + ỹ2 γ ũ2
γ
)
dZ̄ has to be analyzed. In the first case we get

∫

∂D12

(
∂[1r]
ω h01 ◦ Ψ2

1

)
B̄1

ω
γ

(

ūa
γ + Î11

γε
B̄1

α
ε

(
∂[1r]
α h01 ◦ Ψ2

1

)
+ Î12

γε
B̄2

α
ε

(
∂[1r]
α h02 ◦ Ψ2

2

))

dZ̄

+

∫

∂D12

(
∂[1r]
ω h02 ◦ Ψ2

2

)
B̄2

ω
γ

(

ūb
γ + Î21

γε
B̄1

α
ε

(
∂[1r]
α h01 ◦ Ψ2

1

)
+ Î22

γε
B̄2

α
ε

(
∂[1r]
α h02 ◦ Ψ2

2

))

dZ̄

and in the second case this results in
∫

∂D12

(
∂[1r]
ω h01 ◦ Ψ2

1

)
B̄1

ω
γ

(

ūa
γ + Î11

γε
B̄1

α
ε

(
∂[1r]
α h01 ◦ Ψ2

1

)
+ Î12

γ

ε B̃2
ε

α

(
ż2

α ◦ Ψ2
2

))

dZ̄

+

∫

∂D12

(
ż2

ω ◦ Ψ2
2

)
B̃2

γ

ω

(

ũb γ + Î21
ε

γ B̄1
α
ε

(
∂[1r]
α h01 ◦ Ψ2

1

)
+ Î22 γε B̃2

ε

α

(
ż2

α ◦ Ψ2
2

))

dZ̄ .

Because of the condition Î12
γα

= − Î21
αγ

the first integrals simplify to
∫

∂D12

(
ȳ1 γ ūa

γ + ȳ2 γ ūb
γ
)
dZ̄ .

The second integral simplifies similarly to
∫

∂D12

(
ȳ1 γ ūa

γ + ỹ2
γ ũb γ

)
dZ̄

because of Î12
γ

ε = − Î21
ε

γ. Consequently the time derivative of the interconnected Hamiltonian
functional caused on ∂D12 is purely determined by the collocation of ūa and ūb (resp. ũb) with
ȳ1 and ȳ2 (resp. ỹ2). It is worth mentioning that this is a simple consequence of the power-
conserving interconnection.

11.5.4 The boundary⇔domain interconnection

This interconnection represents the combination of a r-dimensional I-pHd system, i.e. dim (D1)
= r, with a (r − 1)-dimension system, i.e. dim (D2) = r − 1, along ∂D12 defined by ∂D1 ⊃
∂D12 ⊂ D2. Again we have to consider both boundary maps for the first system. Consequently
the inputs of the systems are given by

ū1
γ = ūa

γ + Î11
γε
B̄1

α
ε

(
∂[1r]
α h01 ◦ Ψ2

1

)
+ Î12

γε
B2

ϕ
ε δϕh02

u2
ς = ub

ς + Î21
ςε
B̄1

α
ε

(
∂[1r]
α h01 ◦ Ψ2

1

)
+ Î22

ςε
B2

ϕ
ε δϕh02

with Î11
ςε

= (K1)
ςβ I11 βψ (K1)

ψε , Î12
ςε

= (K1)
ςβ I12 βψ (K2)

ψε , Î21
ςε

= (K2)
ςβ I21 βψ (K1)

ψε ,

Î22
ςε

= (K2)
ςβ I22 βψ (K2)

ψε

or in the second case

ũ1 γ = ũa γ + Î11 γε B̃1
ε

α

(
ż1

α ◦ Ψ2
1

)
+ Î12

ε

γ B2
ϕ
ε δϕh02

u2
γ = ub

γ + Î21
γ

ε B̃1
ε

α

(
ż1

α ◦ Ψ2
1

)
+ Î22

γε
B2

ϕ
ε δϕh02
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System 1 System 2power conserving
interconnection

u∂a ub
ua

ya

u1

y1

u∂1

y∂1

yI1 yI2

uI1 yI2

u2 u∂2

y2 y∂2

u∂b

y∂by∂a yb
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H10 H20

Figure 11.6: The boundary⇔domain interconnection.

with Î11 γε = (K1)
β
γ I11 βψ (K1)

ψ
ε , Î12

ε

γ = (K1)
β
γ I12 βψ (K2)

ψε , Î21
γ

ε = (K2)
γβ I21 βψ (K1)

ψ
ε ,

Î22
γε

= (K2)
γβ I22 βψ (K2)

ψε.
The time derivative of H12 is again given by the sum of the individual derivatives except

the ∂D12-part, plus the result of
∫

∂D12

(
ȳ1 γ ū1

γ + y2 ς u2
ς
)
dZ̄ resp.

∫

∂D12

(
ỹ1

γ ũ1 γ + y2 ς u2
ς
)
dZ̄.

These integrals leads to

∫

∂D12

(
∂[1r]
ω h01 ◦ Ψ2

1

)
B̄1

ω
γ

(
u∂a

γ + Ī11
γε
B̄1

α
ε

(
∂[1r]
α h01 ◦ Ψ2

1

)
+ Ī12

γε
B2

ϕ
ε δϕh02

)
dZ̄

+

∫

∂D12

δωh02 B2
ω
γ

(
ub

γ + Ī21
γε
B̄1

α
ε

(
∂[1r]
α h01 ◦ Ψ2

1

)
+ Ī22

γε
B2

ϕ
ε δϕh02

)
dZ̄

or equally

∫

∂D12

(
ż1

ω ◦ Ψ2
1

)
B̃1

ω

γ

(

u∂a γ + Î11 γε B̃1
ε

α

(
ż1

α ◦ Ψ2
1

)
+ Î12

ε

γ B2
ϕ
ε δϕh02

)

dZ̄

+

∫

∂D12

δωh02 B2
ω
γ

(

ub
γ + Î21

γ

ε B̃1
ε

α

(
ż1

α ◦ Ψ2
1

)
+ Î22

γε
B2

ϕ
ε δϕh02

)

dZ̄ .

Once again the condition Î12
γα

= − Î21
αγ

simplifies the first integral to

∫

∂D12

(
ȳ1 γ ūa

γ + y2 γ ub
γ
)
dZ̄ , (11.8)

and Î12
ε

γ = − Î21
γ

ε simplifies the second integral to

∫

∂D12

(
ỹ1

γ ũa γ + y2 γ ub
γ
)
dZ̄ . (11.9)

The time evolution of H12 is consequently determined by the individual damping R1, R2 on
D1, D2, the pairings y1cu1, y2cu2 on D1, D2−∂D12, the pairings ȳ1cū1 (resp. ỹ1cũ1), ȳ2cū2 (resp.
ỹ2cũ2) on ∂D1 − ∂D12, ∂D2 and the quantity in equation (11.8) resp. (11.9).
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11.6 Application - Membrane and String

In this section we will investigate a mechanical structure, whose infinite dimensional compo-
nents can be modelled using the introduced 1st order I-pHd description. The considered con-
struction consists of a rectangular undamped membrane and an attached undamped string.
The proposed interconnection of this systems is shown in Fig. 11.7. In the mathematical

membrane

Z2

Z1

(−L/2, L)

(L/2, L)

z1
S (Z1)

z1
M (Z1, Z2)

string

Figure 11.7: The membrane-string interconnection.

modeling, we assume that for both components only small vertical displacements z1
M (Z1, Z2),

z1
S (Z1) appear. Consequently we are able to formulate the potential energy density of the

membrane [Villaggio, 1997]

ePM =
SM
2

((
z1
M [10]

)2
+
(
z1
M [01]

)2
)

dZ1 ∧ dZ2 .

Here the constant membrane tension SM ∈ R
+ is introduced. Similarly we are able to define

the potential energy of the string

ePS =
SS
2

(
z1
S[1]

)2
dZ1

with the string tension SS ∈ R
+. The kinetic energy is given by

eKM =
1

2ρM

(
z2
M

)2
dZ1 ∧ dZ2

respectively

eKS =
1

2ρS

(
z2
S

)2
dZ1 ,

where the constant mass per unit area ρM ∈ R
+ and mass per unit length ρS ∈ R

+ are used.
The Hamiltonian densities

h0M =

(
SM
2

(
z1
M [10]

)2
+
SM
2

(
z1
M [01]

)2
+

1

2ρM

(
z2
M

)2
)

dZ1 ∧ dZ2

h0S =

(
SS
2

(
z1
S[1]

)2
+

1

2ρS

(
z2
S

)2
)

dZ1

can now be used to define the corresponding I-pHd representations. The membrane is de-
scribed by

[
ż1
M

ż2
M

]

=

[
0 1
−1 0

] [
δz1

M
h0M

δz2
M
h0M

]

=

[ 1
ρM
z2
M

SM

(

z1
M [20] + z1

M [02]

)

]
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with the boundary conditions

1

ρM
z2
M ◦ Ψ2

M = ż1
M ◦ Ψ2

M = B̄M
1
1 ūM

1

ȳM 1 =
(
∂[01]
α H0M ◦ Ψ2

M

)
B̄M

α
1 =

(
SMz

1
M [01] ◦ Ψ2

M

)
B̄M

1
1 ,

where the map

Ψ2
M :

(
Z̄, z1

M [0;0], z
2
M [0;0] , z

1
M [1;0], z

2
M [1;0], z

1
M [0;1], z

2
M [0;1],

z1
M [2;0], z

2
M [2;0], z

1
M [1;1], z

2
M [1;1], z

1
M [0;2], z

2
M [0;2]

)

→
(
Z1 = Z̄, Z2 = L , z1

M = z1
M [0;0], z

2
M = z2

M [0;0],

z1
M [10] = z1

M [1;0], z
2
M [10] = z2

M [1;0], z
1
M [01] = z1

M [0;1],

z2
M [01] = z2

M [0;1], z
1
M [20] = z1

M [2;0], z
2
M [20] = z2

M [2;0],

z1
M [11] = z1

M [1;1], z
2
M [11] = z2

M [1;1], z
1
M [02] = z1

M [0;2],

z2
M [0;2] = z2

M [0;2]

)

is used. The string is described by

[
ż1
S

ż2
S

]

=

[
0 1
−1 0

] [
δz1

S
h0S

δz2
S
h0S

]

+

[
0
1

]

uS =

[
1
ρS
z2
S

SMz
1
S[2] + uS

]

and the boundary conditions ( ιS :
{
−L

2
, L

2

}
→
{
Z1 = −L

2
, Z1 = L

2

}
)

B̃S
1

1 ũS 1 = ∂
[1]
1 h0S ◦Ψ2

S =
(

SSz
1
S[1]

)

◦Ψ2
S

ỹS
1 = B̃S

1

1 (ż1
S ◦Ψ2

S) = B̃S
1

1

(
1
ρS
z2
S ◦Ψ2

S

)

.

The power conserving interconnection is in this case given by

yI1 = uI2 , yI2 = −uI1 ,

with
uI1 = ȳM 1 , uI2 = yS 1 and ūM

1 = yI1 , uS
1 = yI2 .

Thus we are able to derive

d

dt

(∫

D1

h0MdX1 ∧ dX2 +

∫

D2

h0SdX
2

)

=

∫

∂D1−∂D12

ūM
1 ȳM 1 ∂icdZ +

[
ũS 1 ỹS

1
]L/2

−L/2

whereby it is visualized that only the boundary inputs on the membrane and on the string
modify the interconnected Hamiltonian functional H12. If we take the restraint support of the
membrane as visualized in figure 11.7 into account we conclude that ūM

1 = ũS 1 = 0 and
consequently the interconnected Hamiltonian functional is invariant under the motion of the
coupled system.



Part IV

Stability and Control
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Stability is the cornerstone of control!

The modification of plants as, e.g., achieved by means of control laws, is often intended to
improve a certain behavior of the system. In fact normally all the applied action has to fulfill a
special minimum requirement – it has to ensure the stability of the plant. Consequently control
engineers are forced to investigate their models with regards to certain stability criteria.

The previous parts II, III of this thesis where dedicated to the modeling of two classes of
infinite-dimensional systems. In fact all these considerations gave a deep insight to the natural
properties of the analyzed systems. In this final part we want to take advantage of the achieved
results in the analysis of the stability of these systems in the sense of Lyapunov.

It is remarkable, that modeling and simulation of infinite-dimensional systems is a well
established discipline in engineering. The formulation of partial differential equations (PDEs)
for field problems as, e.g., known from mechanics, fluid- and electrodynamics or even from
coupled field problems, is well established and numerical methods for simulation purposes
like, e.g., the finite element method are available and implemented in sophisticated computer
software. In fact stability investigation of infinite-dimensional systems are not that widely
used in engineering.

In the subsequent analysis the well known definition of stability according to Lyapunov and
some additional results on finite dimensional systems are recalled (following [Hahn, 1967]).
After that a possible application of Lyapunov’s stability notion to infinite-dimensional systems
is discussed. It will be shown, how Sobolev spaces and class K-functions allow the definition
of a stability criterion for such systems. In order to illustrate the applicability of the stated
criteria we will investigate the stability of the damped Kirchhoff plate as introduced in part II
and III.



Chapter 12
Stability of infinite-dimensional systems

Before we investigate the infinite-dimensional case, we want to recall the stability of systems
in the sense of Lyapunov following [Hahn, 1967].

12.1 The finite-dimensional case

Here we consider the time-invariant, autonomous system

ẋα = fα (x) , x|t=t0 = x0, α = 1, . . . , s . (12.1)

From a differential geometric point of view, this system equals a vector field v = ẋα∂α formu-
lated in the local coordinates xα, α = 1, . . . , s on an s-dimensional manifold M.

The solution of the system is defined as a map

φ : R ×M → M

(t− t0, x0) → x = φ (t− t0, x0) ,

whereby we have introduced the flow φ of the system.

Remark 12.1 Here we have assumed that the existence and uniqueness of the solution for the

system 12.1 is guaranteed.

Consequently the solution of such a system, defined by φ (t− t0, x0), equals a curve on the
manifold M parametrized by the time t. Additionally it is remarkable, that there is no need
to introduce the time t as coordinate on the manifold M. The flow φ (t− t0, x0) (also denoted
φt−t0 (x0)) qualifies as a one parameter group of transformations (see, e.g., [Olver, 1986]).

We will consider the stability of the origin x = 0 under the following definition.

Definition 12.2 The equilibrium of the differential equation (12.1) is called stable (in the sense

of Lyapunov) if for each ε > 0 there exists a δ > 0 such that

‖φ (t− t0, x0)‖ < ε for t > t0

is valid whenever

‖x0‖ < δ (ε) .
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In order to derive a criterion for the proof of stability we introduce

Definition 12.3 A real-valued function ϕ (r) belongs to class K (ϕ ∈ K) if it is defined, continu-

ous, and strictly increasing on 0 ≤ r ≤ r1, resp. 0 ≤ r ≤ ∞, and if it vanishes at r = 0 : ϕ (0) = 0.

and obtain the following criterion.

Definition 12.4 The equilibrium of the differential equation (12.1) is stable in case there exists

a function ϕ of class K that

‖φ (t− t0, x0)‖ ≤ ϕ (‖x0‖) , for t ≥ t0

(see [Hahn, 1967])

Finally this criterion leads to the subsequent theorem.

Theorem 12.5 If there exist two class K functions ϕ1, ϕ2 and a function v, which meets

ϕ1 (‖x‖) ≤ v (x) ≤ ϕ2 (‖x‖)

and whose formal time derivative v̇ for (12.1) is negative semi-definite, then the equilibrium is

stable. (see [Hahn, 1967])

Proof. If we apply the function v (x) on a solution of (12.1), we may formulate the inequality

v (φ (t− t0, x0)) ≤ v (x0)

because of v̇ (x) ≤ 0. Consequently we are able to state that

ϕ1 (‖φ (t− t0, x0)‖) ≤ v (φ (t− t0, x0)) ≤ v (x0) ≤ ϕ2 (‖x0‖) .

The introduction of the class K function ϕ3 = ϕ1
−1 ◦ ϕ2 enables us finally to define

‖φ (t− t0, x0)‖ ≤ ϕ3 (‖x0‖)

and thus the stability is shown (see Definition 12.4).
It is worth mentioning, that theorem 12.5 states pure formal conditions on v (x) and v̇ (x).

This implies that these conditions can be evaluated without any analytical knowledge of the
solution of the system. But in fact the results of the conditions are only meaningful, if the
existence and uniquness of the solution given.

Remark 12.6 The inequality stated in theorem 12.5 implies that the function v (x) is positive

definite.

The equivalence of all norms in a finite-dimensional vector space is responsible for the
fact, that the specification of the used norm is suppressed in the previously stated theorems,
proofs, and definitions. Another consequence of this circumstance is that the proof of stability
for a certain plant with respect to a chosen norm proves stability with respect to all norms.
Unfortunately this wonderful property will not apply anymore for the infinite-dimensional
case.
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12.2 The infinite-dimesional case

We will assume, that the infinite-dimensional and time-invariant systems under investigation
are formulate on the smooth bundle (E , π,D) and its nth order jet framework Πn. Here the
bounded, spatial base manifold D is equipped with the independent coordinates (Y i), i =
1 . . . r and for the total manifold E we use the independent and dependent coordinates (Y i, yα),
α = 1 . . . s .

The map σ : D → E resp. jnσ : D → JnE is called section resp. the nth order prolongation of
a section and equals the assignment of the dependent coordinates resp. their partial derivatives
as functions of the independent coordinates.

12.2.1 Sobolev spaces

The sections σ ∈ Γ (π) on the bundle π are assumed to be elements of a special infinite-
dimensional vector space – the Sobolev space Wk,p

σ ∈ Wk,p (D) .

This Sobolev space is equipped with the norm

‖σ‖k,p =





k∑

#J=0

∫

D

s∑

α=1

∣
∣∂[J ]σ

α
∣
∣
p
dX





1/p

, 1 ≤ p <∞.

It is now remarkable that for every section σ ∈ Wk2,p the inequality

k1∑

#J=0

∫

D

s∑

α=1

∣
∣∂[J ]σ

α
∣
∣
p
dX ≤

k2∑

#J=0

∫

D

s∑

α=1

∣
∣∂[J ]σ

α
∣
∣
p
dX

is met, iff k1 ≤ k2. This equals the relation

‖σ‖k1,p ≤ ‖σ‖k2,p .

This inequality is sufficient for the subsequent analysis, but it is worth mentioning that there
exists a generalization of this relation referred to as Sobolev embedding theorem (see Def.
12.11).

12.2.2 System representation

We will confine ourselves to autonomous, infinite-dimensional systems given in the form

ẋ = F
(
X i, xα

)
, σα|t=t0 = σα0 , i = 1, . . . , r , α = 1, . . . , s (12.2)

with the differential operator F . This type is also referred to as evolution equation [Olver,
1986]. From a geometrical point of view equation (12.2) represents the definition of a gener-
alized vertical vector field on a certain pull-back bundle of the total manifold, i.e. (πn0 )∗ T (E)
in local coordinates. Obviously the previously defined Hamilton operator vh (with assigned
input u) is of this class.
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12.2.3 Stability of the equilibrium

Now we assume the existence of a solution of the system1 and defined it as a map

Φ : R × Γ (π) → Γ (π)

(t− t0, σ0) → σα = Φα (t− t0, σ0)

that meets
σ = Φ (0, σ) .

Additional we impute, that the map Φ qualifies as a one-parameter C0-semigroup (see. e.g.
[Renardy, R.C. Rogers, 2004]) of transformations with identity e = Φ (0, ·).

Furthermore we let the analyzed equilibrium section σ, which meets

0 = F
(
X i, σα

)
,

be given by the origin, i.e. σα (X) = 0. The equilibrium section represents a point in the
Sobolev space Wk2,p resp. Wk1,p, whose stability is of interest.

Definition 12.7 The equilibrium point σ = 0 ∈ Wk2,p ⊆ Wk1,p, k1 ≤ k2 is called a stable

equilibrium point of the evolution equation (12.2) with respect to the Sobolev norm ‖·‖k2,p, if for

all ε > 0, there exists a δ (ε) such that

‖σ0‖k2,p < δ (ε) implies =⇒ ‖Φ (t− t0, σ0)‖k1,p < ε ∀t ≥ t0

where Φ (t− t0, σ0) is the solution of 12.2 with the initial conditions σ0 and parametrization t.

Having the definitions of the finite-dimensional case at ones disposal, it is obvious that
the specification of the used norms is an essential additional ingredient used in the infinite-
dimensional case.

Furthermore we are able to incorporate the notion of class K functions and get the follow-
ing definition.

Definition 12.8 The equilibrium of the differential equation (12.2) is stable with respect to the

norm ‖·‖k2,p in case there exists a function ϕ of class K such that

‖Φ (t− t0, σ0)‖k1,p ≤ ϕ
(

‖σ0‖k2,p

)

, k1 ≤ k2 for t ≥ t0 .

Following [Hahn, 1967] we are now able to introduce the notion of a Lyapunov functional
in the following theorem.

Theorem 12.9 If there exists a functional V (σ) =
∫

D
(jnσ)∗ (fdX) , f ∈ C∞ (JnE), which fulfills

the condition

ϕ1

(

‖σ‖k1,p

)

≤ V (σ) ≤ ϕ2

(

‖σ‖k2,p

)

, k1 ≤ k2

on Dr =
{

σ| ‖σ‖k2,p ≤ r
}

with the class K functions ϕ1 and ϕ2 and whose formal time derivative

along (12.2) meets

Ljn(ẋ∂α)V (σ) =

∫

D

(jnσ)∗
(
Ljn(ẋ∂α) (fdX)

)
≤ 0

then the equilibrium point σ = 0 is stable in the sense of Lyapunov with respect to the norm

‖·‖k2,p.

1It is worth mentioning that this assumption is a rather strong assumption.
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The formal time derivative coincides with the time derivative, i.e.

Ljn(ẋ∂α)V (σ) = L∂t
(V (Φ (t− t0, σ0)))

if the solution Φ (t− t0, σ0) parametrized in t exists. As this is assumed here, we can make use
of both formulations.
Proof. The condition Ljn(ẋ∂α)V (σ) ≤ 0 implies that

V (Φ (t− t0, σ0)) ≤ V (σ0) with t0 ≤ t .

Consequently we have the relation

ϕ1

(

‖Φ (t− t0, σ0)‖k1,p

)

≤ V (Φ (t− t0, σ0))

≤ V (σ0)

≤ ϕ2

(

‖σ0‖k2,p

)

and by applying the inverse function of ϕ1 (·)

‖Φ (t− t0, σ0)‖k1,p ≤ ϕ1
−1 (V (Φ (t− t0, σ0)))

≤ ϕ1
−1 (V (σ0))

≤ ϕ1
−1
(

ϕ2

(

‖σ0‖k2,p

))

we get the inequality

‖Φ (t− t0, σ0)‖k1,p ≤ ϕ3

(

‖σ0‖k2,p

)

,

whereby the class K function ϕ3 = ϕ1
−1 ◦ϕ2 is introduced. Consequently the stability of σ = 0

on Dr is shown.
Finally we are able to define a criterion for asymptotic stability, where we follow again the

considerations presented in [Hahn, 1967].

Theorem 12.10 If the functional V (σ) meets the conditions of theorem 12.9 and in addition

Ljn(ẋ∂α)V (σ) ≤ −ϕ4

(

‖σ‖k2,p

)

, ϕ4 ∈ K

then the equilibrium point σ = 0 of (12.2) is asymptotically stable.

Proof. From
‖σ‖k1,p ≤ ϕ−1

1 (V (σ)) , ϕ−1
2 (V (σ)) ≤ ‖σ‖k2,p

we conclude that

L∂t
(V (Φα (t− t0, σ0))) ≤ −ϕ4

(
ϕ−1

2 (V (Φα (t− t0, σ0)))
)

= : −χ (V (Φα (t− t0, σ0))) , χ ∈ K .

Now we consider the auxiliary scalar differential equation

ẇ = −χ (w) , w ≥ 0 .
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We know that
w (t) ≤ q (w0) ρ (t− t0) , q ∈ K, ρ ∈ L , w0 = w (t0) .

If V0 = w0 then V (Φα (t− t0, σ0)) ≤ w (t) for all t. Hence

V (Φα (t− t0, σ0)) ≤ q (V0) ρ (t− t0)

is fulfilled. Finally we end up with

‖Φ (t− t0, σ0)‖k1,p ≤ ϕ−1
1 (q (V0) ρ (t− t0)) ≤ ϕ−1

1

(

q
(

ϕ2

(

‖σ0‖k2,p

))

ρ (t− t0)
)

or rewritten in

‖Φ (t− t0, σ0)‖k1,p ≤ ϕ
(

‖σ0‖k2,p

)

ρ (t− t0) , ϕ ∈ K, σ ∈ L .

It is worth mentioning, that the proposed stability criteria make only use of the formal time
derivative and consequently the solution of the system is not necessary for the determination
of these quantities.

In order to show the applicability of the derived criteria, we investigate the stability of the
damped rectangular Kirchhoff plate.
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12.3 Applications - Kirchhoff plate

We consider a fully supported plate as shown in figure 12.1. Consequently both y1
[0;0] and y1

[0;1]

Kirchhoff plate

y1

Y 2

Y 3

restraint support

Figure 12.1: The fully supported rectangular Kirchhoff plate.

vanish on the entire boundary ∂D.
The Hamiltonian density for the rectangular Kirchhoff plate is given by

h =
1

2ρΛ
(p)2 +

1

2
ς
((
y1

[20]

)2
+
(
y1

[02]

)2
+ 2νy1

[02]y
1
[20] + 2 (1 − ν)

(
y1

[11]

)2
)

,

where ς, ν, ρ,Λ ∈ R
+ and ν < 1. At first we determine the lower bound ϕ1

(

‖σ‖k1,p

)

used in

theorem 12.9.

12.3.1 Determination of lower bound

Because of the fact that the Hamiltonian density is built up by several additive terms, we are
able to focus in a first step on the second part of h given by

(
y1

[20]

)2
+
(
y1

[02]

)2
+ 2νy1

[02]y
1
[20] + 2 (1 − ν)

(
y1

[11]

)2
=

= (1 − ν)
(
y1

[20]

)2
+ (1 − ν)

(
y1

[02]

)2

+ν
((
y1

[02]

)2
+ 2y1

[02]y
1
[20] +

(
y1

[20]

)2
)

+ 2 (1 − ν)
(
y1

[11]

)2

= (1 − ν)
(
y1

[20]

)2
+ (1 − ν)

(
y1

[02]

)2
+ ν

(
y1

[02] + y1
[20]

)2
+ 2 (1 − ν)

(
y1

[11]

)2

= (1 − ν)
((
y1

[20]

)2
+ 2

(
y1

[11]

)2
+
(
y1

[02]

)2
)

+ ν
(
y1

[02] + y1
[20]

)2

≥ (1 − ν)
((
y1

[20]

)2
+ 2

(
y1

[11]

)2
+
(
y1

[02]

)2
)

.

Thus we have already found a lower bound. In order to derive ϕ1 (·) from this result we have
to consider Poincare-Friedrich [Zeidler, 1995] inequality

C1

∫
(
j1σ
)∗ (

y1
[10]

)2
dY ≤

∫
(
j2σ
)∗
((
y1

[20]

)2
+
(
y1

[11]

)2
)

dY

C2

∫
(
j1σ
)∗ (

y1
[01]

)2
dY ≤

∫
(
j2σ
)∗
((
y1

[11]

)2
+
(
y1

[02]

)2
)

dY ,
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which is applicable because of the fact, that both (j1σ)
∗
(

y1
[10]

)

and (j1σ)
∗
(

y1
[01]

)

are elements

of W̊1,2 (see [Zeidler, 1995]) due to the used restricted bearing of the plate. This supplies the
following inequality

(1 − ν)
((
y1

[20]

)2
+ 2

(
y1

[11]

)2
+
(
y1

[02]

)2
)

≥ C3

((
y1

[10]

)2
+
(
y1

[01]

)2
)

.

Now we are again able to apply the Poincare-Friedrich inequality, i.e.

C4

∫

σ∗
(
y1

[00]

)2
dY ≤ C3

∫
(
j1σ
)∗
((
y1

[10]

)2
+
(
y1

[01]

)2
)

dY

and consequently we are able to formulate

ϕ1

(

‖σ (X)‖0,2

)

≤

∫
(
j2σ
)∗
h dY = H (σ) ,

where

ϕ1

((

‖σ‖0,2

)2
)

: Γπ → R

σ → C5

∫

σ∗
((

(p)2 +
(
y1

[00]

)2
)

dY
)

and

C5 = min

(

C4,
1

2ρΛ

)

.

Now its left to determine the upper bound ϕ2

(

‖σ‖k2,p

)

.

12.3.2 Determination of upper bound

Again we have to focus on the second part of the Hamiltonian density. We are able to find an
upper bound by

(1 − ν)
(
y1

[20]

)2
+ (1 − ν)

(
y1

[02]

)2
+ ν

(
y1

[02] + y1
[20]

)2
+ 2 (1 − ν)

(
y1

[11]

)2
=

≤ (1 − ν)
(
y1

[20]

)2
+ (1 − ν)

(
y1

[02]

)2
+ ν

(
y1

[02] + y1
[20]

)2

+ν
(
y1

[02] − y1
[020]

)2
+ 2 (1 − ν)

(
y1

[11]

)2

= (1 + ν)
(
y1

[20]

)2
+ (1 + ν)

(
y1

[02]

)2
+ 2 (1 − ν)

(
y1

[11]

)2
.

Finally we are able to state

H (σ) =

∫
(
j2σ
)∗
h dY ≤ ϕ2

((

‖σ‖2,2

)2
)

,

where

ϕ2

(

‖σ (X)‖2,2

)

: Γ (π) → R

σ → C6

∫ (

(p)2 +
(
y1

[00]

)2
+
(
y1

[10]

)2
+
(
y1

[01]

)2

+
(
y1

[20]

)2
+
(
y1

[11]

)2
+
(
y1

[02]

)2
)

dY
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and

C6 = max

(
1

2ρΛ
,
1

2
ς (1 + ν) , ς (1 − ν)

)

.

In the previous part (see section 11.4.2) we have already shown, that the formal time deriv-
ative Ljn(ẋ∂α)H (σ) ≤ 0. Consequently the damped rectangular Kirchhoff plate is stable in the
sense of Lyapunov for the norm ‖·‖2,2, i.e. if ‖σα0 (X i)‖2,2 is bounded, then the norm of the
solution ‖Φα (t− t0, σ0)‖0,2 will also be bounded for t ≥ t0.

Unfortunately it is not possible to determine the −ϕ4

(

‖σ‖k2,p

)

class K-function as the time

derivative does not depend on y1
[00]. Thus we are not able to show the asymptotic stability.

12.4 Remarks on further extensions

The relations between different Sobolev norms are defined by the so called Sobolev embedding
theorem.

Definition 12.11 (Sobolev embedding theorem) The space Wk,p (D) is contained in the space

Wj,q (D), i.e.

Wk,p (D) ⊆ Wj,q (D) , 0 ≤ j < k , 1 ≤ p , q <∞

on the r-dimensional domain D with piecewise smooth boundary ∂D. The embedding

Wk,p (D) → Wj,q (D)

is continuous and compact for d < 1/q where d is given by

d =
1

p
−
k − j

r
.

(see [Zeidler, 1990])

These link between different Sobolev spaces, can be used to increase the amount of Sobolev
norms that are bounded during the motion of the infinite-dimensional system, if the initial
condition meets certain boundaries.



Chapter 13
Remarks on the Design of
Infinite-Dimensional Control Systems

This final chapter is intended to summarize the cognitions gained from the different parts
of this thesis and to give an outlook of what can be achieved by the presented methods.
Additionally several remarks on the design of infinite-dimensional control systems are stated.

13.1 Summary

The modeling of infinite-dimensional physical systems using Hamilton’s principle, the intro-
duction of a Hamiltonian representation, and the definition of a stability criterion is contained
in this thesis. In fact the main part is dedicated to the mathematical modeling by means of the
calculus of variations. From this analysis a rather general algorithm for the determination of
the equations of motion for infinite-dimensional Euler-Lagrange systems is derived. The intro-
duction of jet theory and boundary contact bundle morphisms enables the definition of the so
called boundary bundle, which is indispensable for the extraction of boundary conditions of
nth order Euler-Lagrange systems. After the incorporation of external inputs in the presented
framework, the time evolution of such systems is under investigation and supplies some infor-
mation about invariant quantities along the solution of Euler-Lagrange systems. These investi-
gations enlighten a certain structure of EL systems such that they qualify as port Hamiltonian
system. This class is subsequently analyzed in the finite- and infinite-dimensional case. The
cognitions gained from the boundary conditions derivation of EL systems is used to introduce
boundary ports for nth order I-pHd systems. Finally the interconnection via power conserv-
ing interconnections is discussed. After this part on the structured representation of infinite-
dimensional systems, a stability criterion for infinite-dimensional systems using Sobolev spaces
is presented.

In fact the treatment of physical systems, from a control theoretical point of view, is always
linked to a modification of the system behavior by means of control action. Unfortunately this
demand is not treated in this thesis, but in the next section some general remarks on that task
are formulated.
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13.2 Controller design

Having dynamic systems at ones disposal, the design of a controller is a methodology that de-
termines an assignment of system inputs by means of system outputs. In fact this assignment is
in many cases realized by means of a dynamic systems. Thus the mathematical representation
of the controller becomes identical to the mathematical representation of the controlled plant.

In the case of finite-dimensional systems, the mathematical representation is given by or-
dinary differential equations and all in- and output signals can be seen as simple functions
of time. In fact the controllers can be realized by means of, e.g., electric circuits. These
simple considerations lead to the first question concerning the controller design for infinite-
dimensional systems.

The mathematical representation of a controller for infinite-dimensional systems is given
by partial-differential equations in general. There are several application, where one is able to
overcome this intrinsic problem by the use of boundary control of spatially one dimensional
problems. In all this case it is possible to define the controller by means of ordinary differential
equations. It is obvious that this procedure does not solve the general problem.

Commonly this question is solved by the introduction of a discretization of the problem
i.e. an approximation of the problem by means of ordinary differential equations. Thus the
mathematical model according to the system is modified and the proof of stability of a control
loop based on the approximation model becomes rather questionable. Effects like spill-over
illustrate this problem. Consequently it would be of interest to design controllers on an ap-
proximative model using ordinary differential equations and to test the stability of the closed
loop taking into account the infinite-dimensional model.

Another solution of bringing the ideas of automatic control to infinite-dimensional systems
is given by a system design that directly incorporates control laws into the system. This could
be achieved by the use of, e.g., smart materials in the construction of the plant. Obviously
this approach requires the control engineer to be involved in the design of the plant. Thus
the engineer could prevent the necessity of external inputs to the system by an appropriate
design.
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Appendix A
Definitions

A.1 Algebra

A.1.1 Sets and functions

The used notion of sets is defined in [Michel, C.J. Herget, 1997]
The terms mapping, map, operator, transformation, and function are used interchangeably.

Definition A.1 (function) Let X and Y be non-empty sets. A function f from X into Y is a

subset of X × Y such that for every x ∈ X there is one and only one y ∈ Y (i.e., there is unique

y ∈ Y ) such that (x, y) ∈ f . The set X is called the domain of f (or the domain of definition

of f), and we say that f is defined on X. The set {y ∈ Y : (x, y) ∈ f for some x ∈ X} is called

the range of f and is denoted by range (f). For each (x, y) ∈ f , we call y the value of f at x and

denote ist by f . We sometimes write f : X → Y to denote the function f from X into Y . (see

[Michel, C.J. Herget, 1997])

Definition A.2 (one-to-one, onto) Let f be a function from X into Y . If range (f) = Y the f
is said to be surjective or a surjection, and we say that f maps X onto Y . If f is a function such

that for every x1, x2 ∈ X, f (x1) = f (x2) implies that x1 = x2, then f is said to be injective or a

one-to-one mapping, or an injection. If f is both injective and surjective, we say that f is bijective

or one-to-one and onto, or a bijection. (see [Michel, C.J. Herget, 1997])

Definition A.3 (inverse function) Let f be an injective mapping onf X into Y. Then we say that

f has an inverse, and we call the mapping {(y, x) ∈ range (f) ×X : (x, y) ∈ f} the inverse of f .

Hereafter, we will denote the inverse of f by f−1. (see [Michel, C.J. Herget, 1997])

Definition A.4 (composite function) LetX,Y, and Z be non-empty sets. Suppose that f : X →
Y and g : Y → Z. For each x ∈ X, we have f (x) ∈ Y and g (f (x)) ∈ Z. Since f and g are

mappings from X into Y and from Y into Z, respectively, it follows that for each x ∈ X there is

one and only one element g (f (x)) ∈ Z. Hence the set

{(x, z) ∈ X × Z : z = g (f (x)) , x ∈ X}

is a function from X into Z. We call this function the composite function of g and f and denote it

by g ◦ f . The value of g ◦ f at x is given by

(g ◦ f) (x) = g ◦ f (x) , g (f (x)) .

(see [Michel, C.J. Herget, 1997])
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Definition A.5 (identity function) Let X be a non-empty set. Let id : X → X be defined by

id (x) = x for all x ∈ X. We call id the identity function on X. (see [Michel, C.J. Herget, 1997])

Definition A.6 (image of a function) Let f be a function from a set X into a set Y . Let A ⊂ X,

and let B ⊂ Y . We define the image of A under f , denoted by f (A), to be the set

f (A) = {y ∈ Y : y = f (x) , x ∈ A} .

We define the inverse image of B under f , denoted by f−1 (B) to be the set

f−1 (B) = {x ∈ X : f (x) ∈ B} .

(see [Michel, C.J. Herget, 1997])

A.1.2 Algebraic Structures

Definition A.7 (semigroup) Let X be a non-empty set with operation α denoted by {X;α}. We

call {X;α} a semigroup if α is an associative operation on X. (see [Michel, C.J. Herget, 1997])

Definition A.8 (group, abelian group) A group is a semigroup, {X;α}, with identity e in

which every element is invertible. If in addition the operation α is commutative, the group is

referred to as commutative or abelian group. (see [Michel, C.J. Herget, 1997])

Definition A.9 (ring) Let X be a non-empty set, and let α and β be operations on X. The set X
together with the operations α and β on X, denoted by {X;α, β}, is called a ring if

• {X;α} is an abelian group;

• {X; β} is a semigroup;

• and β is distributive over α.

(see [Michel, C.J. Herget, 1997])

Definition A.10 (division ring) Let {X; +, ·} be a non-trivial ring, and let X# = X −{0}. The

ring X is called a division ring if
{
X#; ·

}
is a subgroup of {X; ·}. (see [Michel, C.J. Herget,

1997])

Definition A.11 (field) Let {X; +, ·} be a division ring. Then X is called a field if the operation

· is commutative. (see [Michel, C.J. Herget, 1997])

Definition A.12 (module) Let {R; +, ·} be a ring with identity, e, and let {X; +} be an abelian

group. Let µ : R × X → X be any function satisfying the following four conditions for all

r1, r2 ∈ R and for all x1, x2 ∈ X :

• µ (r1 + r2, x1) = µ (r1, x1) + µ (r2, x1)

• µ (r1, x2 + x2) = µ (r1, x1) + µ (r1, x2)

• µ (r1, µ (r2, x1)) = µ (r1 · r2, x1), and
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• µ (e, x1) = x1.

Then the composite system {R,X, µ} is called a module (or R-module). (see [Michel, C.J.

Herget, 1997])

Definition A.13 (vector space) Let {F ; +, ·} be a field, and let {X; +} be an abelian group. If

X is an F -module, then X is called a vector space over F . (see [Michel, C.J. Herget, 1997])

Definition A.14 (homo-, iso-, endo-, automorphism ) Let {X;α} and {Y ; β} be two semi-

groups (not necessarily distinct). A mapping ρ of set X into set Y is called a homomorphism

of the semigroup {X;α} into the semigroup {Y ; β} if

ρ (x α y) = ρ (x) β ρ (y)

for every x, y ∈ X.

• If ρ is a mapping of X onto Y , we say that X and Y are homomorphic semigroups, and we

refer to X as being homomorphic to Y

• If ρ is a one-to-one mapping of X into Y , then ρ is called an isomorphism of X into Y .

• If ρ is a mapping which is onto and one-to-one, we say that semigroup X is isomorphic to

semigroup Y .

• If X = Y (i.e., ρ is a homomorphism of semigroup X into itself) then ρ is called an endo-

morphism.

• If X = Y and if ρ is an isomorphism (i.e., ρ is an isomorphism of semigroup X into itself),

then ρ is called an automorphism of X.

(see [Michel, C.J. Herget, 1997])

Definition A.15 (kernel) Let ρ be a homomorphism of a semigroup X into a semigroup Y. If

ρ (X) has identity element, e′, then the subset of X, Kρ, defined by

Kρ = {x ∈ X : ρ (x) = e′}

is called the kernel of the homomorphism ρ. (see [Michel, C.J. Herget, 1997])

A.1.3 Topology

Definition A.16 (topology, topological space) A system T of subsets of a set X defines a topol-

ogy on X if U contains

• the empty set {} ∈ T and the set X ∈ T itself,

• the intersection of every one of its finite subsystems (U1, . . . , Un ∈ T , n ∈ N , then
n⋂

j=1

Uj ∈

T ),
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• the union of very one of its subsystems (Uα ∈ T =⇒
⋃

α∈A

Uα ∈ T , for every α ∈ arbitrary

index set).

The sets in U are called the open sets of the topological space {X,U} often abbreviated to X.

(see [Zeidler, 1995] or [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.17 (neighborhood) A neighborhood of a point x (or a set A) in X is a set N (x) (a

set N (A)) containing an open set which contains the point x (the set A). (see [Choquet-Bruhat,

Cecile DeWitt-Morette, 1982])

Definition A.18 (limit point) A point x ∈ X is a limit point of A ⊆ X if every neighborhood

N (x) of x contains at least one point a ∈ A different from x : (N (x) − {x}) ∩ A 6= 0,∀N (x).
(see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.19 (closed) A set A ⊂ X is closed if is X\A open. (see [Choquet-Bruhat, Cecile

DeWitt-Morette, 1982])

Theorem A.20 (closed) A set A closed iff it contains all its limit points. (see [Choquet-Bruhat,

Cecile DeWitt-Morette, 1982])

Definition A.21 (closure) The closure Ā of A in X is the union of A and all its limit points; it

is the smallest closed set containing A. (see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.22 (support) The support of a function f , denoted by supp (f), is the smallest

closed set outside which f vanishes identically. (see [Choquet-Bruhat, Cecile DeWitt-Morette,

1982])

Definition A.23 (interior,dense) The interior of a set A is the largest open set Å contained in

A. The set A is dense in X if Ā = X. (see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.24 (covering) A system {Ui} of open subsets of X is an open covering if each ele-

ment in X belongs to at least one Ui (i.e. ∪Ui = X). If the system {Ui} has a finite number of

elements, the covering is said to be finite. (see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.25 (Hausdorff) A topological space is Hausdorff (separated) if any two distinct

points posses disjoint neighborhoods. (see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.26 (compact) A subset A ⊂ X is compact if it is Hausdorff and if every covering

of A has a finite subcovering. (see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Theorem A.27 (compact) A compact subspace of a Hausdorff space is necessarily closed. (see

[Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.28 (disconnected) A topological space X is called disconnected, if there exist two

disjoint non empty subsets A1 and A2 both open in X and such that A1 ∪A2 = X. Since A2 is the

complement of the open set A1, it is closed as well as open. Similarly A1 is closed as well as open.

(see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])
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Theorem A.29 (connected) A topological space is connnected iff the only subsets which are

both open and closed are the void set and the space X itself. (see [Choquet-Bruhat, Cecile DeWitt-

Morette, 1982])

Definition A.30 (continuous function) A mapping f from a topological space X to a topological

space Y is continuous at x ∈ X if given any neighborhood N ⊂ Y of f there exists a neighbourhood

M of x ∈ X such that f (M) ⊂ N . f is continuous on X if it is continuous at all points x of X.

(see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.31 (homeomorphism) A homeomorphism is a bijection f which is bicontinuous (

f and f−1 are continuous). (see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.32 (topological group) A topological space X with the group operation α (i.e.

{X,α}) and a topology T builds a topological group, if the group operation is continuous. (see

[Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.33 (topological vector space) A topological space X which is also a vector space

on K is a topological vector space if the operations of addition and scalar multiplication are

continuous. (see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.34 (metric space) A metric space is a set X together with a map d : X ×X → R

such that

d (x, y) ≥ 0

d (x, y) = 0 iff x = y

d (x, y) = d (y, x)

d (x, z) ≤ d (x, y) + d (y, z) .

d (x, y) is called the distance between x and y. (see [Choquet-Bruhat, Cecile DeWitt-Morette,

1982])

Definition A.35 (complete metric space) A metric space is called complete if every Cauchy se-

quence d (xn, xm) in the space is convergent

lim
n,m→∞

d (xn, xm) = 0 .

Consequently there exists N such that, for n,m > N , d (xn, xm) < ε for every preassigned ε > 0.

(see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.36 (norm) The mapping x→ ‖x‖ of a vector space X on K into R is a norm if for

x ∈ X and λ ∈ K

‖x+ y‖ ≤ ‖x‖ + ‖y‖

‖λx‖ ≤ |λ| ‖x‖

‖x‖ = 0 iff x = 0 .

(see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.37 (Banach space) A complete normed vector space is a Banach space. (see [Choquet-

Bruhat, Cecile DeWitt-Morette, 1982])
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A.2 Manifolds

Definition A.38 (manifold) A n-dimensional (topological) manifold M is a Hausdorff topolog-

ical space such that every point has a neighbourhood homeomorphic to the euclidean space R
n.

(see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.39 (smooth manifold) Smooth manifolds are manifolds with atlases of class C∞.

(see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Definition A.40 (immersion, submersion) A smooth function f : M → N between smooth

manifolds is said to be an immersion (submersion) if rank (f) = m = dim (M) (rank (f) = n =
dim (N )) everywhere. (see [Boothby, 1986])

Definition A.41 (embedding) A injective immersion is an embedding. (see [Choquet-Bruhat,

Cecile DeWitt-Morette, 1982])

A.3 Bundles

Definition A.42 ((global) trivialization) If (E , π,B) is a fibred manifold then a (global) trivi-

alization of π is a pair (F , t) where F is a manifold (called typical fibre of π) and t : E → B × F
is a diffeomorphism satisfying the condition

pr1 ◦ t = π .

A fibred manifold which has at least one trivialization is called trivial. (see [Saunders, 1989])

A.3.1 Tangent- and Cotangent bundle

The complementary entity to the vertical bundle is called the transverse bundle.

Definition A.43 (transverse bundle) The transverse bundle to π is the pull-back vector bundle

(π∗ (T (B)) , π∗ (τB) , E). (see [Saunders, 1989])

A.3.2 Tensors bundles

Definition A.44 (tensor) A tensor Φ on a vector space V (e.g., Tp (M)) is by definition a multi-

linear map

T rg : V × · · · × V
︸ ︷︷ ︸

r

×V ∗ × · · · × V ∗

︸ ︷︷ ︸

g

→ R ,

where V ∗ (e.g., T ∗
p (M)) denotes the dual space to V , r ≥ 0 its covariant order, and g ≥ 0 its

contravariant order.(see [Boothby, 1986])

A tensor on p ∈ M will be denoted

T rg,p :
⊗r

g
M|p = Tp (M) × · · · × Tp (M)

︸ ︷︷ ︸

r

×T ∗
p (M) × · · · × T ∗

p (M)
︸ ︷︷ ︸

g

→ R .

The space
⊗r

g M|p represents a vector space of dimension r + g.
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Definition A.45 (tensor bundle) The tensor bundle
(
⊗r

gM, τ⊗r
gM
,M

)

of a manifold M con-

sists of the total manifold
⊗r

g
M =

⋃

p∈M

⊗r

g
M|p

and the natural projection

τ⊗r
gM

:
⊗r

g
M → M

⊗r

g
M|p → p .

Definition A.46 (tensor field) A C∞ tensor field on a C∞ manifold M is a function T rg which

assigns to each p ∈ M an element T rg,p and which has the additional property that, given any

v1, . . . , vr, ω1, . . . , ωg, C
∞ vector fields on an open subset U of M, then T rg (v1, . . . , vr, ω1, . . . , ωg)

is a C∞ function on U , defined by T rg (v1, . . . , vr, ω1, . . . , ωg) (p) = T rg,p (v1 (p) , . . . , vr (p) ,
ω1 (p) , . . . , ωg (p)). (see [Boothby, 1986])

Thus a tensor field T rg represents a section on the bundle
(
⊗r

gM, τ⊗r
gM
,M

)

.

Definition A.47 (symmetric tensor field) A covariant tensor field T r0 is called symmetric iff for

each 1 ≤ i, j ≤ r, we have

Φ (v1, . . . , vi, . . . , vj, . . . , vr) = Φ (v1, . . . , vj, . . . , vi, . . . , vr) .

Similarly a contravariant tensor field is called symmetric iff for each 1 ≤ i, j ≤ r, we have

Φ (ω1, . . . , ωi, . . . , ωj, . . . , ωr) = Φ (ω1, . . . , ωj, . . . , ωi, . . . , ωr) .

(see [Boothby, 1986])

Definition A.48 (skew symmetric tensor field) A covariant tensor field T r0 is called skew sym-

metric (or alternating) iff for each 1 ≤ i, j ≤ r, we have

Φ (v1, . . . , vi, . . . , vj, . . . , vr) = −Φ (v1, . . . , vj, . . . , vi, . . . , vr) .

Similarly a contravariant tensor field is called skew symmetric (or alternating) iff for each 1 ≤
i, j ≤ r, we have

Φ (ω1, . . . , ωi, . . . , ωj, . . . , ωr) = −Φ (ω1, . . . , ωj, . . . , ωi, . . . , ωr) .

(see [Boothby, 1986])

Definition A.49 (tensor product) The product of the rth-order covariant tensor ϕr and sth-
order covariant tensor ψs is a tensor of order r + s defined by

ϕr0 ⊗ ψs0 (v1, . . . , vr, . . . , vr+1, . . . , vr+s) = ϕr0 (v1, . . . , vr)ψ
s
0 (vr+1, . . . , vr+s) .

Definition A.50 (symmetrizing and alternating mapping) The map

sym :
⊗r

0
M →

⊗r

0
M

T r0 (v1, . . . , vr) →
1

r!

∑

σ

T r0
(
vσ(1), . . . , vσ(r)

)
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is referred to as symmetrizing mapping and

asym :
⊗r

0
M →

∧r
(M) ⊆

⊗r

0
M

T r0 (v1, . . . , vr) →
1

r!

∑

σ

sgn (σ) T r0
(
vσ(1), . . . , vσ(r)

)

is referred to as alternating mapping. Here σ denotes a permutation of (1, . . . , r) with (1, . . . , r) →
(σ (1) , . . . , σ (r)) and sgn (σ) the corresponding sign. (see [Boothby, 1986])

Definition A.51 (Lie derivative) The Lie derivative of a tensor field T rg with respect to a vector

field v ∈ Γ (τM) is a derivation on the algebra of differentiable tensor fields
⊗

M, i.e.

Lv (u+ w) = Lv (u) + Lv (w)

Lv (u⊗ w) = Lv (u) ⊗ w + u⊗ Lv (w) , w, u ∈ Γ
(⊗

M
)

.

(see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

Remark A.52 The Lie bracket [v, w] represents the Lie derivative Lv (w) of a contravariant tensor

field w ∈ Γ (τ 1
0M) = Γ (τM) with respect to the vector v ∈ Γ (τM).

Definition A.53 (Lie bracket) The Lie bracket of two vector fields v, w ∈ Γ (τM) is defined by

[v, w] (f) = v (w (f)) − w (v (f)) , f ∈ C∞M

and is again a vector field [v, w] ∈ Γ (τM). (see [Choquet-Bruhat, Cecile DeWitt-Morette, 1982])

A.3.3 Exterior Algebra

Definition A.54 (exterior form) Exterior r-forms are alternating tensors fields T r0 of order r
and form a subspace

∧rM ⊆
⊗r

0 M. (see [Boothby, 1986])

Definition A.55 (exterior bundle) The tensor bundle (
∧rM, τ∧rM,M) of a manifold M con-

sists of the total manifold
∧rM and the natural projection

τ∧rM :
∧r

M → M
∧r

M|p → p .

In particular the bundle τ∧1M equals τ̄M.

Definition A.56 (exterior product) The mapping from
∧rM×

∧sM =
∧r+sM, defined by

(ϕ, ψ) →
(r + s)!

r! s!
asym (ϕ⊗ ψ)

is called the exterior product (or wedge product) of ϕ and ψ and is denoted ϕ ∧ ψ. (see [Boothby,

1986])
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Definition A.57 (exterior algebra) The space
∧

M =
∧0

M⊕
∧1

M⊕
∧2

M⊕ · · · ⊕
∧n

M

on a n-dimensional with the exterior product ∧ forms an algebra of R. (see [Boothby, 1986])

Definition A.58 (exterior ideal) An ideal of an exterior algebra
∧
M on a manifold M is a

subspace I ⊂
∧
M which has the property that whenever ϕ ∈ I and θ ∈

∧
M, then θ ∧ ϕ ∈ I.

(see [Boothby, 1986])

Definition A.59 (degree of a linear operator) Let L be a linear operator on
∧

(M)

L (λω + µθ) = λL (ω) + µL (θ) , λ, µ ∈ R , ω, θ ∈
∧

(M) .

Then the degree s of the operator is determined by

L :
∧r

(M) →
∧r+s

(M) .

Definition A.60 (derivation) A linear operator L is a derivation on
∧

(M) if its degree is even

and if it obeys the Leibnitz rule

L (ω ∧ θ) = L (ω) ∧ θ + ω ∧ L (θ) , ω, θ ∈
∧

(M) .

Definition A.61 (antiderivation) A linear operator L is an antiderivation on
∧

(M) if its de-

gree is odd and if it obeys the “antiLeibnitz” rule

L (ω ∧ θ) = L (ω) ∧ θ + (−1)deg(ω) ω ∧ L (θ) , ω, θ ∈
∧

(M) .

Definition A.62 (exterior derivative) Let M be any C∞ manifold and let
∧

(M) be the algebra

of exterior differential forms on M. Then there exists a unique R-linear map d :
∧

(M) →
∧

(M)
such that

• if f ∈
∧0 (M) = C∞ (M), then df is the differential of f ;

• if α ∈
∧r (M) and β ∈

∧s (M) , then d (α ∧ β) = dα ∧ β + (−1)r α ∧ dβ;

• d (d (·)) = 0 .

The exterior derivative maps
∧r (M) into

∧r+1 (M) and is additionally an antiderivation.

Definition A.63 (interior product) The contracted multiplication or interior product of a form

ω ∈
∧

(M) and a vector v ∈ Γ (τM) denoted by vcω (or iv (ω)) is an antiderivation

vc (ω ∧ θ) = vc (ω) ∧ θ + (−1)deg(ω) ω ∧ vc (θ) θ ∈
∧

(M)

and is defined by

• if ω ∈
∧0 (M) = C∞ (M), then vcω = 0;

• if ω ∈
∧1 (M) = T ∗ (M), then vcω = Lv (ω) equals the Lie derivative;

• if ω ∈
∧r (M), then vc (ω (w2, . . . , wr)) = ω (v, w2, . . . , wr) with w2, . . . , wr ∈ Γ (τM);

• d (d (·)) = 0 .

The exterior derivative maps
∧r (M) into

∧r+1 (M).

Definition A.64 (Lie derivative of an exterior form) If the Lie derivative Lv (·) acts on alter-

nating covariant tensors ω, i.e. exterior forms, one is able use H. Cartan’s formula

Lv (ω) = vcd (ω) + d (vcω) .
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A.3.4 Special bundle morphisms

Definition A.65 (push-forward, differential) A smooth mapping f : M → N between the n-

dimensional manifolds M and N induces a bundle morphism (f∗, f) between the corresponding

tangent bundles τM and τN .

T (M)
(f∗, f) - T (N )

M

τM

?

f
- N

τN

?

In local coordinates x1, . . . , xn according to M and z1, . . . , zn according to N this morphism has

the form

zi = f i
(
xk
)
, i, k = 1, . . . , n

żi = f i∗
(
xk, ẋk

)
=
∂f i

∂xk
ẋk .

The corresponding transformation of a section v = vk∂k ∈ Γ (τM) (see Def. 3.6), i.e. a vector

field, is given by

w = wi∂i = f∗ (v) =

((
∂f i

∂xk
vk
)

◦ f−1

)

∂i ∈ Γ (τN )

and denoted push-forward or differential.

Definition A.66 A smooth mapping f : N → M between the n-dimensional manifolds M and

N induces a bundle morphism (f ∗, f−1) between the corresponding cotangent bundles τ̄M and

τ̄N .

T ∗ (M)
(f ∗, f−1) - T ∗ (N )

M

τ̄M

?

f−1
- N

τ̄N

?

In local coordinates x1, . . . , xn according to M and z1, . . . , zn according to N this morphism has

the form

zi =
(
f−1
)i (

xk
)
, i, k = 1, . . . , n

żi = f ∗i
(
xk, ẋk

)
=

(
∂fk

∂zi
ẋk

)

◦ f−1 .

It is now remarkable, that the corresponding transformation of a section ω = ωkdx
k ∈ Γ (τ̄M),

i.e. a covector field, does not require any inverse function. The transformation is given by

λ = λidz
i = f ∗

(
ωkdx

k
)

=

((
∂fk

∂zi
ωk

)

◦ f

)

dzi ∈ Γ (τ̄N )

and denoted the pull-back of a 1-form.
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Definition A.67 (pull-back of r-forms) A smooth mapping f : N → M between the n-dim-

ensional manifolds M and N induces a bundle morphism (f ∗, f−1) between the corresponding

cotangent bundles (
∧rM, τ∧rM,M) and (

∧rN , τ∧rN ,N ), 0 ≤ r ≤ n . In local coordinates

x1, . . . , xn, ẋi1,...,ir according to
∧rM and z1, . . . , zn, żj1,...,jr according to

∧rN this morphism

has the form

zi =
(
f−1
)i (

xk
)
, i, k = 1, . . . , n

żj1,...,jr = f ∗
(
xk, ẋi1,...,ir

)
=

(
∂f i1

∂zj1
. . .

∂f ir

∂zjr
ẋi1,...,ir

)

◦ f−1 , with
1 ≤ i1 ≤ · · · ≤ ir ≤ n
1 ≤ j1 ≤ · · · ≤ jr ≤ n,

.

It is worth mentioning, that the fibre of such vector bundles τ∧rM resp. τ∧rN is of dimension
(
n
r

)
. The transformation of an r-form ω = ωi1,...,irdx

i1 ∧ . . . ∧ dxir ∈ Γ (τ∧rM) under this bundle

morphism is given by

αj1,...,jrdz
j1 ∧ . . . ∧ dzjr = f ∗ (ω) =

((
∂f i1

∂zj1
. . .

∂f ir

∂zjr
ωi1,...,ir

)

◦ f

)

dzj1 ∧ . . . ∧ dzjr .

Thus, there is no need to confine oneselve in the application of the pull-back to invertible functions

f .

Definition A.68 (tensor bundle morphism) A smooth mapping f : M → N between the n-

dimensional manifolds M and N induces a bundle morphism (F, f) between the corresponding

tensor bundles τ⊗r
gM

and τ⊗r
gN

denoted tensor bundle morphism.

⊗r

g
M

(F, f) -
⊗r

g
N

M

τ⊗r
gM

?

f
- N

τ⊗r
gN

?

In local coordinates x1, . . . , xn, ẋ c...dr...s according to ⊗r
gM and z1, . . . , zn, ż i...jk...l according to ⊗r

gN
this morphism has the form

zi = (f)i
(
xk
)
, i, k, j, l = 1, . . . , n

ż i...jk...l = F i...j
k...l

(
ẋ c...dr...s

)
=







∂f i

∂xc
. . .

∂f j

∂xd
︸ ︷︷ ︸

r

∂ (f−1)
r

∂zk
. . .

∂ (f−1)
s

∂zl
︸ ︷︷ ︸

g

ẋ c...dr...s







◦ f .

A.4 Integration on manifolds

Definition A.69 (integrable functions, integrable forms) A function f on M is integrable if

it is bounded, has compact support (vanishes outside a compact set), and is almost continuous

(that is, continuous except possibly on a set of content (measure) zero). An n-form ω on M, in

the very general sense of a function assigning to each p ∈ M an element ωp of
∧n M|p, is said to

be integrable if ω = f dx1 ∧ . . . ∧ dxn, where f is an integrable function. (see [Boothby, 1986])
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Theorem A.70 (Stokes’s theorem) Let M be an oriented compact manifold of dimension n
with coherently oriented boundary ∂M. Let ω be a differential form of degree (n− 1) of compact

support. Then: ∫

M

dω =

∫

∂M

ι∗ω

is met with the inclusion mapping i : ∂M → M. When ∂M = 0, the integral over M vanishes.

(see [Abraham, J.E. Marsden, T. Ratiu, 1988])



Appendix B
The Kirchhoff Plate

The derivation of the equations of motion, the determination of the boundary conditions, the
formulation of the port Hamiltonian representation, and finally the stability analysis of the
so called Kirchhoff plate is used through out this thesis to illustrate the applicability of the
presented methods. Indeed this problem corresponds to the class of 2nd order Euler-Lagrange
systems and consequently the theory of chapter 8 has to be used, if one wants to apply the
method of Cartan forms.

In fact one is also able to apply the integration by parts method to derive the domain
conditions and as it was done by, e.g., Ritz [Ritz, 1909] also the boundary conditions. Here
we will discuss this approach using the classical notation as introduced by, e.g., [Gelfand, S.V.
Fomin, 2000]. The considered domain of the rectangular Kirchhoff plate is shown in figure
B.1.

Y2

Y1

X1
X2

Figure B.1: The rectangular Kirchhoff plate.

The potential energy is given by

V = ς
1

2

∫ Y2

Y1

∫ X2

X1

[(
∂2w

∂X2

)2

+

(
∂2w

∂Y 2

)2

+ 2ν

(
∂2w

∂X2

)(
∂2w

∂Y 2

)

+ 2 (1 − ν)

(
∂2w

∂X∂Y

)2
]

dX dY

146
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and the kinetic energy could be formulated by

T =
1

2

∫ Y2

Y1

∫ X2

X1

[(

ρΛ
∂w

∂t

)2
]

dX dY

using ς, ν, ρ,Λ ∈ R
+ (see [Ritz, 1909] or [Bremer, F. Pfeiffer, 1992]). The deviation of the

plate is denoted by w (X,Y ).Taking into account Hamilton’s principle, we are able to define
the Lagrangian functional

L =

∫ t2

t1

∫ Y2

Y1

∫ X2

X1

ldX dY dt =
1

2

∫ t2

t1

∫ Y2

Y1

∫ X2

X1

[(
∂w

∂t

)2

−

(
∂2w

∂X2

)2

−

(
∂2w

∂Y 2

)2

(B.1)

−2ν

(
∂2w

∂X2

)(
∂2w

∂Y 2

)

− 2 (1 − ν)

(
∂2w

∂X∂Y

)2
]

dX dY dt ,

where ς = ρ = Λ = 1 is used to simplify the upcoming expressions. The variation of the
Lagrangian functional δL leads to

δl =
∂w

∂t
δ
∂w

∂t
−

(
∂2w

∂X2
+ ν

∂2w

∂Y 2

)

δ
∂2w

∂X2

−

(
∂2w

∂Y 2
+ ν

∂2w

∂X2

)

δ
∂2w

∂Y 2
− 2 (1 − ν)

∂2w

∂X∂Y
δ
∂2w

∂X∂Y
.

In order to obtain the domain conditions one is able to apply integration by parts. Subse-
quently this procedure is shown for every single part of δl.

For the first part we obtain

∫ t2

t1

∫ Y2

Y1

∫ X2

X1

∂w

∂t
δ
∂w

∂t
dX dY dt =

∫ Y2

Y1

∫ X2

X1

([
∂w

∂t
δw

]t2

t1

−

∫ t2

t1

∂2w

∂t2
δwdt

)

dX dY .

The second part results in

∫ t2

t1

∫ Y2

Y1

∫ X2

X1

−

(
∂2w

∂X2
+ ν

∂2w

∂Y 2

)

δ
∂2w

∂X2
dX dY dt =

=

∫ t2

t1

∫ Y2

Y1







−








(
∂2w

∂X2
+ ν

∂2w

∂Y 2

)

︸ ︷︷ ︸

boundary condition

δ
∂w

∂X








X2

X1

+

∫ X2

X1

(
∂3w

∂X3
+ ν

∂3w

∂X∂Y 2

)

δ
∂w

∂X
dX








dY dt .

Obviously one is able to apply an additional integration by parts on last entry, i.e. we get

∫ t2

t1

∫ Y2

Y1

∫ X2

X1

(
∂3w

∂X3
+ ν

∂3w

∂X∂Y 2

)

δ
∂w

∂X
dXdY dt =

=

∫ t2

t1

∫ Y2

Y1















(
∂3w

∂X3
+ ν

∂3w

∂X∂Y 2

)

︸ ︷︷ ︸

boundary condition

δw








X2

X1

−

∫ X2

X1

(
∂4w

∂X4
+ ν

∂4w

∂X2∂Y 2

)

δwdX








dY dt .
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The third part has to be treated similarly and we obtain

∫ t2

t1

∫ X2

X1

∫ Y2

Y1

−

(
∂2w

∂Y 2
+ ν

∂2w

∂X2

)

δ
∂2w

∂Y 2
dY dX dt =

=

∫ t2

t1

∫ X2

X1







−








(
∂2w

∂Y 2
+ ν

∂2w

∂X2

)

︸ ︷︷ ︸

boundary condition

δ
∂w

∂Y








Y 2

Y 1

+

∫ Y2

Y1

(
∂3w

∂Y 3
+ ν

∂3w

∂X2∂Y

)

δ
∂w

∂Y
dY








dX dt

and

∫ t2

t1

∫ X2

X1

∫ Y2

Y1

(
∂3w

∂Y 3
+ ν

∂3w

∂X2∂Y

)

δ
∂w

∂Y
dY dX dt =

=

∫ t2

t1

∫ X2

X1















(
∂3w

∂Y 3
+ ν

∂3w

∂X2∂Y

)

︸ ︷︷ ︸

boundary condition

δw








Y2

Y1

−

∫ Y2

Y1

(
∂4w

∂Y 4
+ ν

∂4w

∂X2∂Y 2

)

δwdY








dX dt .

The fourth part of δl

∫ t2

t1

∫ Y2

Y1

∫ X2

X1

−2 (1 − ν)
∂2w

∂X∂Y
δ
∂2w

∂X∂Y
dY dX dt

enlightens finally the general problem of nth order Lagrangians, as we obtain two different
possibilities for the application of integration by parts.

Remark B.1 This non-uniqueness of the integration by parts order is equivalent to the non-

uniqueness of the used contact form in the construction of the Cartan form.

We will discuss both possibilities and obtain in the first case, where we apply integration
by parts on the X-coordinate

∫ t2

t1

∫ Y2

Y1

(

−

[

2 (1 − ν)
∂2w

∂X∂Y
δ
∂w

∂Y

]X2

X1

+

∫ X2

X1

(

2 (1 − ν)
∂3w

∂X2∂Y

)

δ
∂w

∂Y
dX

)

dY dt .

Obviously an additional integration by parts on the second part has to be applied, i.e.

∫ t2

t1

∫ Y2

Y1

∫ X2

X1

(

2 (1 − ν)
∂3w

∂X2∂Y

)

δ
∂w

∂Y
dX dY dt

=

∫ t2

t1

∫ X2

X1















(

2 (1 − ν)
∂3w

∂X2∂Y

)

︸ ︷︷ ︸

boundary condition

δw








Y2

Y1

−

∫ Y2

Y1

(

2 (1 − ν)
∂4w

∂X2∂Y 2

)

δwdY








dX dt .
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In fact on the first part – on the boundary – integration by parts is also necessary. This leads to

∫ t2

t1

∫ Y2

Y1

−

[

2 (1 − ν)
∂2w

∂X∂Y
δ
∂w

∂Y

]X2

X1

dY dt

=

∫ t2

t1













−







2 (1 − ν)
∂2w

∂X∂Y
︸ ︷︷ ︸

edge condition

δw







X2

X1







Y2

Y1

+








∫ Y2

Y1

(

2 (1 − ν)
∂3w

∂X∂Y 2

)

︸ ︷︷ ︸

boundary condition

δw dY















X2

X1

dt .

Consequently we obtain a condition of the edges of domain of the Kirchhoff plate, as it was
stated by Ritz or Lamb [Ritz, 1909].

The second possibility – integration by parts on the Y -coordinate – lead similarly to

∫ t2

t1

∫ X2

X1

(

−

[

2 (1 − ν)
∂2w

∂X∂Y
δ
∂w

∂X

]Y2

Y1

+

∫ Y2

Y1

(

2 (1 − ν)
∂3w

∂X∂Y 2

)

δ
∂w

∂X
dY

)

dX dt

and
∫ t2

t1

∫ Y2

Y1

∫ X2

X1

(

2 (1 − ν)
∂3w

∂X∂Y 2

)

δ
∂w

∂X
dX dY dt

=

∫ t2

t1

∫ Y2

Y1















(

2 (1 − ν)
∂3w

∂X∂Y 2

)

︸ ︷︷ ︸

boundary condition

δw








X2

X1

−

∫ X2

X1

(

2 (1 − ν)
∂4w

∂X2∂Y 2

)

δwdX








dY dt .

From

∫ t2

t1

∫ X2

X1

−

[

2 (1 − ν)
∂2w

∂X∂Y
δ
∂w

∂X

]Y2

Y1

dY dt

=

∫ t2

t1













−







2 (1 − ν)
∂2w

∂X∂Y
︸ ︷︷ ︸

edge condition

δw







Y2

Y1







X2

X1

+








∫ X2

X1

(

2 (1 − ν)
∂3w

∂X2∂Y

)

︸ ︷︷ ︸

boundary condition

δwdX








Y2

Y1








dt

we obtain also in this case a condition on the edge of the plate.
Finally the domain condition results in

(
∂2w

∂t2
+
∂4w

∂X4
+
∂4w

∂Y 4
+ 2

∂4w

∂X2∂Y 2

)

δw dX dY dt = 0 ,

the boundary condition on [ ]X2

X1
results in

−

[(
∂2w

∂X2
+ ν

∂2w

∂Y 2

)

δ
∂w

∂X

]X2

X1

= 0

[(
∂3w

∂X3
+ (2 − ν)

∂3w

∂X∂Y 2

)

δw

]X2

X1

= 0
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and on [ ]Y2

Y1
we obtain

[(
∂3w

∂Y 3
+ (2 − ν)

∂3w

∂X2∂Y

)

δw

]Y2

Y1

= 0

−

[(
∂2w

∂Y 2
+ ν

∂2w

∂X2

)

δ
∂w

∂Y

]Y 2

Y 1

= 0 .

It it worth mentioning that these results coincide with the results of section 8.6, despite the
obtained condition on the edges

[[
∂2w

∂X∂Y
δw

]Y2

Y1

]X2

X1

= 0 .

As already mentioned in section 5.1, the whole method has a significant drawback - integration
by parts is not the appropriate tool for higher dimensional domains (in contrary to Stokes’s
theorem) and cannot be used without caution. In fact the integration order was changed
without any modification of the integrand. In order to incorporate this, we introduce the
notion of forms to B.1 and split part 4 in two integrals

∫ t2

t1

∫ Y2

Y1

∫ X2

X1

−2 (1 − ν)
∂2w

∂X∂Y
δ
∂2w

∂X∂Y
dY ∧ dX ∧ dt

=

∫ t2

t1

∫ Y2

Y1

∫ X2

X1

(1 − ν)
∂2w

∂X∂Y
δ
∂2w

∂X∂Y
dX ∧ dY ∧ dt

︸ ︷︷ ︸

use integration by parts – possibility 1

+

∫ t2

t1

∫ X2

X1

∫ Y2

Y1

− (1 − ν)
∂2w

∂X∂Y
δ
∂2w

∂X∂Y
dY ∧ dX ∧ dt

︸ ︷︷ ︸

use integration by parts – possibility 2

.

In the second case we have changed the integration order and consequently also the sign of
the integrand. For the first part, where integration by parts along X is applied we get

∫ t2

t1




















(1 − ν)
∂2w

∂X∂Y
︸ ︷︷ ︸

edge condition

δw







X2

X1







Y 2

Y 1

−








∫ Y2

Y1

(

(1 − ν)
∂3w

∂X∂Y 2

)

︸ ︷︷ ︸

boundary condition

δwdY








X2

X1








dt

and the second part results in

∫ t2

t1



















− (1 − ν)

∂2w

∂X∂Y
︸ ︷︷ ︸

edge condition

δw







Y 2

Y 1







X2

X1

+








∫ X2

X1

(

(1 − ν)
∂3w

∂X2∂Y

)

︸ ︷︷ ︸

boundary condition

δwdX








Y 2

Y 1








dt .

Finally one has to sum up all conditions on the domain, on all parts of the boundary, and on the
edges. It is obvious that the edge condition vanishes completely. The domain and boundary
conditions are not modified and coincide again with the results of section 8.6.
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The change of the sign due to the introduction of the language of forms could also be
illustrated by considering the directions of the used integrations on the boundary, which are a
simple result is the used orientation of the domain and the induced orientation of the boundary
(see Fig. B.2). Finally we are able to state that the original results of Kirchhoff, which did not

Y2

Y1

X1
X2

leads to the incorrect
edge condition

coherent orientation of the boundary

Figure B.2: Integration on the boundary.

contain an edge condition are correct.



Appendix C
The Maple c©[Maplesoft, 2004] Package

The application of the calculus of variations on physical problems, which are more complex
than simple textbook examples, is an expensive task. Whatever method one applies, the man-
agement of huge expressions demands the introduction of computer algebra tools. It is worth
mentioning that the theory presented in part II stems from such a development.

In this chapter we present a computer algebra package that implements the determination
of the domain and boundary conditions using the Cartan form solution. The actual status of
the package makes use of the index order (see Def. 4.2) in the construction procedure of the
Cartan form. Additionally it is assumed that the analysed system is formulated in (Y j, yα)
coordinates, i.e. the last independent coordinate is constant on the boundary. Consequently
the determination of the domain and boundary conditions is not limited with respect to system
order or dimension.

C.1 General Aims

The MAPLE9.5 [Maplesoft, 2004] Package JetVariationalCalculus is intended to provide rou-
tines for the management of local coordinates of jet manifolds, contact forms, and total deriva-
tives on a rather general level. Additionally these procedures are used to implement algorithms
for the derivation of domain and boundary conditions of Euler-Lagrange systems.

In order to guarantee the reusability of the developed code, its structure should be modular,
object oriented and accessible through small, but flexible interfaces. Unfortunately MAPLE9.5
does not provide object oriented programming as known from Java or C++. The genera-
tion of independent instances of a module is realized by the implementation of a procedure
(constructor), which returns a new module. In the following all modules will provide such a
constructor.

C.2 Modules and Interfaces

The JetVariationalCalculus package is a framework of three modules that incorporate each
other. For basic operations on exterior forms we will use the module “MyLieSymm”. Based on
this module we introduce the “Jets” module that provides all routines for the management of
local jet coordinates and related objects. Finally the module “JetVariationalCalculus” incorpo-
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rates all the developed methods in order to derive the domain and boundary conditions. In
figure C.1 this structure is depicted, where the corresponding constructors are also indicated.

J e t V a r i a t i o n a l C a l c u l u s

J e t s

M y L i e S y m m

G e t L i e S y m m

J e t V a r i a b l e s

J e t V a r C a l c u l u s

m o d u l e

m o d u l e

m o d u l e

c o n s t r u c t o r

M a p l e  9  W o r k s p a c e

n e w  m o d u l e
i n s t a n c e

m o d u l e

d o m V a r

m o d u l e

d o m a i n
m o d u l e

b o u n d

m o d u l e

m l s y
m o d u l e

m l s y

c o n s t r u c t o r

c o n s t r u c t o r

Figure C.1: The JetVariationalCalculus package structure.

In the subsequent sections we will discuss the introduced modules separately

C.2.1 The “MyLieSymm” Module

MAPLE9.5 provides packages for the handling of objects from differential geometry (vectors,
forms etc.). In our case the rather old package liesymm is used. Unfortunately this pack-
age does not provide the necessary object oriented behavior. To overcome this problem a
new module called MyLieSymm is implemented, which envelops liesymm and administers
the corresponding data. This module can be added to the MAPLE workspace by evaluating
> and provides the constructor . The methods of a module

instance can be evaluated by applying the scoping operator “ ”.

The implemented methods are

• SetLieSymmVariables, GetLieSymmVariables:

Set and get the local coordinates;

• myd:

Implements the exterior derivative d (·) (see Maple help [liesymm,d]);

• my&^:

Implements the exterior product ∧ (see Maple help [liesymm,wedge]);

• myhook:

Implements the interior product – the hook operator c (see Maple help [liesymm,hook]),

• mygetcoeff:

Extract the coefficient part of a basis wedge product (see Maple help [liesymm,getcoeff]);
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• mygetform:

Extract the basis element of a single wedge product (see Maple help [liesymm,getform]);

• myLie:

Implements the Lie derivative (see Maple help [liesymm,Lie]);

• mywcollect:

Regroup the terms as a sum of wedge products (see Maple help [liesymm,wcollect]);

• mywdegree:

Compute the wedge degree of a form (see Maple help [liesymm,wcollect]);

In figure C.2 the application of the MyLieSymm module is depicted
This module is used by the “Jets” module.

C.2.2 The “Jets” Module

The mathematical analysis of the calculus of variations, where manifolds, nth order jet bundles
and prolongations are used, illustrates the necessity of managing the corresponding adapted
coordinates in a single Jets module. This module can be added to the MAPLE workspace by
evaluating > and provides the constructor .

The following methods are implemented:

• SetIndepVars, GetIndepVars:

Set and get the independent variables X i of the variational problem;

• SetDepVars, GetDepVars:

Set and get the dependent variables xα of the variational problem;

• GetIndepOfDepVars:

Get the independent variables related to a given dependent variable;

• CalcJetVars:

Despite the fact that some objects of our theoretical investigations are defined on the
infinite-dimensional jet manifold J∞E , the maximal jet order #J must be restricted to
a finite number for practical calculation. This method allows to define the maximal jet
order and to calculate the corresponding jet variables xα[J ]. The following notation

mathematical formula ⇐⇒ maple sheet

xα[101] ⇐⇒ ‘xalpha;101‘

is used for jet coordinates;

• GetJetVars:

Returns the calculated jet variables xα[J ];

• GetVars:

Returns all adapted coordinates
(

X i, xα, xα[J ]

)

to the nth jet manifold Jnπ;
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• CalcContactForms:

Calculate the contact forms ωα[J ] (see Def. 4.12);

• GetContactForms:

Returns the generated contact forms ωα[J ];

• GetTotalDiff:

Returns the automatically generated total derivative vector fields di (see Def. 4.11);

• GetVarIndex, SetVarIndex:

This methods are necessary to extract and modify the multi-index J corresponding to a
given jet variable xα[J ];

• GetVector:

This method returns a unit vector v ∈ Γ (T (Jnπ)) corresponding to the given coordinate.

• GetVolForm:

Returns the volume form dY corresponding to the domain D.

• GetMLSyObj:

Returns the underlying MyLieSymm module.

• ProlongVectField:

Derives the prolongation of a given vector field.

The application of these methods is depicted in figure C.3 and C.4. The “Jets” module
provides all basic manipulation tools, which are needed for the implementation of the derived
formulas as computer algebra algorithms.
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> with(MyLieSymm);# loading the module

"InitMyLieSymmPackage module by regpro - VERSION 3.0 "

"EU-Proj.: GEOPLEX IST-2001-34166 Copyright (c) 2005 - Institut of Automatic Control and Control Systems Technology \

 "

"Johannes Kepler University Linz - Austria, All rights reserved. "
Warning, the protected name close has been redefine d and unprotected 

[ ]GetLieSymm
> mlsy:=GetLieSymm();mlsy2:=GetLieSymm(): # the const ructor returns two independent 

instances

"MyLieSymm - by regpro JKU Linz-Austria"
Warning, the `with' command does not work inside pr ocedures or modules 

mlsy module() := 

SetLieSymmVariables GetLieSymmVariables myd `my&^` myhook mygetcoeff mygetform myLie mywcollect, , , , , , , , ,export

mywdegree myLieBracket, ;

 ... 

end module

"MyLieSymm - by regpro JKU Linz-Austria"
Warning, the `with' command does not work inside pr ocedures or modules 

> mlsy:-SetLieSymmVariables([x1,x2]):mlsy2:-SetLieSym mVariables([z1,z2,z3]): # 
definition of the local coordinates

> mlsy:-GetLieSymmVariables();mlsy2:-GetLieSymmVariab les();

[ ],x1 x2

[ ], ,z1 z2 z3
> mlsy:-myd(x1);mlsy:-myd(z1);mlsy2:-myd(x3);mlsy2:-m yd(z3); # application of the 

exterior derivative

( )d x1

0

0

( )d z3
> temp2:=mlsy2:-`my&^`(z3,mlsy2:-myd(z1),mlsy2:-myd(z 2)); # application of the wedge 

product

 := temp2 z3( )( )d z1 &^ ( )d z2
> mlsy2:-myhook(temp2,[v1,v2,v3]);# appication of the  hook operator

z3( ) − v1 ( )d z2 ( )d z1 v2
> mlsy2:-mygetcoeff(temp2);mlsy2:-mygetform(temp2);

z3

( )d z1 &^ ( )d z2
> mlsy2:-mywcollect(temp2);mlsy2:-mywdegree(temp2);

z3( )( )d z1 &^ ( )d z2

2

Figure C.2: Example application of the MyLieSymm module.
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> with(Jets);

"Jets module by regpro - VERSION 3.0 "

"EU-Proj.: GEOPLEX IST-2001-34166 Copyright (c) 2005 - Institut of Automatic Control and Control Systems Technology \

 "

"Johannes Kepler University Linz - Austria, All rights reserved. "

[ ]JetVariables
> domain:=JetVariables();

"JetVariables - by regpro JKU Linz-Austria"

"MyLieSymm - by regpro JKU Linz-Austria"
Warning, the `with' command does not work inside pr ocedures or modules 

domain module() := 

SetIndepVars GetIndepVars SetDepVars GetDepVars GetIndepOfDepVars GetJetOrder CalcJetVars SetJetVars, , , , , , , ,export

GetJetVars GetVarIndex SetVarIndex GetVars GetVarPos CalcContactForms SetContactForms GetContactForms, , , , , , , ,

GetTotalDiff GetVector GetVolForm GetMLSyObj ProlongVectField, , , , ;

 ... 

end module
> domain:-SetIndepVars(X1,X2):domain:-GetIndepVars(X1 ,X2);

[ ],X1 X2
> domain:-SetDepVars([x1,X1],x2):domain:-GetDepVars([ x1,X1],x2);

,( )x1 X1 ( )x2 ,X1 X2

[ ],x1 x2
> domain:-GetIndepOfDepVars(x1);

[ ]X1
> domain:-CalcJetVars(2): domain:-GetJetVars();
JetVariables successfully generated!

[ ], , , , , ,x1;10 x2;10 x2;01 x1;20 x2;20 x2;11 x2;02
> domain:-GetVars();

[ ], , , , , , , , , ,X1 X2 x1 x2 x1;10 x2;10 x2;01 x1;20 x2;20 x2;11 x2;02
> domain:-CalcContactForms():domain:-GetContactForms( );
ContactForms derived

[ ], − ( )d x1 x1;10 ( )d X1  −  − ( )d x2 x2;10 ( )d X1 x2;01 ( )d X2 ,

[ ],[ ] − ( )d x1;10 x1;20 ( )d X1 [ ], −  − ( )d x2;10 x2;20 ( )d X1 x2;11 ( )d X2  −  − ( )d x2;01 x2;11 ( )d X1 x2;02 ( )d X2

Figure C.3: Example application of the Jets module.
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> domain:-GetTotalDiff();domain:-GetTotalDiff(1);doma in:-GetTotalDiff(2);

[ ],[ ], , , , , , , , , ,1 0 x1;10 x2;10 x1;20 x2;20 x2;110 0 0 0 [ ], , , , , , , , , ,0 1 0 x2;01 0 x2;11 x2;02 0 0 0 0

[ ], , , , , , , , , ,1 0 x1;10 x2;10 x1;20 x2;20 x2;110 0 0 0

[ ], , , , , , , , , ,0 1 0 x2;01 0 x2;11 x2;02 0 0 0 0
> domain:-GetVector(X1);domain:-GetVector(`x1;20`);

[ ], , , , , , , , , ,1 0 0 0 0 0 0 0 0 0 0

[ ], , , , , , , , , ,0 0 0 0 0 0 0 1 0 0 0
> domain:-GetVarIndex(`x2;02`);domain:-SetVarIndex(x2 ,[0,1]);

[ ],x2 [ ],0 2

x2;01
> domain:-GetVolForm();

( )d X1 &^ ( )d X2
> 
> mlsy:=domain:-GetMLSyObj();

mlsy module() := 

SetLieSymmVariables GetLieSymmVariables myd `my&^` myhook mygetcoeff mygetform myLie mywcollect, , , , , , , , ,export

mywdegree myLieBracket, ;

 ... 

end module
> mlsy:-myLie(f(x1,x2),domain:-GetTotalDiff(1));

 + x1;10




∂

∂
x1

( )f ,x1 x2 x2;10




∂

∂
x2

( )f ,x1 x2

Figure C.4: Example application of the Jets module.
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C.2.3 The “JetVariationalCalculus” Module

This package can be added to the MAPLE workspace by evaluating >
and provides the constructor . All the methods stated below correspond to
the presented theoretical investigation and make essential use of the “Jets” module.

The implemented methods are:

• EulerOp:

This method allows to apply the Euler-Lagrange Operator δα (·) of equation (7.10), to a

given Lagrangian density l
(

X i, xα, xα[J ]

)

. The resulting partial differential equation cor-

responding to the dependent coordinate xα is returned, whereupon the “= 0”-statement
is neglected. This is the common notation used in MAPLE.

• CalcCartanForm, GetCartanForm:

These two methods determine and return the Cartan form c as defined in equation (7.12)
to the MAPLE workspace. Due to the fact that there exists no unique representation of
the Cartan form for higher order Lagrangians, this method additionally makes use of the
introduced multi-index order (see Def. 4.2).

• GetDomainConditions:

This method evaluates the presented condition (7.14) and returns the domain conditions
in terms of PDEs. The equations are returned as a list, whereupon the PDEs are given in
combination with the corresponding dependent variable.

• CalcBoundSystem, GetBoundSystem:

The method CalcBoundSystem() determines automatically the boundary jet bundle. By
evaluating GetBoundSystem the user gets access to this jet bundle. The local coordinates
of the boundary jet bundle are represented in the form

mathematical formula ⇐⇒ maple sheet

xα[10;1] ⇐⇒ ‘xalpha_001;10‘

• CalcBoundECForm, GetBoundECForm:

The CalcBoundECForm determines the extended Cartan form on the boundary, i.e. pulled-
back on the boundary jet bundle. The evaluation of GetBoundECForm returns the result-
ing form.

• GetBoundaryConditions:

The presented boundary conditions (7.15) are evaluated by this method. The equations
are returned similarly to the domain conditions as a list, whereupon the PDEs are given
in combination with the corresponding dependent boundary variable.

The application of these methods is depicted in figure C.5.
The whole package, in combination with some examples, is available on the homepage of the
Institute of Automatic Control and Control Systems Technology

( .
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> with(JetVariationalCalculus);

"JetVariationalCalculus module by regpro - VERSION 3.0 "

"EU-Proj.: GEOPLEX IST-2001-34166 Copyright (c) 2005 - Institut of Automatic Control and Control Systems Technology \

 "

"Johannes Kepler University Linz, All rights reserved. "

[ ]JetVarCalculus
> domvar:=JetVarCalculus(domain);

"JetVarCalculus - by regpro JKU Linz-Austria!"

domvar module() := 

GetJetVariable EulerOp CalcCartanForm SetCartanForm GetCartanForm GetDomainConditions, , , , , ,export

CalcBoundSystem GetBoundSystem CalcBoundECForm GetBoundECForm GetBoundaryConditions, , , , ,

GetMomentaFunctions GetHamiltonianFunction GetLegendreTransform GetPCHSystem, , , ;

 ... 

end module
> l:=`x1`^2+`x2;01`^2;

 := l  + x12 x2;012

> domvar:-EulerOp(x1,l);domvar:-EulerOp(x2,l);

2 x1

−2 x2;02
> 
> domvar:-CalcCartanForm(l*domain:-GetVolForm()):domv ar:-GetCartanForm();
Deriving the cartan form

 −  − ( ) + x12 x2;012 ( )( )d X1 &^ ( )d X2 2 x2;01( )( )d x2 &^ ( )d X1 2 x2;012 ( )( )d X1 &^ ( )d X2
> domvar:-GetDomainConditions();

[ ],[ ],( )d x1 &^ ( )d X2 −2 x1 [ ],( )d x2 −2 x2;02
> domvar:-CalcBoundSystem();

, ,"This method assumes the last independent coordinateto be constant on the boundary!! i.e.:" X2 "=const"

"JetVariables - by regpro JKU Linz-Austria"

"MyLieSymm - by regpro JKU Linz-Austria"
Warning, the `with' command does not work inside pr ocedures or modules 

Setting independent coordinates of boundary bundle!
Setting dependent coordinates of boundary bundle!

, , , , ,( )x1_00 X1 ( )x2_00 X1 ( )x1_01 X1 ( )x2_01 X1 ( )x1_02 X1 ( )x2_02 X1
Deriving boundary jet structure!
JetVariables successfully generated!
ContactForms derived

> boundary:=domvar:-GetBoundSystem();

boundary module() := 

SetIndepVars GetIndepVars SetDepVars GetDepVars GetIndepOfDepVars GetJetOrder CalcJetVars SetJetVars, , , , , , , ,export

GetJetVars GetVarIndex SetVarIndex GetVars GetVarPos CalcContactForms SetContactForms GetContactForms, , , , , , , ,

GetTotalDiff GetVector GetVolForm GetMLSyObj ProlongVectField, , , , ;

 ... 

end module
> domvar:-CalcBoundECForm();

"The extended Cartan form on the boundary is determined!"
> domvar:-GetBoundECForm();

−2 x2_01( )( )d x2_00 &^ ( )d X1
> domvar:-GetBoundaryConditions(bound);

[ ][ ],( )d x2_00 −2 x2_01

Figure C.5: Example application of the JetVariationalCalculus module.
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C.3 Application

In the following a distributed parameter system – the Timoshenko beam, e.g., [Meirovitch,
1967, Meirovitch] – will be used for a short demonstration of the JetVariationalCalculus pack-
age. From now on, the time is denoted by t and X i, i = 1, 2, 3 are the canonical coordinates of
the 3-dimensional Euclidian space. Following the standard assumptions of linear elasticity, we
introduce the displacements xα, α = 1, 2, 3 and the according bundle (E , π,D), dim (E) = 7,
dim (D) = 4 with adapted coordinates (t,X i), t = X0 for D and (t,X i, xα) for E . The kinetic
energy Ekin and the stored energy Epot result in

Ekin =
1

2

∫

DS

xi[1000]δijx
j
[1000]ρdX , dX = dX1 ∧ dX2 ∧ dX3 and (C.1)

Epot =

∫

D

σijdεij (X) ∧ dX =

∫

DS

epotdX .

Here σ = σαβ∂α⊗∂β, σαβ = σβα, β = 1, 2, 3 and εij = εijdX
i⊗dXj, 2εij = xj[1i]

+xi[1j ]
, j = 1, 2, 3

denote the stress and strain tensor. The quantity ρ represents the mass density. The integral
is taken over the body in the reference configuration. Stress and strain are connected by
Hooke’s law σαβ = Cαβijεij, C

αβij = Cβαij = Cαβji = Cjiαβ, where a linear material behavior,
characterized by the stiffness tensor Cαβij, is assumed.

This general assumptions will serve as a basis for the analysis of the application exam-
ple. Additional simplifications, which are motivated by the spatial shape of the investigated
problems, will enable to reduce the amount of independent coordinates.

C.3.1 The Timoshenko Beam

According to Timoshenko, we state that

x1 = w1 − Ψ3X2 + Ψ2X3

x2 = w2 − Ψ1X3

x3 = w3 + Ψ1X2

, which implies

ε11 = w1
[01] − Ψ3

[01]X
2 + Ψ2

[01]X
3

ε12 = −1
2
Ψ3 + 1

2
w2

[01] −
1
2
Ψ1

[01]X
3

ε13 = 1
2
Ψ2 + 1

2
w3

[01] +
1
2
Ψ1

[01]X
2

ε33 = ε22 = ε23 = 0 .

. (C.2)

These assumptions are formulated in the coordinates according to Figure (C.6) and incorpo-

X2

X3
X1w3

w2

w1

Ψ2

Ψ3 Ψ1

A

Figure C.6: The Timoshenko Beam.
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rate the special spatial distribution of a beam. Now, the independent and dependent vari-
ables are (t,X1) and (wα,Ψα). Thus, we introduce the new bundle

(
Ē , π̄, D̄

)
, dim

(
Ē
)

= 8,
dim

(
D̄
)

= 2 with adapted coordinates (t,X1), t = X0, (t,X1, wα,Ψα) , α = 1, 2, 3 for D̄ and Ē .
Therefore, we use the bundle Ē to describe the Timoshenko beam. Furthermore it is straight-
forward to see that all the required functions and densities for an energy based modeling of
the beam can be expresses as functions of the variables of the first jet manifold J1π of π only.

C.3.2 Program Code

These investigations can be done in MAPLE with the instruction lines as shown in Figure C.7.
To keep the relations readable, we restricted the beam deformation to the (X1, X3)-plane and
assume no beam elongation. Due to these assumptions we have to set w1 = 0, w2 = 0, Ψ1 =
0, Ψ3 = 0. For this case, only two figures of Hooke’s law – Young’s modulus of elasticity E
and the shear modulus G – are necessary to describe the material behavior. For the energy
calculation we introduce the area moment of inertia Iy =

∫

A
(X3)

2
dX1 ∧dX2 and assume that

the integral
∫

A
X3 dX1 ∧ dX2 vanishes in accordance to the chosen coordinate system.

> domain:=JetVariables():

"JetVariables - by regpro JKU Linz-Austria"
> domain:-SetIndepVars(t,X);

[ ],t X
> domain:-SetDepVars(w3,psi2);

,( )w3 ,t X ( )ψ2 ,t X

[ ],w3 ψ2
> domain:-CalcJetVars(2): domain:-GetJetVars(); domai n:-CalcContactForms():
JetVariables successfully generated!

[ ], , , , , , , , ,w3;10 w3;01 psi2;10 psi2;01 w3;20 w3;11 w3;02 psi2;20 psi2;11 psi2;02
ContactForms derived

Figure C.7: Timoshenko Beam - loading the package and initializing the variables.

Additionally the cross sectional area A is assumed to stay constant along the x1-coordinate.
After the preliminary work, which is shown in figure C.7, it is possible to calculate all 2 PDEs
and corresponding boundary conditions within some instruction lines. Unfortunately the full
solution (6 PDEs) would need some terminal pages and cannot be shown here. The kinetic
and potential energy density is given by

Ekin =
ρ

2

(

Iy
(
ψ2

[10]

)2
+ A

(
w3

[10]

)2
)

, and Epot =
IyE

2

(
ψ2

[01]

)2
+
GA

2

(

ψ2

2
+
w3

[01]

2

)2

and allow to formulate the Lagrangian L = Ekin − Epot.
The following code lines (see figure C.8) show the calculation of the PDEs based on the

“Cartan form” approach. The -method provides

GA

4

(
w3

[02] + ψ2
[01]

)
− ρAw3

[20] = 0

according to the coordinate w3 and

−
GA

4

(
w3

[01] + ψ2
)

+ Iy
(
−ρψ2

[20] + Eψ2
[02]

)
= 0
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> domvar:=JetVarCalculus(domain):

"JetVarCalculus - by regpro JKU Linz-Austria!"
> Ekin:=1/2*(`psi2;10`^2*rho*Iy+rho*`w3;10`^2*A); 

Epot:=1/2*(`psi2;01`^2*Iy*E+(1/2*psi2+1/2*`w3;01`)^ 2*G*A);

 := Ekin  + 
psi2;102 ρ Iy

2

ρ w3;102 A

2

 := Epot  + 
psi2;012 Iy E

2





 + 

ψ2
2

w3;01

2

2

G A

2
> L:=Ekin-Epot:
> domvar:-CalcCartanForm(L*domain:-GetVolForm());
Deriving the cartan form

> domvar:-GetDomainConditions();





,





,( )d w3 −  +  + ρ A w3;20

G A w3;02

4

G A psi2;01

4





,( )d ψ2 −  −  −  + 

G A w3;01

4
ρ Iy psi2;20

G A ψ2
4

Iy E psi2;02

Figure C.8: Timoshenko Beam - definition of the Lagrangian and derivation of the PDEs.

according to the coordinate ψ2.
Finally we present the extraction of the boundary conditions (see figure C.9), where the

variables of the boundary jet bundle and the extended Cartan form on the boundary are shown.
The boundary conditions are given by

−
GA

4

(
w3

[0;1] + ψ2
[0;0]

)
= 0

for w3
[0;0] and

Iy E ψ2
[0;1] = 0

for ψ2
[0;0]. The presented results coincide with the calculations shown in, e.g., [Meirovitch,

1967, Meirovitch] and illustrate the reduction of work.
The appendix fragment is used only once. Subsequent appendices can be created using the

Chapter Section/Body Tag.
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> domvar:-GetDomainConditions();





,





,( )d w3 −  +  + ρ A w3;20

G A w3;02

4

G A psi2;01

4





,( )d ψ2 −  −  −  + 

G A w3;01

4
ρ Iy psi2;20

G A ψ2
4

Iy E psi2;02

> domvar:-CalcBoundSystem();

, ,"This method assumes the last independent coordinateto be constant on the boundary!! i.e.:" X "=const"
> boundary:=domvar:-GetBoundSystem();

boundary module() := 

SetIndepVars GetIndepVars SetDepVars GetDepVars GetIndepOfDepVars GetJetOrder CalcJetVars SetJetVars, , , , , , , ,export

GetJetVars GetVarIndex SetVarIndex GetVars GetVarPos CalcContactForms SetContactForms GetContactForms, , , , , , , ,

GetTotalDiff GetVector GetVolForm GetMLSyObj ProlongVectField, , , , ;

 ... 

end module
> boundary:-GetVars();

t w3_00 psi2_00 w3_01 psi2_01 w3_02 psi2_02 w3_00;1 psi2_00;1 w3_01;1 psi2_01;1 w3_02;1 psi2_02;1, , , , , , , , , , , , ,[

w3_00;2 psi2_00;2 w3_01;2 psi2_01;2 w3_02;2 psi2_02;2, , , , , ]
> domvar:-CalcBoundECForm();domvar:-GetBoundECForm();

"The extended Cartan form on the boundary is determined!"

−  − psi2_01 Iy E( )( )d t &^ ( )d psi2_00




 + 

G A psi2_00

4

G A w3_01

4
( )( )d t &^ ( )d w3_00

> domvar:-GetBoundaryConditions();





,[ ],( )d psi2_00 psi2_01 Iy E





,( )d w3_00  + 

G A psi2_00

4

G A w3_01

4

Figure C.9: Timoshenko Beam - derivation of the boundary condition.



Appendix D
Afterword

This work has been done in the context of the European sponsored project GeoPlex with
reference code IST-2001-34166. Further information is available at http://www.geoplex.cc.
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